Inverse Problems - Exercise Sheet 6

Publication date: December 19, 2019

Due date: January 7, 2020

Exercise 1 - A range characterization

Let X, Y be Hilbert spaces, $T \in \mathcal{L}(X,Y)$. Show that $\operatorname{rg}(T^*) = \operatorname{rg}((T^*T)^{1/2})$.

Hint: You can use that for a spectral family $(E_{\lambda})_{\lambda}$ and C > 0, $\lim_{\rho \to 0} \int_{\rho}^{C} f(\lambda) dE_{\lambda} x$ exists if and only if $\lim_{\rho \to 0} \int_{\rho}^{C} f(\lambda)^{2} d\|E_{\lambda} x\|^{2} < \infty$.

Exercise 2 - Variational source condition

Let X, Y be Hilbert spaces and $F : \mathcal{D}(F) \subset X \to Y$ with $\mathcal{D}(F) \neq \emptyset$ be continuous and weakly sequentially closed. For $x^* \in X$, $y^{\delta} \in Y$ we let x^{δ}_{α} be a solution of

$$\min_{x \in \mathcal{D}(F)} \|F(x) - y^{\delta}\|_{Y}^{2} + \alpha \|x - x^{*}\|_{X}^{2}.$$
 (1)

Assume that $y^{\dagger} \in Y$, $x^{\dagger} \in X$ are such that $\|y^{\delta} - y^{\dagger}\|_{Y} \leq \delta$ and x^{\dagger} is a x^{*} -minimum norm solution of $F(x) = y^{\dagger}$. Assume further that x^{\dagger} satisfies a variational source condition of the form

$$(x^{\dagger} - x^*, x^{\dagger} - x)_X \le \frac{\beta_1}{2} \|x - x^{\dagger}\|_X^2 + \beta_2 \|F(x) - F(x^{\dagger})\|_Y$$

with $\beta_1 \in [0,1), \beta_2 \geq 0$ and for all $x \in \mathcal{D}(F)$.

Show that in this case, for the parameter choice strategy $\alpha = \alpha(\delta) \sim \delta$ it holds that

$$\|x_{\alpha(\delta)}^{\delta} - x^{\dagger}\|_{X} = O(\sqrt{\delta}), \quad \|F(x_{\alpha(\delta)}^{\delta}) - y^{\delta}\|_{Y} = O(\delta)$$

as $\delta \to 0$.

Exercise 3 - Interpretation of the variational source condition

With the setting of Exercise 1 above, show that each of the following assertions implies the variational source condition of Exercise 1:

- $\bullet \ \mathcal{D}(F) = X, \, F \text{ is linear and } x^\dagger x^* \in X_{\frac{1}{2}}.$
- F is Frechét differentiable, there exists $w \in Y$ with $x^{\dagger} x^* = DF(x^{\dagger})^*w$ and DF is Lipschitz continuous with constant γ such that $\gamma ||w||_Y < 1$.

Defining $E_{\alpha}(x,y) = ||F(x) - y||_Y + \alpha ||x - x^*||_X^2$, show that the variational source condition is equivalent to the existence of constants $\alpha > 0$, $\nu \in (0,1]$ such that

$$E_{\alpha}(x^{\dagger}, y^{\dagger}) + \alpha \nu \|x - x^{\dagger}\|^2 \le E_{\alpha}(x, y^{\dagger})$$

for all x. Interpret this condition and its consequences.