Inverse Problems - Exercise Sheet 4

Exercise 1-Source condition for convolution

With $X=L^{2}\left([-\pi, \pi]^{2}\right)$, define $T: X \rightarrow X$ to be the convolution operator of Exercise 1.2. with convolution kernel $k \in X$.

- For $x^{\dagger} \in X, \mu>0$, express the condition

$$
x^{\dagger} \in X_{\mu}=\left\{x \in X: x=\left(T^{*} T\right)^{\mu} w \text { for } w \in X\right\}
$$

in terms of the Fourier coefficient of x^{\dagger}

- In case there exist $c, C>0$ and $p \geq 2$ such that $c|l|^{p} \leq|\hat{k}|_{l}^{-1} \leq C|l|^{p}$ for all $l \in \mathbb{Z}^{2}$, provide a $\mu>0$ such that, for $x^{\dagger} \in X$ with compact support in $(-\pi, \pi)^{\frac{2}{2}}$,

$$
x^{\dagger} \in X_{\mu} \quad \Leftrightarrow \quad x^{\dagger} \in H^{1}\left((-\pi, \pi)^{2}\right) .
$$

Exercise 2-Convergence rates for convolution

Consider the convolution operator T of Exercise 1.2 on $H=L^{2}\left([-\pi, \pi]^{2}\right)$. Write down Tikhonov and truncated-SVD regularization for this operator in the form $R_{\alpha} y=g_{\alpha}\left(T^{*} T\right) T^{*} y$. For $T^{\dagger} y^{\dagger}=x^{\dagger}=\left(T^{*} T\right)^{\mu} w$ with $\|w\|_{H} \leq 1$, a suitable parameter choice and $\left\|y^{\delta}-y^{\dagger}\right\|_{H} \leq \delta$, provide an explicit proof (without relying on the general results of the lecture) of the optimal convergence rate for both Tikhonov and truncated-SVD regularization.

Exercise 3 - Testing convergence rates

Define the point-wise operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as $T x=h * x$ where $h * x$ denotes the point-wise multiplication and $h_{i}=1 /\left(\right.$ linspace $\left.(1,10, n)^{\theta}\right)$ with $\theta \geq 1$ and the exponent and division are taken point-wise. Use this operator to test the convergence rate of regularization by Tikhonov and truncated singular value decomposition.

More precisely, given $x^{\dagger}=T^{\dagger} y^{\dagger} \in X_{\mu, 1}$ for $\mu \in\{1 / 2,1,1.5\}$ and a parameter choice strategy $\alpha(\delta) \sim$ $(\delta)^{2 /(2 \mu+1)}$ as in the lecture, provide a convergence plot for $\left\|R_{\alpha(\delta)} y^{\delta}-y^{\dagger}\right\|_{\ell^{2}}=: e(\delta)$ as $\delta \rightarrow 0$.

Remarks:

- Plot $(\log (\delta), \log (e(\delta)))$ to visualize the rate of convergence.
- Use linear regression on $(\log (\delta), \log (e(\delta)))$ to estimate the rate of convergence.
- You should be able to observe what the theory predicts.

