Inverse Problems - Exercise Sheet 4

Publication date: November 19, 2019

Due date: November 26, 2019

Exercise 1 - Source condition for convolution

With $X = L^2([-\pi, \pi]^2)$, define $T: X \to X$ to be the convolution operator of Exercise 1.2. with convolution kernel $k \in X$.

• For $x^{\dagger} \in X$, $\mu > 0$, express the condition

$$x^{\dagger} \in X_{\mu} = \{ x \in X : x = (T^*T)^{\mu} w \text{ for } w \in X \}$$

in terms of the Fourier coefficient of x^{\dagger}

• In case there exist c, C > 0 and $p \ge 2$ such that $c|l|^p \le |\hat{k}|_l^{-1} \le C|l|^p$ for all $l \in \mathbb{Z}^2$, provide a $\mu > 0$ such that, for $x^{\dagger} \in X$ with compact support in $(-\pi, \pi)^2$,

$$x^{\dagger} \in X_{\mu} \quad \Leftrightarrow \quad x^{\dagger} \in H^1((-\pi, \pi)^2).$$

Exercise 2 - Convergence rates for convolution

Consider the convolution operator T of Exercise 1.2 on $H = L^2([-\pi, \pi]^2)$. Write down Tikhonov and truncated-SVD regularization for this operator in the form $R_{\alpha}y = g_{\alpha}(T^*T)T^*y$. For $T^{\dagger}y^{\dagger} = x^{\dagger} = (T^*T)^{\mu}w$ with $\|w\|_H \leq 1$, a suitable parameter choice and $\|y^{\delta} - y^{\dagger}\|_H \leq \delta$, provide an explicit proof (without relying on the general results of the lecture) of the optimal convergence rate for both Tikhonov and truncated-SVD regularization.

Exercise 3 - Testing convergence rates

Define the point-wise operator $T: \mathbb{R}^n \to \mathbb{R}^n$ as Tx = h*x where h*x denotes the point-wise multiplication and $h_i = 1/(linspace(1, 10, n)^{\theta})$ with $\theta \ge 1$ and the exponent and division are taken point-wise. Use this operator to test the convergence rate of regularization by Tikhonov and truncated singular value decomposition.

More precisely, given $x^{\dagger} = T^{\dagger}y^{\dagger} \in X_{\mu,1}$ for $\mu \in \{1/2, 1, 1.5\}$ and a parameter choice strategy $\alpha(\delta) \sim (\delta)^{2/(2\mu+1)}$ as in the lecture, provide a convergence plot for $||R_{\alpha(\delta)}y^{\delta} - y^{\dagger}||_{\ell^2} =: e(\delta)$ as $\delta \to 0$.

Remarks:

- Plot $(\log(\delta), \log(e(\delta)))$ to visualize the rate of convergence.
- Use linear regression on $(\log(\delta), \log(e(\delta)))$ to estimate the rate of convergence.
- You should be able to observe what the theory predicts.