Inverse Problems - Exercise Sheet 3

Publication date: November 5, 2019 Due date: November 12, 2019

Exercise 1 - Showalter regularization method

Let X, Y be Hilbert spaces and $T \in \mathcal{L}(X, Y)$. Our goal is to obtain a regularized solution of the inverse problem Tx = y. To this aim, given y^{δ} , we consider the initial problem of finding $u_{\delta} : [0, \infty) \to X$ Fréchet differentiable such that

$$u'_{\delta}(t) + T^*Tu_{\delta}(t) = T^*y^{\delta}$$
 for all $t > 0$
 $u_{\delta}(0) = 0$.

For $\lambda, t \geq 0$, define $\gamma(t, \lambda) = (1 - e^{-\lambda t})/\lambda$ and $v(t) = \int_0^{\|T\|^2} \gamma(t, \lambda) dE_{\lambda} T^* y^{\delta}$, where $(E_{\lambda})_{\lambda}$ are the spectral measures associated to T^*T . Further, we define $R_{\alpha} y^{\delta} := v(1/\alpha)$.

- Show that v is Fréchet differentiable on $(0,\infty)$ and a solution to the initial value problem above.
- Show that $(R_{\alpha})_{\alpha}$ is a regularization.
- Provide a parameter choice $\alpha:[0,\alpha_0)\to[0,\infty)$ such that $(R_\alpha,\alpha)_\alpha$ is an order-optimal regularization method.
- Show that $\lim_{t\to\infty} v(t)$ exists if $y^{\delta} \in \mathcal{D}(T^{\dagger})$ and $\lim_{t\to\infty} \|v(t)\| = \infty$ otherwise.

Exercise 2 - General non-convergence of continuous regularization methods

Let $T \in \mathcal{L}(X,Y)$ with X,Y Hilbert spaces. Following the notation from the course, consider a regularization $(R_{\alpha})_{\alpha}$ defined as $R_{\alpha}(y) = g_{\alpha}(T^*T)T^*y$, for $g_{\alpha} : [0, ||T||^2] \to \mathbb{R}$ that satisfies for a fixed C > 0:

$$|\lambda g_{\alpha}(\lambda)| \leq C$$
 and $\lim_{\alpha \to 0} g_{\alpha}(\lambda) = \frac{1}{\lambda} \quad \forall \lambda \in (0, ||T||^2].$

Define the value $G_{\alpha} := \sup\{|g_{\alpha}(\lambda)|, \lambda \in [0, \|T\|^2]\}$, and take $\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ a continuous function such that $\alpha(0) = 0$. Prove the following for $y \in \mathcal{D}(K^{\dagger}), y^{\delta} \in Y$ such that $\|y - y^{\delta}\| \leq \delta$.

- a) If $\lim_{\delta \to 0} \delta^2 G_{\alpha(\delta)} = 0$, then $||R_{\alpha(\delta)} y^{\delta} T^{\dagger} y|| \to 0$ as $\delta \to 0$.
- b) For a general T which is compact, provide a concrete choice of g_{α} and a continuous parameter choice rule $\alpha:(0,\alpha_0)\to(0,\infty)$ such that $\alpha(0)=0$ and $\lim_{\delta\to 0}\delta^{2+\epsilon}G_{\alpha(\delta)}=0$ for all $\epsilon>0$, but the regularization method $(R_{\alpha},\alpha)_{\alpha}$ is not convergent.