Inverse Problems - Exercise Sheet 1

Publication date: October 8, 2019

Due date: October 15, 2019

Exercise 1 - Closed range

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be Banach spaces and $T: X \to Y$ be a bounded, linear operator. With the equivalence relation $x_1 \sim x_2 :\Leftrightarrow x_1 - x_2 \in \ker(T)$ on X, define $\hat{X} = X/_{\sim}$ to be the quotient space w.r.t. \sim ,

$$\begin{split} \|\cdot\|_{\hat{X}} : & \hat{X} \to \mathbb{R} \\ & [x]_{\sim} \mapsto \inf_{\hat{x} \in [x]_{\sim}} \|\hat{x}\|_{X} \end{split} \quad \text{ and } \quad \begin{split} & \hat{T} : \hat{X} \to \operatorname{rg}(T) \\ & [x]_{\sim} \mapsto Tx, \end{split}$$

where rg(T) is the range of \hat{T} .

- Show that $(\hat{X}, \|\cdot\|_{\hat{X}})$ is a Banach space and \hat{T} is well defined, bounded and linear.
- Noting that \hat{T} is bijective, use the open mapping theorem to argue that if rg(T) is closed, the inverse of \hat{T} is continuous.
- The other way around, prove that rg(T) is closed if \hat{T}^{-1} is continuous.

Hint: You can use that a normed space is complete if and only if every absolutely convergent series is convergent.

For the next exercise, we remember that any function $u \in L^2([-\pi, \pi]^2)$ admits a representation in terms of its Fourier series

$$u = \sum_{l=(l_1, l_2) \in \mathbb{Z}^2} (u, e_l)_{L^2([-\pi, \pi]^2)} e_l, \quad \text{where } (u, v)_{L^2([-\pi, \pi]^2)} := \int_{[-\pi, \pi]^2} u(x) \overline{v}(x) dx,$$

 $e_l(x_1, x_2) := e^{i(l_1x_1 + l_2x_2)}$ and $(e_l)_{l \in \mathbb{Z}^2}$ is an orthonormal Basis of $L^2([-\pi, \pi]^2)$ such that $\hat{u} := ((u, e_l)_{L^2([-\pi, \pi]^2)})_l \in \ell^2(\mathbb{Z}^2)$. Also we remember that any operator is compact if it is the limit of finite-range operators in operator norm. Further, remember that a space is finite dimensional if and only if its closed unit ball is compact.

Exercise 2 - Ill-posedness of inverting the convolution

For $k \in L^2([-\pi,\pi]^2)$, define the convolution operator

$$\begin{split} T: & L^2([-\pi,\pi]^2) \to L^2([-\pi,\pi]^2) \\ & u \mapsto k*u := \left(x \mapsto \int_{[-\pi,\pi]^2} k(x-y) u(y) \mathrm{d}y\right) \end{split}$$

where we use periodic boundary extension.

• Show that

$$\widehat{Tu}_l = \hat{k}_l \hat{u}_l$$
 for all $l \in \mathbb{Z}^2$

and provide the inverse of T in case $\hat{k}_l \neq 0$ for all $l \in \mathbb{Z}^2$.

• Proof that T is compact and deduce that, in case $\hat{k}_l \neq 0$ for infinitely many $l \in \mathbb{Z}^2$, T cannot have closed range.

Exercise 3 - Radon transform

For $f: B \to \mathbb{R}$ continuous, where $B:=\{x \in \mathbb{R}^2: ||x|| \leq 1\}$, we define the Radon transform as

$$\mathcal{R}f(\theta,s) = \int_{-\infty}^{\infty} f\left(s \ \mathbf{w}(\theta) + t \ \mathbf{w}^{\perp}(\theta)\right) dt, \quad (\theta,s) \in [0,2\pi] \times \mathbb{R},$$

with f extended by 0 outside B and $\mathbf{w}(\theta) = (\cos(\theta), \sin(\theta))^t$, $\mathbf{w}^{\perp}(\theta) = (-\sin(\theta), \cos(\theta))^t$.

- a) Show that the Radon transform can be extended to a linear continuous operator from $L^p(B)$ to $\Omega = L^p([0, 2\pi] \times [-1, 1])$, where $p \in [1, \infty)$.
- b) Prove that, for $p \in (1, \infty)$, the adjoint of the Radon transform \mathcal{R}^* , also called **backprojection operator**, has the form

$$\mathcal{R}^* g(x) = \int_0^{2\pi} g(\theta, x \cdot \mathbf{w}(\theta)) d\theta. \tag{1}$$

Hint: You can use Jensen's inequality for measures. Also, remember that \mathcal{R}^* is the adjoint if and only if $\mathcal{R}^*g \in L^{p*}(B)$ and $\int_{\Omega} (\mathcal{R}f)g = \int_{B} f(\mathcal{R}^*g), \ \forall f \in L^p(B), g \in L^{p*}(\Omega)$ with p* = p/(p-1).

Exercise 4 - Programming exercise

Use then script "convolution_test.m" to implement and test a convolution. The main tasks as described in the script are as follows:

- Implement a convolution both using an actual convolution (such as with "conv2") and by using multiplication in the Fourier domain, e.g., with "fft2". Ensure that both implementations produce the same result. Note: The correct boundary extension matters!
- Implement a deconvolution operator using division in the Fourier domain. Observe the instability of this operator as implemented in the script.
- Bonus: Can you come up with a better direct inversion of the convolution operator?