Inverse Problems - Exercise Sheet 1

Exercise 1-Closed range

Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces and $T: X \rightarrow Y$ be a bounded, linear operator. With the equivalence relation $x_{1} \sim x_{2}: \Leftrightarrow x_{1}-x_{2} \in \operatorname{ker}(T)$ on X, define $\hat{X}=X / \sim$ to be the quotient space w.r.t. \sim,

$$
\begin{array}{rlrl}
\|\cdot\|_{\hat{X}} & : \hat{X} \rightarrow \mathbb{R} & & \hat{T}: \hat{X} \rightarrow \\
& \rightarrow x]_{\sim}(T) \\
\inf _{\hat{x} \in[x]_{\sim}}\|\hat{x}\|_{X} & \text { and } & & {[x]_{\sim} \mapsto T x,}
\end{array}
$$

where $\operatorname{rg}(T)$ is the range of \hat{T}.

- Show that $\left(\hat{X},\|\cdot\|_{\hat{X}}\right)$ is a Banach space and \hat{T} is well defined, bounded and linear.
- Noting that \hat{T} is bijective, use the open mapping theorem to argue that if $\operatorname{rg}(T)$ is closed, the inverse of \hat{T} is continuous.
- The other way around, prove that $\operatorname{rg}(T)$ is closed if \hat{T}^{-1} is continuous.

Hint: You can use that a normed space is complete if and only if every absolutely convergent series is convergent.

For the next exercise, we remember that any function $u \in L^{2}\left([-\pi, \pi]^{2}\right)$ admits a representation in terms of its Fourier series

$$
u=\sum_{l=\left(l_{1}, l_{2}\right) \in \mathbb{Z}^{2}}\left(u, e_{l}\right)_{L^{2}\left([-\pi, \pi]^{2}\right)} e_{l}, \quad \text { where }(u, v)_{L^{2}\left([-\pi, \pi]^{2}\right)}:=\int_{[-\pi, \pi]^{2}} u(x) \bar{v}(x) \mathrm{d} x
$$

$e_{l}\left(x_{1}, x_{2}\right):=e^{i\left(l_{1} x_{1}+l_{2} x_{2}\right)}$ and $\left(e_{l}\right)_{l \in \mathbb{Z}^{2}}$ is an orthonormal Basis of $L^{2}\left([-\pi, \pi]^{2}\right)$ such that $\hat{u}:=$ $\left(\left(u, e_{l}\right)_{L^{2}\left([-\pi, \pi]^{2}\right)}\right)_{l} \in \ell^{2}\left(\mathbb{Z}^{2}\right)$. Also we remember that any operator is compact if it is the limit of finite-range operators in operator norm. Further, remember that a space is finite dimensional if and only if its closed unit ball is compact.

Exercise 2-Ill-posedness of inverting the convolution

For $k \in L^{2}\left([-\pi, \pi]^{2}\right)$, define the convolution operator

$$
\begin{aligned}
T & : L^{2}\left([-\pi, \pi]^{2}\right) \rightarrow L^{2}\left([-\pi, \pi]^{2}\right) \\
& u \mapsto k * u:=\left(x \mapsto \int_{[-\pi, \pi]^{2}} k(x-y) u(y) \mathrm{d} y\right)
\end{aligned}
$$

where we use periodic boundary extension.

- Show that

$$
\widehat{T u}_{l}=\hat{k}_{l} \hat{u}_{l} \text { for all } l \in \mathbb{Z}^{2}
$$

and provide the inverse of T in case $\hat{k}_{l} \neq 0$ for all $l \in \mathbb{Z}^{2}$.

- Proof that T is compact and deduce that, in case $\hat{k}_{l} \neq 0$ for infinitely many $l \in \mathbb{Z}^{2}, T$ cannot have closed range.

Exercise 3-Radon transform

For $f: B \rightarrow \mathbb{R}$ continuous, where $B:=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$, we define the Radon transform as

$$
\mathcal{R} f(\theta, s)=\int_{-\infty}^{\infty} f\left(s \mathbf{w}(\theta)+t \mathbf{w}^{\perp}(\theta)\right) d t, \quad(\theta, s) \in[0,2 \pi] \times \mathbb{R}
$$

with f extended by 0 outside B and $\mathbf{w}(\theta)=(\cos (\theta), \sin (\theta))^{t}, \mathbf{w}^{\perp}(\theta)=(-\sin (\theta), \cos (\theta))^{t}$.
a) Show that the Radon transform can be extended to a linear continuous operator from $L^{p}(B)$ to $\Omega=L^{p}([0,2 \pi] \times[-1,1])$, where $p \in[1, \infty)$.
b) Prove that, for $p \in(1, \infty)$, the adjoint of the Radon transform \mathcal{R}^{*}, also called backprojection operator, has the form

$$
\begin{equation*}
\mathcal{R}^{*} g(x)=\int_{0}^{2 \pi} g(\theta, x \cdot \mathbf{w}(\theta)) d \theta \tag{1}
\end{equation*}
$$

Hint: You can use Jensen's inequality for measures. Also, remember that \mathcal{R}^{*} is the adjoint if and only if $\mathcal{R}^{*} g \in L^{p *}(B)$ and $\int_{\Omega}(\mathcal{R} f) g=\int_{B} f\left(\mathcal{R}^{*} g\right), \quad \forall f \in L^{p}(B), g \in L^{p *}(\Omega)$ with $p *=p /(p-1)$.

Exercise 4 - Programming exercise

Use then script "convolution_test.m" to implement and test a convolution. The main tasks as described in the script are as follows:

- Implement a convolution both using an actual convolution (such as with "conv2") and by using multiplication in the Fourier domain, e.g., with "fft2". Ensure that both implementations produce the same result. Note: The correct boundary extension matters!
- Implement a deconvolution operator using division in the Fourier domain. Observe the instability of this operator as implemented in the script.
- Bonus: Can you come up with a better direct inversion of the convolution operator?

