Introduction to Functional Analysis

Problem Sheet 7

Due date: June 23, 2017
In order to learn most from the exercises below, I strongly recommend to first seriously try to complete them on your own, and only afterwards discuss and compare with colleagues.

Problem 7.1. For $f, g \in L^{2}\left(\Omega, \mathbb{K}^{M} ; \mu\right)$, define

$$
(f, g)_{L^{2}}:=\int_{\Omega}(f(x), g(x)) \mathrm{d} \mu(x)
$$

where we set $(a, b)=\sum_{i=1}^{M} a_{i} \bar{b}_{i}$ for $a, b \in \mathbb{K}^{M}$. Show that $(\cdot, \cdot)_{L^{2}}$ is an inner product and that $\|f\|_{L^{2}}^{2}=(f, f)_{L^{2}}$ for all $f \in L^{2}\left(\Omega, \mathbb{K}^{M}, \mu\right)$.

Problem 7.2. Let X be an inner product space and $A \subset X$ a subspace. Show

- For all $x, y \in X, x \perp y \Rightarrow\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2}$.
- A^{\perp} is a closed subspace of X.
- $\bar{A} \subset\left(A^{\perp}\right)^{\perp}$.
- $A^{\perp}=(\overline{\mathcal{L}(A)})^{\perp}$ and $A^{\perp}=\bar{A}^{\perp}$

Remember that here, A^{\perp} denotes the orthogonal complement of A as subspace of X.
Problem 7.3. Proof the following theorem of the lecture: If X, Y are Banach spaces, $T \in \mathcal{L}(X, Y)$ then t.f.a.e.
i) T^{*} is surjective.
ii) There exists $C>0$ such that $\|x\| \leq C\|T x\|$ for all $x \in X$.
iii) $\operatorname{ker}(T)=\{0\}$ and $\operatorname{rg}(T)$ is closed.

Problem 7.4. (Counterexample-Operator) For $p \in[1, \infty)$ define $T: \ell^{p} \rightarrow \ell^{p}$ as

$$
T\left(\left(x_{n}\right)_{n}\right)=\left(\frac{1}{n} x_{n}\right)_{n}
$$

Show that is well defined and $T \in \mathcal{L}\left(\ell^{p}, \ell^{p}\right)$. Determine $T^{*}, \operatorname{ker}(T) \operatorname{ker}\left(T^{*}\right), \operatorname{rg}(T), \operatorname{rg}\left(T^{*}\right), \overline{\operatorname{rg}(T)}$ and $\overline{\operatorname{rg}\left(T^{*}\right)}$. Use T and T^{*} to argue that, for general bounded linear operators A between Banach spaces we have:

- $\overline{\operatorname{rg}\left(A^{*}\right)} \subset \operatorname{ker}(A)^{\perp}$ but equality does not hold.
- A surjective implies A^{*} injective, but the converse does not hold.
- A^{*} surjective implies A injective, but the converse does not hold.

Problem 7.5. Let X be a Banach space and $\left(x_{n}\right)_{n} \subset X$ and $x \in X$. Show that, if $x_{n} \rightharpoonup x$, then $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$.

Problem 7.6. (Uniformly convex space) A Banach space $(X,\|\cdot\|)$ is called uniformly convex if for any two sequences $\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}$ in X it holds that

$$
\left[\left\|x_{n}\right\| \rightarrow 1,\left\|y_{n}\right\| \rightarrow 1 \text { and }\left\|\frac{x_{n}+y_{n}}{2}\right\| \rightarrow 1\right] \Rightarrow\left\|x_{n}-y_{n}\right\| \rightarrow 0
$$

i) Interpret the notion of uniform convexity geometrically.
ii) Show that Hilbert spaces, in particular ℓ^{2}, are uniformly convex but ℓ^{1} is not uniformly convex.
iii) Show that in a uniformly convex space it holds that, if $\left(x_{n}\right)_{n} \subset X, x \in X$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ as well as $x_{n} \rightharpoonup x$ then $\left\|x_{n}-x\right\| \rightarrow 0$.

