Introduction to Functional Analysis

Problem Sheet 5

Due date: Mai 26, 2017
In order to learn most from the exercises below, I strongly recommend to first seriously try to complete them on your own, and only afterwards discuss and compare with colleagues.

Problem 5.1. (Completion of proofs from the lecture) Let X be a normed space and $G, L \subset X$ be closed subspaces and $V \subset X^{*}$ be a subspace. Show

- If X is reflexive, then $i_{X}\left(V_{\perp}\right)=V^{\perp}$, where $i_{X}: X \rightarrow X^{* *}$ is the canonical embedding.
- If X is reflexive, $\left(V_{\perp}\right)^{\perp}=\bar{V}$
- $G^{\perp} \cap L^{\perp}=(G+L)^{\perp}$

Problem 5.2. (Completion of proofs from the lecture) As mentioned in the lecture, the results we have obtained so far allow to directly conclude that, in general, neither $L^{1}(\Omega)$ nor ℓ^{1} can be reflexive. Provide this argumentation and conclude also that, in general, neither $L^{\infty}(\Omega)$ nor ℓ^{∞} can be reflexive.

Problem 5.3. (The finite dimensional setting) Let X be a normed space. Show the following:

- X is finite dimensional $\Leftrightarrow X^{*}$ is finite dimensional. In this case, $\operatorname{dim}(X)=\operatorname{dim}\left(X^{*}\right)$.
- If X is finite dimensional, it is reflexive.
- If X is finite dimensional the notions of norm convergence, weak convergence and weak* convergence coincide.

Hint: For \Rightarrow of the first point, consider the mapping we have used to show that finite dimensional subspaces admit a complement. For the other direction, use what you already have.

Problem 5.4. Let X be a normed space, $\left(x_{n}\right)_{n}$ a bounded sequence in X and $x \in X$. Show that $\left(x_{n}\right)_{n}$ weakly converges to x if and only if there exists a $D \subset X^{*}$ with $X^{*}=\overline{\mathcal{L}(D)}$ such that $x^{*}\left(x_{n}\right) \rightarrow x^{*}(x)$ for all $x^{*} \in D$.

Problem 5.5. Let X be a normed space and $M, E \subset X$ be two subspaces such that E is finite dimensional and M is closed. Show

- E is closed
- If $M+E=X$ (i.e. M is of finite codimension), then M admits a complement in X.
- $M+E$ is closed.

Can you use one of the previous exercises to give an examples of two closed subspaces of a Banach space whose sum is not closed?
Hint: For the second point, consider a complement of $M \cap E$ in E. For the third point, first assume that $M \cap E=\{0\}$, take a convergent sequence $x_{n}=u_{n}+v_{n} \in M+E$ and show boundedness of v_{n}.

