Optimierung I

Problem Sheet 10

Due date: 24. June 2014

Problem 10.1: [Finding a descent direction with Newton's method]

We consider a twice-differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, with a continous second-order derivative. At a given point $x \in \mathbb{R}^{n}$, if $\nabla^{2} f(x)$ is invertible, Newton's method provides a direction $d \in \mathbb{R}^{n}$ which is such that:

$$
\begin{equation*}
\nabla f(x)+\nabla^{2} f(x) d=0 \tag{1}
\end{equation*}
$$

We assume that $\nabla f(x) \neq 0$.
i) Give an example where (1) has a solution which is not a descent direction.
ii) Let us assume that $\nabla^{2} f(x)$ is positive definite. Prove that d is a descent direction.
iii) Now, we do not make any assumption on the positivity of $\nabla^{2} f(x)$. For all C, we denote by d_{C}, if it exists, the solution to:

$$
\begin{equation*}
\nabla f(x)+\left(\nabla^{2} f(x)+C \operatorname{Id}_{n}\right) d=0 \tag{2}
\end{equation*}
$$

Let ρ_{-}be the smallest eigenvalue of $\nabla^{2} f(x)$, prove that for all C with $C>-\rho_{-}$, (2) has a solution which is a descent direction.
iv) Prove that

$$
\begin{equation*}
d_{C} \underset{C \rightarrow \infty}{\longrightarrow} 0 \quad \text { and } \quad \frac{d_{C}}{\left\|d_{C}\right\|} \underset{C \rightarrow \infty}{\longrightarrow}-\frac{\nabla f(x)}{\|\nabla f(x)\|} \tag{3}
\end{equation*}
$$

v) Consider the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-\frac{1}{2} x_{2}^{2}+x_{1}+x_{2}$ and the point $x=(0,0)^{\top}$. Compute the solution to (1), prove that it is not a descent direction, compute the solution to (2) for any $C>-\rho_{-}$.

Problem 10.2: [Analysis of the order of convergence]

In this exercise, we analyse the convergence of Newton's method for a particular case (in dimension 1). Let f be defined by:

$$
\begin{equation*}
f(x)=-e^{-x^{2}} \tag{4}
\end{equation*}
$$

let us define:

$$
\begin{equation*}
d(x)=\frac{-f^{\prime}(x)}{f^{\prime \prime}(x)} \tag{5}
\end{equation*}
$$

For a given $x_{0} \in \mathbb{R}$, we define the sequence $\left(x_{k}\right)_{k}$ as follows: for all k,

$$
\begin{equation*}
x_{k+1}=x_{k}+d\left(x_{k}\right) . \tag{6}
\end{equation*}
$$

Note that $d(x)$ is not defined neither at $x=-\frac{1}{\sqrt{2}}$ nor at $x=-\frac{1}{\sqrt{2}}$. We say that the sequence $\left(x_{k}\right)_{k}$ is well-defined if for all $k, x_{k} \neq-\frac{1}{\sqrt{2}}$ and $x_{k} \neq \frac{1}{\sqrt{2}}$.
i) Draw a graph of f, draw the tangents at $x=\frac{1}{\sqrt{2}}$ and $x=-\frac{1}{\sqrt{2}}$.
ii) Compute $d(x)$, and motivate the definition of the sequence $\left(x_{k}\right)_{k}$.
iii) Let us define $g(x)=\left|\frac{x+d(x)}{x}\right|$, for $|x| \neq \frac{1}{\sqrt{2}}$. Study the variation of g, and prove that for all x, if $|x| \leq \frac{1}{2}$, then $g(x)<1$, and if $|x| \geq \frac{1}{\sqrt{2}}, g(x)>1$.
iv) Prove that if $x_{0}>\frac{1}{\sqrt{2}}$, then $\left(x_{k}\right)_{k}$ is well-defined and $x_{k} \rightarrow+\infty$, and similarly, if $x_{0}<-\frac{1}{\sqrt{2}}$, then $\left(x_{k}\right)_{k}$ is well-defined and $x_{k} \rightarrow-\infty$.
v) Prove that if $\left|x_{0}\right|<\frac{1}{2}$, the sequence converges to 0 . Compute the order of convergence (german: Q-Konvergenzordnung) and the associated factor.
vi) Is the order of convergence the one that was expected from results of the lecture ?

Problem 10.3: [Cholesky decomposition]

For any positive definite symmetric matrix S in $\mathbb{R}^{n \times n}$, we call Cholesky decomposition the following decomposition:

$$
\begin{equation*}
S=L L^{\top} \tag{7}
\end{equation*}
$$

where L is a lower triangular matrix of $\mathbb{R}^{n \times n}$ with strictly positive diagonal coefficients. The goal of this exercise is to prove the existence and the uniqueness of such a matrix L. The proof is a proof by induction of the dimension n.
i) Consider the case $n=1$.
ii) Let $n \in \mathbb{N}$, let us assume to have proved the result for this dimension. Let S be a positive definite symmetric matrix of size $n+1$, that we write as follows:

$$
S=\left(\begin{array}{cc}
a & b^{\top} \tag{8}\\
b & \tilde{S}
\end{array}\right)
$$

where $a \in \mathbb{R}, b \in \mathbb{R}^{n}, \tilde{S} \in \mathbb{R}^{n \times n}$. Let L be a lower triangular matrix of size $n+1$, with

$$
L=\left(\begin{array}{cc}
c & 0 \tag{9}\\
d & \tilde{L}
\end{array}\right)
$$

with $c \in \mathbb{R}, d \in \mathbb{R}^{n}, \tilde{L} \in \mathbb{R}^{n \times n}$ lower triangular. Prove that if $S=L L^{\top}$, then there is a unique possible choice for c and d, with $c>0$.
iii) Let $\ell=\binom{c}{d} \in \mathbb{R}^{n+1}$, compute the symmetric matrix $Q \in \mathbb{R}^{n \times n}$ which is such that:

$$
S-\ell \ell^{\top}=\left(\begin{array}{cc}
0 & 0 \tag{10}\\
0 & Q
\end{array}\right)
$$

iv) Prove that Q is positive definite. To do so, you can prove that for all $x \in \mathbb{R}^{n}$, there exists $x_{0} \in \mathbb{R}$ such that for $y=\binom{x_{0}}{x}, y^{\top} S y=x^{\top} Q x$. Conclude.
v) Using a Cholesky decomposition, solve the equation:

$$
\left(\begin{array}{ccc}
10 & 5 & 4 \tag{11}\\
5 & 25 & 20 \\
4 & 20 & 26
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
8 \\
30 \\
64
\end{array}\right)
$$

Problem 10.4: [An optimal triangle]

In this problem, we compute the maximal area of a triangle $A B C$ having its three vertices A, B, and C on the same circle. Without loss of generality, we can assume that the three vertices belong to the circle of radius 1 and center $(0,0)$, and we can assume that $A=(0,1), B=\left(\cos \left(\theta_{1}\right), \sin \left(\theta_{1}\right)\right)$, $C=\left(\cos \left(\theta_{2}\right), \sin \left(\theta_{2}\right)\right)$, with θ_{1} and θ_{2} in $[0,2 \pi]$.
Denoting by \mathcal{A} the area of the triangle and by M the matrix of size 2 formed with the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$, we recall the formula: $\mathcal{A}=\frac{1}{2}|\operatorname{det}(M)|$.
Find the optimal triangles.

Problem 10.5: [Regularization]

Suppose we want to recover a signal $\hat{u} \in \mathbb{R}^{n}$ from a given a noise signal $u_{0}=\hat{u}+\delta$, where $\delta \in \mathbb{R}^{n}$ is some (Gaussian) noise (see Figure 1). If we know that our original signal was approximately piecewise constant, a one approach to recover \hat{u} is to solve

$$
\min _{u \in \mathbb{R}^{n}} F(u) \quad \text { with } \quad F(u)=\frac{1}{2}\left\|u-u_{0}\right\|_{2}^{2}+\mu\|\nabla u\|_{1}=\frac{1}{2} \sum_{i=1}^{n}\left(u_{i}-\left(u_{0}\right)_{i}\right)^{2}+\mu \sum_{i=1}^{n}\left|(\nabla u)_{i}\right|
$$

where

$$
(\nabla u)_{i}= \begin{cases}u_{i+1}-u_{i} & \text { if } 1 \leq i<n \\ 0 & \text { else }\end{cases}
$$

denotes a discret gradient. Now the difficulty is that $|\cdot|$ is not differentiable at 0 . One approach is to solve an approximate, regularized problem:
i) Given a parameter $\epsilon>0$, find an approximation $|\cdot|_{\epsilon}: \mathbb{R} \rightarrow \mathbb{R}_{+}$of the absolute value $|\cdot|$ such that

- $|\cdot|_{\epsilon}$ is convex and continuously differentiable
- $\left.\sup _{x \in \mathbb{R}}| | x\right|_{\epsilon}-|x| \mid \rightarrow 0$ as $\epsilon \rightarrow 0$
- There exists $R(\epsilon)>0$ with $R(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ and $|x|_{\epsilon}=|x|$ for all $|x|>R(\epsilon)$.
ii) Use $|\cdot|_{\epsilon}$ to define an approximation $F_{\epsilon} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ of F such that $\left\|F_{\epsilon}-F\right\|_{\infty} \rightarrow 0$ as $\epsilon \rightarrow 0$ and calculate ∇F_{ϵ}
iii) Ensure existence of a unique solution to $\min _{u} F(u)$ and $\min _{u} F_{\epsilon}(u)$.
iv) Show that for any approximation as in 2), denoting u_{ϵ} the minimizer of $F_{\epsilon}, u_{\epsilon} \rightarrow u^{*}, u^{*}$ being the unique minimizer of F, in particular $F\left(u_{\epsilon}\right) \rightarrow F(u)$ as $\epsilon \rightarrow 0$.
v)* Use your program of exercise 8.5 to solve the approximate problem. An example of noisy and true data is provided on the webpage. Try different values of μ and ϵ and bring pictures of your results to class (on USB). You can also generate your own data.

NOTE: v)* is an additional point, it is not necessary to cross the exercise. After completing i)-iv), we will as if one students wants to show v)* and give 2 extra points for the presentation.

Abbildung 1: Example of original (blue) and noisy (red) data

