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Problem 10.1: [Finding a descent direction with Newton’s method]

We consider a twice-differentiable function f : Rn → R, with a continous second-order derivative.
At a given point x ∈ Rn, if ∇2f(x) is invertible, Newton’s method provides a direction d ∈ Rn
which is such that:

∇f(x) +∇2f(x)d = 0. (1)

We assume that ∇f(x) 6= 0.

i) Give an example where (1) has a solution which is not a descent direction.

ii) Let us assume that ∇2f(x) is positive definite. Prove that d is a descent direction.

iii) Now, we do not make any assumption on the positivity of ∇2f(x). For all C, we denote by
dC , if it exists, the solution to:

∇f(x) + (∇2f(x) + C Idn)d = 0. (2)

Let ρ− be the smallest eigenvalue of ∇2f(x), prove that for all C with C > −ρ−, (2) has a
solution which is a descent direction.

iv) Prove that

dC −→
C→∞

0 and
dC
‖dC‖

−→
C→∞

− ∇f(x)

‖∇f(x)‖
. (3)

v) Consider the function f(x1, x2) = x21 − 1
2x

2
2 + x1 + x2 and the point x = (0, 0)>. Compute

the solution to (1), prove that it is not a descent direction, compute the solution to (2) for
any C > −ρ−.

Problem 10.2: [Analysis of the order of convergence]

In this exercise, we analyse the convergence of Newton’s method for a particular case (in dimension
1). Let f be defined by:

f(x) = −e−x
2

, (4)

let us define:

d(x) =
−f ′(x)

f ′′(x)
. (5)

For a given x0 ∈ R, we define the sequence (xk)k as follows: for all k,

xk+1 = xk + d(xk). (6)

Note that d(x) is not defined neither at x = − 1√
2

nor at x = − 1√
2
. We say that the sequence (xk)k

is well-defined if for all k, xk 6= − 1√
2

and xk 6= 1√
2
.

i) Draw a graph of f , draw the tangents at x = 1√
2

and x = − 1√
2
.
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ii) Compute d(x), and motivate the definition of the sequence (xk)k.

iii) Let us define g(x) =
∣∣x+d(x)

x

∣∣, for |x| 6= 1√
2
. Study the variation of g, and prove that for all

x, if |x| ≤ 1
2 , then g(x) < 1, and if |x| ≥ 1√

2
, g(x) > 1.

iv) Prove that if x0 >
1√
2
, then (xk)k is well-defined and xk → +∞, and similarly, if x0 < − 1√

2
,

then (xk)k is well-defined and xk → −∞.

v) Prove that if |x0| < 1
2 , the sequence converges to 0. Compute the order of convergence

(german: Q-Konvergenzordnung) and the associated factor.

vi) Is the order of convergence the one that was expected from results of the lecture ?

Problem 10.3: [Cholesky decomposition]

For any positive definite symmetric matrix S in Rn×n, we call Cholesky decomposition the following
decomposition:

S = LL>, (7)

where L is a lower triangular matrix of Rn×n with strictly positive diagonal coefficients. The goal
of this exercise is to prove the existence and the uniqueness of such a matrix L. The proof is a
proof by induction of the dimension n.

i) Consider the case n = 1.

ii) Let n ∈ N, let us assume to have proved the result for this dimension. Let S be a positive
definite symmetric matrix of size n+ 1, that we write as follows:

S =

(
a b>

b S̃

)
, (8)

where a ∈ R, b ∈ Rn, S̃ ∈ Rn×n. Let L be a lower triangular matrix of size n+ 1, with

L =

(
c 0

d L̃

)
, (9)

with c ∈ R, d ∈ Rn, L̃ ∈ Rn×n lower triangular. Prove that if S = LL>, then there is a
unique possible choice for c and d, with c > 0.

iii) Let ` =

(
c
d

)
∈ Rn+1, compute the symmetric matrix Q ∈ Rn×n which is such that:

S − ``> =

(
0 0
0 Q

)
. (10)

iv) Prove that Q is positive definite. To do so, you can prove that for all x ∈ Rn, there exists

x0 ∈ R such that for y =

(
x0
x

)
, y>Sy = x>Qx. Conclude.

v) Using a Cholesky decomposition, solve the equation: 10 5 4
5 25 20
4 20 26

 x1
x2
x3

 =

 8
30
64

 . (11)

2



Problem 10.4: [An optimal triangle]

In this problem, we compute the maximal area of a triangle ABC having its three vertices A, B,
and C on the same circle. Without loss of generality, we can assume that the three vertices belong
to the circle of radius 1 and center (0, 0), and we can assume that A = (0, 1), B = (cos(θ1), sin(θ1)),
C = (cos(θ2), sin(θ2)), with θ1 and θ2 in [0, 2π].

Denoting by A the area of the triangle and by M the matrix of size 2 formed with the vectors
→
AB

and
→
AC, we recall the formula: A = 1

2 |det(M)|.
Find the optimal triangles.

Problem 10.5: [Regularization]
Suppose we want to recover a signal û ∈ Rn from a given a noise signal u0 = û+ δ, where δ ∈ Rn
is some (Gaussian) noise (see Figure 1). If we know that our original signal was approximately
piecewise constant, a one approach to recover û is to solve

min
u∈Rn

F (u) with F (u) =
1

2
‖u− u0‖22 + µ‖∇u‖1 =

1

2

n∑
i=1

(ui − (u0)i)
2 + µ

n∑
i=1

|(∇u)i|

where

(∇u)i =

{
ui+1 − ui if 1 ≤ i < n

0 else

denotes a discret gradient. Now the difficulty is that | · | is not differentiable at 0. One approach is
to solve an approximate, regularized problem:

i) Given a parameter ε > 0, find an approximation | · |ε : R→ R+ of the absolute value | · | such
that

• | · |ε is convex and continuously differentiable

• supx∈R ||x|ε − |x|| → 0 as ε→ 0

• There exists R(ε) > 0 with R(ε)→ 0 as ε→ 0 and |x|ε = |x| for all |x| > R(ε).

ii) Use | · |ε to define an approximation Fε ∈ C1(Rn,R) of F such that ‖Fε−F‖∞ → 0 as ε→ 0
and calculate ∇Fε

iii) Ensure existence of a unique solution to minu F (u) and minu Fε(u).

iv) Show that for any approximation as in 2), denoting uε the minimizer of Fε, uε → u∗, u∗

being the unique minimizer of F , in particular F (uε)→ F (u) as ε→ 0.

v)* Use your program of exercise 8.5 to solve the approximate problem. An example of noisy and
true data is provided on the webpage. Try different values of µ and ε and bring pictures of
your results to class (on USB). You can also generate your own data.

NOTE: v)* is an additional point, it is not necessary to cross the exercise. After completing i)-iv),
we will as if one students wants to show v)* and give 2 extra points for the presentation.
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Abbildung 1: Example of original (blue) and noisy (red) data
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