Optimierung I

Problem Sheet 7

Due date: May 27, 2014

Problem 7.1: [Minima]

i) Compute the gradient and Hessian of the Rosenbruck function

$$
f(x, y)=100\left(x^{2}-y\right)^{2}+(x-1)^{2} .
$$

Investigate the point $(x, y)=(1,1)$.
ii) Investigate the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=8 x+12 y+x^{2}-2 y^{2}$ with respect to maxima, minima and critical points.
iii) Determine all local minima of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)=\frac{1}{2} x^{2}+x \sin (y)
$$

Problem 7.2: [Optimality Conditions]

Let $P_{n}(0,1)$ be the set of polynomials of degree n on $(0,1)$. Find a necessary and sufficient condition on the coefficient vector $a=\left(a_{0}, \ldots, a_{n}\right)$ of the polynomial $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ which minimizes

$$
f(a)=\int_{0}^{1}|p(x)-g(x)|^{2} \mathrm{~d} x
$$

where $g \in C([0,1], \mathbb{R})$ is given.

Problem 7.3: [Directional derivative]

Let $f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, and let x^{*} be such that $\alpha=0$ is a local minimizer of each function of the form $g(\alpha)=f\left(x^{*}+\alpha d\right)$ with $d \in \mathbb{R}^{n}$ arbitrary.

- Verify that $\nabla f\left(x^{*}\right)=0$.
- Show that the above condition does not imply that x^{*} is a local minimizer of f by considering the function $f(y, z)=\left(z-p y^{2}\right)\left(z-q y^{2}\right)$ with $0<p<q$.

