Optimierung I

Übungsblatt 3

Bearbeitung bis 1. April 2014

Aufgabe 3.1: [Canonical form]

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$. Put the following linear problem into a canonical form:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} c^{\top} x, \text { subject to } A x=b, x \geq 0, x_{1} \leq x_{2} \leq \ldots \leq x_{n} \tag{1}
\end{equation*}
$$

Aufgabe 3.2: [Piecewise affine approximation of a convex function]

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable convex function. We are interested in the following non-linear optimization problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x), \text { subject to: } A x=b, x \geq 0 \tag{P}
\end{equation*}
$$

We assume that the feasible set is bounded. Let s be the optimal value of problem (P). We recall that since f is convex, then for all x and x^{\prime} in \mathbb{R}^{n},

$$
\begin{equation*}
f\left(x^{\prime}\right)-f(x) \geq D f(x)\left(x^{\prime}-x\right) \tag{2}
\end{equation*}
$$

where $D f(x)$ is the derivative of f. Let x_{1}, \ldots, x_{N} be N points of \mathbb{R}^{n}. We define:

$$
\begin{equation*}
f_{N}(x)=\max _{i=1, \ldots, N}\left\{f\left(x_{i}\right)+D f\left(x_{i}\right)\left(x-x_{i}\right)\right\} \tag{3}
\end{equation*}
$$

and we consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f_{N}(x), \text { subject to: } A x=b, x \geq 0 \tag{N}
\end{equation*}
$$

We consider that f_{N} is a piecewise affine approximation of f and that problem $\left(P_{N}\right)$ is an approximation of (P).
i) For a function f and points x_{1}, \ldots, x_{N} of your choice, draw f and f_{N}.
ii) Prove that for all $x \in \mathbb{R}^{n}, f(x) \geq f_{N}(x)$.
iii) Compute $f_{N}\left(x_{i}\right)$, for all i.
iv) Formulate problem $\left(P_{N}\right)$ as a linear programming problem, justify the reformulation. Put the obtained problem into a canonical form.
v) Let x^{*} be a solution to problem $\left(P_{N}\right)$, prove that

$$
\begin{equation*}
f_{N}\left(x^{*}\right) \leq s \leq f\left(x^{*}\right) \tag{4}
\end{equation*}
$$

vi) How could we iteratively improve the approximation $\left(P_{N}\right)$ of problem (P) ? Describe an algorithm which enables to solve approximately problem (P) by solving only linear programming problems.

Aufgabe 3.3: [Application exercise]

A manufacturer wishes to product a special alloy (Legierung), made of a proportion b_{1} of a metal 1 and a proportion b_{2} of a metal 2 (with $b_{1}+b_{2}=1$). To this purpose, he can mix n different alloys. The i-th alloy is made of a proportion $a_{1, i}$ and $a_{2, i}$ of metals 1 and 2 respectively, with $a_{1, i}+a_{2, i}=1$. The prices (per unit of weight) of the n alloys are $c_{1}, c_{2}, \ldots, c_{n}$.
i) Denoting by x_{i} the proportion of alloy i used to make the special alloy, formulate the manufacturer's problem as a linear programming problem. Warning: use as few constraints as possible.
ii) What is the maximal number of bases of the problem?
iii) Give a condition on the data to ensure that the problem has a solution.
iv) We assume that $a_{1,1} \leq a_{1,2} \leq \ldots \leq a_{1, n}$. We assume that for some $k, a_{1, k}<b_{1}<a_{1, k+1}$. What is the number of feasible bases?
v) We consider a case with 4 alloys:

	Alloy 1	Alloy 2	Alloy 3	Alloy 4	Special alloy
Metal 1	0.2	0.3	0.5	0.7	0.4
Metal 2	0.8	0.7	0.5	0.3	0.6
Cost per unit	5	3	7	6	

Determine the feasible bases, the associated basic solutions and finally the optimal solution.

Aufgabe 3.4: [Optimal transportation]

Quantities a_{1}, \ldots, a_{m}, respectively, of a certain product are to be shipped from each of m locations and received in amounts $b_{1}, b_{2}, \ldots, b_{n}$, respectively at each of n destinations. Associated with the shipping of a unit of product from origin i to destination j is a unit shipping cost $c_{i j}$. It is desired to determine the amounts $x_{i, j}$ to be shipped between each origin-destination pair $i=1, \ldots, m$, $j=1, \ldots, n$ so as to satisfy the shipping requirements and minimize the total cost of transportation. To make the problem consistent, we assume that $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$.
i) Formulate the problem as a linear programming problem. Denoting by

$$
\begin{equation*}
y=\left(x_{1,1}, \ldots, x_{1, n}, x_{2,1}, \ldots, x_{2, n}, \ldots, x_{m, 1}, \ldots, x_{m, n}\right) \tag{5}
\end{equation*}
$$

the vector of size $n m$, write the constraints of the problem in the canonical form $A y=w$, with $w \in \mathbb{R}^{(n+m) \times 1}$ and $A \in \mathbb{R}^{(n+m) \times n m}$.
ii) Is it possible that the rank of the matrix A is equal to $n+m$?
iii) We consider the following case: $m=2, n=3, a=(5,8), b=(4,3,6)$, with the costs:

	Destination 1	Destination 2	Destination 3
Origin 1	1	1	2
Origin 2	2	1	1

Express the variables $x_{1,2}, x_{1,3}, x_{2,1}$, and $x_{2,3}$ in function of $x_{1,1}$ and $x_{2,2}$. Reduce the optimal transportation problem into a problem with two optimization variables. Solve it graphically.

