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Mixed invertibility and Prüfer-like monoids and domains

F. Halter-Koch

Abstract. We give a systematic theory of Prüfer-like domains using ideal systems on commutative
cancellative monoids. Based on criteria for mixed invertibility of ideals, we unify and generalize
characterizations of various classes of Prüfer-like monoids and domains and furnish them with new
proofs. In particular, we generalize and extend criteria for v-domains recently proved by D.D. An-
derson, D.F. Anderson, M. Fontana and M. Zafrullah.
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1 Introduction

Prüfer domains and their various generalizations are topics of outstanding interest in
non-noetherian multiplicative ideal theory. For an overview of the more classical re-
sults we refer to [6], [9] and [15]. Among the various generalizations involving star
operations studied in the literature we mention the following ones.

• Prüfer v-multiplication domains ( PvMD’s, first studied in [10] and called “pseu-
do-Prüfer domains” in [5, Ch. VII, § 2, Ex. 19] ),

• general ∗-multiplication domains (investigated in [13] and in [12] ),

• v-domains (called “regularly integrally closed domains” in [5, Ch. VII, §1, Ex.
30, 31], see [19] for an overview and the history of this concept),

• Generalized GCD-domains (GGCD domains, studied in [1] ),

• Pseudo-Dedekind domains (introduced in [17] under the name “Generalized De-
dekind domains” and thorough investigated in [3] ),

• pre-Krull domains (investigated in [18] ).

Several of these concepts have only recently sucessfully been generalized to the
case of semistar operations (see [7] and [8] ).

By the very definitions, the above-mentioned concepts can be defined in a purely
multiplicative manner without referring to the ring addition, and thus they can be stud-
ied in the context of commutative cancellative monoids. In a systematic way, the ideal
theory of commutative cancellative monoids was first developed by P. Lorenzen [16],
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and a thorough presentation of that theory in the language of ordered abelian groups
was given by P. Jaffard [14]. A modern treatment of multiplicative ideal theory in the
context of commutative monoids (including all above-mentioned generalizations) was
given by the author in the monograph [11], which serves as the main reference for the
present paper.

A first attempt to a general theory covering the various generalizations of Prüfer do-
mains was made in [4] but not pursued further on. Only recently, these investigations
were revived in [2] together with several completely new ideal-theoretic characteri-
zations of v-domains. In this paper we continue these investigations. We show that
the results of [2] and several of their refinements and generalizations remain valid in
the context of commutative cancellative monoids, and we provide them with new (and
simpler) proofs.

The paper is organized as follows. In Section 2 we fix our notations. Section 3
contains the basic result on mixed invertibility ( Theorem 3.1 ) which is fundamen-
tal for the following investigations. In Section 4 we apply the concept of mixed in-
vertibility to characterizations of Dedekind-like and Prüfer-like monoids and domains,
and finally in Section 5 we continue the investigations of v-domains (resp. v-Prüfer
monoids) started in [2].

2 Notations

For any set X , we denote by |X| ∈ N0 ∪ {∞} its cardinality, by P(X) the set of all
subsets and by Pf(X) the set of all finite subsets of X .

Throughout this paper, let D be a commutative multiplicative monoid with unit
element 1 ∈ D and a zero element 0 ∈ D (satisfying 0x = 0 for all x ∈ D) such
that D• = D \ {0} is cancellative, and let K = q(D) = D•−1D be its total quotient
monoid (then K• is a quotient group of D•). The most important example we have
in mind is when D is the multiplicative monoid of an integral domain (then K is the
multiplicative monoid of its quotient field).

For subsets X, Y ⊂ K, we set (X : Y ) = {z ∈ K | zY ⊂ X}, X−1 = (D : X),
and the set X is called D-fractional if X−1 ∩D• 6= ∅. We denote by F(D) the set of
all D-fractional subsets of K.

Throughout, we use the language of ideal systems as developed in my book "Ideal
Systems" [11], and all undefined notions are as there. For an ideal system r on D, let
Fr(D) = {Xr | X ∈ F(D)} = {A ∈ F(D) | Ar = A} be the semigroup of all
fractional r-ideals, equipped with the r-multiplication, defined by (A,B) 7→ (AB)r

and satisfying (AB)r = (ArB)r = (ArBr)r for all A, B ∈ F(D). We denote by
Fr,f(D) = {Er | E ∈ Pf(K) ⊂ Fr(D) the subsemigroup of all r-finite (that is,
r-finitely generated) fractional r-ideals of D.

For any subset X ⊂ P(K), we set X • = X \ {{0}}. In particular, if J is any set of
ideals, then J • = J \ {0} (where 0 = {0} denotes the zero ideal ). In this way we
use the notions F(D)•, Fr(D)•, Fr,f(D)• etc.

For an ideal system r on D, the associated finitary ideal system of r will be denoted
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by rf (it is denoted by rs in [11] ). It is given by

Xrf
=

⋃
E∈Pf (X)

Er for every X ∈ F(D) ,

and it satisfies Fr,f(D) = Frf ,f(D). The ideal system r is called finitary if r = rf .
For any two ideal systems r and q on D we write r ≤ q if Fq(D) ⊂ Fr(D).

Note that r ≤ q holds if and only if Xr ⊂ Xq [ equivalently, Xq = (Xr)q ] for all
X ∈ F(D).

We denote by s = s(D) the system of semigroup ideals, given by Xs = DX for
all X ∈ F(D); by v = v(D) the ideal system of multiples (“Vielfachenideale”), given
by Xv = (X−1)−1 for all X ∈ F(D), and by t = t(D) = vf the associated finitary
system. The systems s and t are finitary, the system v usually not. For every ideal
system r on D we have s ≤ rf ≤ r ≤ v and rf ≤ t. We shall frequently use that
Fv(D) = {A−1 | A ∈ F(D)} (see [11, Theorem 11.8] ).

If D is an integral domain, then the (Dedekind) ideal system d = d(D) of usual ring
ideals is given by Xd = D〈X〉 for all X ∈ F(D) (that is, Xd is the fractional D-ideal
generated by X ). d is a finitary ideal system, and there is a one-to-one correspondence
between ideal systems r ≥ d and star operations on D, given as follows :

If ∗ : Fd(D)• → Fd(D)• is a star operation on D and r∗ : F(D) → F(D) is
defined by Xr∗ = D〈X〉∗ for X ∈ F(D)• and Xr∗ = {0} if X ⊂ {0}, then r∗ is
an ideal system satisfying r∗ ≥ d. Conversely, if r ≥ d is an ideal system, and if we
define ∗r by J∗r = Jr for all J ∈ Fd(D)•, then ∗r is a star operation, and by the
very definition we have r∗r = r and ∗r∗ = ∗.

Throughout this paper, we fix a (basic) ideal system δ on D and assume that
all ideal systems r considered in this manuscript satisfy r ≥ δ. Of course, we may
always assume that δ = s(D), but if D is an integral domain, it may also be convenient
to assume that δ = d(D) in order to make the connection with star operations more
apparent.

In any case, we denote by F (D) = Fδ(D)• the set of all non-zero fractional δ-
ideals and by f(D) = Fδ,f(D) the set of all δ-finite non-zero fractional δ-ideals of
D. Then Fr(D)• = {Ar | A ∈ F (D)} and Fr,f(D)• = {Fr | F ∈ f(D)} for every
ideal system r on D,

3 Mixed invertibility

Mixed invertibility means, that we investigate the invertibility of ideals of one ideal
system with respect to another ideal system. We start by recalling some basic facts
concerning the concept invertibility in the theory of ideal systems. For details and
proofs concerning the following remarks we refer to [11, Theorem 12.1].

Let r be an ideal system on D. A fractional ideal A ∈ F (D) is called r-invertible
if (AA−1)r = D [ equivalently, (AB)r = D for some B ∈ F (D) ]. Hence a frac-
tional ideal A ∈ F (D) is r-invertible if and only if Ar is r-invertible. By definition,
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a fractional r-ideal is r-invertible if and only if it is an invertible element of the semi-
group Fr(D). If A, B ∈ F (D), then AB is r-invertible if and only if A and B are both
r-invertible.

We denote by Fr(D)× the group of all r-invertible fractional r-ideals. If q is an
ideal system such that r ≤ q, then Fr(D)× ⊂ Fq(D)× is a subgroup (this holds in
particular, if q = v). If r is finitary, then Fr(D)× = Fr,f(D)× (that is, if A ∈ Fr(D)
is r-invertible, then both A and A−1 are r-finite). This may fail if r is not finitary; then
it may occur that Fr,f(D)× ( Fr(D)× ∩ Fr,f(D) (it is well known that not every
v-domain is a PvMD ).

Theorem 3.1 (Mixed Invertibility). Let r, q and y be ideal systems on D, q ≤ y, and
B ∈ F (D). Then the following assertions are equivalent :

(a) Bq is r-invertible.

(b) B−1 is r-invertible, and Bq = Bv.

(c) For every A ∈ F (D) such that Ar ⊂ Bq there exists some C ∈ Fr(D) satisfying
Ar = (BqC)r.

(d) (A :B−1)r = (ABq)r for all A ∈ F (D).

(e) (A :Bq)r = (AB−1)r for all A ∈ F (D).

(f) [(A :B)q]r = (AqB
−1)r for all A ∈ F (D).

(g) (Aq :B)r = (AqB
−1)r for all A ∈ F (D).

(h) (Aq :B−1)r = (AqBq)r for all A ∈ F (D).

(i) (Av :B−1) = (AvBq)r for all A ∈ F (D).

(j) (Ar :B−1) = (ABq)r for all A ∈ F (D).

(k) (By :A)r = (BqA
−1)r for all A ∈ F (D).

(l) [(B :A)y]r = (BqA
−1)r for all A ∈ F (D).

(m) (Bv :A−1) = (BqAv)r for all A ∈ F (D).

Proof. (a) ⇒ (b) If Bq is r-invertible, then Bq = (Bq)v = Bv, and (BqB
−1)r = D.

Hence B−1 is r-invertible.
(b) ⇒ (c) If A ∈ F (D) and Ar ⊂ Bq, then C = (ArB

−1
q )r ∈ Fr(D), and

(BqC)r = (BqB
−1
q Ar)r = [(BqB

−1
q )rA]r = Ar = A, since B−1 is r-invertible and

thus (BqB
−1
q )r = (BvB−1)r = [(B−1)−1B−1]r = D.

(c) ⇒ (a) If a ∈ B•
q , then aD = (aD)r ⊂ Bq, and thus aD = (BqC)r for some

C ∈ Fr(D). Hence D = [Bq(a−1C)]r, and thus Bq is r-invertible.
(a) ⇒ (d) Let A ∈ F (D). Since ABqB

−1 ⊂ A(BqB
−1)r = AD = A, it follows

that ABq ⊂ (A : B−1) and (ABq)r ⊂ (A : B−1)r. To prove the reverse inclusion,
let x ∈ (A : B−1)r. Then xB−1 ⊂ (A : B−1)rB

−1 ⊂ [(A : B−1)B−1]r ⊂ Ar and
x ∈ xD = (xBqB

−1)r ⊂ (ArBq)r = (ABq)r.
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(d) ⇒ (j) For every A ∈ F (D), we may apply (d) with Ar instead of A and obtain
(Ar :B−1) = (Ar :B−1)r = (ArBq)r = (ABq)r.

(j) ⇒ (i) For every A ∈ F (D), we may apply (j) with Av instead of A and obtain
(Av :B−1) = ((Av)r :B−1) = (AvBq)r.

(i) ⇒ (a) With A = B−1 = Av, (i) implies D ⊃ (BqB
−1)r = (B−1 :B−1) ⊃ D

and therefore (BqB
−1)r = D.

(d) ⇒ (h) For every A ∈ F (D), we apply (d) with Aq instead of A.
(h) ⇒ (i) For every A ∈ F (D), we may apply (h) with Av instead of A and obtain

(Av :B−1) = ((Av)q :B−1)r = ((Av)qBq)r = (AvBq)r.
(b) ⇒ (e) By (a) ⇒ (d), applied with B−1 instead of B. In doing so observe that

(B−1)q = B−1 and (B−1)−1 = Bv = Bq.
(e) ⇒ (g) For every A ∈ F (D), we may apply (e) with Aq instead of A and obtain

(Aq :B)r = (Aq :Bq)r = (AqB
−1)r.

(a) ⇒ (f) Let A ∈ F (D). Then AB−1B ⊂ A implies AB−1 ⊂ (A : B) and
thus (AqB

−1)r ⊂ [(A : B)q]r. For the reverse inclusion, it suffices to show that
(A : B)q ⊂ (AqB

−1)r. If x ∈ (A : B)q, then xBq ⊂ (A : B)qBq ⊂ [(A : B)B]q ⊂ Aq,
and consequently x ∈ xD = (xBqB

−1)r ⊂ (AqB
−1)r.

(f) ⇒ (a) and (g) ⇒ (a) In both cases, we set A = Bq, observe that (Bq :B) ⊃ D
and obtain (B−1Bq)r ⊂ D, whence (B−1Bq)r = D.

(a) ⇒ (k) and (a) ⇒ (l) Let A ∈ F (D). Since BA−1A ⊂ B, it follows that
BA−1 ⊂ (B : A) ⊂ (By : A), hence BqA

−1 ⊂ (BA−1)q ⊂ (B : A)q ⊂ (B : A)y

and (BA−1)q ⊂ (By : A)q = (By : A). Thus we obtain (BqA
−1)r ⊂ (By : A)r and

(BqA
−1)r ⊂ [(B :A)y]r.

For the reverse inclusions it suffices to show that (By : A) ⊂ (BqA
−1)r and

(B : A)y ⊂ (BqA
−1)r. Thus assume that either x ∈ (By : A) or x ∈ (B : A)y. Since

(B : A)y ⊂ (By : A)y = (By : A), we obtain xA ⊂ By in both cases. Now it follows
that xAB−1 ⊂ ByB−1 ⊂ D, hence xB−1 ⊂ A−1 and x ∈ (xBqB

−1)r ⊂ (BqA
−1)r.

(k) ⇒ (a) and (l) ⇒ (a) With A = B we obtain (BqB
−1)r = (By : B)r ⊃ D

from (k) and (BqB
−1)r = [(B :B)y]r ⊃ D from (l). Hence (BqB

−1)r = D follows
in both cases.

(k) ⇒ (m) Let A ∈ F (D). By the equivalence of (a) and (k) it follows that (k)
holds with y = v. We apply (k) with y = v and with A−1 instead of A. Then we
obtain (Bv :A−1) = (Bv :A−1)r = (BqAv)r.

(m) ⇒ (a) With A = B−1 we obtain D ⊃ (BqB
−1)r = (Bv : Bv) ⊃ D and thus

(BqB
−1)r = D.

Remark 3.2. Let assumptions be as in Theorem 3.1, and assume moreover that r ≤ q.
Then the conditions (f), (g), (h), (k) and (l) simplify by the relations [(A : B)q]r =
(A :B)q, (Aq :B)r = (Aq :B), (Aq :B−1)r = (Aq :B−1), (By :A)r = (By :A) and
[(B :A)y]r = (B :A)y.

Moreover, condition (g) is obviously equivalent to

(g)′ (Aq :Bq) = (AqB
−1)r for all A ∈ F (D) (compare [2, Remark 1.6] ).
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Corollary 3.3. Let r, q and x be ideal systems on D, x ≥ r and B ∈ F (D). Then Bq

is r-invertible if and only if (Ax :B−1) = (AxBq)r for all A ∈ F (D).

Proof. Let first Bq be r-invertible and A ∈ F (D). By Theorem 3.1(j), applied with
Ax instead of A, we obtain (Ax :B−1) = ((Ax)r :B−1) = (AxBq)r.

To prove the converse, we assume that (Ax :B−1) = (AxBq)r for all A ∈ F (D).
For any A ∈ F (D), we apply this relation with Av instead of A, and then we obtain
(Av : B−1) = ((Av)x : B−1) = ((Av)xBq)r = (AvBq)r. Hence Bq is r-invertible by
Theorem 3.1(i).

Corollary 3.4. Let r be an ideal system on D and B ∈ F (D). Then Bv is r-invertilbe
if and only if (AB)−1 = (A−1B−1)r for all A ∈ F (D).

Proof. Note that (XY )−1 = (X−1 :Y ) for all X, Y ∈ F (D) [11, Corollary 11.7 ii)].
Let first Bv be r-invertible and A ∈ F (D). By Theorem 3.1(f), applied with q = r

and A−1 instead of A, we obtain

(A−1B−1)r = [(A−1)vB−1]r = [(A−1 :B)v]r = (A−1 :B) = (AB)−1 .

Assume now that (A−1B−1)r = (AB)−1 for all A ∈ F (D). For every A ∈ F (D),
we apply this relation with A−1 instead of A and obtain

(AvB−1)r = [(A−1)−1B−1]r = (A−1B)−1 = ((A−1)−1 :B) = (Av :B)r .

Hence Bv is r-invertible by Theorem 3.1(g), applied with q = v.

4 (r, q)-Dedekind and (r, q)-Prüfer monoids

We use the notions of r-Prüfer monids and r-Dedekind monoids (resp. domains) as in
[11, §17 and §23]. For any property P of monoids we say that an integral domain D is
a P-domain if its multiplicative monoid is a P-monoid.

Definition 4.1. Let r and q be ideal systems on D such that r ≤ q.

1. D is called an (r, q)-Dedekind monoid if Fq(D)• ⊂ Fr(D)× [ that is, every
non-zero fractional q-ideal is r-invertible, or, equivalently, (BqB

−1)r = D for all
B ∈ F (D) ].

2. D is called an (r, q)-Prüfer monoid if Fq,f(D)• ⊂ Fr(D)× [ that is, every non-
zero fractional q-finite q-ideal is r-invertible, or, equivalently, (FqF

−1)r = D for
all F ∈ f(D) ].

By definition, D is an r-Dedekind monoid [ an r-Prüfer monoid ] if and only if D
is an (r, r)-Dedekind monoid [ an (r, r)-Prüfer monoid ].

A v-Dedekind monoid is a completely integrally closed monoid [11, Theorem
14.1], a t-Dedekind monoid is a Krull monoid [11, Theorem 23.4], and an (r, v)-Prüfer
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monoid is an r-GCD-monoid [11, Def. 17.6]. Consequently, a v-Dedekind domain is
a completely integrally closed domain, a t-Dedekind domain is a Krull domain, and
a d-Dedekind domain is just a Dedekind domain. A v-Prüfer domain is a v-domain
(that is, a regularly integrally closed domain in the sense of [5, Ch. VII, §1, Ex. 30,
31] ), a t-Prüfer domain is a PvMD (that is, a pseudo-Prüfer domain in the sense of [5,
Ch. VII, §2, Ex. 19] ), and a d-Prüfer domain is just a Prüfer domain. A (d, v)-Prüfer
domain is a GGCD-domain (generalized GCD-domain, see [11, Def. 17.6] ).

In [2], r-Dedekind domains are called r-CICDs (r-completely integrally closed
domains) and (r, v)-Dedekind domains are called (r, v)-CICDs (note that [2, Proposi-
tion 1.1] follows from the equivalence of 1. and 3. in Theorem 3.1 ).

The definition of r-Dedekind domains given in [2] coincides with ours if r is fini-
tary. In general, an r-Dedekind domain in the sense of [2] is an rf-Dedekind domain
according to our definition.

Lemma 4.2. Let r, p, q be ideal systems on D such that r ≤ p ≤ q.
If D is an (r, p)-Dedekind monoid, then D is an (r, q)-Dedekind monoid, and if

D is an (r, q)-Dedekind monoid, then D is a (p, q)-Dedekind monoid. In particular,
if D is an r-Dedekind monoid, then D is an (r, q)-Dedekind monoid, and if D is an
(r, q)-Dedekind monoid, then D is a q-Dedekind monoid.

The same assertions hold true if “Dedekind” is replaced by “Prüfer”. Moreover, if
r ≤ qf , then D is an (r, q)-Prüfer monoid if and only if D is an (r, qf)-Prüfer monoid.

Proof. The statements concerning Dedekind-like monoids follow from the contain-
ments Fq(D)• ⊂ Fp(D)• and Fr(D)× ⊂ Fp(D)×.

For the proof of the statements concerning Prüfer-like monoids, assume first that D
is an (r, p)-Prüfer monoid, and let F ∈ f(D). Then D = (FpF

−1)r ⊂ (FqF
−1)r ⊂ D,

hence (FqF
−1)r = D, and D is an (r, q)-Prüfer monoid. If D is an (r, q)-Prüfer

monoid and F ∈ f(D), then D = (FqF
−1)r ⊂ (FqF

−1)p ⊂ D implies that also
(FqF

−1)p = D, and thus D is a (p, q)-Prüfer monoid.
The last statement follows since Fq,f(D) = Fqf ,f(D).

The statements of Theorem 3.1 provide a wealth of criteria for a monoid to be an
(r, q)-Dedekind monoid or an (r, q)-Prüfer monoid. In the case of integral domains,
most of them are already in [2] (in different arrangements and with different proofs).
A detailed identification is left to the reader. The following two propositions highlight
two special cases.

Proposition 4.3. Let r and q be ideal systems on D such that r ≤ q. Then the following
assertions are equivalent :

(a) D is an (r, q)-Dedekind monoid.

(b) D is an (r, v)-Dedekind monoid and q = v.

(c) For all A, B ∈ F (D) we have (AB)−1 = (A−1B−1)r, and q = v.

(d) D is a q-Dedekind monoid, and (AB)v = (AvBv)r for all A, B ∈ F (D).
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Proof. (a) ⇒ (b) Since Fq(D) ⊂ Fr(D)× ⊂ Fv(D), it follows that q = v.
(b) ⇒ (c) If A, B ∈ F (D), then Bv is r-invertible, and thus Corollary 3.4 implies

(AB)−1 = (A−1B−1)r.
(c) ⇒ (d) For every B ∈ F (D), Corollary 3.4 implies that Bq = Bv is r-inver-

tible, hence q-invertible, and thus D is a q-Dedekind monoid. For any A, B ∈ F (D),
then we apply (c) twice and obtain

(AB)v = ((AB)−1)−1 = ((A−1B−1)r)−1 = (A−1B−1)−1 = (AvBv)r .

(d) ⇒ (a) If A ∈ Fq(D)•, then A is q-invertible. Hence D = (A−1A)q, and since
A, A−1 ∈ Fv(D), we obtain D = (A−1A)v = (A−1A)r.

Proposition 4.4. Let r be an ideal system on D. Then the following assertions are
equivalent :

(a) D is an (r, v)-Prüfer monoid.

(b) (AF )−1 = (A−1F−1)r for all A ∈ F (D) and F ∈ f(D).

(c) D is a v-Prüfer monoid, and (AF )v = (AvFv)r holds for all A ∈ F (D) and
F ∈ f(D).

Proof. (a) ⇒ (b) If A ∈ F (D) and F ∈ f(D), then Fv is r-invertible. Hence
Corollary 3.4 implies (AF )−1 = (A−1F−1)r.

(b) ⇒ (c) If F ∈ f(D), then Fv is r-invertible and thus v-invertible by Corollary
3.4. Hence D is a v-Prüfer monoid. For A ∈ F (D) and F ∈ f(D), we apply (b) twice
and obtain (AF )v = ((AF )−1)−1 = ((A−1F−1)r)−1 = (A−1F−1)−1 = (AvFv)r.

(c) ⇒ (a) If F ∈ f(D), then F is v-invertible and F−1 ∈ F (D). Hence we obtain
D = (F−1F )v = (F−1Fv)r, and therefore Fv is r-invertible.

5 Characterization of r-Prüfer monoids

Most assertions of the following Theorem 5.1 is well known in the context of finitary
ideal systems (see [11, §17] which is modeled after the antetpye of [15, Theorem
6.6] ). For star operations which are not necessarily of finite type such results was first
proved in [2].

Theorem 5.1. Let r and y be ideal systems on D such that y ≤ r. Then the following
assertions are equivalent :

(a) D is an r-Prüfer monoid.

(b) For all a, b ∈ D•, the r-ideal {a, b}r is r-invertible.

(c) [(Ay ∩By)(A ∪B)]r = (AB)r for all A, B ∈ F (D).

(d) [(Ay ∩By)(A ∪B)]r = (AB)r for all A, B ∈ f(D).

(e) [F (Ar ∩Br)]r = (FA)r ∩ (FB)r for all A, B, F ∈ f(D).
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(f) [F (Ar ∩Br)]r = (FA)r ∩ (FB)r for all F ∈ f(D) and A, B ∈ F (D).

(g) For all I, J ∈ Fr(D)× we have I ∩ J ∈ Fr(D)× and (I ∪ J)r ∈ Fr(D)×.

(h) For all I, J ∈ Fr(D)× we have (I ∪ J)r ∈ Fr(D)×.

(i) For every family (Ai)i∈I in F (D) and all F ∈ f(D) we have(( ⋃
i∈I

Ai

)
y

: F
)
r

=
(⋃

i∈I

(
(Ai)y :F

))
r
.

(j)
(
(A ∪B)y :F

)
r

= [(Ay :F ) ∪ (By :F )]r for all A, B ∈ F (D) and F ∈ f(D).

(k)
(
(A ∪B)y :F

)
r

= [(Ay :F ) ∪ (By :F )]r for all A, B, F ∈ f(D).

(l)
(
Ay :(Fr∩Gr)

)
r

= [(Ay :Fr)∪ (Ay :Gr)]r for all A ∈ F (D) and F, G ∈ f(D).

(m) [(a−1bD ∩D) ∪ (ab−1D ∩D)]r = D for all a, b ∈ D•.

Proof. (a) ⇒ (b), (c) ⇒ (d), (f) ⇒ (e), (g) ⇒ (h) and (i) ⇒ (j) ⇒ (k) Obvious.
(b) ⇔ (m) Let a, b ∈ D•. Then {a, b}−1 = a−1D ∩ b−1D and therefore

({a, b}{a, b}−1)r = (a{a, b}−1 ∪ b{a, b}−1)r

= [a(a−1D ∩ b−1D) ∪ b(a−1D ∩ b−1D)]r = [(a−1bD ∩D) ∪ (ab−1D ∩D)]r .

Hence {a, b}r is r-invertible if and only if [(a−1bD ∩D) ∪ (ab−1D ∩D)]r = D.
(b) ⇒ (c) and (d) ⇒ (c) Let A, B ∈ F (D). Then obviously

(Ay ∩By)(A ∪B) ⊂ AyB ∩ABy ⊂ (AB)r ,

which implies [(Ay ∩By)(A ∪B)]r ⊂ (AB)r.
For the reverse inclusion, it suffices to prove that AB ⊂ [(Ay∩By)(A∪B)]r. Thus

let a ∈ A and b ∈ B. Since ab{a, b}−1 = ab(a−1D ∩ b−1D) = aD ∩ bD, (b) implies
that

ab ∈ [ab{a, b}{a, b}−1]r = [a(aD ∩ bD) ∪ b(aD ∩ bD)]r
= [aD ∪ bD)(aD ∩ bD)]r ⊂ [(Ay ∩By)(A ∪B)]r .

By (d), it follows that

ab ∈ [(aD)(bD)]r = [aD ∪ bD)(aD ∩ bD)]r ⊂ [(Ay ∩By)(A ∪B)]r ,

and thus we obtain AB ⊂ [(Ay ∩By)(A ∪B)]r in both cases.
(c) ⇒ (g) If I, J ∈ Fr(D)×, then

[(I ∩ J)(I ∪ J)r]r = [(I ∩ J)(I ∪ J)]r = (IJ)r ∈ Fr(D)× ,

which implies I ∩ J ∈ Fr(D)× and (I ∪ J)r ∈ Fr(D)×.
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(h) ⇒ (a) We must prove that Er ∈ Fr(D)× for every finite non-empty subset
E ⊂ D•, and we proceed by induction on |E|. The assertion is obvious if |E| = 1. If
|E| ≥ 1, Er ∈ Fr(D)× and a ∈ D•, then (E ∪ {a})r = (Er ∪ aD)r ∈ Fr(D)×, and
thus the assertion follows by induction on |E|.

(a) ⇒ (f) Let F ∈ f(D) and A, B ∈ F (D). Then

(FA)r ∩ (FB)r = (FF−1)r[(FA)r ∩ (FB)r]

⊂
(
F [(F−1FA)r ∩ (F−1FB)r]

)
r

= [F (Ar ∩Br)]r .

Since F (Ar ∩Br) ⊂ FAr ∩FBr ⊂ (FA)r ∩ (FB)r, the reverse inclusion is obvious.
(e) ⇒ (d) As we have already proved the equivalence of (d) and (a), it suffices to

show that (d) holds with y = r. Thus let A, B ∈ f(D), and set F = (A ∪ B)δ. Then
F ∈ f(D), and [(Ar ∩ Br)(A ∪B)]r = [(Ar ∩ Br)F ]r = (FA)r ∩ (FB)r ⊃ (AB)r.
On the other hand, we obviously have (Ar ∩ Br)(A ∪ B) ⊂ ArB ∪ ABr ⊂ (AB)r,
which implies the reverse inclusion.

(a) ⇒ (i) Let (Ai)i∈I be a family in F (D) and F ∈ f(D). Since Fr is r-invertible,
Theorem 3.1(f) (applied with q = r) implies(( ⋃

i∈I

Ai

)
y

:F
)

r
=

(( ⋃
i∈I

Ai

)
r
F−1

)
r

=
(⋃

i∈I

AiF
−1

)
r

⊂
(⋃

i∈I

(Ai)rF
−1

)
r

=
(⋃

i∈I

(
(Ai)y :F

))
r
,

and the reverse inclusion is obvious.
(k) ⇒ (b) Let a, b ∈ D• and apply (k) with A = aD, B = bD and F = {a, b}δ.

Then we obtain

D ⊂ ({a, b}y :{a, b})r = [(aD :{a, b}) ∪ (bD :{a, b})]r

= (a{a, b}−1 ∪ b{a, b}−1)r = ({a, b}{a, b}−1)r = ({a, b}r{a, b}−1)r ⊂ D .

Hence equality holds, and {a, b}r is r-invertible.
(a) ⇒ (l) Let A ∈ F (D) and F, G ∈ f(D). Then the fractional r-ideals Fr, Gr,

F−1 and G−1 are r-invertible, and since we have already proved that (a) implies (g),
it follows that Fr ∩ Gr and (F−1 ∪ G−1)r are also r-invertible. Observe now that
Fr = (F−1)−1, Gr = (G−1)−1 and

(F−1 ∪G−1)r = [(F−1 ∪G−1)−1]−1 = [(F−1)−1 ∩ (G−1)−1]−1 = (Fr ∩Gr)−1 .

We apply Theorem 3.1(f) with q = r and obtain(
Ay :(Fr ∩Gr)

)
r

= [Ar(Fr ∩Gr)−1]r = [Ar(F−1 ∪G−1)r]r

= [(ArF
−1)r ∪ (ArG

−1)r]r = [(Ay :Fr) ∪ (Ay :Gr)]r
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(l) ⇒ (m) Let a, b ∈ D•, and apply 12. with A = aD ∩ bD, F = aD and
G = bD. Then we obtain

D ⊂ ((aD ∩ bD) :(aD ∩ bD))r =
[(

(aD ∩ bD) :aD
)
∪

(
(aD ∩ bD) :bD

)]
r

= [(D ∩ a−1bD) ∪ (D ∩ ab−1D)]r ⊂ D ,

and consequently [(a−1bD ∩D) ∪ (ab−1D ∩D)]r = D.

Remark 5.2. The presence of the ideal system y in Theorem 5.1 makes the criteria
more flexible. The extremal cases y = δ and y = r are the most interesting ones.
Indeed, for y = r the criteria become most transparent, for y = d in the domain case
they become comparable with criteria usually formulated in the literature, while the
case y = δ is suitable for the monoid case.

Corollary 5.3. Let r and q be ideal systems on D such that r ≤ q, and let D be an
(r, q)-Prüfer monoid. Then the following assertions are equivalent :

(a) D is an r-Prüfer monoid.

(b) (A ∪B)r = (A ∪B)q for all A, B ∈ Fr(D)×.

(c) (A ∪B)r = (A ∪B)q for all A, B ∈ Fr,f(D) ∩ Fr(D)×.

(d) {a, b}r = {a, b}q for all a, b ∈ D•.

Proof. (a) ⇒ (b) By Theorem 5.1(h) we have (A ∪ B)r ∈ Fr(D)× ⊂ Fq(D) and
therefore (A ∪B)r = [(A ∪B)r]q = (A ∪B)q.

(b) ⇒ (c) ⇒ (d) Obvious.
(d) ⇒ (a) For all a, b ∈ D• we have {a, b}r = {a, b}q ∈ Fq,f(D)• ⊂ Fr(D)×,

since D is an (r, q)-Prüfer monoid. Thus it follows that D is an r-Prüfer monoid by
Theorem 5.1(b).

References
[1] D.D. Anderson and D.F. Anderson, Generalized GCD domains, Comment. Math. Univ. St.

Pauli 28 (1979), 215 – 221.

[2] D.D. Anderson, D.F. Anderson, M. Fontana and M. Zafrullah, On v-domains and star opera-
tions, Manuscript, 2008.

[3] D.D. Anderson and A. Kang, Pseudo-Dedekind domains and the divisorial ideals in R[X]T , J.
Algebra 122 (1989), 323 –336.

[4] D.D. Anderson, J. Mott and M. Zafrullah, Some quotient based characterizations of domains
of multiplicative ideal theory, Bull. Mat. Ital. 3-B (1989), 455 – 476.

[5] N. Bourbaki, Commutative Algebra, Addison-Wesley, 1972.

[6] M. Fontana, J.A. Huckaba and I.J. Papick, Prüfer domains, Marcel Dekker, 1997.

[7] M. Fontana, P. Jara and E. Santos, Prüfer star-multiplication domains and semistar operations,
J. Algebra Appl. 2003, 21 – 50.



12 F. Halter-Koch

[8] M. Fontana and G. Picozza, Prüfer ∗-multiplication domains and ∗-coherence, Ricerche Math.
55 (2006), 145 – 170.

[9] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, 1972.

[10] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710 – 722.

[11] F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory, Marcel Dekker,
1998.

[12] F. Halter-Koch, Characterization of Prüfer Multiplication Monoids and Domains by Means of
Spectral Module Systems, Monatsh. Math. 139, 19 – 31.

[13] E. Houston, S. Malik and J. Mott, Characterizations of ∗-multiplication domains, Canad. Math.
Bull. 27 (1984), 48 –52.

[14] P. Jaffard, Les Systemes d’Ideaux, Dunot, 1960.

[15] M.D. Larsen, P.J. McCarthy, Multiplicative theory of ideals, Academic Press, 1971.

[16] P. Lorenzen, Abstrakte Begründung der multiplikativen Idealtheorie, Math. Z. 45 (1939), 533
– 553.

[17] M. Zafrullah, On generalized Dedekind domains, Mathematika 33 (1986), 285 – 296.

[18] M. Zafrullah, Ascending chain condition and star operations, Comm. Alg. 17 (1989), 1523 –
1533.

[19] M. Zafrullah, A Question-Answer Session on v-domains, http://www.lohar.com.

Author information
F. Halter-Koch, Institute for Mathematics and Scientific Computing, Heinrichstraße 36, A-8010
Graz, Austria.
E-mail: franz.halterkoch@aon.at


