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CHAPTER 1

Generalities on Monoids

For a set X, we denote by P(X) the power set and by Ps(X) the set of all finite subsets of X. If A, B
are sets, then A C B or B D A means that A is a subset of B which may be equal to B. If A is a proper
subset of B, we write A C B or B 2 A.

As usual, we denote by Z, Q, R and C the sets of integers, rational numbers, real numbers and
complex numbers. We denote by N = {& € Z | « > 0} the set of positive integers, and we set
No=NU{0}. f 2z, y € Z and = < y, we set [z,y] = {2 € Z | x < z < y}. For a set X, we denote by
|X| € Ng U {00} its cardinality.

Let X be a set. A subset ¥ C P(X) is called

e directed if, for any A, B € X, there is some C' € 3 such that AU B C C;
e a chain if, for any A, B € X, we have A C B or B C A.

A family (Ax)xen of subsets of X is called directed or a chain if the set {A) | A € A} has this
property. If (Ay)xea is directed and E is a finite set, then

FE C U Ay implies E C A, for some \ € A.
AEA

We shall frequently use Zorn’s Lemma in the following form :

Let X be a set, 0 # 3 C P(X), and suppose that the union of every chain in X belongs to 3.
Then ¥ contains maximal elements (with respect to the inclusion).

A partial ordering on a set X is a binary relation < such that the following assertions hold for all
z,y € X:
o r<ux;
e r <y and y <z implies x =y.
o <y and y <z implies z < z.

If < is a partial ordering on X, we call (X, <) a partially ordered set. We call < a total ordering and
(X, <) a totally ordered set if, for all x, y € X we have either z < y or y < x.

Let (X, <) be a partially ordered set. Then every subset of X is again a partially ordered set with the
induced order. A totally ordered subset of X is called a chain. Sometimes we will use the abstract form
of Zorn’s Lemma as follows:

Let (X, <) be a non-empty partially ordered set, and assume that every non-empty chain in X
has an upper bound. Then X contains maximal elements.

For a partially ordered set (X, <), the following assertions are equivalent :

that a, = a, for all n > m [in other words, every ascending sequence in X becomes ultimately
stationary].

o For every sequence (an)n>0 in X satisfying an, < any1 for alln > 0, there exists some m > 0 such

e Fvery non-empty subset of X contains a maximal element.
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4 1. GENERALITIES ON MONOIDS

If these conditions are fulfilled, then (X, <) is said to be mnoetherian or to satisfy the ACC (the
ascending chain condition).

1.1. Preliminaries on Monoids

Let K be a multiplicative semigroup. An element n € K is called a zero element if na = n for all
a € K. An element e € K is called a unit element if ea = a for all a € K. Plainly, K possesses at most
one zero element, denoted by 0 = Ox and at most one unit element, denoted by 1 = 1. For subsets
X, Y CKandac€ K, wedefine XY ={zy |2z € X,yecY}and aX = {a}X. For n € N, we define X"
recursively by X' =1 and X"t = X" X, and we set X(™ = {2" | z € X}.

By a monoid we mean a multiplicative semigroup K containing a zero element 0 = Ox and a unit
element 1 = 1x. Clearly, 0Ox = 1k if and only if |K| = 1, and in this case K is called a trivial monoid.
A monoid without zero is a multiplicative semigroup K which is either trivial or does not contain a zero
element. Thus the trivial monoid is both a monoid and a monoid without zero. A subset S C K is called
multiplicatively closed if 1 €. S and SS C S.

Let K be a monoid. An element a € K is called cancellative if ab = ac implies b = ¢ for all b, ¢ € K.
For a subset X C K, we set X* = X \ {0}, and we denote by X* the set of all cancellative elements of
X. If K is non-trivial, then K* C K*. K is called cancellative if K®* C K*. Hence K is cancellative if
and only if either K is trivial or K*® = K*.

An element u € K is called invertible if there exists some v’ € K such that uu’ = 1. In this case, v’
is uniquely determined by w, it is called the inverse of v and denoted by v~!. We denote by K* the set
of all invertible elements of K. Endowed with the induced multiplication, K* is a group, and K* C K*.
The monoid K is called

o reduced if K* ={1};

o divisible if K*®* C K*.
By definition, K is divisible if and only if either K is trivial or K* = K*. If K is divisible, then K is
cancellative.

The most important example of a monoid is the multiplicative monoid D = (D,-) of a ring D
(throughout this volume, rings are assumed to be commutative and unitary, and modules and ring
homomorphisms are assumed to be unitary ). Note that D is a trivial monoid if and only if D is a zero
ring, and D \ D* is the set of zero divisors of D. If D is non-trivial, then D is cancellative if and only if
D is a domain, and D is divisible if and only if D is a field.

Let D be a monoid. A subset Q C D is called

o multiplicatively closed if 1€ @ and QQ C @ (then QQ =Q);

e a submonoid if it is multiplicatively closed and 0 € Q;

e a (semigroup) ideal of D if 0€ @ and DQ C Q (then DQ = Q);

o a principal ideal of D if @ = Da for some a € D.

e a prime ideal of D if @ is an ideal and D\ @ is multiplicatively closed.
By definition, {0, 1} is the smallest submonoid of D, {0} = DO and D = D1 are principal ideals of D,
and D\ D* is a prime ideal of D.
If D is cancellative [reduced ], then every submonoid of D is also cancellative [reduced].

For a, b € D we define a|b if bD C aD. If b = au for some u € D*, then aD = bD. Conversely, if
D is cancellative and aD = bD, then b = au for some u € D*.

Lemma 1.1.1. Let D be a monoid.
1. If J C D is an ideal, then J = D if and only if JN D> # (.
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2. D is divisible if and only if {0} and D are the only ideals of D.

3. If D is cancellative and not trivial, then D® is a multiplicatively closed subset and {0} is a prime
ideal of D.

4. Let (Qx)ren be a family of subsets of D,

Q' =JQr and Q.=)Qx-
AEA AEA
(a) If (Qx)ren is a family of ideals of D, then Q* and Q. are ideals of D.
(b) If (Qx)xea is a family of prime ideals of D, then Q* is a prime ideal of D, and if (Qx)rea
s a chain, then Q. is also a prime ideal of D.
(¢) If (Qx)xen is a family of submonoids of D, then Q. is a submonoid of D, and if (Qx)xea
18 directed, then Q* is also a submonoid of D.

PROOF. 1. Let J C D be an ideal. If J = D, then JN DX =DX #40. If u€ JND* and a € D,
then a = (au1)u € J and therefore J = D.

2. Let D be divisible and J C D an ideal of D. If a € J®, then 1 = a~'a € J and therefore J = D.
If D is not divisible and a € D*\ D*, then 1 ¢ aD, and therefore aD is a non-zero ideal distinct from D.

3. If D is cancellative and not trivial, then D® = D* is multiplicatively closed, and therefore {0} is
a prime ideal of D.

4. (a) If a € D and z € Q*, then = € @, for some A € A and therefore ax € Q\ C Q*. If a € D and
T € Q4, then x € @ and thus ax € Q) for all A € A, and therefore az € Q..

(b) Ifa,be D\ Q* then a, b € D\ Qx and therefore ab € D\ Q, for all A € A. Hence it follows
that ab € D\ Q*, and therefore Q* is a prime ideal of D.

Let now (Qx)aea be a chain and a, b € D\ Q.. Then there exist A, u € A such that a ¢ @, and
b ¢ Qu, and we may assume that Qx C Q. Then it follows that a, b ¢ Qx, hence ab ¢ @ and therefore
ab ¢ Q.. Hence Q, is a prime ideal of D.

(¢) Let (Qx)rea be a family of submonoids of D. Then 0 € Q. C Q*. If a, b € Q,, then a, b € @
and therefore ab € @, for all A € A. Hence ab € Q),, and therefore @, is a submonoid of D.

Let now (Qx)xea be directed and a, b € Q*. Then there exists some A € A such that a, b € Q..
Hence ab € Q) C Q*, and therefore Q* is a submonoid of D. O

Let K and L be a monoids. A map f: K — L is called a (monoid) homomorphism if
flx)=1r, f(0x)=0r, and f(zy)=f(z)f(y) forall z yeK.

As usual, a homomorphism is called a monomorphism [an epimorphism, an isomorphism] if it
is injective [surjective, bijective]. The monoids K and L are called isomorphic if there exists an
isomorphism f: K — L, and in this case we write f: K = L.

Let f: K — L be a monoid homomorphism. Then f(K*) C L*, and f|K*: K* — L* isa
group homomorphism. If J C L is an ideal, then f~1(J) C K is also an ideal [indeed, if z € f~1(J
and a € K, then f(azx) = f(a)f(z) € LJ = J and therefore ax € f~1(J)].

Let K be a monoid and G C K* a subgroup. Then we set K/G = {aG | a € K}, and we define a
multiplication on K/G by means of (aG)(bG) = abG for all a, b € K. This definition does not depend
on the representatives, it makes K/G into a monoid, and 7: K — K/G, defined by w(a) = aG for
all @ € K, is a monoid epimorphism, called canonical. By definition, (K/G)* = {aG | a € K*},
(K/G)* ={aG | a € K*}, and (K/G)* = K*/G (the factor group ). Consequently, K/G is cancellative
[divisible] if and only if K is cancellative [divisible].

If G C K* is a subgroup, then the canonical epimorphism 7: K — K/G is an isomorphism if and
only if G = {1}, and in this case we identify K with K/{1} by means of 7 and set K = K/{1}. The
monoid K/K* is reduced. It is called the associated reduced monoid of K.
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Let f: K — L be a monoid homomorphism, and let G C K* and H C L* be subgroups such that
f(G) C H. Then there is a unique homomorphism f*: K/G — L/H such that f*(aG) = f(a)H for
all a € K. We say that f* is induced by f.

Let K and L be divisible monoids. A map f: K — L is a monoid homomorphism if and only if
f(0g) =0, and f|K*: K* — L* is a group homomorphism. In this case, f~1(1) = Ker(f| K*) is a
subgroup of K*, and f induces a monomorphism f*: K/f~1(1) — L.

Let K be a monoid. For subsets X, Y C K and y € K, we define

(X:Y)=(X:gY)={ze€ K |2zY C X} and (X:y)=(X:{y}).

Lemma 1.1.2. Let K be a monoid and X, X', Y,Y' C K.

L If XCX andY CY', then (X:Y') C (X":Y).

2. (X:YY')=((X:Y):Y").

3. (X:X) is a submonoid of K.

4. If a€ K*, then (aX:Y)=a(X:Y) and (X:aY)=a"}(X:Y).

5. If (Y))xea is a family of subsets of K, then

QX:LJ}&)::(](Xﬁyk)7 and if Y CK*, then (X:Y)=[)y 'X.
AEA AEA yey

ProoF. 1. If z € (X:Y”), then 2Y C 2Y’ C X C X', and therefore z € (X':Y).
2. If z € K, then

2€(X:YY') <= 2YY' =:Y)YCX — Y/ C(X:Y) «— z€((X:Y):Y').

3. Clearly, 0 € (X : X), and if 2,y € (X : X), then 2yX = z(yX) C X C X, and therefore
xy € (X:Y).

4. Let a € K* and z € K. Then
2€(aX:Y) <= 2Y CaX <= a2V CX <= a '2€ (X:Y) & z€a(X:Y)
and
z€(X:aY) <= zaY C X <= za € (X:Y) < zca }(X:Y).

5. Let (Yx)aea be a family of subsets of K and z € K. Then

ze(X:UYQ = YA CX forall A€A <= z€(X:Yy) forall A€ A < z€ [|(X:Ya).
AEA AEA
If Y C K*, then

(x:v) = (x: J1o}) = N Xsfuh = Ny ' (i) = v X, 0

yey yeyY yey yeyY
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1.2. Quotient Monoids

Remarks and Definition 1.2.1. Let K be a monoid and T C K a multiplicatively closed subset.

For (z,t), (¢/,t') € KxT, we define
(x,t) ~ (', t') if st’'z =stx’ for some seT.

Then ~ is an equivalence relation on K xT.
Proof. Obviously, ~ is reflexive and symmetric. To prove transitivity, let (z,t), (z/,t'), (z”,¢") € KxT
be such that (z,t) ~ (2/,t') and (2/,t') ~ (2”,¢"). Then there exist s, s’ € T such that st'z = sta’
and s't"z’ = s't’2”. Then it follows that §'st’ € T and (§'st')t"x = §'t"sta’ = (s'st')tz”, hence
(x,t) ~ (2", t"). O

We define the quotient monoid T 'K of K with respect to T by T 'K = KxT/ ~. For
(z,t) € KxT, we denote by
% € T7'X the equivalence class of (2,t), and we define jr: K — T 'K by jr(z)= % .
The map jr is called the natural embedding (although it need not be injective). By definition, if
(z,t), (2',t') € KXT, then

/

T
Z =2 ifand only if st'z =stz’ for some s T,
t t
and if T C K*, then
X J:, . . / /
—=— ifand onlyif t'z=tz".
t t’
If n € Nand z,...,2, € T7'K, then z,...,2, have a common denominator, that is, there exist

T1,...,T, € K and t € T such that

z; = % for all € [l,n].

For z, 2’ € K and t, t' € T, we define
r x  xa
tor
This definition does not depend on the choice of the representatives. Endowed with this multiplication,
T~ 'K becomes a monoid with unit element % and zero element %, and jr is a monoid homomorphism.
If 0 € T, then T7'K is a trivial monoid.
Proof. Suppose that (z,t), (z1,t1), (a',t), (2],t]) € KxT, (x,t) ~ (x1,t1) and (2, ¢') ~ («),t]). We
must prove that (za/,tt’) ~ (x12),61t]). Let s, s € T be such that stix = stx; and s'tz’ = 't'z].
Then it follows that ss’ € T and ss'tit)za’ = ss'tt'zq2], which implies (za/,tt') ~ (12, t1t]). Now it
is obvious that this multiplication is associative and commutative, % is a unit element and % is a zero
element. If z, y € K, then

; _M Y g o) =Y 1) = L

jr(zy) = =77 =Jir@)jr(y), jr(0)=7 and jr(l)=.
Hence jr is a monoid homomorphism. If 0 € T, then (z,t) ~ (2/,t) for all (z,t), («/,t') € KxT, and
therefore [T71K| = 1. O

For every subset X C K, we set
Tlez{%‘xeX7 teT}chlK.

If XC X CK,then T7'X' Cc T7'X c T7'K. Hence it follows that T-Y(XNY)Cc T !X NT-Y
for any subsets X, Y C K.
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Theorem 1.2.2. Let K be a monoid, T C K a multiplicatively closed subset and jr: K — T 'K
the natural embedding.

1. If X,Y CK, then T-Y(XY) = (T'X)(T~Y), and if additionally TX = X and TY =Y,
then T-H(XNY)=T"'XNT"'Y.

2. If (Xa)aea s a family of subsets of K, then

r(Ux)=Ur 5.
AEA AEA
3. If J is an ideal of K, then T~'.J is an ideal of T"'K, J C j;l(T’lJ), and T='J =T71K if
and only if JNT # .

4. If V is an ideal of T~'J, then J :jfl(V) is an ideal of K, and V =T71J.

PROOF. 1. Let X, Y C K. If 2 € T71(XY), then z = ZL for some r € X, y €Y and t € T, and
therefore z = £ ¥ € (T'X)(T~'Y). Conversely, if z € (I7'X)(T7'Y), then z= 2% for some z € X,
yeY and s, t €T. Hence z = % € T1(XY).

Assume now that TX = X and TY =Y. Clearly, T-1(XNY) C T XNT-Y. If 2 e T71XNT~1Y,
then z =% =% wherez € X, y €Y and s,¢ € T. Then there is some w € T such that wsz = xty.
Since wsr = wty € TX NTY = X NY it follows that

wSsT

z2=—eT ' XnT7 Y.
wst

2. If a € A, then

X, c |JXx implies T7'X, C T—l(U X,\) , and therefore | J 77X, c T ( U X,\) .
AeA AEA AEA AEA
Conversely, if

zGT_l(UXA),, then z:ﬁ, where t € T and x € X, for some o € A
AEA

and therefore
zeT ' XoC |JT7'Xa.
AEA
3. Obviously, T71J is an ideal of T7'K, and J C j;'(T71J). ¥ T7'K = T~'J, then + € T71J.
Hence % = ¢ for some a € J and t € T, and there exists some s € T such that st = sa € TN J.

Conversely, if s € TN J, then 1 = £ € T~'J, which implies T7'J = T7'K.

4. Since jr is a monoid homomorphism, it follows that J = j;. 1(V) is an ideal of K. If a € J and
t €T, then ¢ €V and therefore ¢ = %% € V. Hence T~'J C V. To prove the converse, let T eV,

where a € K and t € T. Then %:%%EV,henceaeJand%ET‘lJ. O

Theorem 1.2.3. Let K and L be a monoids, T C K a multiplicatively closed subset and ¢: K — L
be a homomorphism such that ©(T) C L*. Then there exists a unique homomorphism ®: T 'K — L
such that ®ojpr = . It is given by

@(%) =) tp(a) forall ac€ K and teT.

PROOF. Let ®: T~'K — L be a homomorphism satisfying ®oj; = ¢. For a € K and ¢ € T we have
o(t) € L™,

<p(t)<1><(:) = @(%)@(%) = @(a?t) = @(%) = ¢(a), and therefore @(%) = () to(a).
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This proves uniqueness and the formula for ®. To prove existence we define ® by the formula above and
prove that this definition does not depend on the choice of representatives.

/

Ifa,a’ € K and t, t € T are such that ¢ = %, then there is some s € T' such that st'a = sta’, hence
p(s)p(t')o(a) = @(s)p(t)p(a’) and therefore (1)~ p(a) = o(t') " p(a’).
By the very definition, ®ojr = ¢, ®(2) = ¢(1)7'p(0) = 0 and ®(1) = (1) (1) = 1. If
a,a € K and t, t €T, then
aa aa’ N1 , 1 N=1 /1 a a
o(%) = o(55) = et) plaa) = o(t) pla)e(t) Hela) = o ($)2(%).
Hence @ is a homomorphism. O

Theorem und Definition 1.2.4. Let K be a monoid, T C K a multiplicatively closed subset, and
T={seK|sKNT#0}.
T is called the divisor-closure of T, and T is called divisor-closed if T =T.

1. Let Jr be the set of all ideals J C K such that JNT = and

r=J J.

JeJr

Then T = K \ P is multiplicatively closed, T C T = ?, and if T # K, then P is a prime ideal,
and it is the greatest ideal of K such that PNT = ().
2. (T7'K)* =T~1T, and there is an isomorphism
v T'K 5 T7YK | given by L(%) = % forall € K and teT.
Note that ¢ is not the identity map, since the two fractions appearing in its description denote
different equivalence classes. However, we shall identify them: T 'K =T 'K.
3. Let S C T be a multiplicatively closed subset. Then ST C K and T~'S C T~'K are multiplica-
tively closed subsets, and there is an isomorphism
) tx
st
foralle K, t,t' €T and s € S.

4. If X, Y C K, then (T7'X :pagT7Y) = (T'X:T7Y) = (T7'X :jr (V) DT HX:Y),
and equality holds if TX = X and Y is finite.

PROOF. 1. Suppose that s € T, and let J € Jr. If a € K is such that sa € T, then sa ¢ J and thus
s ¢ J. Hence T C K \ P. Conversely, if s € K \ P, then sK ¢ Jr, hence sK NT # () and s € T.

Clearly T ¢ T C T. If s € T, then ts € T for some t € K, hence t'ts € T for some t' € K, and
therefore s € T. Hence T = T. If s1, so € T, there exist t1, to € K such that siti, sote € T, which
implies s1sot1to € T and thus sys9 € T. Hence T is multiplicatively closed. If T' # K, then P is an ideal
of K by Lemma 1.1.1. By definition, P is the greatest ideal of K such that PNT = (), and it is a prime
ideal since T' is multiplicatively closed.

2. Let € K and t € T. We shall prove that £ € (I'"'K)* if and only if t € T.

If 2 e (I"'K)*, then there exist 2’ € K and ¢’ € T such that % f—,/ 1. Hence there is some w € T
such that wrz’ = witt’, and wit’ € T implies x € T. Conversely, if z € T and t € T, let w € K be such
that zw € T. Then £2 € T7'K and £ 2 = 1 and therefore £ € (t71K)*.

t zw
Let j7: K — T 'K be the natural embedding. Since j7(T) C T 'T C (T-'K)*, Theorem 1.2.3
implies the existence of some homomorphism ¢: T7'K — T7'K satisfying (%) = % for all z € K and
tel.

O (T7'9)" (T 'K) = (ST)"'K, given by <1>(

“t\m‘w\[i
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¢ is injective: Let x, 2’ € K and t,#' € T be such that ¥ = f—,, in T7'K. Then there exists some
s € T such that st’z = sta’. If w € K is such that ws € T, then (ws)t'z = (ws)ta’ and therefore £ = f—,/
in T7'K.

¢ is surjective: Let z € T7'K, say z = 2, where x € K and s € T. If t € K is such that st € T,
then y = ”s% € T7'K, and 1(y) = 2.

3. Clearly, ST C K and T-!'S C T~ 'K are multiplicatively closed, and the homomorphism
jsr: K — (ST)"'K satisfies jsr(T) C (ST)™'T C ((ST)"'K)*. Hence Theorem 1.2.3 implies the
existence of some homomorphism ¢: T7'K — (ST) 'K satisfying ¢ (%) = (%)71% =2 forallz e K
and t € T. Since ¢(T~1S) C (ST)™1S C ((ST)"'K)*, again Theorem 1.2.3 implies the existence of a

homomorphism ®: (T~18)~Y(T71K) — (ST) 'K satisfying
Zz

3 —1 tl
¢)<%>:<P(£,> ¢(£>=£ forall z€K,seS and t,t' €T.
E ¢ t) = st

® is injective: Let x, 21 € K, s, s1 € S and t, t1, t', t} € T be such that

x
g o t t
o(L)=a(L) e K, thatis, — =
7 ﬁ st sty

Then there exist some v € S and w € T such that vwst1t'c = vwstt|z,. Hence
x1

_ t1 c (T_ls)_l(T_lK).

51
!
tl

\m‘ﬁ.\a

2= _—"2¢cT 'K, and therefore

o~

® is surjective: Let z =2 € (ST) 'K, where s€ S, t € T and z € K. Then

y=L e (T ') (T'K) and ®(y)==2.

=l |8

4. We may assume that Y # (. Since [T 'YX :Y)|(T7'Y)=T"1(X:Y)Y] C T7'X and
jr(Y) C T71Y, we obtain

T7YUX:Y)c(T7'X:T7'Y) c (T X :jr(Y).

For the proof of (T™!'X:jp(Y) C (I''X:T7'Y),let z € K and s € T be such that % € (T~'X:jp(Y)).
If e T7'Y (where y € Y and t € T), then ¥ € jp(Y), and therefore 2 =% ¢ 771X say 2 = £
for some # € X and w € T, which implies that 24 = £ € T-1X.

Assume now that T7X = X and Y = {y1,...,yn} for some m € N, and let 2 € (T7'X:T7'Y),

where z € K and t € T. For j € [1,m], it follows that % % e 771X, and thus there exist z1,..., 2, € X

and s € T such that, for all j € [1,m], we have 2% = ZL and therefore w;szy; = wjtx; for some
w; €T. Thenw =wy -... - wy, € T and wszy; = wtz; € TX = X for all j € [1,m]. Hence we obtain
wsz € (X:Y),and 2 =22 T 1(X:Y). O

Theorem und Definition 1.2.5. Let K and L be monoids, T C K a multiplicatively closed subset
and ¢: K — L be a homomorphism. Then o(T) C L is a multiplicatively closed subset, and there exists
a unique homomorphism T 'o: T7'K — o(T)"'L such that (T~ ¢)ojr = Je(ryow. It is given by

(Tlgo)(f)—z((f)) forall z€ K and teT.

T~y is called the quotient homomorphism of ¢ with respect to T.
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PRrOOF. Clearly, 1 = ¢(1) € ¢(T), and o(T)p(T) = p(TT) = ¢(T), and therefore ©(T) C L is
multiplicatively closed.

By Theorem 1.2.4.2 we have j,r)(o(T)) C (¢(T)"'L)*, and by Theorem 1.2.3 there exists a
monoid homomorphism T '¢: T7'K — ¢(T)"'L such that (T~'p)ojr = ju(r)oep.

It remains to prove uniqueness and the formula. Thuslet ®: T~ K — ¢(T)~!L be a homomorphism
such that ®ojr = j,ryop. If v € K and t € T', then

(I)(%) =0 (jr(t) jr(z) = Pojr(t) ' Pojr(x) = (@(t))il(w x)) = #l2) ' .

Theorem 1.2.6. Let K be a monoid and T C K* a multiplicatively closed subset.
1. The natural embedding jr: K — T™'K is a monomorphism, and (I "'K)®* = T'K*.
2. If ac Kands €T, then ¢ € (T~YK)* if and only if a € K*. In particular, (T7'K)* = T~ K*,
and T~ K is cancellative if and only if K is cancellative.

PRrROOF. 1. If z, y € K are such that jr(x) = jr(y), then sz = sy for some s € T and consequently
z = y. In particular, if jr(z) = 2, then z = 0, and therefore (T~!'K)* = T 1K*.
2. Letae Kand seT. If a € K* and

axr adz x

P for some z,2' € K and t,t €T, then st'ax = stax’, hence t'z =tx’ and PR
s s

since sa € K*. If a ¢ K*, then there exist , 2’ € K such that x # 2’ and ax = aa’. But then it follows
that

s 1
Hence it follows that (T-'K)* = T-1K*.
If K is cancellative, then K* C K*, hence (T7'K)* =T 'K* C T7'K* = (T7'K)*, and thus T~'K
is cancellative. If K is not cancellative, then there is some a € K*\ K*. Since ¢ € (T'K)*\ (I 'K)*,
it follows that also 77! K is not cancellative. g

a x a
S

a’ A a PR
T and T#T’ hence ggé(T K)*.

Remarks and Definition 1.2.7. Let K be a monoid and 7" C K* a multiplicatively closed subset.
Then we identify K with j7(K) C T7'K by means of jr. Hence

KcT 'K, a:% forall a€c K, T cC(T7'K)*, and %:fla forall ae K and teT.

In particular, it follows that T-'K = K if and only if T C K*.

Let K C K; be a submonoid and T'C K N K{* a multiplicatively closed subset. Then T" C K* and
T-'K C T7'K; = K;. Hence we obtain K CT!K ={t"'z |z € K, te€ T} C K;.

The monoid q(K) = K* 1K is called the total quotient monoid of K. By Theorem 1.2.6 it follows
that

q(K)*=K*'K* and q(K)*=q(K)*=K"'K*.

In particular, K* C q(K)*, and therefore K C T"'K C q(K) for every multiplicatively closed subset
TC K™

If p: K — L is a monoid homomorphism satisfying ¢(K*) C L*, then q(¢) = K*"1¢: q(K) — q(L)
is called the quotient homomorphism of .

Theorem 1.2.8. Let D be a monoid and K = q(D).
1. K is divisible if and only if D is cancellative.
2. If G C D* is a subgroup, then K/G = q(D/G). In particular, K/D* = q(D/D*).
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3. The following assertions are equivalent:

(a) D=K. (b) zD =K for some z€ K. (¢) D*n ﬂ aD # 0.
a€D*

PRrROOF. 1. If D is cancellative, then then K®* = D*~!D* ¢ D*"'D* = K*, and therefore K is
divisible. The converse is obvious, since D C K is a submonoid.

2. By definition, D/G C K/G, and we assert that (D/G)* C (K/G)*. Indeed, if aG € (D/G)* for
some a € D, then a € D* C K* and aG € (K/G)*. Consequently, q(D/G) C K/G, and if z € K/G, say
2z =a"'bG, where a € D* and b € D, then z = (aG)~1(bG) € q(D/G). Hence q(D/G) = K/G.

3. (a) = (b) Obvious.

(b) = (c) Let z € K be such that zD = K. Then z € K*, say z = b~'c, where b, c € D*, and
b~ 'D = ¢ 'K = K. We assert that b € aD for all a € D*. Indeed, if a € D*, then a~! = b~y for some
u € D and therefore b = au € aD.

(c) = (a) Let b € D* be such that b € aD for all a € D*. If z = a~!c € K, where a € D* and
c€ D, then z = b lc(a™1b) € b=1D. Hence K = b~'D, and therefore D = bK = K. O

Remark 1.2.9. Let K be a ring and 7' C K a multiplicatively closed subset.
For z, 2/ €e T7'K, let z, 2’ € K and t € T be such that
! !
Z:E, z’:x—, and define z+ 2 = T
t t t

This definition does not depend on the choice of representatives. Endowed with this addition, 771K is
the usual quotient ring of commutative ring theory. In particular, q(K) is the total quotient ring, and if

K is a domain, then q(K) is the quotient field of K.

1.3. Prime and primary ideals

Throughout this section, let D be a monoid, and for X, Y C D, we set (X:Y)=(X :pY).

Lemma 1.3.1. Let Q C D be an ideal.
1. If Q # D, then Q is a prime ideal if and only if, for all A, B C D, AB C Q implies A C Q or
BCQ.
2. Let @ be a prime ideal, n € N, and let Jy,...,J, C D be ideals such that either Jy-...-J, CQ
or JiN...NJ, CQ. Then there exists some i € [1,n] such that J; C Q.

PROOF. 1. Let @ # D be a prime ideal, A, BC D, ABCQand A¢Z Q. If ae A\ Q and b € B,
then ab € AB C @ and therefore b € Q). Hence it follows that B C Q.

2. Since Jy ... - J, C JyN...NJ,, it suffices to prove the assertion for the product. But this follows
from 1. by induction on n. O

Theorem und Definition 1.3.2. Let J C D be an ideal. We call
VJ=pVJ={zeD|z"eJfor some neN}

the radical of J (in D), and we call J a radical ideal of D if J = +/J. We denote by X(J) = Xp(J)
the set of all prime ideals P C D such that J C P, and we denote by P(J) = Pp(J) the set of minimal
elements of 3(J). The elements of P(J) are called prime divisors of J.

1. Let I C D be another ideal of D.
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(a) IC\ﬁ:\/ﬁ, and I C J implies VI C V/J.
(b) VIT=VINnJ=VInJ.
2. If J# D, then P(J) # 0, and for every P € ¥(J) there exists some Py € P(J) such that Py C P.
3. If J# D, then\J # D,
Vi= (] P,
PeP(J)

and \/J is a prime ideal if and only if it is the only prime divisor of J.

ProOF. 1.(a) Clearly, I C VI, and I C J implies VI C v/J. If 2 € \/V/I, then 2" € /T for some
n € N, hence "™ = (™)™ € I for some m € N, and therefore 2 € v/T.

(b) Since IJCINJ CI,J, weobtain VIJ C T+ JcCVINJcCVINVI. IfaeVInyJ,
then there exist m, n € N such that ¢™ € I and a™ € J. Hence a™™™ = a™a™ € IJ, and a € V1J.

2. If J # P, then D\ D* € X(J). For P € ¥(J), let Qp = {P’ € X(J) | P’ C P}. The intersection of
every family in Qp belongs to Qp, and by Zorn’s Lemma, applied for the partially ordered set (Q2p,D),
it follows that Qp has a minimal element Py with respect to the inclusion. Then Py € P(J) and Py C P.

3. If vJ = D, then 1 € v/J implies 1 € J and thus J = D. Clearly, v.J C P for all P € P(J).
We prove that for every a € D\ V/.J there exists some Py € P(.J) such that a ¢ P,. Thus suppose that
a € D\VJ. Then T = {a™ | n € Ny} is a multiplicatively closed subset of D satisfying T N.J = (. If T
denotes the divisor-closure of T, then Theorem 1.2.4 implies P = D \ T is a prime ideal, and it is the
greatest ideal of D such that PNT = (). Hence J C P, and by 2. there exists some Py € P(J) such that
Py C P and therefore a ¢ P. O

Theorem und Definition 1.3.3. Anideal Q C D is called primary if Q # D and, for all a, b € D,
if ab € Q and a ¢ Q, then b € v/Q.
1. Let Q@ C D be an ideal.
(a) Q is a prime ideal if and only if Q it is a primary ideal, and /Q = Q.
(b) If Q is a primary ideal, then \/Q is the only prime divisor of Q.
If Q is a primary ideal and P = /Q, then Q is called P-primary.
2. Forideals Q, P C D the following assertions are equivalent:
(a) Q is P-primary.
(b) Q C P C/Q, and for alla, b€ D, ifabe Q and a ¢ Q, then b € P.
(c) QC PC+Q, and for all Ay BC D, if ABCQ and A ¢ Q, then B C P.
3. Let P C D be a prime ideal.
(a) If Q and Q' are P-primary ideals, then Q N Q' is also P-primary.
(b) If Q is a P-primary ideal and B C D is any subset such that B ¢ Q, then (Q:p B) is
also P-primary.
4. Let ¢: D — D' be a monoid homomorphism and Q" C D' an ideal. Then ¢~ *(Q') C D is an
ideal, \/p=1(Q") = Y (V/Q). If Q' is primary [a prime ideal], then so is ¢~ 1(Q").
PROOF. 1. Suppose that a, b € D, ab € v/Q and a ¢ /Q. Then there is some n € N such that

(ab)™ = a™b" € Q and a™ ¢ Q. Since Q is primary, we obtain b" € /@ and therefore b € \//Q = /Q.
Hence /@ is a prime ideal, and we must prove that /@ is the smallest prime ideal containing . Indeed,
if P C D is a prime ideal and Q C P, then v/Q C VP = P.

2. (a) = (b) and (c) = (b) Obvious.
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(b) = (c) Supposethat QC PC+Q, A, BCD, ABCQand A¢Z Q. Let a € A\ Q. For all
b € B, we have ab € AB C @ and therefore b € P. Hence B C P.

(b) = (a) If Q C P C /Q, then P =+/Q by 1. Hence Q is P-primary.

3.(a) If /Q =+/Q = P, then /QNQ = +/QN+/Q = P. Suppose that a, b € D, abe QN Q’
and a ¢ QN Q’, say a ¢ Q. Then it follows that b € P, and thus Q N Q' is P-primary.

(b) Note that Q C (Q:B) € D, since B ¢ Q. Hence P = /Q C 1/(Q:B), and by 2. it suffices to
prove that, for all a, b € D, if ab € (Q:B) and a ¢ (Q:B), then b € P.
Ifa,be D, abe (Q:B) and a ¢ (Q:B), then abB C Q, aB ¢ @ and hence b € P, again by 2.

4. Obviously, ¢~ 1(Q’) C D is an ideal. If a € D, then
a €\ Q) <= a" € ¢ Q) forsome neN <= p(a)" € Q" for some nc N
= ¢la) € VQ <= acyp (VQ). Hence /o 1(Q) =9 '(VQ).

Now let Q' be primary, a, b € D, ab € ¢~ 1(Q') and a ¢ ¢~ 1(Q’). Then p(a)p(b) € Q" and p(a) ¢ Q’,

hence ¢(b) € /Q' and therefore b € = 1(\/Q') = /= 1(Q'). If Q' is a prime ideal, then it is primary
and /Q" = @Q'. Hence the same holds for ¢=1(Q"). O

Definition 1.3.4. Let J C D be an ideal, n € Nyg, Q1,...,Q, C D distinct primary ideals, and
Q={Q1,...,Qn}.
1. Qis called a primary decomposition of Jif J=Q1N...NQ,.

2. Qis called reduced if \/Q,...,/Q, are distinct, and Q1N ...N Qi1 NQi+1N...NQn & Q;
for all i € [1,n].

Theorem 1.3.5. Let J C D be an ideal..
1. If Q is a primary decomposition of J for which |Q| is minimal, then Q is reduced. In particular,
if J possesses a primary decomposition, then it also possesses a reduced one.

2. Let Q be a reduced primary decomposition of J. For a prime ideal P C D, the following conditions
are equivalent:

(a) P =+/Q for some Q € Q.
(b) There exists some z € D\ J such that P = \/(J:2).

3. Let Q and Q' be reduced primary decompositions of J. Then there is a bijective map o: Q — Q'
such that /a(Q) = /Q for all Q € 9, and if /Q, is minimal in {\/Q | Q € Q}, then
o(@Q1) = Q.

PROOF. 1. Assume to the contrary that |Q| =n and Q = {Q1,...,Qy} is not reduced. Then n > 2

and after renumbering (if necessary) we may assume that either /Q; = /Qy or Q2N...NQ, C Q1.
We set Q1 = {Q1NQ2,Qs,...,Qn} if VQ1 =VQ2, and Q1 ={Q2,...,Qn} fQ2N...NQ, C Q1.
Then £, is a primary decomposition of J satisfying |Q;| = n — 1, a contradiction.

2. Suppose that Q = {Q1,...,Qn}, where n € Ny and @1, ..., @, are distinct. If n =0, then J = D,
and there is nothing to do. If n = 1, then Q = {J}, and the assertion follows by Theorem 1.3.3. Thus
we may assume that n > 2.

(a) = (b) Assume that P =/Q;. If z € (Q2N...NQn) \ @1, then (Q;:2) = D for all i € [2,n],
and

(J:2)=(Q1N...NQp:2) = ﬂ(le) =(Q1:z) is P-primary by Theorem 1.3.3.3 (b).

i=1
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(b) = (a) Let z € D\ J be such that P = /(J:z). Then

P:\/(Qlﬁ...ﬂQn:z): m\/(Qi:z): ﬂ \/@,
=t ZZ;le

and therefore P = @, for some i € [1,n].

3. By 2. it follows that {v/Q | Q € Q} = {V/Q | Q € Q'} consists of all prime ideals of the form
(J:z) for some z € D\ J. Therefore there exists a bijective map o:Q — Q' such that +/0(Q) = VQ
for all Q € Q.

Assume now that Q = {Q1,...,Qn}, where n € No, Q1,...,Q, are distinct, and let /@, be minimal
in the set {v/Q1,...v/Qn }. By symmetry, it suffices to prove that ¢(Q;) C Q1. Assume the contrary,
and consider the ideal B =0(Q2)N...No(Qy). Since Q1 D J =BNo(Q1) D Bo(Q1), it follows that
B C v/Q1 and thus /Q; = 1/0(Q;) C v/Q1 for some i € [2,n], a contradiction, since v/Q; was minimal
and VQ1 # VQi. O

Theorem 1.3.6. Let T C D*® a multiplicatively closed subset and jr: D — T~'D the natural
embedding.
1. If JC D is an ideal, then T—'\/J =T-1J.

2. The assignment @Q — T~1Q defines an inclusion-preserving bijective map
Jn:{Q C D | Q is a primary ideal, QNT =0} — {Q €C T 'D|Q is a primary ideal } .
Its inverse is given by Q +— jn*(Q), and if Q C D is a primary ideal, then T~'\/Q = \/T-1Q.

In particular:

o j5 induces an inclusion-preserving bijective map from the set of all prime ideals P C D such
that PNT = () onto the set of all prime ideals of T~ D.

e If P C D isaprime ideal and PNT = 0, then j; induces an inclusion-preserving bijective
map from the set of all P-primary ideals of D onto the set of all T~'P-primary ideals of
T-'D.
3. Let J C D be an ideal and 2 is a reduced primary decomposition of J. Then
Qr ={T7'Q|Q e, QnT =0}

is a reduced primary decomposition of T~1.J.

PROOF. 1. Let J C D be an ideal. If z € T~'/J, then z = %, where a € VJandteT. If n e Nis
such that a™ € J, then

" = j—n eT'J and zeVT-1J.

Conversely, suppose that z = ¢ € VI ~1.J, wherea € D and t € T, and let n € N be such that 2™ € T-1J.
Then

n
n a

"t =—
tTL

c
= - forsome ceJ and seT.
s

Let w € T be such that wsa™ = wet™ € J. Then (wsa)" = (ws)" 'wsa™ € J, hence wsa € v/.J and

wsa
r=—ecT WJ.
wst

2. It suffices to prove the following assertion :

A. If Q C D is a primary ideal and Q N T = 0, then 7' is primary, and Q = j;l(T’lQ).
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Indeed, suppose that A holds
and Q=

If Q C T~'D is a primary ideal, then j'(Q) C D is primary
T-! _1(Q) by the Theorems 1.3.3.4 and 1.2.2.4. Moreover, for every ideal () C D we have
T-1/Q = /T-1Q by 1., and the assertions follow

Proof of A. Let Q C D be a primary ideal and QNT = . Let =, y € T~'D be such that zy € T~'Q
and x ¢ T~1Q. We set

b
x:%, y=—- and ;vyzE, where a,be D, c€Q, t,s,weT and a ¢ Q.
s
Then there exists some v € T such that vwab = vtsc € Q, and as a ¢ Q, we obtain vwb € \/Q. If n € N
is such that (vwb)” € @, then
b n
"= (vewb) eT'qQ. Hence T7'Q is primary.
(vws)™
Obviously, j;l(Tle) D Q. To prove the reverse inclusion, let ¢ € jfl(T’lQ). Then ¢ = ¢ for some
a € @ and t €T, and there exists some s € T such that cst = sa € Q. If ¢ ¢ Q, then there is some n € N
such that (st)™ € @ NT, a contradiction
3. By 1. and 2., Qr is a primary decomposition of T~'J, since
J={)@Q

implies Ly = ﬂ T7'Q = m T7'Q.
QeN Qe QeQr
Then /Q = j* (T~

We must prove that Qr is reduced. Assume first that Q, Q' € Q7 are such that /7T-1Q = /T-1Q’
VQ) = i (VTQ) = iz (VT1Q) = jp'(
Q=Q'. 1t Q\ € Qr, then

SHT/Q) = /@ and therefore
N 77'QcT'Q implies () Q= () ir' @@ =4z'( ) T7'Q) cix'T'Q) =@,
QeQr Qer Qer QeQr
Q#Q1 Q#Q1 Q#Q1 Q#Q1
which is impossible. Hence Q7 is reduced

O
Definition 1.3.7. Let P C D be a prime ideal and K D D an overmonoid. Then the monoid

Kp = (D\ P)"'K is called the localization of K at P. We denote by jp = jp\p: K — Kp the
natural embedding, and for X C K, weset Xp = (D\ P)"'X C Kp

Theorem 1.3.8. Let P C D be a prime ideal, T C D* a multiplicatively closed subset and PNT = ()
If a€ D ands €T, then 5 € T~1P if and only if a € P. In particular, T
and there is an isomorphism

“L(D\ P) = T-1D\T-'P,

®: (T"'D)p1p = Dp, given by @(g)

for all

a€eD,
i
In particular, if D is cancellative, then (T~1D)

ceD\P and s, teT

r-1p=Dp C C](D)
Proor. Clearly, a 6 P and s € T implies £
2 e TP, then &

€ T~'P. Conversely, if a € D and s € T are such that
% ¢ T7'P and thus a € P by Theorem 1.3.6. Hence T—*(D\P) =T~
and Theorem 1.2.4.3, apphed with S = D\ P, gives the asserted isomorphism.

ID\T-'P,

|

Theorem 1.3.9. Let D be a cancellative monoid, K = q(D), and let P, Q C D be prime ideals
1. If @ ¢ P, then (D:Q) C Dp.

2. If P ¢ Q, then Dp C (Dp)g.

3. If I C D is an ideal such that I = /I C P, then (P:P) C (I:I).
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PrOOF. 1. If r € (D:Q) and y € Q \ P, then zy € D, and = = y~(xy) € Dp.

2. By definition, Dp C (Dp)g. If z € P\ @, then z € Pp = Dp \ DJ, and therefore it follows that
7l e (DP)Q \ Dp.

3. Let z € (P:P) and y € I. We must prove that zy € I. Since I = +/T, Theorem 1.3.2.3 shows that
it suffices to prove that zy € Q for all Q € P(I). If Q = P € P(I), then zy € (P:P)I C (P:P)P C P.
IfQeP(I)\{P}, then P¢Z Q, and zyP C I(P:P)P C IP C I C @ implies zy € Q. O

1.4. Fractional subsets

Definition 1.4.1. Let D be a monoid, K = q(D) its total quotient monoid and X C K.
1. X is called D-fractional if there exists some a € D* such that aX C D.
Every finite subset of K is D-fractional, and every subset of a D-fractional set is D-fractional.
2. X is called a fractional ( semigroup) ideal of D if X is D-factional, 0 € X and DX C X
(then DX = X').
3. X is called a fractional principal ideal of D if X = Da for some a € K.

By definition, if X C D, then X is a fractional [principal] ideal of D if and only if X is a
[principal] ideal of D.

Theorem 1.4.2. Let D be a monoid, K = q(D) its total quotient monoid and X,Y C K.

If c € K and X is D-fractional, then cX is D-fractional.

X is D-fractional if and only if there exists some ¢ € K* such that cX C D.

If X, Y C K are D-fractional, then X UY, X NY and XY are also D-fractional.

If X is D-fractional and Y N K* # 0, then (X:Y) is D-fractional.

Let T C D* be a multiplicatively closed subset [and T—'D C q(D)]. Then X is T~'D-fractio-

nal if and only if ¢cX C T~ 'D for some ¢ € D*. In particular, if Y C K is D-fractional, then

T=YY is T~'D-fractional.

6. Let C be a monoid such that D C C C K. If C is D-fractional, then every C-fractional subset
X C K is D-fractional.

PROOF. 1. Let c=b"'d € K (where b € D* and d € D). If X is D-fractional and a € D* is such
that aX C D, then ba € D* and ba(c¢X) = daX C dD C D. Hence c¢X is D-fractional.

2. If X is D-fractional, then there exists some ¢ € D* C K* such that ¢cX C D. Conversely, let
c=b"1d € K* (where b, d € D*) be such ¢X C D. Then dX C beX C bD C D, and thus X is
D-fractional.

3. Let a, b € D* be such that aX C D and bY C D. Then a(X NY) C D, ab(XUY) C D and
abXY C D. Hence X NY, XUY and XY are D-fractional.

4. fy € YN K*, then y~1X is D-fractional by 1., and since (X:Y) C y~ !X, it follows that (X:Y)
is D-fractional.

5. Let X be T—!D-fractional and z = (I'~!D)* = T~1D* such that 2zX C T7'D. Then z =t~ ¢,
where t € T and ¢ € D*, and ¢X = tzX C T'D. The converse is obvious, since D* C (T"'D)*. If

Y C K is D-fractional and ¢ € D* is such that cY C D, then ¢I'~'Y =T~ 'cY c T7'D, and thus T~'Y
is T~! D-fractional.

6. Let a € K* be such that aC C D. If X C K is C-fractional and ¢ € K* is such that ¢cX C C,
then ac € K* and acX C D. O

A .
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1.5. Free monoids, factorial monoids and GCD-monoids

Throughout this section, let D be a cancellative monoid and K = q(D).

Definition 1.5.1.

1. Let X C D. An element d € D is called a greatest common divisor of D if dD is the smallest
principal ideal containing X [equivalently, d |z for all x € X, and ife € D and e |z for all z € D,
then e|d]. We denote by GCD(X) = GCDp(X) the set of all greatest common divisors of X.
By definition, GCD(X) = {0} if and only if X* = @, and GCD(X U {0}) = GCD(X). If
d € GCD(X), then GCD(X) = dD*. Consequently, if D is reduced, then |GCD(X)| < 1,
and we write d = ged(X) instead of GCD(X) = {d}. If X = {a1,...,a,} for some n € N
and ay,...a, € D, we set GCD(ay,...,a,) = GCD(X) resp. ged(ay,...,a,) = ged(X). In
particular, GCD(a) = aD* for all @ € D. Two elements a, b € D are called coprime if
GCD(a,b) = D*.

If X D, d e GCD(X) and e: D — D/D* denotes the reduction homomorphism, then
g(d) = dD* = ged(w(X)).

2. D is called a GCD-monoid if GCD(E) # 0 for all E € P¢(D). Hence D is a GCD-monoid if and

only if D/D* is a GCD-monoid. Every divisible monoid is a GCD-monoid.

3. A homomorphism ¢: D — D’ of GCD-monoids is called a GCD-homomorphism if
©(GCD(E)) C GCD(p(F)) for every E € P¢(D).
We denote by Homgep (D, D’) the set of all GCD-homomorphisms ¢: D — D’.

Theorem 1.5.2.
1. Let (Xa)aea be a family of subsets of D, by € GCD(X)) for every A € A, and B = {bx | A € A}.
Then
X =|J X\ implies GCD(X)=GCD(B).
AEA
In particular, D is a GCD-monoid if and only if GCD(a,b) # 0 for all a, b€ D*.
2. If XC D, a€D and GCD(aX) # 0, then GCD(aX) =aGCD(X).

PRrROOF. 1. It suffices to prove that X and B are contained in the same principal ideals of D. If
b € D, then

XCbD < X,€ebD forall A\e A <= byDCbD forall N\e A <= BebD.

If D is a GCD-monoid, then GCD(a,b) # @ for all a, b € D. Conversely, suppose that GCD(a, b) # () for
alla, b € D*, and let E € P¢(D). We must prove that GCD(E) # (), and since GCD(E) = GCD(E\{0}),
we may assume that E C D®. We use induction on |E|. If |E| < 2, there is nothing to do. Thus assume
that |[E| >3 and a € E. If b € GCD(E \ {a}) and d € GCD(a,b), then d € GCD(E).

2. It suffices to prove that GCD(aX) C a GCD(X). For a = 0, this is obvious. Thus suppose
that a € D*, and let ¢ € GCD(aX). Then aX C aD implies ¢D C aD, hence ¢ = ab for some b € D,
and X C bD. If ¥ € D is such that X C ¥ D, then aX C ab'D, hence ¢cD = abD C ab'D and
therefore bD C b’ D. Consequently, bD is the smallest principal ideal containing X, b € GCD(X), and
c=abe aGCD(X). O

Theorem 1.5.3. Let D be a GCD-monoid.
1. If E, F € P(D) and b € D, then GCD(EF) = GCD(E)GCD(F) and GCD(bE) = bGCD(E).
2. Let a, b, c € D be such that a|bc. Then there exist V', ¢ € D such that a = b'c/, b'|b and
c | c. In particular, if GCD(a,b) = D*, then a|c.
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3. Every z € K has a representation in the form z = a~'b with a € D* and b € D such that
GCD(a,b) = D*. In this representation aD* and bD* are uniquely determined by z.
PrROOF. We use Theorem 1.5.2.
1. Suppose that e € GCD(E) and f € GCD(F), and observe that

EF = | JbF.
beE
For every b € E, we have bf € GCD(bF'), and since {bf | b € E} = Ef, we obtain ef € GCD(EF).

2. Let ¥ € GCD(a,b) and ¢ € D such that a = b'¢/. Then it follows that ¥’c € GCD(ac, be),
and ¥ GCD(c,¢) = GCD(b' ¢/, b'¢c) = GCD(a, ac,bc) = GCD(a,bc) = aD* = b'¢’D*, which implies that
GCD(c,¢) = ¢ D* and therefore c¢|¢’. In particular, if GCD(a,b) = D*, we may assume that b’ = 1,
and then a = c|ec.

3. If z € K, then z = al_lbl, where a; € D® and by € D. If d € GCD(ay,by), then a3 = ad and
by = bd, where a, b € D, and d = GCD(ad,bd) = d GCD(a,b). Hence GCD(a,b) = D* and z = a~'b.
To prove uniqueness, suppose that z = a’~!¥, where ' € D*, b € D and GCD(d’,b') = D*. Then
a'b = ab', and since GCD(a,b) = GCD(a’,b') = D*, it follows that a|a’, b|V, a’'|a and a|a’. Hence
aD =dad'D and bD = V' D. O

Definition 1.5.4.
1. An element g € D* is called

e an atom if ¢ ¢ D* and, for all a, b€ D, ¢ = ab implies a € D* or b € D* [equivalently,
gD is maximal in the set {aD |a € D\ D* }];

e a prime element if ¢ ¢ D> and, for all a, b € D®, q|ab implies q|a or ¢|b [equivalently,
gD is a prime ideal ].

2. D is called
e atomic if every a € D*\ D* is a product of atoms;
e factorial if every a € D®\ D* is a product of prime elements.

3. D is said to satisfy the ACCP (ascending chain condition for principal ideals) if there is no
sequence (a,D),>¢ of principal ideals of D such that a, D C a,41D for alln € N [equivalently,
every non-empty set of principal ideals of D contains a maximal element ].

4. D is called free with basis P C D if the map

XP: N((JP) — D*, defined by x((np)pep) = H p"?, s bijective.
peP

5. A subset P C D is called a complete set of primes if every p € P is a prime element and, for
every prime element p € D there is a unique py € P such that pD = pgD [equivalently, p = pou
for some u € D*|.

Theorem 1.5.5.
1. If D satisfies the ACCP, then D is atomic.

2. Every prime element of D is an atom, and if D is a GCD-monoid, then every atom is a prime
element.

3. D is factorial if and only if D is atomic and every atom is a prime element.
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PrOOF. 1. Let Q be the set of all principal ideals aD, where a € D*®*\ D* is not a product of atoms.
Assume that, contrary to the assertion, Q # (). Since D satisfies the ACCP, Q contains a maximal
element aD, and since a is not an atom, it has a factorization a = be, where b, ¢ € D\ D*. In particular,
it follows that aD C bD and aD C ¢D, and therefore bD, ¢D ¢ Q. Hence both b and ¢ are products of
atoms, and therefore a = bc is also a product of atoms, a contradiction.

2. Let p € D be a prime element and a € D\ D* such that pD C aD. We must prove that pD = aD.
Since p = au for some v € D and therefore p|au, it follows that p|a or p|u. If p|a, then aD = pD
and we are done. If p|u, then u = pv for some v € D, hence p = apv, and from 1 = av it follows that
a € D™, a contradiction.

Assume now that D is a GCD-monoid, and let ¢ € D be an atom. If a, b € D and ¢|ab, then
Theorem 1.5.3.2 implies that there exist a’, b’ € D such that o' |a, b’ |band ¢ = a’b’. Hence it follows
that ' € D* or &/ € D*, say o’ € D*. But then ¥’ |b implies ¢ | b.

3. If D is atomic and every atom is a prime element, then every a € D\ D* is product of prime
elements and thus D is factorial.

If D is factorial, then D is atomic, since every prime element is an atom. If ¢ € D is an atom, then
q=p1-...-pr, where r € N and py,...,p, are prime elements. But then it follows that r =1 and ¢ = py
is a prime element. O

Theorem und Definition 1.5.6.
1. For a subset P C D, the following assertions are equivalent :
(a) D is factorial and P is a complete set of primes.
(b) Every a € D* has a unique representation
a=1u H p @ where we DX, vp(a) € Ng and vp(a) =0 for almost all p e P.
pepP
(¢c) D/D* is free with basis e(P), where ¢: D — D/D* denotes the canonical epimorphism.
For a € D*, we call vy(a) the p-adic exponent of a, and we set v,(0) = oco.

2. D is free with basis P if and only if D is factorial and reduced and P is the set of prime elements
of D.

3. Let D be factorial, P a complete set of primes and ) # X C D®. Then
d= H pmin{vp(:c)|m€X} e GCD(X),
peEP

and there exists some E € P¢(X) such that d € GCD(E).
4. D is factorial if and only if D is an atomic GCD-monoid.

PrROOF. 1. (a) = (b) Let a € D*. Then a = w'p} ... pl, where r € Ny, « € D*, and
P,...,p. € D are prime elements. For i € [1,7], let p; € P and u; € D* be such that p, = p;u;. Then
u=uvu -...-up € D*,;and a =upy -...-p,. Forpe P, let n, = |[{i € [1,r] | p = p}| € No. Then

ny, = 0 for almost all p € P, and

a:qu”P.

pEP
We must prove uniqueness. Thus assume that

a=ul]p>=u ][]0,

pEP peEP
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where u, u’ € D*, n,, nj, € Ng for all p € P, and nj, = n;, = 0 for almost all p € P. Then we obtain

u*lul H pnéfnp _ H pnpfn;.
peP peEP
n;>np n;<np

Assume now that there is some ¢ € P such that nfl > ng. Then it follows that

H p" " € qP, and therefore p € qP for some p € P such that ny, < Ny,

peEP
’
np<np

a contradiction. Hence there is no p € P such that n; > ny, and for the same reason there is no p € P

such that nj, > n,. Hence it follows that n, = nj, for all p € P, and consequently u = u'.

(b) < (c¢) By definition, €| P: P — ¢(P) is bijective, and if a € D*, u € D* and (n,)pep € N(()P),

then
a=mu H p™ if and only if e(a) = H e(p)™ .
peP peP

(b) = (a) It suffices to prove that P is a complete set of primes. From the uniqueness in (b) we
obtain :

e If a, b € D*, then v,(ab) = vy(a) + v,(D).

o If a € D* and p € P, then a € pD if and only if v,(a) > 0.
Hence every p € P is a prime element. Indeed, if p € P and a, b € D® are such that ab € pD, then
vp(ab) = vy(a) + vp(b) > 0, hence vp(a) > 0 or v,(b) > 0 and therefore a € pD or p € pD.

If g € D is a prime element, then g € pD for every p € P such that v, (D) > 0. But if ¢ € pD, then
qD = pD, since ¢ is an atom and ¢D is a maximal principal ideal. Hence there is a unique p € P such
that ¢D = pD.

2. Obvious by 1.

3. Clearly, min{v,(z) | x € X} € Ny for all p € P, and min{v,(z) | z € X} = 0 for almost all
p € P. Hence d € D*. If b € D°®, then X C bD holds if and only if v,(b) < vy(x) for all z € X and
p € P. Therefore we obtain d € GCD(X).

Let now b € X be arbitrary. Then v,(d) < v,(b), and the set Py = {p € P | v,(b) # 0} is finite.
For every p € Py there is some x, € X such that vy(z,) = vp(dp). If E = {b} U{z, | p € Fo}, then
d € GCD(E).

4. If D is factorial, then D is atomic by Theorem 1.5.5, and D is a GCD-monoid by 3. If D is an

atomic GCD-monoid, then every atom is a prime element and therefore D is factorial, again by Theorem
1.5.5. O






CHAPTER 2

The formalism of module and ideal systems

2.1. Weak module and ideal systems

Definition 2.1.1. Let K be a monoid.

1. A weak module system on K is a map r: P(K) — P(K), X — X, such that, for all ¢ € K and
X, Y € P(K) the following conditions are fulfilled :

M1. XU{0}C X,.
M2. If X CY,, then X, CY,.
M3. X, C (cX),.

2. A module system on K is a weak module system r on K such that equality holds in M3 for
all c€ K and X € P(K).

3. Let r be a weak module system on K. A subset J C K is called an r-module if J = X, for
some subset X C K (then X U {0} C J by M1). An r-module J C K is called r-finitely
generated if J = E, for some finite subset £ C K.

We denote by

e M, (K) the set of all --modules in K, and by
e M, ¢(K) the set of all r-finitely generated r-modules in K.

A submonoid D C K is called an 7r-monoid if it is an r-module.

4. For two r-modules Jy, Jo C K, we define their r-product by Jy + Jo = (J1J2),, and we call -,
the r-multiplication.

Theorem 2.1.2. Let K be a monoid, r be a weak module system on K and X,Y C K.
1. (X;), = X,.. In particular, X is an r-module if and only if X = X,.
2. If X CY, then X, CY,. In particular,

X.= () J

JeEM,(K)
JDX

is the smallest r-module containing X .
3. X, = (X u{0}),, 0, =A{0},, and if r is a module system, then 0, = {0}, = {0}.
4. The intersection of any family of r-modules is again an r-module.
5. For every family (Xx)aea inP(K) we have

U < (Ux) = (U -

AEA AEA AEA

23
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6. (XY), = (X,Y), =(XY,)r = (X, Y.),. If TC K and 1 €T, then the following assertions are
equivalent :
() X,=TX, (b X, =(TX),. () X,=TX,.
In particular, if TX = X, then T.X, = X,.
7. Equipped with the r-multiplication, M,.(K) is a monoid with unit element {1},, zero element (.,
and M, ¢(K) C M,(K) is a submonoid.
8. For every family (Xi)aca in P(K) we have the distributive law

(Uxy) =(Ux) »v= (U .
AEA AEA AEA

9. (X:Y), C (X,:Y) = (X,:Y,) = (X,:Y),. In particular, if X is an r-module, then (X :Y) is
also an r-module.
Proor. 1. M1 implies X, C (X,),, and since X, C X,., we obtain (X,), C X, by M2. Hence
(X'r')r - Xr~
If X = X,., then X is an r-module by definition. Conversely, if X is an r-module, then X = Z,. for
some subset Z C K, and then X, = (Z,), = Z, = X.

2. If X CY, then X C Y, and therefore X, C Y,., again by M1 and M2.
If Je M. (K) and X C J, then X,. C J,. = J, and therefore

x.c () J.
JeM,.(K)
IoX
Since X, = (X, ), € M, (K), the reverse inclusion is obvious.

3. By M1 we have X U {0} C X,, hence (X U{0}), C X, by M2, and since X, C (X U {0}), by
2., equality follows. If r is a module system, then {0} = 0{1}, = {0},.

4. Let (Jx)aea be a family of r-modules, and
X = ﬂ Jy .
AEA
Then {Jy| A€ A} C{JeM,(K)|J DX} and therefore

X, = ﬂ J C ﬂ Jy =X C X, which implies equality.

JeM,.(K) AEA
JDX

5. For each o € A we have

X, C U X\ C (U X,\)r, hence (X,), C (U X>\>T

AEA AEA AeA AEA AEA
Now it follows by M2 that

(Uoor) e (Ux),

AEA AEA AEA AEA AEA " AEA
6. Using M3, we obtain
XY, = Jav, c |J@Y),c(XY), and XV, = ] X,yc |J Xy c(XY,),.
zeX zeX YyeY, yeY,

Hence it follows, using M2, that (X,Y;), C (XY,), C (XY), C X,Y, C (X,Y;),, an thus equality
holds throughout.
(a) = (b) From TX C TX, = X, we obtain (TX), C X, C (TX),, and thus X, = (TX),..

and U (X)), C (U X,\) .

T

, and | JXac (X)), implies (U XA) c (U(XA)T) .

T
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(b) = (c) From X, C T, X, C (I,X,), = (TX), = X, we obtain X, = T} X,.

(¢) = (a) From X, C TX, C T,X, = X, we obtain X, = T'X,.
If TX =X, then (TX), = X, and therefore T,. X, = X,..

7. Obviously, -, is commutative, and for every subset X C K we have (1X), = X,. and (0X), = 0.
If Ji, Ja, J3 € M.(K), then (Jy -« J2) J3 = ((J1J2)rd3)r = (J1J2J3)r = (J1(J2d3))r = J1 o (J2 = J3)).
Hence -, is associative, and M,.(K) is a monoid with unit element {1}, and zero element §,.

If Jy, Jo € M, ¢(K), then there exist finite subsets Ey, Fy C K such that J; = (Ey), and Jz = (Es),.
Hence it follows that Jy «» Jo = ((E1)r(E2)r)r = (E1E2), € M,¢(K).

8. If (X)xea is a family in P(K), then 5. implies that
(Uxy) =((Ux)r) =(Ux) v =(Uxw,)
AEA AEA AEA AEA

9. Since (X,:Y)Y C (X,:Y),Y C (X,:Y),Y, C (X,:Y)Y), C (X;), = X,, it follows that
(X,:Y), C(X;:Y) C(X,:Y), C (X,:Y,) C (X,:Y) and therefore (X,:Y) = (X,:Y,) = (X,:Y),.
Since (X:Y) C (X,:Y) = (X,:Y), it follows that (X:Y), C (X,.:Y).

If X is an r-module, then (X:Y), = (X,:Y), = (X,:Y) = (X:Y), and therefore (X:Y) is also an
r-module. g

= (U (X\)r r Yr)r-

" AEA

Remarks and Definition 2.1.3. Let K be a monoid and D C K a submonoid.
1. A (weak) module system r: P(K) — P(K) is called a
o (weak) D-module system if DJ C J (and thus DJ =J) for every J € M, (K).
o (weak) ideal system of D if it is a (weak) D-module system and D, = D.
In this case, we say more precisely that r is a (weak) ideal system of D defined on K.

Whenever it does not matter on which overmonoid of D the ideal system r is defined, we
say that r is an ideal system of D.
If r is a (weak) ideal system of D defined on K, then r|P(D): P(D) — P(D) is also a (weak)
ideal system of D.

2. Let r: P(K) — P(K) be a weak ideal system of D. An r-modules J € M,.(K) is called an
r-ideal of D if J C D. If J is an r-ideal of D, then 0 € J and DJ = J, and thus J is a
(semigroup) ideal of D. We denote by

o 7,(D)={J e M, (K)|J C D} the set of all r-ideals of D and by
o Z,¢(D) =7, (D) N M,¢(K) the set of all r-finitely generated r-ideals of D.
By definition, Z, ¢(D) C Z,.(D) C M,(K) are submonoids.

3. Let again r: P(K) — P(K) be a weak ideal system of D, and assume that K = q(D). Then an
r-module J € M, (K) is called a fractional r-ideal of D if J is D-fractional. If J is a fractional
r-ideal of D, then 0 € J and DJ = J, and thus J is a fractional (semigroup) ideal of D. We
denote by

o F.(D)={Je M,(K)|Jis D-fractional } the set of all fractional r-ideals of D,
and we assert that M,.¢(K) C F,.(D) [Proof: If J € M, ¢(K), then J = E, for some E € P¢(K).
Hence there exists some a € D* such that aE C D, and therefore aJ = aF, C (aE), C D, = D].
Consequently, we denote by

o F.¢(D)=M,¢(K) the set of all r-finitely generated fractional r-ideals of D.
By definition, F,¢(D) = M,¢(K) C F.(D) C M, (K), and M, ¢(K) C M,(K) is a submonoid.
We assert that also F,.(D) C M,.(K) is a submonoid. [Proof: If Jy, Jo € F.(D), then Jy.Jo
is D-fractional by Theorem 1.4.2.3. Hence there exists some ¢ € D* such that c¢J1Jo C D, and
then C(J1J2)r C (CJ1J2)r C D, = D implies that J; .. Jy = (J1J2)r S fr(D)]
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Consequently, Z,.(D) C (D) and Z,¢(D) C F¢(D) are also submonoids.

Theorem 2.1.4. Let K be a monoid and D C K a submonoid. Assume that K = q(D), and let
r: P(K) — P(K) be an ideal system of D. Then

Fo(D)={a'1|I1€T.(D), ac D*}={J €P(K)|aJ € Z.(D) for some a€ D*}
and
Fri(D)={a"'I|I€Z,¢(D), ac D*}={J € P(K) | aJ € Z,¢(D) for some a € D*}
ProOOF. We show that
FoD)c{a'I|I€T.(D), ac D*}c{JeP(K)|aJ €I, (D) forsome ac D*}C F.(D).

If J € F.(D), then there exists some a € D* such that [ = aJ C D, and I, = aJ, = aJ = I. Hence
Ie€Z,(D)and J=a'I. f I € Z,(D) and a € D*, then J =a ' I C K and [ =aJ. If J C K, a € D*
and I = aJ € (D), then J is D-fractional, and J, = (a= 1), = a1, = a='I = J, hence J € F,.(D).
In all arguments above, J is r-finitely generated if and only if I is r-finitely generated, and thus also
the second set of equalities holds. O

Examples 2.1.5 (Some (weak) ideal systems).

1. Trivial systems. Let K be a monoid. There are two trivial weak ideal systems y, y; on K,
defined as follows.

y1: P(K) — P(K), defined by X,, = K for all subsets X C K.
y: P(K) — P(K), defined by X, = {0} if X C {0}, and X, = K if X ¢ {0}.
It is easily checked that y and y; are weak ideal systems of K.

Let K be divisible. Then K and {0} are the only semigroup ideals of K. Hence y and y; are the only
weak ideal systems of K, and y is even an ideal system of K.

2. The semigroup system. Let K be a monoid and D C K a submonoid. The semigroup system
of D defined on K is the system s(D): P(K) — P(K), defined by

Oupy =10}, and X,py=DX= ) Da it X#0.
a€X
It is plain that s(D) is an ideal system of D, and Mypy(K) ={J C K |0 € J and DJ = J}. In
particular, Z,py(D) is the set of all semigroup ideals of D. If ¢ € K, then {c}4p) = c¢D, the union of
any family of s(D)-modules is again an s(D)-module, and if .J1, Jo € M(p)(K), then Jy+5(p)J2 = J1Jo.
If K = q(D), then Fy(p)(D) is the set of all fractional (semigroup) ideals of D, and

Fspyf(D)={ciDU...Ucypy,D |meEN, ¢1,...,c, € K }.

If K is divisible, then s(K) is the only ideal system of K. In fact, it coincides with the trivial system
y considered in Example 1.

3. The Dedekind system. Let K be a ring and D C K a subring. The Dedekind system of D
defined on K is the system d(D): P(K) — P(K), defined by
Xapy={a1w1+...+ a2y [n €N, z1,..., 2, € X, a1,...,0, € K} = g(X) forall X eP(K),

[ Xa(p) is the D-submodule of K generated by X|.

It is plain that d(D) is an ideal system of D, and Mgy p)(K) is the set of all D-submodules of K. A
D-module J € Myp)y(K) is d(D)-finitely generated if and only if it is a finitely generated D-module.



2.1. WEAK MODULE AND IDEAL SYSTEMS 27

Zypy(D) is the set of all ideals of D, and if ¢ € K, then {c}qp) = {c}sp) = c¢D. For every family

(Ja)rea in Mypy(K), we have
U JA - Z J)\.
()\EA )d(K) Nea

If Ji, J2 € Ty (K), then Jy -4k Jo is the additive abelian group generated by J1.Jo.
If K is a field, then d(K) = s(K) is the only ideal system of K.

4. The system of homogenous ideals. Let K be a graded ring with homogeneous components
(Ki)i>0, that means,
K= @Ki as an additive abelian group, and K;K; C K;;; foralli, j > 0.
i>0
An element x € K is called homogenous of degree i > 0 if x € K;. Every x € K has a unique
representation
T = in, where x; € K; and x; =0 for almost all 7 > 0.
i>0
In this representation we call z; the i-th homogenous component of z. For every subset X C K let X"
be the set of all homogeneous components of elements of X. An ideal J C K is called homogenous if
Jh C J, equivalently
J=Y JNK,.

i>0
Then X, = (X h)d( &) is the smallest homogeneous ideal containing X, and
h:P(K)—->P(K), Xw— X, isa weak ideal system of K.

6. The system of filters. Let (K, <,0,1) be a lattice. That means, (K, <) is a partially ordered
set, 0 = max(K), 1= min(K), and any two elements a, b € K possess a supremum ab = a V b and an
infimum a A b. Then K is a monoid with unit 1 and zero 0.

If M is a set, then (K,<,0,1) = (P(M),C, M,0) is a lattice (the subset lattice of M ).
Let (K,<,0,1) be a lattice. A non-empty subset F' C K is called a filter if for all a, b € K the following
assertions hold:

e Ifa<banda€ F,thenbe F.

e Ifa,be F, thenab € F.

For a subset X C K, let X; be the smallest filter containing X. Then 0y = {0}, and if X # ), then

Xp= ﬂ F = {x € K| there exist z1,...,z, € X such that t > x1-... - z,}.

XCF
F is a filter

The map f:P(X)— P(X), X — X, is a weak ideal system on K, and for every ¢ € K it follows
that {c}y ={x € K|z > c} = cK. [All this is easily checked, observing that, for all z, y € K, 2 <y
holds if and only if zy = y].

Theorem 2.1.6. Let K be a monoid, D C K a submonoid and r a weak module system on K.
1. D, is an r-monoid. In particular, {1}, is the smallest r-monoid in K, and if D C {1},, then
{1}r =D,.
2. Let v be a weak D-module system. Then r is a weak D.-module system, {1}, = D,, and if
X C K, then X, = DX, = D, X, = (DX), and D, C (X,: X).
3. 1 is a weak D-module system if and only if D C {1},.. In particular:

(a) r is a weak {1}.-module system.
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(b) If ris a D-module system, then {c}, = ¢D,. for allc € K.
(c) If r is an ideal system of D, then {c}, =¢D forallce K.
4. If r is a weak ideal system of D and I, J € Z,(D), then I-.JCINJ.
PrOOF. 1. By Theorem 2.1.2.6, DD = D implies D, D, = D,.. Hence D, C K is a submonoid and

thus an r-monoid. In particular, {1}, = {0, 1}, is an r-monoid, and it is the smallest r-monoid in K.
If D c {1},, then D, C {1}, C D,, and therefore {1}, = D,..

2. If X C K, then X,, = DX, by definition, and therefore X,, = D, X,. = (DX),. by Theorem 2.1.2.6.
In particular, D, C D.{1}, = {1}, and therefore D, = {1},. If J € M.(K), then J = J,. and J = DJ
implies J = D,.J, and therefore r is a weak D,-module system.
If X C K, then (X,:X)isanr-module and 1 € (X,: X). Hence it follows that D, = {1}, C (X,: X).
3. If r is a weak D-module system, then {1}, = D{1},, D D. Conversely, if D C {1}, and J € M,.(K),
then J C DJ =C {1},J C J, = J, and thus r is a weak D-module system.
) Since r is obviously a {0, 1}-module system and {0,1},, = {1}, it is also an {1},-module system.

(a
(b), (¢) If r is a D-module system, then {c}, = c¢{1}, = ¢D,, and if r is an ideal system of D, then

D, =D.
4. Let r be a weak ideal system of D and I, J € Z,(D). Then I NJ € Z,(D), and since I and J are
semigroup ideals, it follows that IJ C I NJ, and consequently [ -.J = (IJ). CINJ. O

2.2. Finitary and noetherian (weak) module systems

Theorem und Definition 2.2.1. Let K be a monoid and r a weak module system on K.
1. The following assertions are equivalent:
(a) For every subset X C K, we have
X, = J E.
EelPs(X)
(b) For all X C K and a € X, there exists a finite subset E C X such that a € E,..
(¢) For every directed family (Xx)xea i P(K) we have

(Ux) = U

AEA AEA

(d) The union of every directed family of r-modules is again an r-module.
(e) If X CK, JeM,¢(K) and J C X,, then there exists some E € Pe(X) such that J C E,.
If r satisfies these equivalent conditions, then r is called finitary.
2. If r s finitary, X C K and X, € M, ¢(K), then there exists some E € P¢(X) such that E, = X,.
3. If r and q are finitary weak module systems on K, then r = q if and only if E, = E; for all
E cP(X).
ProOOF. 1. (a) = (b) Obvious.
(b) = (¢) If

X=JXx, then X,> [J(X)..
AEA AEA
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To prove the converse, let € X,. and £ C X finite such that z € E,.. Since (X))aea is directed, there
exists some « € A such that £ C X,,, hence E, C (X,),, and consequently

zeE. C [ J(Xn),
AEA

(¢) = (d) Let (Xx)xea be a directed family of r-modules. Then

(U XA)T: U(Xx)r: UXA~

AEA AEA AEA
(d) = (a) Obviously,
U Ecx.
E€Pi(X)
For E, F € P¢(X), we have E, U F. C (EUF),. Hence (E,)gcp,(x) is directed, and we obtain

x=(U #e(U #)- U s

EePi(X) EePi(X) EePi(X)

(b) = (e) Suppose that X C K and J = F,. C X,., where F € P¢(K). For every ¢ € F, there is
some E(c) € P¢(X) such that ¢ € E(c),. Then

E=|JE()eP(X), Fc|JE(),CE, andthus J=F,CE,.
ceE ceEE

() = (b) If X C K and a € X,, then {a}, € M,¢(K) and {a}, C X,. Hence there exists a
finite subset E C X such that a € {a}, C E,.

2. If ris finitary, X C K and X, € M, ¢(K), then we apply 1.(e) with J = X, € M,s to obtain
X, C E, for some FE € P¢(X), and thus X, = E,.

3. By 1.(a), two finitary weak module systems coincide if and only if they coincide on finite sets. [

Theorem und Definition 2.2.2. Let K be a monoid and D C K a submonoid.
1. Let r:P¢(K) — P(K) be a map such that, for all ¢ € K and E, F € P¢(K) the following

conditions are fulfilled :

Mi;. EU{O}CET.

M2¢. If ECF,, then E.C F,.

M3¢. cE,. C (cE),.
Then there exists a unique finitary weak module system T on K satisfying 7|Pe(K) = r. It is
given by

Xe = |J E- forall XCK.
EePi(X)

T is a weak D-module system if and only if ¢D C {c}, for all c € K, and it is a module system
if and only if (cE), =cE, forallce K and E € P¢(K).

7 is called that total system defined by r and is usually again denoted by 7.

2. Let r be a weak module system on K. Then there exists a unique finitary weak module system rs
on K such that B, = E,, for all finite subsets of K. It is given by

X, = U E,. foradl XCK,
EePi(X)

and it has the following properties:
(a) X,, C X, forall X e P(K), M,(K)C M, (K), and M, (K)= M, ¢(K).

)
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(b) (re)f = 71¢, and r is finitary if and only if r = ry.
(¢) If r is a module system, then r¢ is a module system, too.

(d) 7¢ is a weak D-module system [a weak ideal system of D] if and only if r is a weak
D-module system [ a weak ideal system of D].

r¢ is called the finitary system associated with r.
PROOF. 1. Let 7: P(K) — P(K) be defined by

X = U E, forall XcCK.
EecP¢(X)

We prove that 7 satisfies the properties M1, M2, M3 for all c € K and X, Y C K. Once this is done,
it is obvious that Fr = F, for all E € P¢(X). Hence 7 |P¢(K) = r, and T is finitary.
M1. Since EU {0} C E, for all E € P¢(X), we obtain X U {0} C Xr.
M2. Suppose that X C Yz, and let € X,.. There exists some E € P¢(X) such that z € E,., and
EcY: = |J F.
FEP(Y)

For every e € E, there exists some F(e) € IP’f(Y) such that e € F(e)r, and we obtain
F=|JF()eP(Y), and EcC |]F(e) CF.,

ecE ecE
hence E,. C F,. C Y7 and x € Y+
M3. Note that P¢(cX) = {cE | E € P¢(X)}. Hence it follows that

cXr = U cE, C U = U F. = (cX)r,

EcP(X) EcPy( X) FeP¢(cX)
and ¢X7 = (¢X)7 holds if and only if cE, = (cE), for all E € P¢(X). Consequently, 7 is a module
system if and only if cE, = (cE), for all E € P¢(X). By Theorem 2.1.6.3 it follows that 7 is a weak
D-module system if and only if ¢D C {c}, for all ¢ € K.

It remains to prove the uniqueness of 7. If 7 is any finitary weak module system on K satisfying
7|Pe(K) =r, then

Xz = U FEr = U E,.=X7 forall X C K, and therefore 7=T7.
EePs(X) EePs(X)

2. By 1., applied with 7 |P¢(X), there exists a unique weak module system ¢ on K such that
E,. =E, for all E € P¢(X), and if X C K, then X,, is given as asserted.

(a) If X € P(K), then E,. C X, for all E € P¢(X), and therefore X,, C X,. If X € M, (K), then
X, C X, = X and therefore X = X,, € M, (K). Since E, = E,, for all E € P¢(K), it follows that
My f(K) = Mg (K).

(b) By the uniqueness of 7 it follows that r¢ = r if and only if 7 is finitary, and since ¢ is finitary,
we obtain (r¢)f = 7¢.

(c) If r is a module system, then (cE), = cE, for all ¢ € K and E € P¢(K), and then rf is a module
system by 1

(d) Since {1}, = {1},,, Theorem 2.1.6.3 implies that 7¢ is a weak D-module system if and only if
r is a weak D-module system. In this case, D, = {1}, = {1}, = D,,, and therefore r¢ is a weak ideal
system of D if and only if r is a weak ideal system of D. O
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Remark 2.2.3.

1. Let K be a monoid, D C K a submonoid and s(D) the semigroup system of D defined on K
(see Example 2.1.5.2). If } # X C K, then

Xypy=DX=|)Dac |J DE= |J E.p cDX,
a€X E€P:(X) EcP:(X)

and therefore s(D) is finitary.

2. Let K be a ring, D C K a subring and d(D) the Dedekind system of D defined on K (see
Example 2.1.5.3). Since every D-module is the union of its finitely generated submodules, the
system d(D) is finitary.

Example 2.2.4. Let K be a topological monoid ( that is, a monoid equipped with a topology such
that the multiplication KxK — K, (z,y)+— xy, is continuous). Let ¢: P(K) — P(K) be defined by

B {0y if X =0,
XC_XS(K)_{XK if X £0.

Then X, is the smallest closed semigroup ideal of K containing X. If § # X C K and 2 € K, then
zXK C zXK C XK, and therefore ¢ is a weak ideal system on K. If z € K is such that the map
7.: K — K, defined by 7,(x) = zz, is closed, then (2X). = 2zX, for all X € P(K). In particular, if 7, is
a closed map for all z € K, then c is an ideal system of K. In particular, this holds if K is compact. In
general however, ¢ is not finitary.

We consider the additive monoid Rxq. For every z € R, the map x — z + z is closed, and thus ¢
is an ideal system on R>q. If v € Ry and X = (y,00), then X. = [y,00), but for every finite subset
E C (v, 00), it follows that E. = [min(E), o) C (y,00). Hence X, = X, ¢ # ¢, and c is not finitary.

Theorem und Definition 2.2.5. Let K be a monoid, D C K a submonoid and r: P(K) — P(K)
a weak ideal system of D defined on K.

1. The following conditions are equivalent:

(a) Z.(D) satisfies the ACC:
o For every sequence (Jy)n>0 i Z.(D) satisfying J, C Jnp+1 for all n > 0, there exists
some m > 0 such that J, = J, for alln > m.

e FEvery non-empty set of r-ideals has a maximal element.
(b) For every subset X C D, there exists some E € P¢(X) such that X C E, (and then
X,=E.).
(c) r|P(D) is finitary, and I, (D) = Z,¢(D).
If these conditions are fulfilled, then r is called a noetherian weak ideal system, and D is called
r-noetherian.
2. D is r-noetherian if and only if D is r¢-noetherian.
3. If K =q(D) and D is r-noetherian, then F,.(D) = F,¢(D) (that is, every fractional r-ideal is
r-finitely generated).

PrOOF. 1. (a) = (b) Let X C D and Q = {F, | F € P¢(X)}. By assumption, there exists some
E € P¢(X) such that E, is maximal in €2, and we assert that E, = X,.. Indeed, if £, C X, then X ¢ E,,

=

and if c € X \ E,, then E,. C (E U {c}),, which contradicts the maximality of E,.
Clearly, if F € P¢(X), then X C E, if and only if X, = E,..
(b) = (c¢) By (b), every r-ideal is r-finitely generated. Hence Z,(D) = Z, ¢(D), and r is finitary.
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(¢) = (a) Let (Jn)n>0 be an ascending sequence in Z,.(D). Then

J=J

n>0
is an r-ideal (since r | P(D) is finitary), and there exists some E € P¢(J) such that J = E,.. There is some
m € N such that F C J,,, and then it follows that J, = J,, for all n > m
2. If D is r¢-noetherian, then D is r-noetherian, since Z,.(D) C Z,,(D) by Theorem 2.2.2.2 (a). If D
is r-noetherian, then r |P(D) = r¢ |P(D) by 1.(c), and thus D is r¢-noetherian
3. Since Z,.(D) = Z,¢(D), Theorem 2.1.4 implies
Fo(D)y={a"'I|T1€Z.(D), ac D*}y={a"'T|I€Z.¢(D), ac D*} = F¢«D). O

2.3. Comparison and mappings of module systems

Definition 2.3.1. Let K be a monoid, and let » and ¢ be weak module systems on K. We call ¢
finer than r and r coarser than ¢ and write r < ¢ if X, C X, for all subsets X C K

a
< is a partial order on the set of all weak module systems on K

and the following assertions are equivalent

(a) r<gq.
(b

Theorem 2.3.2. Let K be a monoid, and let r and q be weak module systems on K. Then r¢ <r

) Xq=(Xy)q for all subsets X C K.
() Mq( ) C M (K).

If r is finitary, then there are also equivalent

(d) E, C E4 for all finite subsets E C K.

(e) My (K)C M, (K).

(f) Mge(K) C M. (K).

(8) r <.

PROOF. It follows by Theorem 2.2.2 that r¢ <r

(a) = (b) If X C K, then X, C X, by assumption, hence (X, ), C X,, and since X C X,, it follows
that X, C (X,),.
(b) = (¢) If J € My(K), then J, C (J;)q = J; = J C Jp, and therefore J = J, € M,(
(c) = (a) If X C K, then X, € My (K) C M,(K), and therefore X, = (X,), D X,.
Assume now that r is finitary.
(a) = (d) Obvious.
(d) = (e) If J € My (K), then
J=Jy =

K).

U B> |J E-=J.>J impliesthat J=J, € M. (K)
Ee€P¢(J) EePs(J)
() (f) Mge(K) = Mg ¢(K) C Mg (K) C My (K).

(f) = (g) If E € P(K), then E;, € My ¢(K) C M,(
quently, if X C K, then

X, = U E,. C

EePs(X)
(8) = (a) r<a <gq

K), and therefore E, = (E;), D E,. Conse-

U E, = X4, and therefore r <.
EePs(X)
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Theorem 2.3.3. Let K be a monoid and D C K a submonoid.
1. Let r: P(K) — P(K) be a weak module system on K. Then r is a D-module system if and only
if s(D)<r.
2. Letr and q be ideal systems of D such thatr < q. If D is r-noetherian, then D is g-noetherian.
PROOF. 1. By definition, r is a D-module system if and only if M, (K) C Myp)(K), and by
Theorem 2.3.2 this is equivalent to s(D) < 7.
2. If r < g, then Z,(D) C Z,(D). O

Definition 2.3.4. Let ¢: K — L be a monoid homomorphism, r a weak module system on K and
q a weak module system on L.
1. Let ¢*q: P(K) — P(K) be defined by X, = ¢ 1(p(X)q). ¢*qis called the pullback of ¢
under .

2. ¢ is called an (r,q)-homomorphism if ¢(X,) C p(X), for all subsets X C K. We denote by
Hom, 4y (K, L) the set of all (r, g)-homomorphisms ¢: K — L.

Remarks 2.3.5. Let ¢: K — L and ¥: L — M be monoid homomorphisms, r a weak module
system on K, ¢ a weak module system on L and y a weak module system on M.

1. Let r be finitary. Then ¢ is an (r,¢)-homomorphism if and only if ¢(FE,.) C ¢(F), for all
E e Pf(K)

2. (Yop)'y =" ("y).

3. If ¢ is an (r, ¢)-homomorphism and v is a (g, y)-homomorphism, then oy is an (r,y)-homo-
morphism.

In particular, monoids together with weak module systems form a category.

Theorem 2.3.6. Let ¢: K — L a monoid homomorphism, r a weak module system on K and q a
weak module system on L.

1. ¢*q is a weak module system on K, Myq(K) = {p *(J) | J € My(L)}, and if q is finitary,
then ©*q is also finitary.
If B C L is a submonoid and q is a weak B-module system, then ©*q is a weak o~ (B)-module
system.
2. ¢ is an (r,q)-homomorphism if and only if r < p*q [that is, if and only if = 1(J) € M,.(K)
forall J e My(L)].
PRrOOF. 1. We check the properties M1, M2 and M3 for ¢p*q. Let X, Y C K and c € K.
MI1. Xgvq =9 ' (0(X)g) D¢~ Hp(X)U{0}) D X U{0}.
M2. If X C Yyq = ¢ H(p(Y)y), then p(X) C (¢(Y), hence o(X), C (p(Y)q, and therefore
Keprg = W_l(QD(X)q) C <P_1(<P(Y)q) = Yorq-
M3. @(cX,eg) = o(e)p(Xpq) C pla)p(X)g C lp(c)p(X)]lq = ¢(cX)q. Hence it follows that
cXprg C o Hp(eX)g) = (€X)prg-
Let g be finitary and X C K. Then P¢(X) = {o(E) | E € P¢(X)} and therefore
Xopeq = ‘P_l(@(X)q) = <P_1< U ‘P(E)q) = ( U ‘P_l(@(E)q)) = U Epeq.
E€P(X) EePi(X) E€Pi(X)

Hence p*q is finitary.
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Let B C L be a submonoid such that g is a weak B-module homomorphism. If X C K, then
0 HU(B) X g =0 HB)o Hp(X)g) C o H(Bp(X)y) = ¢ Hp(X)y) = Xp+q, and therefore p*q is a weak
©~}(B)-module system.

It remains to prove that My«(K) = {0 1(J) | J € My(L)}. If I € My-y(K), then o(I), € My(L),
and I = I,+q = ¢ ' (¢(I),). Conversely, if J € My(L), then

e (Dpra =" (@ ())g) ST Jg) =07 () C o (T )grg-

Hence equality holds, and p=(J) € My« (K).

2. If X C K, then ¢(X,) C ¢(X), holds if and only if X, C p~*(¢(X),) = X,+q. Consequently,
© is an (r, ¢)-homomorphism if and only if r < p*q. a

Theorem und Definition 2.3.7. Let ¢: K — K’ be a surjective monoid homomorphism, D C K
a submonoid, D' = (D), and G C D* a subgroup such that e 1(e(z)) = xG for all zx € K. If
m: K — K/G denotes the natural epimorphism, defined by w(a) = aG, then € factorizes in the form

e: K 5 K/G 5 K' and induces an isomorphism D/G = D’.
For a weak D-module system r on K we define
e(r): P(K') = P(K') by X[,y =ele "(X'),] forall X' CK'.

r) is a weak D'-module system on K'. If X C K, then (X)) = e(X,), and €*e(r) = .
r) is a module system if and only if r is an module system, and e(r)f = (rf).

1. ¢
€

(
(
e(r) is called the weak D'-module system induced by r. In particular, if K’ = K/G and ¢ =,
then m(r) is called the reduction of r modulo G.

2. The assignment r — &(r) defines a bijective map from the set of all weak D-module systems on
K onto the set of all weak D'-module systems on K'. If v’ is a weak D’'-module system on K’',
then e*r’ is a weak D-module system on K, and r' = e(e*r’).

3. If r is a weak D-module system on K, then the maps
M (K) = Mony(K'), J—e(J) and M. (K') = M (K), J e '(J)

are inclusion-preserving, bijective and inverse to each other. In particular, if v is a weak ideal
system of D, then D is r-noetherian if and only if D’ is e(r)-noetherian.

PROOF. By definition, ¢ factors as asserted and induces isomorphisms K/G — K’ and D/G — D’.
For every subset X C K, we have e 1(¢(X)) = XG, and X, = GX, = (GX), [indeed, since 7 is a
D-module system, we have X, C GX, C (GX), C (DX), = X,].

1. If X C K, then e(X).() =e([e7(e(X)],) = [(XG), ] = £(X,). We prove that &(r) satisfies the
properties M1, M2, M3 for all ¢ € K’ and X', Y’ C K’. We may assume that ¢’ = e(c), X' =¢(X)
and Y =¢(Y), wherec € K and X, Y C K.

Mi1. X[, =e(X)em =e(Xr) De(X U{0}) = X" U{0}.

M2. If X' C Y, then e(X) C &(Y;), hence X C Y.G =Y,, X, CY,, and therefore we obtain
Xy =eX)r ce(Y)r =Y/,

M3. Since ¢/ X’ = £(cX), we obtain (¢'X).() = €[(cX),] D e(cX;) = e(c)e(X;) = ¢ X[, and
equality holds if and only if (cX),G = c¢X,G, that is, if and only if (cX), = cX,.

Hence £(r) is a weak module system, it is a module system if and only if r is a module system, and
it is a D’-module system since D’X;(r) =e(D)e(X,) =e(DX,) =e(X,) = X;(T).

If X' =¢(X)C K', then P¢(X') = {e(F) | E € P¢(X)}, and therefore

/ _ / _ _ _ _ /
X&('r)f - U Ea(r) - U g(ET) - 5( U ET) - E(X’Ff) — e(re)
E'ePe(X") EcPi(X) EcPi(X)
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Hence e(r)s = e(rf). If X C K, then X, ;) = g1 [e(X)er)] = e~ 1e(X,)] = X,.G = X,, and therefore
e*e(r) =r.

2. Since e*e(r) = r for every weak D-module system r on K, the assignment r +— ¢(r) defines an
injective map from the set of all weak D-module systems on K onto the set of all weak D’-module systems
on K'.

Let now 7’ be a weak D’-module system on K’. Since D = ¢~!(D’), Theorem 2.3.6 implies that *r’
is a weak D-module system on K, and it suffices to prove that v’ = e(e*r’). If X’ = ¢(X) C K’, then

Xierry = €(Xewr) = [e7H (e(X)m) ] = e e (X)) ] = X, .

3. Let r be a weak D-module system on K. If J € M, (K), then &(J). ) = e(J ) = &(J), hence
e(J) € My (K'), and e (e(J)) = JG = J. If J' € M.y (K'), then J' = Sy =€le” YJ"), ], and
therefore e~ 1(J') =& 1(J),.G = e~ 1(J'),. Hence e 1(J') € M, (K), and J' = 5( _1(J’)) O

2.4. Quotient monoids and module systems

Theorem 2.4.1. Let K be a monoid, D C K a submonoid and T C D a multiplicatively closed
subset. Let jp: K — T~ 'K be the natural embedding and r o finitary weak D-module system on K.

1. There erists a unique finitary weak T~ 'D-module system T 'r on T 'K such that
Jjr(E)p-1, =T E,  for all finite subsets E C K.
On finite subsets of T~ 'K is given by

a a
{—1,...7—7”} =T Yay,...,am}r forallmeN, ay,....,am € K and ty,... ,ty, €T.
t1 tm ) T-1r

If r is a weak ideal system of D, then T 'r is a weak ideal system of T—'D, and if r is a
module system, then T~ 'r is a module system, too.

2. If X C K, then T~'X, = (T~ X)p-1, = jp(X)p-1,.

3. If Ve Mp 1 (T7'K), then J = j (V) € M.(K), and V =T~'J.

4. The map

jr: Me(K) — My (TTUK),  defined by jp(J) =T"1J,
is an inclusion-preserving monoid epimorphism satisfying j5(M,¢(K)) = Mp-1,¢(T"'K) and
71(J1 N JQ) = T71J1 n T71J2 fOT‘ all J1, Jo € MT(K)

5. Let r be a weak ideal system of D. If V € Ip-1,(T7'D), then J = j" (V)N D € Z,.(D), and
V =T7'J. In particular, j5(Z.(D)) =Zr-1,.(T7'D), j5(Zy (D)) = Ir-1,¢(T"'D), and if D
is r-noetherian, then T~'D is T~ lr-noetherian.

PrOOF. 1. We prove first :
A. T YHay,...,an}, =T Ht1a1,. .., tmam}r (for m €N, ay,...,a, € K and t1,...,t,, €T).

Proof of A. By Theorem 2.1.6.2, {tia1,...,tmam}r C (D{a1,...,am})r = {a1,...,am},, which

implies T~ {t1a1,...,tmam}r C T {ay,...,an},. To prove the reverse inclusion, let ¢ € {ay, ..., am}r
and t € T. Since t1-... tmc €ty ... tmiar,...,am}r C (D{t101,...,tmam})r = {t101, ..., t;mQm }r,
we obtain

c t1 ... tme

;:;7‘;%15 eTl™ 1{t1a17...7tmam}7~. D[A.]

Now we define a map T~ 1r: Pe(T-'K) — P(T7'K) by

a a
{i,...,—m} :Tfl{al,...,am}r forall m €Ny, ai,...,ay, € K and tq,...,t,, €T,
t1 tm ) T-1r
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and we must prove that this assignment does not depend on the choice of representatives. We show that,
forallm e N, ay,...,am,,ay,...a,, € K and t1,...,ty, th,...,t,, €T,

. a’
CZ—] = t—lj for all j € [1,m] implies T ai,...,am}r =T Hal,...,al},.
J i

For j € [1,m], let s; € T be such that s;ta; = s;t;a;. Then A implies
T_l{al7 B T_l{stllal, coy Stam = T_l{zst/lal7 ey St am b = T_l{a’17 cean b

We shall prove that T 1r satisfies M1, M2¢, M3¢ and {c}p-1, D ¢TI 1D for all c € T"'K and
E, F € P¢(T7'K), and that equality holds in M3¢ if r is a module system.

Once this is done, Theorem 2.2.2 implies the existence of a finitary weak 7! D-module system on
T~'K, again denoted by T 'r, such that jr(E)p-1, = T7'E, for all E € P¢(K), and that T1r
is a module system if r is a module system. If r is a weak ideal system of D, then {1}, = D, hence
{i},-1, =T Y1}, = T7'D, and therefore T~'r is a weak ideal system of T~'D.

Assume that b b
E:{ﬂ ..,a—m}, F:{—l...,—"} and CZ%,

tl’- tm 817 Sn
where m, n € Ng, a1,...,am, b1,...bp,a € K and t1,...,ty, S1,...,8,, t€T.
M1s. For j € [1,m],
aj

. eTYay,...,am} c T Yay,...,am}r = Er—1, implies E C Ep-1,,
J

and 0 € {ay,...,an}, implies % € Er-,.
M2¢. Suppose that E C Fp-1, = T~Yby,...,b,},, say

% =9 forall j € [1,m], where ¢; € {b1,...,b,}, and v; € T.
J Uj
For j € [1,m], let w; € T be such that wjv;a; = wjt;c;. Then wjvja; € {b1,...,b,},, and therefore

Er, =T Yay,...,am}r = T Hwivia1, ..., WnUmam }r C T b1, ... by} = Fpoa,.
M3:. We have
(cE)p-1, = {%, R %}Tﬂr =T YHaay,...,aam},
ST a{ar,...,am}r =T Har,...,am}r = cEp-1,,
and equality holds if 7 is a module system.
Since r is a weak D-module system, it follows that {c}r-1, =T a}, D T"taD D ¢T1D.

It remains to prove the uniqueness of T~ !r. Thus let 7 be a finitary weak 7' D-module system on
T~ 1K satisfying jr(E)z = T~ !E, for all finite subsets E C K. By Theorem 2.2.1.3 it suffices to prove
that Fy = Fp-1, for every finite subset ' € T7!K. Thus assume that

F = {%,...,j—:}, where meN, ay,...,a, € K and ty,...,t, €T.
If E={ai,...,am}, then (I "'D)F = (T~'D)jr(E), and
Fy = (T7'D)F)z = (T7'D)jr(E))s = jr(E)y = T7'E, = Fr-1,.
2. Observing that P¢(jr(X)) = {jr(E) | E € P¢(X)}, we obtain
'x,=7" |J E.= |J T'E= J itBE)r-n= U Fror=ir(X)r,.
EePi(X) EePi(X) EePi(X) FePr(jr(X))

Since (T7'D)(T7'X) = (T7'D)jr(X) and T~ !'r is a weak T~!D-module system, it follows that
(T X) -1, = (r(X)) 71,
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3. Let V€ Mp1,.(T7'K) and J = j;"(V)). We prove first that V = T~1J.

If £ eV, wherez € K andt € T, then 2 =+ 2 ¢ (T™'D)V =V, hence € J and £ € T1J.
Conversely, if v € J and t € T, then § €V, fET_lDand%:%%eT_lDV:V.

It remains to prove that J € M,.(K), and for this it suffices to show that J. C J. If a € J,., then
1€ TYJ,=(T7'J)p-1, = Vp-1,, = V and therefore a € J.

4. If J € M. (K), then (T J)p-r, =T 'J, =T7'J € Mp-1 (T 'K). If J € M, ¢(K), then
J = E, for some E € P¢(K), and T~'J = jr(E)p-1, € M,¢(T71K). Hence j is an inclusion-preserving
map as asserted, and by 3. it is surjective.

If V€ Mp-1,¢(T7'K), then V = oo = troa, for some m € N, ay,....a, € K and
ti,... tm €T. H E={a1,...,an} C K, then V = jp(E)p-1, € j5(M,¢(K)).

If Ji, Jo € M,.(K), then T~1(Jy N Jo) = T~ Jy NT~ 1]y, since TJ; = J; and T'Jo = Jo. Moreover,
T~y o Jo) = T (o) = (T J2) 1 = (T 1) o) po1y = (T71N) vp1p (T 1), and
therefore j7. is a homomorphism

5. By 1., T~'r is a weak ideal system of T~'D. If V € Zp-1,.(T~'D), then j ' (V) € M,(K) by
3., and consequently J=j7'(V)ND €Z(D). fae Jandt €T, then ¢ =421 ecT 1DV =V,
and therefore T='J C V. To prove the reverse inclusion, assume that 7€V, whereae Dandt €T.
Then it follows that ¢ =+ % €V, hence a € jp(V)ND =J and ¢ € T~'J. f V € Zp—1,¢(T~' D), then
V={¢,.. ..}l forsomemeN, ai,...,am € Dand ty,...,ty, €T. If E={a1,...,an} C D,
then V' = jr(E)r-1, € j7(Zrs(D)).

Clearly, ji(Z,(D)) C Zp-1,.(I"'D)) and j5(Z.¢(D)) C Zpr-1,4(T"'D), and as we have just
proved, equality holds. In particular, if D is r-noetherian, then Z,.(D) = Z,¢(D), hence Zr—(T~'D) =
Ir-+¢(T7'D), and therefore T~'D is T~ 'r-noetherian. O

Theorem 2.4.2.

1. Let K be a monoid, D C K a submonoid, s(D): P(K) — P(K) the semigroup system of D
defined on K and T C D a multiplicatively closed subset. Then

T 's(D)=s(T™'D): T7'K - T7'K
is the semigroup system of T~ 'D defined on T 'K.

2. Let K be a ring, D C K a subring, d(D): P(K) — P(K) the Dedekind system of D defined on
K and T C D a multiplicatively closed subset. Then

T YD) =d(T™'D): T7'K - T7'K
is the Dedekind system of T~ 'D defined on T 'K.

PROOF. 1. We prove that jr(E)sr-1p) = T’lES(D) for all E' € P¢(K). The the assertion follows
from the uniqueness of 7~ 's(D) in Theorem 2.4.1.
If E={ai,...,amn}, where m € N and ay,...,a, € K, then

Jr(E)s(r-1p) = U T 1D U '(Daj) =T"! U Daj =T 'Eyp).
j=1 j=1

2. Asin 1. it suffices to prove that jp(E)yr-1py =T " Eqp) for all E € P¢(K).
If E={ai,...,am}, where m € N and a4, ...,a, € K, then

Jjr(E T-1D) = ZT 1D ZT Daj 71iDaj :TilEs(D). ]
j=1
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2.5. Extension and restriction of module systems

Definition 2.5.1. Let K be a monoid, D C K a submonoid and r a weak module system on K.

Then we define
r[D]: P(K) — P(K) by X,p =(XD), foral X CK,
rpy: P(D) = P(D) by X, =X,ND forall X C D, and weset rp=r[D]p): P(D)—P(D).

By definition, we have X,, = X, jpjND = (XD), N D for all X C D, and if " C K is another
submonoid, then r[D][T] = r[DT].
We call r[D] the extension of r by D and rp the weak ideal system induced by r on D (see
Theorem 2.5.2.4).

Theorem 2.5.2. Let K be a monoid, D C K a submonoid and r a weak module system on K.

L. r(py is a weak module system on D. If r is finitary, then r(p) is also finitary, and if r is a weak
D-module system, then r(py is a weak ideal system of D.

2. If D, = D, thenr(py = r|P(D), and if r is a module system [an ideal system of D], then r(py
is also a module system [ an ideal system of D].

3. r[D] is a weak D-module system on K. If r is a module system, then r[D] is also a module
system, and if r is finitary, then r[D] is also finitary.
Moreover, we have r < r[D], M.p)(K)={J € M.(K)|DJ=J}, and r = r[D] if and only
if r is a weak D-module system.

4. rp = r[D](py is a weak ideal system on D and if J € M, p)(K), then JND € Z,,(D).
If r is finitary, then rp is also finitary. If D, = D, then r[D] is an ideal system of D, and
rp = r[D]|P(D). In particular, if v is a weak ideal system of D, then rp =1 |P(D).

PROOF. 1. We check the properties M1, M2, M3 for r(p). Let X, Y € P(D) and c € D.

M1. X,,, = X,ND > X U{0}.
M2. If X C Y, = Y, (D, then X, , =X, NDCY,ND =Y,
M3. (cX)rpy =(cX), ND DX, ND D e(XrND) =cXppp -

Let r be finitary, X C D and a € X
a€E.ND=E,,.

If r is a weak D-module system and X C D, then DX,
Hence r(p) is a weak D-module system, and since D, = D, N D = D, it is a weak ideal system of D.

2. If X C D, then X, C D and X, , = X,ND = X,. Hence r(py =r|P(D), and if r is a module
system [an ideal system of D], then r(p) is also a module system [an ideal system of D].

3. We check the properties M1, M2, M3 for r[D]. Let X, Y € P(K) and c € K.

M1. X,p; = (DX), D DX U{0} D X U{0}.

M2. If X C Y,p) = (DY), then DX C D(DY), C (DY), and X,p) = (DX), C (DY), =Y, p}-

M3. (cX),p] = (cDX), D ¢(DX), = cX;[p], and equality holds if 7 is a module system.
Hence r[D] is a weak module system on K, and it is a module system if r is a module system. If r is

finitary, X C K and a € X, p] = (DX),, then there exists some E € P¢(X) such that a € (DE), = E,p,
and therefore r[D] is also finitary.

Next we prove that M,p)(K) = {J € M.(K) | DJ = J}. Once this is done, it follows that r[D] is
a D-module system, r < r[D], and r = r[D] if and only if r is a weak D-module system.

If J € M,(K) and DJ = J, then Jyp) = (DJ), = J € M,p)(K). Conversely, if J € M,p(K),
then J = J.p) = (DJ), € M.(K), and DJ = (DJ), = Jyp) = J.

= X, N D. Then there exists some E € P¢(X) such that

(D)
Hence r(p) is finitary.

vy = D(X,ND) € DX,ND = X,ND = X, .
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4. Tt suffices to prove that J € M,pj(K) implies J N D € Z,, (D). The remaining assertions follow
by 1., 2. and 3.

If J € My p)(K), then DJ = J and therefore (JND),, =((JND)D),NDC (JD),NnD=JND.
Hence (J N D),, =JND is an rp-ideal. O

Examples 2.5.3.

1. Let K be a monoid, and let D C T' C K be submonoids. If s(D): P(K) — P(K) is the semigroup
system of D defined on K, then s(D)[T]: P(K) — P(K) is the semigroup system of T' defined on K,
and s(D)r =s(D)|P(T): P(T) — P(T') is the semigroup system of D defined on T'.

2. Let K be a ring, and let D C T C K be subrings. If d(D): P(K) — P(K) is the Dedekind
system of D defined on K, then d(D)[T]: P(K) — P(K) is the Dedekind system of T" defined on K,
and d(D)r =d(D)|P(T): P(T) — P(T) is the Dedekind system of D defined on T

Theorem 2.5.4. Let K be a monoid, D C K a submonoid, r a finitary D-module system on K and
T C KX N D a multiplicatively closed subset (then T C K* and T"'D C T"'K = K ). Then

T Yr=¢[T7'D] and rr-1p=T 'rp.
In particular:
1. If XCK,then Xp1, =T71X, =(T7'X), = Xyr-1D)-
2. If XC D, then X, _, =T 'X,,.

PROOF. It suffices to prove 1. and 2. Indeed, 1. implies that 7-'r = [T~ D], and from 2. and
the uniqueness of T~ 'rp in Theorem 2.4.1 it follows that rp—1p =T lrp.

1. We start with a preliminary remark. If Y C K and TY =Y, then
'y =ty and (T7'Y), = |tV
teT teT
since the family (t='Y )7 is directed [indeed, if t1, to € Y, then ;'Y = (t1t2) "1 (t2Y) C (t1ta) 'Y ).
If X C K,then TDX = DX and TX, = X,. By the preliminary remark we obtain
(T7'X), =(T7'DX), = | J(t'DX), = |Jt7' X, =T ' X, = Xp1,.
teT teT

2. If X C D, then
X =X, rpNT'D=(T"'DX),NT'D=T"'X, NT'D=T""X, NnD)T'X,,. O

Tr=1p

Theorem 2.5.5. Let K be a monoid, D C K a submonoid, K = q(D), r: P(K) — P(K) a finitary
ideal system of D and T C D* a multiplicatively closed subset (then T C K* and T~'D C T7'K = K ).

1. (T7'D), =T7'D, T 'r: P(K) — P(K) is a finitary ideal system of T~'D,
Fr (T'D)={a T |I€Z.(D), ac D*}={T""J|JeF.(D)},
Fr-1,6(T7'D)={a ' T I |1 €Z,¢(D), ac D*}y={T"'J | J € Fs(D) },
and the map j&: F.(D) — Fr-1,(T7'D), defined by ji(J) = T~'J, is a surjective monoid
homomorphism satisfying j5(Fr¢(D)) = Fr-1,¢(T'D) and T-'(JiNJe) =T JhnT 1),
for all Jy, Jo € F.(D).
2. Let D be r-noetherian. If J € F.(D) and X C K 1is D-fractional, then

T HJ:X)=(T'J:T'X)=(T"'J:X).
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PRrROOF. 1. By Theorem 2.5.4.1, (T"'D), = T™'D, = T7!'D, and by Theorem 2.4.1 T !r is a
finitary ideal system of T~'D. Next we prove that
Fra (T'D)Cc{a T ' |I€Z (D), acD*}c{T'J|JeF.(D)}C Fr1,.(T'D)
and
Fr-1,6(T7'D)c{a ' T ' I |I €Z,¢(D), ae D*} C{T"'J|J € Frs(D)} C Fr-1,4(T"'D).

If V€ Fr1,.(T"'D), then Theorem 2.1.4 implies that V = a7 'l;, where a; € (T~'D)* and
Iy € Iy, (T7'D). By Theorem 1.2.6, a; = t~'a for some t € T and a € D*, and by Theorem 2.4.1
I, = T~ for some I € Z,(D). Hence we obtain V = ta T~ = o 1T~ If V is T~ lr-finitely
generated, then I; is also T 'r-finitely generated and I is r-finitely generated.

If I € Z,(D) and a € D*, then J =a~'I € F.(D) and a 'T~'] =T~1J. If I is r-finitely generated,
then J is r-finitely generated, too.

If J € F.(D), then T~*J € Mp-1,(K), and there is some a € D* such that aJ € Z,.(D). Then
T taJ = aT~'J € Ip-1,.(T~1D), and since a € (T~1D)*, it follows that T~1J € Fp1,.(T71J). If J is
r-finitely generated, then T~1.J is T~ !r-finitely generated.

By the above, j%: F.(D) — Fr-1,.(T"'D) is surjective map and j5(F,.¢(D)) = Fr-1,¢(T "' D).
The proof of the remaining assertions is literally the same as in Theorem 2.4.1.4.

2. Since X is D-fractional, it follows that X, € F,.(D) = F,.¢(D), and therefore X, = E, for some
E € P¢(X). Hence Xp-1, =T 'X,, =T 'E, = Ep-1, = (T"'E)p-1, and, using Theorems 1.2.4.4 and
2.1.2.9,

THJ:X)=T"YJ:X,) =T YJ:E) = (T ' J:T'E) = (T ' J: (T 'E)p-1,) = (T7'J: X).
Finally, X7-1, = (T7'X)p-1, implies (T7'J:X) = (T"1J:T~1X). O

Theorem und Definition 2.5.6. Let D be a cancellative monoid, K = q(D) and r: P(D) — P(D)
a module system on D.

1. There exists a unique module system ro on K such that, for all X C K,

X — { K if X is not D-fractional,
" laYaX), if a€D* and aX C D.
Too |P(D) =1, and if r is an ideal system of D, then ro is also an ideal system of D. If q is
any module system on K such that q|P(D) =r, then ¢ < reo.
T'so 1s called the trivial extension of r to K.
2. (reo)f 1s the unique finitary module system on K satisfying (roo)f |P(D) = r¢. If r¢ is an ideal
system of D, then (r«)s is also an ideal system of D.
(roo)f is called the natural extension of r¢ to K.

In particular, for every finitary module system r on D there exists a unique finitary module
system ¥ on K such that 7|P(D) =r.

3. If ¢: P(K) —P(K) is any finitary ideal system of D, then ¢ = ((¢p)oo)s-

PRrROOF. 1. Uniqueness is obvious. We define r,, as in the assertion. Note that this definition does
not depend on the choice of ¢ € D® with aX C D. Indeed, if X € K and ay, as € D*® are such
that a1 X C D and a2 X C D, then ajaeX C D and (a1a2X), = a1(a2X), = az(a1X), and therefore
a5 (a2 X), = a7 (a1 X),. By definition, 7o, |P(D) = r.

We check the conditions M1, M2, M3 for ro. Let X, Y C K and ¢ = b='d € K, where b € D*
and d € D.

M1. If X is not D-fractional, then X, = K D X U{0}. If a € D* is such that aX C D, then

X, =a 1aX), DaaX)U{0} = X U{0}.

Too
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MZ2. Suppose that X C Y, . If Y is not D-fractional, then Y, = K D X, _. Thus let a € D*® be
such that aY € D. Then X C Y, = a !(aY),, hence aX C (aY), C D, and therefore it follows that
X, =aaX), CaaY), =Y,_.

M3. We may assume that ¢ # 0, hence ¢ € K* and d € D®. If X is not D-fractional, then (by
Lemma 1.4.2) also ¢X is not D-fractional, and (¢X), =K =cK =cX,_.

Thus assume that aX C D for some a € D*. Then ab(cX) = adX C dD C D and therefore
(X)) = (ab)~ (abeX), = (ab)~bc(aX), = ca= (aX), = cX,_.

Let ¢ be any module system on K such that ¢ |P(D) =r and X C K. If a € D*® is such that aX C D,
then X, =a"'(aX), =a *(aX), = X,, and if X is not D-fractional, then X, C K = X,__. Hence it
follows that ¢ < 7.

Let r be an ideal system of D. Since D, = D, = D and DX, = X, for all X € P(K), it follows
that r., is also an ideal system of D.

2. By definition, (7 )f is a finitary module system on K. If X C D, then

X(ro)r = U E, = U E, = X,,, and therefore (ro)s|P(D)=r1¢.
E€eP(X) E€eP¢(X)

Let now r¢ be an ideal system of D and X C K. For E € P¢(X), let a € D*® be such that aE C D.
Then DE,_ = Da~'(aE), = Da '(aE),, = a~'(aE),, = a~*(aE), = E,_, and

Too

DX(r ), = U DE, = U E. =X
EcP(X) EePi(X)

Hence (7o )f is an ideal system of D.

To prove uniqueness of r¢, let ¥ be a finitary module system on K such that 7|P¢(D) = re. We
must prove that Bz = E(,._) for all E € P¢(K). If £ € Pf(K), let ¢ € D*® be such that cE C D. Then
Er =c Y (cE)s =c (cE), = (cE), = E,_ = B

3. Let ¢: P(K) — P(K) be a finitary ideal system of D. Then gp = ¢ |P(D) by Theorem 2.5.2.4,
and it suffices to prove that E((,,). ), = E,4 for all E € P¢(K). If E € Pf(K) and a € D*® is such that
aFE C K, then E((QD)oo)f = E(QD)OC = a_l(aE)qD = a_l(aE)q = Eq. (]

Example 2.5.7. Let D be a domain, K = q(D) and F(D) = Myp)(K)® the set of all non-zero
D-submodules of K.

A semistar operation of D is a map *: F(D) — F(D), M ~— M*, such that, for all ¢ € K and
M, N € F(D), the following conditions are satisfied :

x1. M C M*; x2. M C N* implies M* C N*; *3. cM* = (cM)*.
If moreover D* = D, then * is called a (semi)star operation, and the restriction = |F (D) is called a

star operation.
Let * be a semistar operation of D, and define r.: P(K) - P(K), X — X, , by

¥ — {0} if X c {0},
"L i X ¢ o).
Then 7, is a D-module system on K, d(D) <r. and D, = D*. Hence r, is an ideal system of D if
and only if * is a (semi)star operation.
Conversely, let 7: P(K) — P(K) be a D-module system on K and d(D) < r. Then M,.(K)* C F(D),
and we define *,.: F(D) — F(D) by M* = M,. Then %, is a semistar operation, r,_ = r, and for every
semistar operation x of D we have . = x.
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2.6. The ideal systems v and ¢
Throughout this section, let D be a cancellative monoid, K = q(D), and for X C K, let X' = (D: X).

Definition 2.6.1. If D # K, we define v =v(D): P(K) — P(K) by X, = (X"1)7! forall X C D,
and if D = K, we set v(K) = s(K): P(K) — P(K). We shall see in Theorem 2.6.2 that v(D) is an ideal
system of D, and we define t =¢(D) = v(D)s: P(K) — P(K).

v(D) is called the divisorial system and t(D) is called the total system of D defined on K.

Theorem 2.6.2. Assume that D # K, and set v=v(D): P(K) — P(K).
1. If X CK, then
o X '=K if and only if X* =0,
o (X71)* £ 0 if and only if X is D-fractional,
o X, =K if and only if X is not D-fractional,
o X, ={0} if and only if X C {0}.
In any case, we have
X, = m zD. (%)

zeEK
XCzD

2. If X CK, then XU{0}C X, X;l=X"1=(X"1Y),, and (XX 1)~1 = (X~1:X1).

3. v is a ideal system of D, M,(K)={X"1|X C K}, and (vp)s =v. If q is any ideal system
of D defined on K, then q <w.

4. The system t = t(D) = v(D)s: P(K) — P(K) is a finitary ideal system of D. If q is any
finitary ideal system of D defined on K, then q <'t.

5. Let D' be another cancellative monoid, K' = q(D'), v =v(D’) andt' =t(D’). Let ¢: K — K’
be a surjective monoid homomorsphism, D' = (D), and let G C D* be a subgroup such that
e~ (e(x)) = xG for all z € K. Then we have (X))~ ! = e(X~1) for all subsets X C K,
v =e(v) and t' = e(t).

Proor. 1. Let X C K.

If X* =0, then KX = X and X! = K. If 2 € X°, then 2K = K # D, and therefore X1 # K.
By definition, (X ~1)® # 0 if and only if X is D-fractional. Therefore we obtain X, = (X~ 1)~! = K if
and only if (X1)® = (), that is, if and only if X is not D-fractional. Similarly, X, = (X~1)~! c {0} if
and only if X ! is not D-fractional which holds if and only if X*® = ().

It remains to prove (). If X C {0}, (x) holds by Theorem 1.2.8. Thus assume that X # {0}. Since
(X HYe={ye K*|yXCcD}y={21]|2€ K*, X CzD}, we obtain

Xy=D:XH=D:(Xx )= () yv'D= () 2D= () 2D.
v w50 XD

2. If X C K, then (X U{0})X~! C D implies that X U {0} c (X~1)~! = X,,. Hence we obtain
Xtexto(X Y, =[(X"H =X and thus X;! = X1 = (X~1),. Finally,
(XX H=((D:X): X)) =(D: XX =(xx 1.
3. We verify the conditions M1, M2 and M3. Let X, Y C K and c € K.
M1. By 1.
M2. If X CY,, then Y™! =Y, 1 Cc X7 and therefore X, = (X 1)~ c (Y )7l =Y,.
M3. We may assume that ¢ # 0. Then X, =c¢(X )1 = (71X )= ((cX) 1) ! = (eX),.
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If ce D and X C K, then ¢X, C X, by (x). Hence v is a D-module system, and since D, = D
it is even an ideal system of D. In particular, vp = v|P(D), and if X C K is not D-fractional, then
Xy, =K = X, . Hence it follows that v = (vp)eo

If X € My(K), then X, = (X 17!, and if X C K, then (X~!), = X~!. Hence we obtain
M, (K)={X"'| X c K}

Let g be any ideal system of D defined on K and X C K. If z € K is such that X C zD, then
X, C 2D, and therefore X, C X, by (). Hence ¢ < v.

4. By Theorem 2.2.2, t is a finitary ideal system of D. If ¢ is any finitary ideal system of D defined
on K, then ¢ < v by 3., and therefore ¢ = ¢r < vf = .

5. If X € K and ¢/ = ¢(x) € K', then 2'¢(X) = e(xX) C D' = ¢(D) if and only if 2X C D.
Hence we obtain e(X)™' = e(X™1), and e(X)y = (e(X)™ )™ = (X 7H)™!) = e(Xy) = e(X)e(w)-
Consequently, v' = £(v), and by Theorem 2.3.7 it follows that e(t) = e(vf) =c(v)f=v =1t O

Theorem 2.6.3. Let v =v(D): P(K) - P(K), X CD anda,de€ D.
1. If X, =dD, then GCD(X) =dD*.
2. If GCD(X) =dD* and GCD(bX) #0 forall be D, then X, =dD.
3. The following assertions are equivalent:
(a) GCD(X) #0 for all X € P(D).
(b) Every (fractional) v-ideal of D is principal.
4. If D is a GCD-monoid, X C D and d € D, then

X,= () aD,

a€D
XCaD

and X, = dD if and only if d € GCD(X).

PrOOF. We may assume that D # K.

1. If X, =dD, then X C dD, and if b € D is such that X C bD, then dD = X,, C bD. Hence dD is
the smallest principal ideal containing X, and dD* = GCD(X).

2. If GCD(X) =dD*, then X C dD, and therefore

X, = ﬂ zD c dD.

zeK
XCzD

Hence it suffices to prove that, for all 2 € K, X C zD implies dD C zD. Thus suppose that z = b~ 'c € K,
where b € D® and ¢ € D, and X C 2D. Then bX C ¢D, and since GCD(bX) # ), it follows that
GCD(bX) = bdD*. Therefore we obtain bdD C ¢D, and dD C b~'cD = zD.

3. Obvious by 1. and 2.

4. Clearly,
= ﬂ aD D ﬂ zD =X,
ac€D z€K
XCaD XCzD

To prove the converse, suppose that 2 € X C D, and let z € K be such that X C zD. Then z = a~'b,
where a € D*, be D, GCD(a,b) = D*, and it suffices to prove that X C bD. If x € X, then x = zc for
some ¢ € D, hence ax = be, and since a is coprime to b, it follows that a|c, say ¢ = ad for some d € D.
But then x = bd € bD.

By 1. and 2. it follows that X, = dD if and ouly if d € GCD(X). O



44 2. THE FORMALISM OF MODULE AND IDEAL SYSTEMS

Theorem 2.6.4. Let v =v(D): P(K) - P(K) and t=t(D): P(K) — P(K).
1. D is a GCD-monoid if and only if every v-finitely generated v-ideal is principal | equivalently,
every t-finitely generated t-ideal is principal).
In this case, Fi¢(D)®* = Fu¢(D)®* ={aD |a€ K*} = K*/D* is a group.
2. D 1s factorial if and only if every t-ideal of D is principal.
In this case, Fy(D)* ={aD|ae€ K*} = K*/D* is a group.
3. Let D' be another cancellative monoid, : D — D' a surjective monoid homomorphism and

G C D* a subgroup such that e 1(e(x) = xG for all x € D. Then D’ is factorial [a GCD-
monoid] if and only if D is factorial [ a GCD-monoid] .

PrROOF. 1. Let D be a GCD-monoid and J € Z,¢(D). Then J = E, for some E € P¢(D), and if
d € GCD(E), then J = E,, = dD by Theorem 2.6.3.2.

Conversely, if every v-finitely generated v-ideal is principal and E € P¢(D), then E, = dD for some
d € D, and then d € GCD(E) by Theorem 1.5.2.1.

2. Let D be factorial. Then Theorem 1.5.6.3 implies that GCD(X) # 0 for every subset X C D. If
J € T;(D)® and d € GCD(J), then J = dD by Theorem 2.6.3.2.

Conversely, assume that every t-ideal is principal. Then D is t-noetherian, and as every principal
ideal is a t-ideal, it satisfies the ACCP. By 1., D is a GCD-monoid, and by Theorem 1.5.5, it is an
atomic GCD-monoid and thus it is factorial by Theorem 1.5.6.4.

3. Let ¢: K — K’ be the extension of € to the quotient monoids and ¢’ = ¢(D’). By the Theorems
2.6.2 and 2.3.7 we have ¢(t) = t', e(X)y = e(X;) for all subsets X C D, and J — &(J) defines a
bijective map Z;(D) — Zy(D’). Hence every [t-finitely generated| t-ideal of D is principal if and only
if every [t'-finitely generated] t’-ideal of D’ is principal, and the assertion follows by 1. and 2. O

Theorem 2.6.5. Fori €{1,2}, let D; be a GCD-monoid, K; = q(D;), t; =t(D;): P(K;) — P(K,),
and let p: K1 — Ko be a monoid homomorphism. Then ¢ is a (t1,ts)-homomorphism if and only if
@(D1) C Dy and | Dy: D1 — Do is a GCD-homomorphism. In particular, there is a bijective map

Hom, +,)(K1, K2) — Homgcp(D1,D2), given by ¢ — ¢|D;.
PROOF. Let first ¢ be a (t1, t3)-homomorphism. Then

¢(D1) = ¢({1p,},) € {e(1p))}e, = {1D, }1, = Da-

Let E C D; be finite and d € GCD(E). Then E;, = dD; and ¢(d) € ¢(Ey,) C ¢(E), = d'Da, where
d € GCD(¢(E)). Since E C dDy, it follows that ¢(E) C ¢(d)Ds, hence d'Ds C ¢(d)Ds, and since
©(d) € d’' D4, we obtain ¢(d) € d' DS = GCD(¢(E)).

Assume now that ¢(D;) C Da, and let ¢ | Dy: Dy — Dy be a GCD-homomorphism. We must prove
that p(F:,) C @(E)y, for all E € Pe(K4). If E € P¢(K7) and ¢ € D} such that cE C D;. If d € GCD(cE),
then p(d) € GCD(p(c)¢(E)) and therefore

@(Ey,) = (¢ (cE),) = @(c) " o(dDy) C @(c) " o(d)Dy = () " (p(c)p(E))e, = ¢(E)r,. O

Theorem und Definition 2.6.6. Let v = v(D): P(K) — P(K) and t =t(D): P(K) — P(K).

1. The following assertions are equivalent:
(a) D is v-noetherian.

(b) D is t-noetherian.
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(c) For every sequence (Jn)n>0 in Fu(D) such that

Jn D Jni1 forall n>0, and (ﬂ J) 40,
n>0
there exists some m > 0 such that J, = Jp, for alln > m.
(d) Every non-empty subset Q C F,(D) satisfying
(N ) #0
JeQ
possesses a minimal element (with respect to inclusion).
(e) For every subset X C D there erists some E € P¢(X) such that X' = E~' C K.
If these conditions are satisfied, then D is called a Mori monoid.
In particular, if D is a Mori monoid, then X, = X; for every D-fractional subset X C K,
Fo(D) =F(D) and I,(D)=TIy(D).
2. Let D be a Mori monoid and T C D be a multiplicatively closed subset.
(a) T71D is a Mori monoid, and t(T7*D) =T": P(K) — P(K).
(b) If X C K is D-fractional, then T YD :X) = (T7'D:T7'X) = (T7'D : X), and
T_1XU = (T_lX)v(Tle) = Xv(Tle)~
(¢) Let P C D be a prime ideal such that PNT = (). Then P € v-spec(D) if and only if
T='P € v(T~'D)-spec(T~1D).
3. Let C € Fy(D) be an overmonoid of D. Then Fyc)(C) C Fy(D). In particular, if D is a Mori
monoid, then C is also a Mori monoid.

PROOF. We may assume that D # K.

1. (a) & (b) By Theorem 2.2.5.3, since ¢t = vf. In particular, it follows that o |P(D) = t|P(D),
and therefore X,, = X, for every D-fractional subset X C K, F,(D) = Fi(D) and Z,(D) = Z,(D).

(b) = (c) Let (Jy)n>0 be a sequence in F, (D) such that J, D J,41 for all n > 0, and let ¢ € K*
be such that ¢ € J,, for all n > 0. Then (cJ, !),>0 is an ascending sequence in Z, (D). Hence it becomes
stationary, and therefore the sequence (J,)n>0 becomes stationary, too.

(¢) = (d) Assume to the contrary that there exists a subset () # Q C F,(D) without a smallest
element, and that there is some ¢ € K*® such that ¢ € J for all J € Q. Consequently, for every J € Q
there exists some J' € Q such that J' C J. If Jy € Q is arbitrary and (J,,),>0 is recursively defined by
Jpt1 = J}, for all n > 0, then the sequence (J,,)n>o contradicts (c).

(d) = () If X € D and X* =0, we set £ = X. Thus assume that X C D, X*® # (0, and set
Q={F'|FeP¢X), F* #0}. Then Q # 0, and if F € P¢(X) and F* # (), then F~! € F,(D)
and 1 € F~!. Thus by (d) there exists some E € P¢(X) such that E®* # () and E~! is minimal in Q.
Clearly, X~! ¢ E~!, and we assert that equality holds. Indeed, suppose to the contrary that there is
some ¢ € E~1\ X~! and let a € X be such that ca ¢ D. Then (EU{a})™' €Q, c¢¢ (FU{a})~! and
therefore (E U {a})~! € E~1, a contradiction.

(e) = (a) If X C D, there exists some E € P¢(X) such that E~! = X! and thus £, = X,. Hence
D is v-noetherian.

2. (a), (b) By Theorem 2.4.1.5 T='D is T~ 't-noetherian, and thus it is a Mori monoid. If X ¢ K
is D-fractional, then T-}(D:X) = (T7'D:T7'X) = (T"'D:X) by Theorem 2.5.5.2, and therefore

T7'X, =T YD:(D:X))=(T"'D:(T'D:T7'X)) = (T7'X)y(r-1p)
=(I'D:(T7'D:X)) = Xyr-1p) -

In particular, if £ € P¢(K), then Ep, = T'E, = T7'E, = Eyr-1py = Eyr-1p), and therefore
Tt =¢T"'D).
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(¢) If P € v-spec(D), then (T~ 'P),r-1py=T"'P, =T 'P € v(T"'D)-spec(I'"*D). Conversely,
if T7'P € v(T71D)-spec(T~1D) = t(T~1D)-spec(T~'D), then t < ¢(T~'D) implies (I~'P); = T~'P,
hence P, = (T"'PN D), =T 'PND = P, and consequently P € t-spec(D) = v-spec(D).

3. Since t[C] is an ideal system of C, it follows that ¢t < ¢[C] < t(C), and therefore we obtain
Fic)(C) € Myc)(K) € My(K). By Theorem 1.4.2.6 every C-fractional subset of K is D-fractional,
and therefore it follows that F;)(C) C F(D). O



CHAPTER 3

Prime Ideals and Valuation Monoids

Throughout this chapter, let D be a monoid, K = q(D), s=s(D): P(K) — P(K),
and if D is cancellative, then v =v(D): P(K) - P(K) and t=t(D): P(K) — P(K).

3.1. Prime ideals and Krull’s Theorem

Definition 3.1.1. Let r be a weak ideal system of D.
1. We denote by
o r-spec(D) C Z,(D) the set of all prime r-ideals (in particular, s-spec(D) is the set of all
prime ideals of D );
e X(D) the set of all minimal non-zero prime ideals of D;
e r-max(D) the set of all maximal elements of Z,.(D)\ {D} (they are called r-maximal
r-ideals ).
2. An r-ideal Q € Z,.(D) is called r-irreducible if Q # D and, for all I, J € Z,.(D), Q@ =INJ
implies @ =1 or @ = J.
3. D is called r-local if |r-max(D)| = 1.
If D\D* € Z,(D), then r-max(D) = {D\D*}, and D is r-local. In particular, D\ D* € Z4(D),
and D is s-local.

Theorem 3.1.2 (Krull). Let r be a weak ideal system of D. Let ) # £ C P(D) be such that, for
all M, N € £ it follows that MN € £, and set Q={C €Z.(D)|M ¢ C for all M € £}.
1. Every (with respect to the inclusion) mazimal element of ) is a prime ideal.

2. Suppose that r is finitary and M, € I,¢(D) for all M € £. For every Cy € Q, there exists a
mazimal element P € ) such that Cy C P.

In particular, there exists some P € QN r-spec(D) such that Cy C P.

PrROOF. 1. Assume to the contrary that there is a maximal element P € Q which is not a prime
ideal. As £ # (), it follows that P # D. Let a, b € D \ P be such that ab € P. Then it follows by the
maximality of P that (PU{a}),, (PU{b}), ¢ Q, and there exist M, N € £ such that M C (P U {a}),
and N C (P U {b}),. Hence we obtain MN C (PU{a}),(PU{b}), C (P?UPaUPbU{ab}),. C P, a
contradiction, since M N € £.

2. By assumption, Q1 = {C € Q| Cy C C} # 0, and we prove that every chain in (1, C) has an
upper bound in ;. Then the assertion follows by 1. and Zorn’s Lemma. Let ¥ C ; be a chain, and

r=Jc.
Cex

Then P € Z,.(D), and we assert that P € Q. Clearly, Co C P, and we assume to the contrary that
M C P for some M € £. Then there is some E € P¢(D) such that M, = E,, hence E C P, and

47
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as X is a chain, we obtain F C C for some C' € Y. But then it follows that M € M, = E,. C C, a
contradiction. O

Corollary 3.1.3. Let r be a weak ideal system of D, T C D*®* a multiplicatively closed subset and
Q={CeZ.(D)|CNT =0}.
1. Every (with respect to the inclusion) mazximal element of Q is a prime ideal.
2. Suppose that r is finitary and Cy € Q. Then there exists a maximal element P € Q) such that
Co C P. In particular, there exists some P € QN r-spec(D) such that Cy C P.

PROOF. By Theorem 3.1.2, applied with £ = {{a} | a € T'}. O

Corollary 3.1.4. Let r be a weak ideal system of D.
1. r-max(D) C r-spec(D).
2. If ris finitary and J € I,(D) \ {D}, then there exists some M € r-max(D) such that J C M.
In particular, if 0, # D, then r-max(D) # (.
ProoF. We apply Corollary 3.1.3 with T'= D*.
1. If M € r-max(D), then M is maximal in {C € Z.(D)|CND* =0}
2. f J €Z.(D), and M is maximal in {C € Z.(D)|J c C, JND* = (}, then M € r-max(D). O

Corollary 3.1.5. Letr be a finitary ideal system of D. If D isr-local, then r-max(D) = {D\D*}.

PROOF. Let D be r-local and r-max(D) = {M}. If a € D\ D*, then aD € Z,(D) and aD # D.
By Corollary 3.1.4 there exists some P € r-max(D) such that aD C P, and by assumption we have
P=M. O

Theorem 3.1.6. Let r be a finitary weak ideal system of D and J € I,(D) \ {D}.
1. P(J) C r-spec(D).
2. If P(J)Nr-spec(D) C Z.¢(D), then P(J) is finite.
3. Suppose that every principal ideal of D is an r-ideal. Then X(D) C r-spec(D). In particular, if
D is cancellative, then X(D) C t-spec(D).
4. If r is finitary, then v J € T,(D). If I € Z,s(D) and I C V/J, then there is some n € N such
that I™ C J.
5. If r is finitary, then /r: P(D) — P(D), defined by X , = VX, is a finitary weak ideal system
of D, and \/r <.

ProOOF. 1. If P € P(J), then D\ P is multiplicatively closed, and by Corollary 3.1.3 there exists
some Py € r-spec(D) such that J C Py C P. Hence Py € ¥(J) and therefore Py = P € r-spec(D).

2. Let £={P,-...-Pp|meN, P,....P,eS())}, Q={C eI, (D)|L¢gC foral L€ £},
and assume that J € Q. For every L € L, we have L, € Z,¢(D), and if L1, Ly € £, then L1Ly € £.
By Theorem 3.1.2 there exists some P € r-spec(D) N such that J C P, and by Theorem 1.3.2 there
exists some Py € P(J) such that Py C P, which implies Py, € QN £, a contradiction. Hence there exists
some L € £ such that L C J,say L= P, -...- Py, where m € Nand Py,..., P, € P(J). We assert that
P(J) C {P,...,Py}. Indeed, if P € P(J), then Py -...- P, C J C P implies P; C P for some j € [1,m]
and hence P = P; by the minimality of P.

3. If Pe X(D) and a € P*, then aD € Z,(D) and P € P(aD) C r-spec(D).
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4. By Theorem 1.3.2,
Vi= () P,
PeP(J)

and as P(J) C r-spec(D), we obtain v/.J € Z,(D).

Assume now that I € Z,¢(D) and I C VJ, say I = E,, where E = {a1,...,am} € P¢(D). For
j € [1,m], let n; € N be such that a;” € J,and set n =n; +...+n,,. We assert that E™ C J. Indeed,
ifa€ E™ thena=al"-...-a’m, where v1,...,v, € Ng, v1+...+ vy =n, and there is some j € [1,m]
such that v; > n;, which implies a € J. Now it follows that I = E' C (E™), C J.

5. We verify the properties M1, M2 and M3. Let X, Y C D and c€ D.

Ml1. X ;=+vX, DX, D>XU{0}.

M2. If X CY ; =Y, then X, C /Y, (since /Y, € Z.(D)), and consequently /X, C /Y.

M3. Ifre X ;= VX, and n € N is such that 2" € X,., then (cx)" € ¢"X, C c¢X, C (¢X), and
therefore cx € \/(cX), = (cX) . Hence cX 5 C (cX) s

Clearly, X, C X 5 implies Vr<r. X cCcDandzxe X /7 let n € N be such that 2" € X,.. Asris
finitary, there exists some E € P¢(X) such that 2™ € E, and consequently x € E ;.. Hence /7 is finitary.
If X C D, then /X, C D is an ideal, and therefore /7 is a weak ideal system of D. O

Theorem 3.1.7. Let r be a finitary weak ideal system of D. Then D is \/r-noetherian if and only
if r-spec(D) satisfies the ACC and for every J € I.(D) the set P(J) is finite.

PROOF. Assume first that D is y/r-noetherian. As r-spec(D) C {J € Z,.(D) | VJ = J} = T (D), it
satisfies the ACC. If J € Z,(D), then v'J € I (D), and P(J) = P(VJ) C I (D) = I sz ¢(D). Hence
P(J) is finite by Theorem 3.1.6.2.

Assume now that r-spec(D) satisfies the ACC , P(J) is finite for all J € Z,.(D), and yet there exists
a properly ascending sequence (Jn)n>0 in Z (D). As /7 is finitary, we obtain

J=J JneT D).
n>0

Let P(D)={JW,..., 0™} Forn>0,let {PecP(,)|JgP}= {Pfll), . .,PT(LN"')}. By Theorem
1.3.2.3 it follows that J = PO n...APM and J, =JN PV n...n PN, We denote by L, the
(finite) set of all sequences (v, ...,v,) € [1, Ng]x...x[1,N,] such that PO(VO) C Pl(ul) c...c P,
and we assert that L,, # 0.

We proceed by induction on n. For n = 0, there is nothing to do. Thus suppose that n > 1 and
v, € [1,N,]. Since J,—1 = J N P,gl N...N Pfff’;—“ c J, C P,(LV”) and J ¢ P,(LV"), it follows that
PT(Lli”fl) c P for some Un—1 € [1,Np_1], and the induction hypothesis yields the complementary
sequence (v, ..., Vp—1).

Now the assignment (vg,...,v,) — (Vo,...,Vn—1) defines a map L, — L,_1, and as the projective
limit of a system of non-empty finite sets is not empty, there exists a sequence

(Va0 € lim L, .
n>0
By construction, (P7(LV")),LZO is an ascending sequence in r-spec(D). Hence there exists some m > 0 such
that P,Ey") = P7(nV m) for all m > n, and consequently
J = U JIn C U P{vn) = plvm) ¢ J - a contradiction. O

n>0 n>0
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3.2. Associated primes, localizations and primary decompositions

Throughout this section, we set (X:Y)= (X :pY) for all subsets X, Y C D.

Definition 3.2.1. Let B D D be an overmonoid and P C D be a prime ideal. Recall from Definition
1.3.7 that the localization Bp of B at P is defined by Bp = (D \ P)"!B, that jp: B — Bp denotes
the natural embedding, and for every subset X C B, Xp = (D\ P)"'X.

For a finitary weak module system 7 on B, we define rp = (D \ P)~'r: P(Bp) — P(Bp).

If r is a finitary weak module system of B, then rp is a finitary weak ideal system on D by Theorem
2.5.2, rp is a finitary weak module system on Bp and if X C B, then (X,)p = jp(X),, = (Xp)rp by
Theorem 2.4.1.

Theorem 3.2.2. Let B D D be an overmonoid, r a finitary weak module system on B, and for
P € rp-spec(D), let jp: B — Bp be the natural embedding. If A € M, (B) is a D-module, then

A= () Jp'(4p).
Perp-max(D)
In particular:
o If A A" € M,(B) are D-modules and Ap = A’p for all P € rp-max(D), then A= A'.
o Assume that D* C B*. Then B=Bp D Ap D A, jp=idg for all P € rp-spec(D), and

A= ﬂ Ap.

Perp-max(D)

PROOF. By Theorem 2.5.2.4, rp is a finitary weak ideal system on D. Obviously, A C j;l(Ap) for
all P € rp-max(D). Thus assume that z € B, jp(z) € Ap for all P € rp-max(D), and set J = (A:z)ND.
Then J C D is an rp-ideal, and therefore it suffices to prove that J ¢ P for all P € rp-max(D), for then
J = D by Corollary 3.1.4.2, hence 1 € J and therefore z € A.

If P € rp-max(D), then

%:% for some a€ A and te€ D\ P,
and there exists some s € D\ P such that stz = sa € A and therefore st € J \ P. O

Theorem 3.2.3. Let r be a finitary weak ideal system of D and P € r-spec(D).
1. Dp is rp-local with rp-mazimal ideal Pp = Dp \ D;.
2. If J€Z,(D) and VJ € r-max(D), then J is primary.
3. Let Je€Z.(D)and P P(J).
(a) Pp is the only prime rp-ideal of Dp containing Jp, Jp is Pp-primary, and j;l(Jp) is the
smallest P-primary r-ideal of D which contains J.
(b) Assume that P = \/J and Jy; is Py-primary for all M € r-max(D) such that M > J.
Then J = j;l(Jp) is P-primary.
PROOF. 1. By Theorem 1.2.4, D5 = (D\ P)"Y(D\ P) = Dp\ Pp, and therefore Pp is the greatest
ideal of Dp.
2. Let a, b € D be such that ab € J and a ¢ J. Then (J:a) € Z,,(D), and JU {b} C (J:a) € D. By
Corollary 3.1.4.2 there exists some M € r-max(D) such that (J:a) C M. Now J C M implies v/.J C M,
hence vJJ =M and b e v/ J.

3.(a) Let Q € rp-spec(Dp) be such that Jp C Q. By Theorem 1.3.6.2 we have Q = Qp for some
Q € r-spec(D) such that Q C P. Now Jp C Qp C Pp implies J C jp'(Jp) C Q C P, hence Q = P and
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therefore Q = Pp. Hence Pp is the only prime rp-ideal containing Jp, Pp = +/Jp, and Jp is Pp-primary
by 1. By Theorem 1.3.6 j5'(Jp) is primary, and /45" (Jp) = jp'(v/Jp) = P. If Q is any P-primary
r-ideal containing J, then Jp C Qp C Pp, and j;l(Jp) - j;l(Qp) =Q.

(b) Let Ja be Py-primary for all M € r-max(D) satisfying M D J. It suffices to prove that

jp'(J) C J. Ifa € jp'(J), then ¢ = ¢ for some ¢ € J and ¢t € D\ P, and therefore there exists some
s € D\ P such that sta =sc € J. By Theorem 3.2.2 it follows that
J= () dn ),
Meéer-max(D)
and therefore it suffices to prove that a € jy,'(Ja) for all M € r-max(D). If M € r-max(D) and
J ¢ M, then j;;'(Ja) = D and there is nothing to do. If M € r-max(D) and J C M, then 2 € Jp,
and we assert that ¢ € Jy; (which implies a € j;;'(Jar)). Indeed, if ¢ ¢ Jys, then £ € Py and

st € jy; (Par) = P, a contradiction. O

Definition 3.2.4. Let r be a weak ideal system of D and J € Z,.(D).

1. A prime ideal P C D is called an associated prime of Jif P = (J:z) for some z € D\ J. Let
Assp(J) = Ass(J) C r-spec(D) the set of all associated primes of J.

If D is cancellative, K = q(D) and z € K*, then (J:2) = z~'J N D.
2. A primary decomposition 9 of J is called an r-primary decomposition if Q C Z.(D).

By definition, a primary decomposition is just an s-primary decomposition. If J possesses an
r-primary decomposition, then it also possesses a reduced one (this is proved as in Theorem
1.3.5). If 9Q is a reduced r-primary decomposition of J, then {/Q | @ € Q} C Ass(J) by
Theorem 1.3.5.2.

3. D is called r-laskerian if every r-ideal of D possesses an r-primary decomposition.

Theorem 3.2.5. Let r be a weak ideal system of D and J € I,(D).
1. Every maximal element in the set {(J:z) |z € D\ J} belongs to Ass(J).
2. Let r be finitary, T C D a multiplicatively closed subset, P € r-spec(D) and PNT = 0.
(a) If P e Ass(J), then T—1P € Ass(T~1J).
(b) If P€Z,.¢(D) and T~'P € Ass(T1J), then P € Ass(J).
PROOF. 1. Let ¢ € D\ J be such that (J:c¢) is maximal in the set {(J:z)|z¢€ D\ J}. Leta, b€ D
be such that ab € (J:¢) and a ¢ (J:¢). Then it follows that ac ¢ J, b € (J:ac). Since obviously

(J:¢) C (J:ac), equality holds by the maximal choice of (J:¢), and thus b € (J:c). Therefore (J:¢) is a
prime ideal and belongs to Ass(J).

2.(a) If P=(J:2) € Ass(J), then T71P = (T"'J:p-1pjp(2)) is a prime ideal of 771D and thus
it belongs to Ass(T~1J).

(b) Suppose that P = {ay,...,a,},, wheren € Ny and ay,...,a, € P,and T7'P = (T~ Jip-1p 2),
where z € D and ¢t € T. For i € [1,n], we obtain

% % _a , where ¢; € Jand s; €T, and therefore w;s;a;z = w;tc; € J for some w; € T.
Si
If v=(wis1) ...  (wWpSy), then v € T and vza; € J for all ¢ € [1,n]. Hence it follows that vzP C J and

P C (J:vz). We assert that equality holds (which implies P € Ass(J)). Thus let z € (J:vz). Then
zvz € J, and
? ; e T-'J, which implies ? eT'P.

Hence zv € P and finally x € P, sinceve T C D\ P. ]
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Theorem 3.2.6. Let r be a weak ideal system of D such that D is r-noetherian and J € Z,.(D).
1. P(J) is finite, and P(J) C Ass(J).
2. If 9Q is a reduced r-primary decomposition of J, then Ass(J) = {/Q | Q € Q}.
3. J possesses a representation J = Q1 N...N Qy, where n € Ny and Q1,...,Q, € I.(D) are
r-irreducible.
4. D is r-laskerian if and only if every r-irreducible r-ideal is primary.

PROOF. 1. By Theorem 3.1.6.2 the set P(J) is finite. Thus let P € P(J). By Theorem 3.2.5.2 (b)
it suffices to prove that Pp € Ass(Jp). Since Dp is rp-noetherian, the set {(Jp:z) |z € Dp\ Jp} has
maximal elements, and thus Ass(Jp) # () by Theorem 3.2.5.1. If Q € Ass(Jp), then Jp C Q C Pp, and
Pp is the only prime rp-ideal of Dp containing Jp by Theorem 3.2.3.3 (a). Hence Pp = Q € Ass(Jp).

2. If P = (J:z) € Ass(J), where z € D\ P, then P = /@ for some Q € Q by Theorem 1.3.5.2.
To prove the converse, let P = /@Q for some Q € Q. Then Qp = {Qp | Q € Q, Q C P} is the
reduced primary decomposition of Jp, and Pp = /Qp = /(Jp:2) for some z € Dp\ Jp. As Dp is rp-
noetherian, it follows that Pp is rp-finitely generated, and by Theorem 3.1.6.4 there is some k& € N such
that PE C (Jp:2). If k is minimal with this property, then there exists some y € Pf,_l such that yz ¢ Jp.
It follows that Ppyz C PEz C Jp, hence Pp C (Jp:yz) C Dp, and therefore Pp = (Jp:yz) € Ass(Jp).
Hence we obtain P € Ass(J) by Theorem 3.2.5.2 (b).

3. We assume that the set Q of all I € Z,.(D), which are not intersections of finitely many r-irreducible
r-ideals, is not empty. Then ) possesses a maximal element I. Since I is not r-irreducible, there exist
I, I, € Z,(D) such that I = I1 NIy, Iy # I and Iy # I. Since I C I and I C Iy, it follows that
I, Ir ¢ Q. Since both I; and I, are intersections of finitely many r-irreducible r-ideals, the same is true
for I, a contradiction.

4. If every r-irreducible r-ideal is primary, then D is r-laskerian by 3. If D is r-laskerian and
Q € Z,(D) is irreducible and 9 is a reduced r-primary decomposition of @, then Q = {Q} and thus @ is
primary. O

Theorem 3.2.7. Let D be a Mori monoid.
1. If T €Z,(D)* isv-irreducible, then I =zDND for some z € K*.
2. If a € D*, then Ass(aD)={P € v-spec(D) | a € P} is a finite set.
In particular, if X C D and X* # 0, then the set {P € v-spec(D) | X C P} is finite.

PROOF. 1. Let I € Z,(D)*® be v-irreducible. By Theorem 2.6.6, the set Q ={J € Z,(D)|J 2 I}
has minimal elements, and we assert that it even has a smallest element. Indeed, if Ji, Jo € Q) are
minimal elements, then J; N Jy 2 I, since [ is v-irreducible, hence J; N Jo € Q and therefore J; = Js.

Let I* be the smallest element of 2. Since

I=I,= () zDCI",

2EK*
I1CzD

there is some z € K* such that I C 2D and I* ¢ zD. Since zDND € Z;(D), I C zDN D and
I* ¢ zDN D, we obtain I = 2D N D.

2. Let a € D*. If P € Ass(aD), then clearly P € v-spec(D) and a € P. Conversely, suppose that
P € v-spec(D) and a € P. As P is v-irreducible, we obtain P = zD N D for some z € K* by 1. Hence
z7ta€ D,and P=2DND = (27*a)"*aDN D = (aD:p 2~ 'a) € Ass(aD).

It remains to prove finiteness. Assume to the contrary that the set Q = {P € v-spec(D) | a € P} is
infinite. Since D is v-noetherian, there exists a sequence (P),>o in Q such that, for every n > 0, P, is
maximal in Q\ {Pp, ..., P,—1}. By Theorem 2.6.6, there exists some m > 0 such that

PoN...NPyp=PyN...0 Ppi1 C Ppis
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and therefore P; C P,,41 for some j € [1,m]|. However, P; is maximal in Q\ {Pp,...,Pj_1}, and since
Prt1 € Q\{Po,...,Pn} CQ\{Py,...,Pj_1}, it follows that P, 1 = P}, a contradiction. O

Theorem 3.2.8. Let D be a Mori monoid and I € Z,(D)*.
1. If P e Ass(I) and I =Ip N D, then P is the greatest element of Ass(I).
2. If I is v-irreducible, then Ass(I) has a greatest element P, and I = Ip N D.

3. If P € vspec(D), a € P* and I = aDp N D, then I is v-irreducible, and P is the greatest
element of Ass(I).

PROOF. 1. Assume to the contrary that there is some @ € Ass(I) such that @ ¢ P, and fix an
element s € @\ P. Let b € D\ I be such that Q = (I:b). Then sb € I and therefore b IpND =1, a
contradiction.

2. Let © be the (finite non-empty) set of all maximal elements of Ass(I). We assert that

I=()IrpND.
PeQ
Once this is proved, it follows that |€2| = 1 since I is v-irreducible, hence Ass(I) has a greatest element
P,and I =1pND.

Clearly, I C IpND for all P € Q. Thus suppose that z € D\ I. By Theorem 3.2.5.1, every maximal
element in the set {(I:y) | y € D\ I} Dbelongs to Ass(I). Hence there is some @ € € such that
(I:z) C Q, and we assert that « ¢ Io. Indeed, if z € I, then there is some s € D\ @ such that s € I
and therefore s € (I:x) C @, a contradiction.

3. If P € v-spec(D), a€ P*and I =aDpnND,then I €Z,(D), IpND =1, P < Ass(aD) by
Theorem 3.2.7.2, and therefore there exists some b € D such that P = (aD:b) =b"taDND C b-1IND,
and we assert that equality holds. Indeed, if z € b='I N D, then b € I = aDp N D, hence zbs € aD for
some s € D\ P and therefore s € ab=*D N D = P, which implies = € P.

Hence it follows that P = (I:b) € Ass([), and by 1. P is the greatest element of Ass(I). It remains
to show that I is t-irreducible, and for this we prove:

A. IfJeZ,(D)and J 2 I, thenaJ ' C Pand b€ J.

Assume that A holds. If I = J; N Jy for some Ji, Jo € Zy(D) such that J; 2 I and Jo 2 I, then
b e JyNJy =TI and therefore P = (I:b) = D, a contradiction.

Proof of A. Let J € Z;(D) be such that J 2 I. If aJ~' ¢ P, then Dp = (aJ ')p = aJp', and
as Jp € Z,(Dp), it follows that Jp = (J;l)*1 =aDp and J C aDp N D = I, a contradiction. Hence
aJ=' C P and aJ~'b C Pb C aD, which implies J=! C b~'D and therefore b € bD = (J~')"t=J. O

Theorem 3.2.9.
1. A Mori monoid D is v-laskerian if and only if X(D) = {P € v-spec(D) | P* # (}.

2. Fvery s-noetherian monoid is s-laskerian.

Proor. 1. Let D be a Mori monoid.

Let first D be v-laskerian and P, Q € v-spec(D) such that Q® # () and Q C P. We must prove that
Q =P. Ifa € Q°, then P, Q € Ass(aD) by Theorem 3.2.7.2, and I = aDp N D is v-irreducible by
Theorem 3.2.8.3. By Theorem 3.2.6.4 [ is primary, and since I = aDpND C Qp N D = Q, it follows
that I = Ig N D. By Theorem 3.2.8.1 @ is the greatest element of Ass([), and therefore Q) = P.

Assume now that X(D) = {P € v-spec(D) | P* # (}. By Theorem 3.2.6.4 we must prove that every
v-irreducible v-ideal of D is primary. Let Q € Z,,(D)® be v-irreducible. By Theorem 3.2.8.2 Ass(Q) has
a greatest element P, and as P € X(D), it follows that P € v-max(D), and Ass(Q) = P(Q) = {P}. In
particular, P = /@), and Theorem 3.2.3.2 implies that @ is primary.
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2. Let D be an s-noetherian monoid. By Theorem 3.2.6.4 we must prove that every s-irreducible
ideal of D is primary. Let Q € D be an ideal which is not primary. Then there exist a, b € D such
that ab € Q, a ¢ Q and b ¢ Q. For all n € N, we have Q C (Q:b) C (Q:b") C (Q:b"H1),
and as D is s-noetherian, there exists some n € N such that (Q :0") = (Q : b®"). We assert that
Q = (Q:b™) N (QU'D), which shows that Q is not s-irreducible. Clearly, @ C (Q:b™) N (Q U " D),
and we assume that there is some x € (Q:0") N (Q U D)\ Q. Then x = b"u for some u € D and
b x = b*"u € Q. Since (Q:b") = (Q:b?"), it follows that b"u = z € Q, a contradiction. O

3.3. Laskerian rings

In this Section, we use the common terminology of commutative ring theory.

Theorem 3.3.1. Every noetherian ring is laskerian.

PROOF. Let D be a noetherian ring. By Theorem 3.2.6.4 it suffices to prove that every (d-)irreducible
ideal of D is primary. Let Q € D be an ideal which is not primary. Then there exist a, b € D such that
abe Q, a¢ Qandb ¢ /Q. Forall n € N, we have Q C (Q:b) C (Q:b") C (Q:b""1), and as D is
noetherian, there exists some n € N such that (Q:b") = (Q:6*"). We assert that Q = (Q:b")N(Q+b"D),
which shows that @ is not irreducible. Clearly, @ C (Q:0™)N(Q+b"D), and we assume that there is some
r € (Q:0")N(Q+b"D)\ Q. Then x = g + b"u for some ¢ € Q and u € D, and b"x = b"q + b*"u € Q.
Hence b*"u € Q, and since (Q:b") = (Q : b®"), it follows that b"u € Q and therefore also x € Q, a
contradiction. O

Theorem 3.3.2. Every laskerian ring satisfies the ACC for radical ideals.

PRrROOF. Let D be a laskerian ring. Then D satisfies the ACC for radical ideals if and only if D is
d(D)-noetherian. By Theorem 3.1.7 we must prove:
1. For every ideal J C D the set P(J) is finite.
2. D satisfies the ACC on prime ideals.
1. Let J C D be an ideal and Q = {Q1,...,Qm} a primary decomposition of J. If P € P(J), then
P> J=@Q:iN...NQy, and there exists some j € [1,m] such that Q; C P. Since J C 1/Q; C P, it
follows that P = /Qj;, and thus P(J) C {VQ1,...,vVQm}

2. Assume to the contrary that there exists a sequence (P,),>0 of prime ideals such that P, C P41
for all n > 0. For every n > 1, we fix an element p,, € P, \ P,_1, and we consider the ideals

J=Y pi-...opiP; and Jy=(Jipi-...-pn) D Pa.
i>0

Let Q ={Q1,...,Qm} be a primary decomposition of J. For n > 1, we obtain

an(ﬂQj:pr.---pn): (N (@Qipr-opn),
j=1 j=1
PP Q;
and we set Q, ={(Qj:p1-...-pn) | jEl,m], pr-...-0n €Q;}. fje[l,mland p1-...-p, ¢ Qj,

then (Qj:p1-...-py) is primary, and /(Q;:p1-... - pn) = +/Q; by Theorem 1.3.3.3 (b). In particular,
it follows that {v/Q | Q € Q,} € {VQ1,...,vV/Qm } for all n > 1. Now we prove the following assertion :

A. Foralln>1and all j € [1,n+ 1], we have

PiPj+1 -+ Pndn C Pj_1+ ijijrl S S
(2]
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Suppose that A holds. If n > 1 and 7 = n + 1, we obtain
J, C P, + Z pn+1pn+2'--~'pipi CPﬂ-i-l and therefore P, C J, = ﬂ QCPn+1.
i>n+1 QEN,
In particular, for every n > 1, there exists some @ € Q,, such that P, C v/Q C P,,1. This is impossible
since the set {\/Q | Q € Q, for some n > 1} is finite. Hence it suffices to prove A.
Proof of A. Let n > 1 and proceed by induction on j.
j =1: By definition,
plannCJ:PO+Zp1szz
i>1
jel,n], j—j+1: Let a € J,. By the induction hypothesis, we have

DiPj+1 -+ Pl = Gj—1 +ijpj+1«... -piqi, where ¢, € P, forall v>j5—1.
i>j
Hence
pj(pj+1 CPna— Y pit '~-~'piqz') =Gqj-1 € Pj1,
2]

and as p; ¢ P;_1, it follows that

pj+1~...-pna€Pj,1+qj+ Z pj+1-...-piPiCPj+ Z pj+1-...-piPZ—. O
i>j+1 12j+1

3.4. Valuation monoids and primary monoids

Remarks and Definition 3.4.1.

1. Let " be a (multiplicative) abelian group.

(a) Let < a partial ordering on I'. Then (I',<) is called a partially ordered abelian group
if, for all a, b, c € T, a < b implies ac < bc. Theset I'y = {x € T'| z > 1} is called the
positive cone of T. If T7' = {27! |2z €'y}, then I NT'T' = {1} (that means, 'y
is a reduced submonoid of T'), and < is a total order (and thus (T, <) a totally ordered
abelian group ) if and only if T'=T, U F;l.

2. Let A C T be a reduced submonoid. Then there exists a unique partial ordering < on I" such
that (I",<) is a partially ordered abelian group and I';. = A [indeed, define < by a < b if and
only if a™1be AJ.

3. Let I' be an additive abelian group and < a total ordering on I' such that, for all a, b, ¢ € T,
a < b implies a + ¢ < b+ c¢. Then we call T' = (I, <) a totally ordered additive abelian group,
andweset 't ={z€l'|x>0}. Then'=T,U-T; and 'y N -I'; = {0}.

4. Let D be a cancellative monoid and K = q(D). On K*/D*, we define a partial ordering < by
aD* < bD* if aD D bD (equivalently, if a='b € D). Obviously, this definition is independent
of the choice of representatives, and it makes K*/D* into a partially ordered abelian group.

G(D) = (K*/D*,<) is called the group of divisibility of D. By definition, G(D)y = D*/D*.

Theorem und Definition 3.4.2. Let D be cancellative.
1. The following assertions are equivalent :
(a) Foralla,be D, if a¢bD, then b < aD.
(b) Every s-finitely generated s-ideal J € Zs¢(D)® is principal.
(c) Forallz€ K*, if 2¢ D, then 2=t € D.
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(d) The group of divisibility G(D) is totally ordered.

(e) There exists a surjective group homomorphism w: K* — T onto a totally ordered additive
abelian group T such that D* = w= (') = {x € K* | w(z) > 0}.

(f) The set Mypy(K) of all D-submodules of K is a chain.

(g) The set Z5(D) of all ideals of D is a chain.

If these conditions are fulfilled, then D is called a waluation monoid (of K), and a group
epimorphism w: K* — ' onto a totally ordered abelian group I' such that D®* = w=!(T'y) is
called a waluation morphism of D.

If D is a valuation monoid and r is a module system on K such that D = D,., then D is called
an r-valuation monoid.

In particular:
e FEvery valuation monoid is a GCD-monoid.
e A monoid D is a valuation monoid if and only if D®/D* is a valuation monoid.
e Fvery divisible monoid is a valuation monoid.
2. Let D be a valuation monoid and w: K* — T' a valuation morphism of D.
(a) Ker(w) = D*, and w induces an order isomorphism
w*: G(D) - T, gwenby w*(xD*)=w(x) foral zeK*.
In particular, w*(D*/D*) =T5.
(b) If wy: K* — Ty is another valuation morphism of D, then there exists a unique order
isomorphism ¢: ' = T'y such that pow = w;.
(c) If E € P¢(K) and E® # (), then there exists some a € E such that ED = aD, and for every
such a € E we have w(a) = minw(E*).
3. If D is a valuation monoid and V is a monoid such that D C V. C K, then V is a valuation
monoid, V\ D CV*, P=D\V*esspec(D), and V=Dp=(V*ND)"'D.
4. Let (Va)aea be a chain of valuation monoids such that q(Vy) = K for all A € A. Then
Vi=JW and Vi=[)W
AEA AeA
are valuation monoids of K.
PrOOF. 1. (a) = (b) Let J € Z,¢(D)®. Then J = E,, where () # E € P¢(D*®), and we proceed by

induction on |E|. If |E| = 1, there is nothing to do. Thus suppose that E = E’U{a}, where a € E\ F’,
and that E! = bD. Then J =bD UaD. If a € bD, then J =bD. If a ¢ bD, then b € aD, and J = aD.

(b) = (c¢) Let z=a"'be€ K\ D, where a, b € D* and b ¢ aD. By assumption, there exists some
u € D such that aD UbD = uD, and thus u € aD or u € bD. If u € aD, then aD = uD D bD and
a”'b=z¢€ D. If u€bD, then bD = uD D aD and b~'a =2z~ € D.

(c) = (d) Ifz,y € K%, then either z71y € D or y~'x € D, and therefore either zD* < yD* or
yD* < xzD*. Hence G(D) is totally ordered.
(d)
e) (f) Let w: K* — T be an epimorphism onto a totally ordered abelian group T' such that
D* = w(I'y). Let M, N € M((K), M ¢ N, a € M\ N, and let b € N*® be arbitrary. Then
b='a ¢ D*, since otherwise a = b~'ab € DN = N. Hence w(b~'a) < 0, w(a='b) = —w(ab™1) > 0,
hence ab=! € D and therefore b € ab='bD = aD C M. Thus it follows that N C M.

(f) = (g) = (a) Obvious.

2.(a) If z € K*, then x € Ker(w) if and only if w(z) > 0 and w(z~!) = —w(x) > 0, that is, if and
only if z € D and 2! € D and thus x € D*.

= (e) Let w: K* — G(D) be the canonical epimorphism.
=
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As w is an epimorphism, it induces an isomorphism w*: K*/D* = G(D) — T, given as asserted,
and we must prove that w* is an order isomorphism. If z, y € K* and xD* < yD*, then 2 'y € D and
therefore 0 < w(x~ly) = —w(z) + w(y), which implies w(z) < w(y).

(b) Let w*: G(D) - T' and wj: G(D) — I'1 be the order isomorphisms induced by w and w;
according to (a). Then ¢ = wjow*~!: T — I'; is an order isomorphism, and it is obviously the only
order isomorphism satisfying ¢ ow = wy.

(¢) The finite set {cD | ¢ € E*} is a chain. Hence there exists some a € E*® such that ¢cD C aD
for all ¢ € E and thus ED = aD. For every such a € E® we have a~'c € D* for all ¢ € D®, hence
0 <w(a=te) = —w(a) + w(c), and therefore w(a) = minw(E*).

3. Let D C V C K be a monoid. Then K =q(V), and if z € K\ V, then 2 ¢ D and 2= € D C V.
Hence V is a valuation monoid of K. If 2 € V \ D, then 27! € D C V and thus z € V*. Hence
VADCV*. Ifz€ V\D, then z € VX, 271 € DNV*, and therefore z € (DNV*)~t C (DNV*)~1D.
Hence it follows that V = (V\ D)UD C (DNV>*)~1D C V, and equality holds.

4. Since (V))xea is a chain, it follows that V* and V, are submonoids of K, and by 2. V* is a
valuation monoid. If z € K \ Vi, then z € K \ V, for some p € A, and consequently z7* € V,,. If A\ € A
and V,, C Vy, thenz=! € V). If A\ € A and V,, ¢ Vj, then V), C V,,, hence = ¢ V, and therefore 27! € V.
Thus we have proved that 2= € Vy for all A € A and therefore z=! € V,. Consequently, also V, is a
valuation monoid of K. |

Theorem 3.4.3. Let I' be an additive abelian group. Then the following assertions are equivalent:

(a) There exists an ordering < on I' such that (', <) is a totally ordered additive abelian group.
(b) T is torsion-free.
(c) There exists a subset P C T' such that P+ P C P, PN—P ={0} andT = PU—P.

ProOF. (a) = (b) Let @ € T and n € N be such that na = 0. Then n(—a) = 0, and thus we may
assume that o > 0. If & > 0, then it follows that na > « > 0, a contradiction. Hence o = 0 and I is
torsion-free.

(b) = (c) Let Q be the set of all subsets R C I' such that R+ R C R and RN —R = {0}.
Then {0} € , and the union of every chain in ) again belongs to Q. By Zorn’s Lemma, ) contains a
maximal element P, and we must prove that ' = PU—P. Assume to the contrary that there is an element
v € '\ (PU—P). Then v # 0, and we assert that either PT = PUNyy € Q or P~ UNy(—7) € Q (which
gives the desired contradiction). Assume the contrary. Then P+ N —PT D {0} and P~ nN-P~ D {0},
and there exist p1, p}, p2, Py € P and nq, n}, ng, ny € Ny, such that p; +n1y = —(p] + nfy) #0 and
p2 — noy = —(ph — nby) # 0. Since PN —P = {0}, we have ny + nf > 0 and ng + n) > 0, and since
(n1+nh)y=—(p1+p)) € =P and (na+nb)y =p2+ph € P, we obtain (ny +n})(ne+nh)y e PN—P,
a contradiction.

(¢) = (a) For a, 8 €T, we define o < gif and only if 8 —« € P. Then (I, <) is a totally ordered
additive abelian group and I'} = P. O

Theorem 3.4.4. Let D be a valuation monoid, P C D a prime ideal, Q C D an ideal and
Q=[)Q".
neN

1. Qo and \/Q are prime ideals.
2. If Q is P-primary and a € D\ P, then Q = Qa. In particular, if Q is P-primary and principal,
then P =D\ D*.
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3. If Q1, Q2 C D are P-primary ideals, then Q1Q2 is P-primary. In particular, P™ is P-primary
for allm € N.

4. If Q is P-primary and P # P2, then Q = P" for some n € N.

5. If P=D\ D* and P # P2, then P = pD for some p € D°*.

PRrROOF. 1. If a, b € D\ Qo, then there exist m, n € N such that a ¢ @™ and b ¢ Q™. Hence it
follows that Q™ C Da, Q™ € Db, Q™b < Dab, Q™™™ C Q™b < Dab, and therefore ab ¢ Q™. Hence
ab ¢ Qo, and thus Qg is a prime ideal.

Since P(Q) is a chain, it follows that |P(Q)| = 1, and if P(Q) = { P}, then /Q = P.

2. Since a ¢ P, we obtain Q C P C aD, hence A =a"'Q C D and Q = aA. Since a ¢ P, it follows
that AC Q =aA C A, hence A =(Q and Q = aQ.

Assume now that @ = ¢D for some ¢ € D. If a € D\ D*, then ¢D = agD implies a € D*, and
therefore we obtain P = D\ D*.

3. By Theorem 1.3.2 we have /Q1Q2 = P. Suppose that a, b € D, ab € Q1Q2 and a ¢ P. Then
@1 = Q1a by 1., hence ab € a@Q1Q and therefore b € Q1Q2. Hence QQ1Q2 is P-primary.

4. We prove first that P™ C @ for some m € N. Assume the contrary. Then @) C P™ for all m € N,
hence

QCch=()P".
meN
Since P, is a prime ideal by 1., we obtain P = /Q C Py C P2 C P, a contradiction. Let now n € N be
minimal such that P* C Q, and let y € P" 1\ Q. Then Q C yD and A = y~1Q € Z,(D). Since Q = yA
and y ¢ @, we obtain A C P and therefore QQ = yA C yP C P™. Hence Q = P".

5. If p € P\ P? then P? C pD C P, hence v/pD = P and thus pD is P-primary by Theorem

3.2.3.2. Hence pD = P by 4. ([l

Theorem 3.4.5. Let D be a valuation monoid, K # D and M = D\ D*.
1. If M is not a principal ideal of D, then M~ = M, = D.
2. If 0 # X C D, then

X - aD if Xs=aM and M is not principal,
Y X, otherwise.

3. If M is principal, then v = s is the only ideal system of D. If M is not principal, then v # s,
v and s are the only ideal systems of D defined on K, and s =t. In any case, t = s is the only
finitary ideal system of D defined on K.

PROOF. 1. Suppose that there is some z € M1\ D. Then it follows that z=1 € D\ D* = M, hence
Mz C D and M C Dz~' C M, which implies that M = Dz~! is principal. Consequently, if M is not
principal, then M~! = D and thus M, = (M~1)~t = D.

22.If0#AXCD, ae D, Xs=aM and M is not principal, then X, = (X;), = aM, = aD by 1.

Assume now that Xy # X,. Then X, C X, we fix an element a € X, \ X, and we assert that
Xs =aM and M is not principal.

As aD ¢ X,, we obtain X, C aD, hence a='X, C D, and as a~' X, C D is an ideal, it follows that
a 'X, C M and X, C aM. If Xy C aM, then there is some ¢ € M such that ac ¢ X, hence X C acD
and therefore aD C X, = (Xs), C acD, which implies ¢ € D*, a contradiction. Therefore we obtain
Xs = aM. If M were principal, say M = pD for some p € D, then Xy = aM = apD and therefore
Xy = (Xs)y = apD = X,.

3. Let r: P(K) — P(K) be an ideal system of D. Then s < r < v, and M, € {M, D}. We assert
that r = s if M,, = M, and r = v if M,. = D. Indeed, let X C D be any subset such that Xg # X,. Then
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X, =aM, hence X,. = aM,, and the assertion follows by 2. Consequently, if M is a principal ideal, then
M, = M and therefore r = s. If M is not principal, then v # s and r € {s,v}. O

Theorem und Definition 3.4.6. Let D be cancellative, K # D and r: P(K) — P(K) a finitary
ideal system of D.
1. The following assertions are equivalent:
(a) Every q € D\ D* the principal ideal ¢D is primary.
(b) For alla € D\ D* and b € D*® there is some n € N such that b|a™.
(¢c) D\ D* is the only non-zero prime ideal of D.
(d) Bvery ideal J C D is primary.
If these conditions are fulfilled, then D is called primary.
2. If D is primary, then D is r-local.
3. If P e r-spec(D) and P* # 0, then Dp is primary if and only if P € X(D).
4. Let T C D*® be a multiplicatively closed subset such that T~'D is primary. Then T 'D = Dp
for some P € X(D).

PrROOF. 1. (a) = (b) Ifa € D\ D* and b € D*, then ab ¢ D*, hence abD is a primary ideal,
ab € abD and b ¢ abD. Hence there is some n € N such that a"*! € abD, which implies b | a™.

(b) = (¢) Let b€ D*\ D* and P € r-spec(D) be such that b € P. Then P C D\ D*, and we
assert that equality holds. If a € D\ D*, then there exists some n € N such that b|a™, hence o™ € P
and thus a € P. Hence P = D\ D*.

(¢) = (d) If J C D is an ideal, then Theorem 1.3.2.3 implies
Vi= () P=D\D*esmax(D),
PEP(J)
and thus J is primary by Theorem 3.2.3.2.
(d) = (a) Obvious.
2. Obvious by 1.
3. By Theorem 1.3.6.2.

4. Let T be the saturation of T. Then P = D\ T € s-spec(D), T !D = Dp and the assertion
follows by 3. ]

Theorem 3.4.7. Let D be a valuation monoid and K # D. Then the following assertions are
equivalent :

(a) D is primary.
(b) There is an additive subgroup T' C R such that D®/D* = T,.
(¢) There is no monoid B such that D C B C K.

PROOF. (a) = (b) If D is primary, then D/D* is also primary. Hence we may assume that D is

reduced, and it suffices to prove that there is an additive subgroup I' C R and an isomorphism d: KX T
such that ®(D*) =T,.
We fix an element ag € D’ = D*® \ {1}, and for a € D*, we define

M(a):{%‘meNO, neN, af|a" } € Qx.

We assert that, for every a € D®, the set M(a) is bounded, 0 € M(a), and M(a) = {0} if and only if
a = 1. Indeed, we obviously have M(1) = {0}, and 0 € M(a) for all a € D. Thus let a € D’. As D is
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primary, there exist k, [ € N such that ag|a® and a|a). Hence § € M(a), and if ™ € M(a) for some
m, n € N, then aJ*|a™|a?', hence m < nl and therefore 0 < sup M(a) <I. Now we define

®: D* - Rsg by ®(a)=supM(a).

Then ®(a) = 0 if and only if @ = 1. We prove first that ® is a homomorphism. Let a1, as € D, n € N,
and for i € {1,2}, let m; € Ny be such that ag |a} |agt*. Then aj* ™™ | (aja)™|ag* ™™ "2, hence

1 1 2
@ < q)(al) < mi+ , @ < q)(a2) < ma + and m < q)(ala2) < w7
n n n n n
and therefore
2
|®(a1) + P(az) — P(araz)| < o

As n — oo, we obtain ®(ajaz) = ®(a;) + ®(az). If a1, as € D and as|a;, then alagl € D, and
®(ar) = ®(ajay ') + ®(ag) > ®(as).

Let ®: KX — R be the extension of ® to a homomorphism of the quotient groups, given by
®(aya;t) = ®(ay) — ®(az) for all ai, ay € D*. If a € Ker(®) N D*, then ®(a) = 0 and thus a = 0.
If a € Ker(®) \ D, then ! € Ker(®) N D* and thus again a = 0. Hence ® is a monomorphism,
®(K*) C R is a subgroup, ®: K* — I' = ®(K*) is an isomorphism, ®(D®) C I'y, and it remains to
prove equality. Let a = aya; ' € K* be such that ®(a;) — ®(az) = ®(a) > 0. Then ay | a; and therefore
a= alagl e De*.

(b) = (c) Let T’ C R be a subgroup, ®: D*/D* 5T, an isomorphism and ®: K*/D* 5T its
extension to an isomorphism of the quotient groups. Let B be a monoid such that D C B C K. Then
D*/D* C B*/D* c K*/D*, and if A = ®(B*/D*), then 'y C A C I'. It is now sufficient to prove
that T' = A, for then it follows that B®*/D* = K*/D* and therefore B = K.

We fix an element a € A\T';. If c € T, then —a > 0 implies that there is some n € N such that
—c < n(—a), hence c —na € T'y and ¢ = (¢ — na) +na € A.

(c) = (a) Let P C D be a prime ideal such that P®* # (). If a € P®, then a=! ¢ Dp. Hence
D C Dp C K, which implies D = Dp and therefore P = D\ D*. Consequently, D \ D* is the only
non-zero prime ideal of D, and thus D is primary. (]

Theorem und Definition 3.4.8. Let D be cancellative, K # D and P = D\ D*. Then the
following assertions are equivalent:

(a) D is factorial, and there is some p € D such that {p} is a complete set of primes [ equivalently:
There is some p € D such that every a € D® has a unique representation a = p™u, where n € Ny
and u € D* ].

(b) D is an atomic valuation monoid.

(¢) D is atomic and P is a principal ideal.

)
)

(d
(e

D is primary and contains a prime element.

D is a valuation monoid, and

() P ={0}.

neN

(f) D is an s-noetherian valuation monoid.

(g) D is a v-noetherian valuation monoid.

If these conditions are fulfilled, then D is called a discrete valuation monoid or a dv-monoid.
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ProOOF. (a) = (b) Obvious.

(b) = (c) If g1, g2 € D* are atoms, then ¢1.D C gD or goD C ¢1D, since D is a valuation monoid.
Hence ¢1 D = g2 D, and thus D possesses up to associates precisely one atom. If ¢ € D is an atom, then
D ={q"u|n €Ny, ue D*}, and therefore P = ¢D.

(¢) = (d) Let p € D*® be such that P = pD. Then p is a prime element. Let @ C D be a prime
ideal, a € Q®* and a = uy - ... Uy, where m € N and uq, ..., u,, are atoms of D. For every j € [1,m] we
have u; € D\ D* = pD, hence u;D = pD and u; = pe; for some e; € D*. Thene=-e;-... e, € D*
and e~!'a = p™ € Q. Hence it follows that p € @, and therefore Q = P is the only non-zero prime ideal
of D.

(d) = (e) Let p € D be a prime element, and assume to the contrary that there is some a € D*®
such that a € P™ for all n € N. As D is primary, we obtain P = pD, and there exists some m € N such
that a|p™. Since a € P! = p™ 1D it follows that p™*!|a|p™, a contradiction.

If a, b € D*, let m, n € Ny be maximal such that a € p D and b € p" D, say a = p™u and b = p™v,
where u, v € D*, and suppose that m < n. Then b = ap™ ™wvu~! € aD, which implies that D is a
valuation monoid.

(e) = (f) By (e) we have P # P? and thus P = pD for some p € D by Theorem 3.4.4.5. We
prove that every ideal of D is principal. Let {0} # J C D be an ideal, and let n € Ny be maximal such
that J C P* = p"D. If y € J\ P""!, then y = p"u, where u € DX, hence p"D = yD C J C p"D, and
J=1yD.

(f) = (g) Obvious.

(g) = (a) Since v =t = s, it follows that every t-ideal of D is finitely generated and thus principal.
Hence D is factorial, and P = pD for some prime element p € D. If ¢ € D is any prime element, then
g € D\ D* = pD, hence ¢D = pD, and therefore {p} is a complete set of primes. O

Theorem 3.4.9. Let D be a GCD-monoid, t =t(D) and V C K a submonoid.

1. Let V' be a valuation monoid of K and r a finitary module system on K. Then the following
assertions are equivalent:

(a) V=V,.
(b) idg is an (r,t(V))-homomorphism.
(¢) X, CXV forall X C K.

2. The following assertions are equivalent:
(a) V is a t-valuation monoid.
(b) V is a valuation monoid, D C 'V, and the inclusion map D — V is a GCD-homomorphism.
(¢) V.=Dp for some P € t-spec(D).

3. For every subset X C K we have

Xy = () XDp= () XDp=()XV.
Péet-spec(D) Pet-max(D) vey
where V is the set of all t-valuation monoids of K.
ProoOF. 1. (a) = (b) We must prove that E,. C Eyy for all E € P¢(K). If E* = (), this is obvious.

If E € P¢(K) and E® # 0, then Ey(y) = Egy = EV = aV for some a € E by the Theorems 3.4.2.2 (c)
and 3.4.5. Now E C aV implies E, C (aV), = aV.

(b) = (c¢) If X CV, then X, C Xyv)= Xyv)= XV by Theorem 3.4.5.

(¢) = (a) V., CVV =V implies V,, = V.

2. (a) = (b) By 1., idk is a (t,t(V))-homomorphism, and thus Theorem 2.6.5 implies that D C V
and D — V is a GCD-homomorphism.
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(b) = (¢) By Theorem 2.6.5, idx is a (¢, ¢(V))-homomorphism. Since s(V) = t(V), it follows
that V\V>* € My(K), hence P = DN (V \ V*) € t-spec(D), and obviously Dp C V. To prove
the reverse inclusion, let 2 = a='b € V, where a, b € D and GCDp(a,b) = D*. Since D — V is a
GCD-homomorphism, we obtain GCDy (a,b) = V* and thus either a € V* or b€ V*. If a € V> then
a¢ Pand z € Dp. If b€ V*, then b € aV implies a € V* and again z € Dp.

(¢) = (a) By Theorem 2.5.4.1 we have (Dp); = (D¢)p = Dp. It remains to prove that Dp
is a valuation monoid. Thus let z € K, say z = a~'b, where a, b € D and GCD(a,b) = D*. Then
{a,b}; = D, hence {a,b} ¢ P. If a ¢ P, then z € Dp, and if b ¢ P, then 27! ¢ P.

3. If P € t-spec(D), then tp is a finitary Dp-module system on K, hence tp = s(Dp) = sp by
Theorem 3.4.5, and for every subset X C K we have X; C (X;)p = X;, = XDp. By Theorem 3.2.2
we obtain

Xec () Xppc () XDp= () (X)p =X,
Pet-spec(D) Pet-max(D) Pet-max(D)
and the assertion follows. ]

Theorem 3.4.10. Let ¢: K — K' be a homomorphism of divisible monoids, ' a module system
on K" and r = e*r’.
1. If V' is an r'-valuation monoid of K', then e~1(V') is an r-valuation monoid of K.

2. Let e be surjective. Then the assignment V +— e(V) defines a bijective map from the set of all
r-valuation monoids of K onto the set of all r’'-valuation monoids of K'.

PROOF. 1. Let V' be an r’-homomorphism of K'. If z € K \ e *(V’), then e(z) € K’ \ V', hence
g(x7t) =¢(x)"t € V' and 271 € e~ }(V’). Hence e (V') is a valuation monoid of K and, by Theorem
2.3.6, it is an r-valuation monoid.

2. Let V C K be an r-valuation monoid and 2’ € K’ \ (V). Then 2’ = ¢(x) for some x € K\ V.
Hence we obtain 7! € V and 2/~! = g(z) ! = e(z™!) € (V). Hence (V) is a valuation monoid of K’,
and since V =V, = e~ (e(V),+), it follows that (V) =¢&(V),» and V = e~ 1(g(V)).

Conversely, if V' is an 7/-valuation monoid of K’, then e (V") is an r-valuation monoid of K by 1.,
and V' =¢e(e"1(V)). O

3.5. Valuation domains

In this Section, we use the common terminology of commutative ring theory.

A domain D is called a wvaluation domain if its multiplicative monoid is a valuation monoid, and
if K = q(D), then D is called a valuation domain of K. In this case, the totally ordered abelian group
G(D)=K*/D* is called the walue group of D.

Theorem 3.5.1. A domain D is a valuation domain if and only if d(D) = s(D).

Proor. If D is a valuation domain, then s(D) = ¢(D), and as s(D) < d(D) < t(D), we obtain
s(D) = d(D). Conversely, assume that s(D) = d(D), and let a, b € D. Then it follows that

a+b GId(D)(D) :Ié(D)(D) =aDUbLD,

say a+0b € aD. Consequently, a +b = az for some x € D, and b = a(z —1) € aD. Hence D is a valuation
domain. m

Remarks and Definition 3.5.2. Let (T, <) be a totally ordered additive abelian group. We consider
the extension I' W {oo}, where @ < oo =a + oo for all @ € T.
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1. Let K be a field. A wvaluation of K (with value group I') is a surjective map v: K — I'U{oco},
such that for all a, b € K the following assertions hold :

V1. v(a) = o0 if and only if a =0.

V2. v(ab) =v(a)+ v(b).

V3. v(a+b) > min{v(a),v(b)}.
Consequences: If a, b € K, then v(—a) = v(a), v(a—b) > min{v(a), v(b)}, and if v(a) < v(b),
then v(a + b) = v(a).
Proof: v|K*: K* — T is a homomorphism. Hence 2v(—1) = v((—1)?) = v(1) =0, v(-1) =0,
v(—a) = v(—1)+v(a) =v(a), and v(a—b) > min{v(a),v(—b)} = min{v(a),v(b)}. If v(a) < v(b),
then v(a) = v((a + b) — b) > min{v(a + b),v(d)} = v(a +b).
If v is a valuation of K, then O, = {a € K | v(a) > 0} is a valuation domain with maximal
ideal p, = {a € K |v(a) >0} = O, \ OX, and v induces an isomorphism K*/OX = T.
We call (K,v) a wvalued field, O, the waluation domain, p, the valuation ideal and O,/p,
the residue field of (K,v).

2. Let D be a valuation domain, K = q(D) and w: K* — I' a valuation morphism of D. We set
w(0) = o00. Then w: K —T'U{oo} is a valuation of K, and O, = D.
Proof: Since D = {z € K | w(x) > 0}, it suffices to prove that w(z+y) > min{w(z),w(y)} for
all z, y € K. Thus let z, y € K, and assume that w(z) > w(y). If y = 0, then z = 0, and there is
nothing to do. If y # 0, then w(y~'z) = —w(y) + w(x) > 0, hence y~'z € D and therefore also
1+y 'z € D. But this implies w(x +y) = w(y(l +y'z)) = w(y) +w(l +y'z) > w(y). O

3. Let D bearing and vg: D — I'yU{oco} a surjective map satisfying V1, V2, V3 foralla, b € D.
Then D is a domain. If K = q(D), then there exists a unique valuation v: K — I" U {oco} such
that v|D = vg. It is given by v(a=1b) = vo(b) — vo(a) for all a € D* and b € D.

Theorem und Definition 3.5.3. Let K be a field, K[X] a polynomial domain and v: K — I'U{co}
a valuation. Then there is a unique valuation v*: K(X) — T'U{occ} such that, for all f € K[X],

f= ZaiXi (where a; € K, a; =0 for almost all ¢ >0) implies v*(f)=min{v(a;) |7 > 0}.
i>0
v* is called the trivial extension of v.

PRrROOF. It suffices to prove that v* | K[X] satisfies V1, V2, V3 for all f, g € K[X]. V1 is obvious.
Suppose that

f= Zaixi and ¢ = ZbiXi, where a;, b; € K, a;=0b; =0 for almost all i > 0.
>0 i>0
V2. By definition,
v*(f 4+ ¢g) = min{v(a; + b;) | i > 0} > min{min{v(a;), v(b;)} | ¢ > 0}
= min{min{v(a;) | i > 0} ,min{v(b;) | i > 0}} = min{v*(f),v*(9)}.
V3. We may assume that fg # 0 and k, | € Ny are such that o*(f) = v(ag) < v(a;) for all i > k,

and v*(g) = v(by) < v(b;) for all ¢ > I. Then we have v(a;) > v(ag) for all ¢+ > 0 and v(b;) > v(b;) for all
7> 0. We set

k+l1

i
fg= g ¢ X%, where ¢ = g ayb;—,, and in particular cgy; = arb; + E aybgti—y -
>0 v=0 v=1
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Hence v(¢;) > min{v(a,) +v(b;i—,) | v € [0,4] } > v(ag)+v(by) for all i > 0, and v(cky1) = v(ax) +v(by),
since  v(aybiti—y) = v(ay) + v(bkyi—n) > v(ar + v(by) for all v € [1,k + I]. Therefore we obtain
v*(fg) = vlar) +v(br) = v*(f) +v"(g)- 0

Theorem 3.5.4. Let k be a field and (I',<) an ordered additive abelian group. Then there exists
a valued field (K,v) with value group T' and residue field k.

PROOF. We consider the semigroup ring D = k[[';, X], consisting of all sums

a= Z a, X", where a,€k, ay, =0 foralmostall yeI'y,
velry
and we set
vo(a) =min{y €Ty |a, #0} €Ty if a#0, and vy(0)=00.
Then vg: D — T'y U{oo} is a surjective map satisfying V1, V2 V3 for all a, b € D. By 3.4.2.3, D is
a domain. If K = q(D), then there exists a unique valuation v: K — I' U {oo} such that v| D = vy. It

remains to prove that k is the residue field of (K, v).
If p={a € D|wv(a) >0}, then p € spec(D) and D = k + p. Every z € K* has a representation

z:X”%, where v €T, a€k, p,gep, andthen wv(z)=r.

q

In particular, we have z € O, if and only if v > 0, and therefore O, = D,. Hence p, = pD,, and
O,/py =D/p = k. O

Theorem 3.5.5. Let K be a field, D C K a subring and P C D a prime ideal. Then there exists a
valuation domain V of K such that D CV and P =D\ V*.

The proof requires the following Lemma from Commutative Algebra.

Lemma 3.5.6 (The (u,u"!)-Lemma). Let R C S be rings, u € S*, I <R and b € IR[uJNIR[u""].
Then there exist some k € N and 1o, ...,r5-1 € I such that b* + rp_1bF 14+ ... +mb+1o =0. In
particular, if I # R, then IR[u] # R[u] or IR[u™1] # Rlu~!].

PROOF OF THE LEMMA. Suppose that b= ag+aiu+...+a,u” =co+ciut+...+cu"™, where
m,n € Nand ag,...,an, Co,...,cm € I. Weset M = R+ Ru+ ...+ Ru"™"! and we assert that
bM C IM. Indeed,

bu! = Zaiu”l for 1€[0,m—1], and bu' = chu_jH for 1€ m,m+n—1].
i=0 j=0
In particular, for every i € [0, m + n — 1], there is a relation of the form

) m+n—1 ) m+n—1 ]
bu' = Z d; ;u’, where d;; €I, and therefore Z (b6;; —d; j)w) =0,
j=0 =0

which implies det(bd; ; — di7j)i7je[07m+n_1]ul =0 foralll € [0,m + n — 1], and therefore, as u € S*,
0 = det(bd;; — dij)ijefo,min—1 = ATl ™2 b + 1o, where r; € I for all
1€[0,m+n—2].

If IR[u] = R[u] and IR[u~'] = R[u~1!], then 1 € IR[u] N IR[u~!], and the above relation implies 1 € T
and thus I = R. 0
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PROOF OF THE THEOREM. Let 2 be the set of all domains W satisfying Dp C W C K such that
PW # W. Then Dp € Q and the union of every chain in Q belongs to . Indeed, let (Wy)aca be a
chain in Q,

W = U Wy, and assume that 1€ PW.
AEA
Then 1 = pywi + ... + ppw, for some n € N, p1,...,p, € P and wy,...,w, € W. Hence there is some
A € A such that {ws,...,w,} C W) and 1 € PW), a contradiction.

By Zorn’s Lemma, ) contains a maximal element V', and we assert that V is a valuation domain of
K such that D\ P = DNV*. Thus suppose that z € K \ V. Then V[z] D V, and as V is maximal
in Q it follows that PV[z] = V[z]. By the (u,u"!)-Lemma we obtain PV[z7!] # V[27!] and therefore
271 € V. Hence V is a valuation domain of K, and

P=PDpNDCPVNDCD\V*=WV\V)NnDpnNDCPDpND=P.
Hence P =D\ V*. O






CHAPTER 4

Invertibility, Cancellation and Integrality

4.1. Invertibility and class groups

Definition 4.1.1. Let D be a cancellative monoid, K = q(D) and r: P(K) — P(K) an ideal system
of D. A fractional r-ideal J € F,.(D) is called r-invertible if J € F,.(D)* (equivalently, J-. J = D
for some J' € F,.(D)).

If D is a domain, we use the common terminology of Commutative Algebra. In particular, we set
F(D) = Fypy(D) and Z(D) = Zyp)(D). In this case, (fractional) d(D)-ideals are called (fractional)
ideals, and they are called invertible if they are d(D)-invertible.

Theorem 4.1.2. Let D be a cancellative monoid, K = q(D) # D, r: P(K) — P(K) an ideal system
of D, v=uv(D), t=t(D), and for X C K, let X! = (D:X).
1. Let X, Y C K be such that (XY), =D. ThenY, = X1 = X1
2. If Je F.(D)*, then J-.J ' =D [hence J~! is the inverse of J in F,.(D)].
3. If g is an ideal system of D defined on K such that r < g, then F,.(D)* C Fy4(D)* is a subgroup.
In particular, every r-invertible fractional r-ideal is v-invertible, and F.(D)* C F,(D)* is a
subgroup.
4. If r s finitary, then F,.(D)* = F,¢(D)*, and F.(D)* C F (D)™ is a subgroup. In particular,
if J is r-invertible, then both J and J~' are r-finitely generated.
5. Frs(D)* = F.(D)*.

6. Fo(D)* ={J € Fp(D)* | (J:J)= Dj}.

PROOF. 1. Clearly, X~! = (D:X) = (D:X,) = X}, Since XY C (XY), = D, it follows that
Y € X! and therefore Y, C X!, since X! € M,(K) C M,(K). On the other hand, we have
X' = X"1(XY), C (X"'XY), C (DY), = Y,.

2. Let J' € F.(D) be such that J-. J' = (JJ'), = D. Then J' = J. =J"! by 1.

3. Let ¢ be an ideal system of D such that r < ¢q. If J € F.(D)*, then J = (J-1)7! = J,
and thus J € F,(D) C Fy(D). As JJ=' ¢ D and D = (JJ7'), Cc (JJ71), C D, it follows that
(JJ71)y = D whence J € Fy(D)*. Hence F.(D)* C Fu(D)*, and it remains to prove that it is
a subgroup. Thus let I, J € F.(D)*. Then (IJ), = I+ J € F.(D)* C Fq(D)*, and therefore
g =UJ)g=(I])r)q=TJ)g=1+J.

4. Let r be finitary. Then r < ¢, and thus F,.(D)* C Fy(D)* is a subgroup by 3. As F,.¢(D) C F,.(D)
is a submonoid, it follows that F, ¢(D)* C F.(D)*. Thus let J € F.(D)*. Then

tep=g gt =( U B)ws'=( U Bor?) = U Bwd,
EeP((J) EeP((J) " Ber()

since {E,-.J7 1| E € P¢(J)} is directed. Hence there exists some E € P¢(J) such that 1 € E,.-.J~1 C D
and therefore E,. -, J~! = D, which implies E, = (J7')7! = J, = J € F,¢(D). The same argument,
applied for J~! instead of J, shows that J~1 € F, ¢(D), and consequently J € F, ¢(D)*.

67
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5. Fp(D)* = 'f'hf(D)X = r,f(D)X-
6. If J € F,(D), then J = X! for some X C K, and (J:J) = (XX 1)1 =(X-, X 17! by
Theorem 2.6.2. Hence (J:.J) = D if and only if X -, X~1 = D. O

Theorem 4.1.3. Let D be a cancellative monoid, K = q(D) # D, r: P(K) — P(K) an ideal system
of D, and for X C K, let X~1 = (D:X).
For I € F.(D)*, the following assertions are equivalent:
(a) I€F.(D)*.
(b) TepJ=(J:I7Y) for all J € F(D).
(¢) For all J € F.(D) satisfying J C I there exists some C € I,.(D) such that J=1-,.C.
PrOOF. (a) = (b) Let J € F.(D). From [7*(I-.J) C (I7'1J), = (I7'1),J), = J we obtain
I-.JC(J:I71). Conversely, if z € (J:171), then z2€2D=1T-. 21" C1I-.J.
(b) = (a) With J=1"! weobtain1e€ (I7':171)=1-..1"' C D and therefore I -, I~* = D.
(a) = (c) Set C=I"1t-.JeF.(D). Then [-.C=1-.1"1-. J=J andsince C CI7!-1=D,
we obtain C € Z,.(D).

(¢) = (a) Ifa € I* then aD C I, and there exists some C € Z,.(D) such that aD = I -, C. Then
a~'C € F.(D),and I -, (a=*C) = D, whence I € F.(D)*. O

Theorem 4.1.4. Let D be a cancellative monoid, K = q(D) # D, r: P(K) — P(K) a finitary ideal

system of D and t = t(D).
1. Let D be r-local and X C K a D-fractional subset such that X, is r-invertible. Then there exists
some a € X such that X, = aD. In particular, every r-invertible fractional r-ideal is principal.
2. If Je€ F.(D)* and T C D* is a multiplicatively closed subset, then T~1J € Fr1,(T~1D)*.
3. For J € F.(D)®, the following assertions are equivalent:
(a) J is r-invertible.
(b) J € Frf(D) and Jp is principal for all P € r-max(D).
(c) Jp € Fig(D) and Jp is principal for all P € r-max(D).

Proor. 1. By Corollary 3.1.5 M = D\ D* is he only r-maximal r-ideal of D. Let X C K be a
D-fractional subset such that X,. is r-invertible. Then X ¢ (XM),. Indeed, otherwise it follows that
X, C X,+»M and therefore D = X 1., X, ¢ X -, X,-.M = M, a contradiction. If a € X \ (XM),,
then aX ! € Z,.(D), and we assert that aX ! ¢ M. Indeed, otherwise a € aD = a(X'X), C (XM),,
a contradiction. Hence aX ! = D, and X, = aX !+ X, = a(X!1X), = aD.

2. Obvious, since the map F,.(D) — Fp-1,(T"*D), Jw~ T1J, is a monoid homomorphism.

3. (a) = (b) If Jis r-invertible, then J is r-finitely generated by Theorem 4.1.2.4, Jp is r p-invertible
by 2. and thus Jp principal by 1.

(b) = (¢) If J = E, for some E € P¢(D), then J, = E}.

(¢) = (a) Assume that J € F,¢(D) and that for all P € r-max(D) there is some ap € D%
such that Jp = apDp. Since J € Fi¢(D), we obtain (J~1)p = (Jp)~! = a;le, and therefore
(Jor JYNp=Jprp Jpt = (apDp) +rp (ap'Dp) = Dp. Hence J -, J~! = D by Theorem 3.2.2. O

Remarks and Definition 4.1.5. Let D be a cancellative monoid, K = q(D), r: P(K) — P(K) an
ideal system of D, v =wv(D) and t = t(D).
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1. The map 9,: K* — F.(D)*, defined by 0.(a) = aD, is a group homomorphism with kernel
Ker(0,) = D*. Its cokernel
Cr(D) = Fr(D)* /0r(K*)

is called the r-class group of D, and it is usually written additively. It gives rise to an exact
sequence
1 - K*/D* — F.(D)* — C.(D) —0.

2. Let ¢: P(K) — P(K) be an ideal system of D such that r < g. Then F.(D)* C F,(D)* by
Theorem 4.1.2.3, and thus also C,(D) C C4(D). In particular, it follows that C,(D) C C,(D),
and if r is finitary, then C,(D) C C¢(D).

3. Let D be a domain and d = d(D). Then Pic(D) = C4(D) is called the Picard group and
C(D) = Cy(D) is called the divisor class group of D.

By 2. we have Pic(D) C C(D). The factor group G(D) = C(D)/Pic(D) is called the local
class group of D. By definition, G(D) = Fy(D)*/F(D)*.

Theorem 4.1.6. Let D be a domain.
1. If D is semilocal, then Pic(D) =0 [every invertible ideal is principal].
2. Suppose that C(Dpr) =0 for all M € max(D). Then G(D) = 0.

PROOF. 1. Let max(D) = {My,..., M.}, and for i € [1,r], let

M; =()M;, whence M; <D and M ¢ M;.
o
If J € F(D)* and ¢ € [1,r], then JM* ¢ JM,;, we fix an element a; € JM; \ JM;, and we set
a=ay+...+a.. Thenae J\ JM,; for all i € [1,7], hence aJ ! < D and aJ =1 ¢ JM; for all i € [1,7],
which implies aJ ! = D and J = aD.
2. Let J € ft(D)X. If M e HlaX(l))7 then Jy € ftM(DM)X C ft(DM)(DM)X and thus Jys is
principal. Since J € Fy¢(D), it follows that J € F(D)* by Theorem 4.1.4.2. O

4.2. Cancellation

Throughout this section, let K be a monoid, and Pf(K)={X e P¢(K) | XNK*#0}.

Definition 4.2.1. Let r be a weak module system on K.

1. An r-module A € M,.(K) is called (r-finitely) r-cancellative if, for all (r-finitely generated ) r-
modules M, N e M,.(K), A-, M =A-..N implies M =N.
In particular, A € M,.(K) is r-cancellative if and only if A € M,.(K)*, and then A is r-finitely
r-cancellative. If A € M, ¢(K), then A is r-finitely r-cancellative if and only if A € M, ¢(K)*.

2. riscalled cancellative or arithmetisch brauchbar if every A € M,.(K)NP{(K) is r-cancellative.
If M,.(K) is a cancellative monoid, then r is cancellative, and the converse is true if K itself is
cancellative.

3. riscalled finitely cancellative or endlich arithmetisch brauchbar if every A € M, ¢(K)NPf(K)
is r-finitely r-cancellative.
If M, ¢(K) is a cancellative monoid, then r is finitely cancellative, and the converse is true if K
itself is cancellative.
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Theorem 4.2.2. Let r be a weak module system on K and A € M,.(K).
1. The following assertions are equivalent:
(a) A is (r-finitely) r-cancellative.
(b) For all (r-finitely generated) r-modules M, N € M,(K), A+ M C A-.N implies M C N.
(¢) For all (finite) subsets M, N C K, AM C (AN), implies M C N,.
)

(d) For all (r-finitely generated) r-modules N € M,.(K) and all c€ K, cAC A-. N implies
ceN.

(e) For all (r-finitely generated) r-modules N € M, (K) we have (A- N:A) C N
2. Let r be finitary, and let A be r-finitely generated and r-finitely cancellative.
(a) A is r-cancellative.
(b) If T C K is a multiplicatively closed subset, then T~ A is T~ 'r-cancellative.
3. If A is r-finitely r-cancellative, then (A:A) C {1},.
4. r is finitely cancellative if and only if ((EF),:E) C F, for all E € P{(K) and F € P¢(K).

PRrOOF. 1. We prove the equivalence under the additional specification of r-finiteness.

(a) = (b) If M, N € M, ¢(K)and A-,M C A-.N, then A-,(MUN), = [(A-, M)U(A-.N)], = A-.N,
and as (M UN), € M, ¢(DK), it follows that M C (M UN), = N.

(b) = (¢) If M, N € P¢(K) and AM C (AN),, then A -, M, = (AM), C (AN), = A+, N, and
M,, N, € M, ¢(K). Hence it follows that M C M, C N,.

(¢c) = (d) Obvious, setting M = {c}.

(d) = (e) Obvious.

(e) = (a) Let M, N € M, ¢(K) besuchthat A, M =A-, N. Ifz € M, then Ax CA- M =A- N
and therefore x € (A- N:A) C N. Hence M C N, and by symmetry equality follows.

2. Suppose that A = E,., where E € P¢(K).

(a) Byl. we must prove that, for all subsets N C K and ¢ € K, ¢E C (EN), implies ¢ € N,.

Thuslet N C K, c€ K and ¢cE C (EN),. If e € E, then ce € (EN),, and as r is finitary, there exists
some F € P¢(N) such that ce € (EF,),. If

F=|]JF., then F.e€P(N) and cE¢c |J(EF.), C (EF),,
ecE eelE
and therefore ¢ € F,, C N,., since A = E, is r-finitely r-cancellative.
(b) By 1. we must prove that (I 'A-p-1, N : T7*A) C N for every N € Mp-1,¢(T7'K). If
N e ./\/lT_lnf(T’lK), then N = T-1N for some N € M, ¢(K), and

(T7'Ap o, TN :T7PA) = (T YA+, N): T 'E) =T A+, N:E) =T *(A-, N:A) CT!N.

3. If A is r-finitely r-cancellative, then A C A-.{1}, implies (A:A) C (A-{1},:4) C {1}, by 1.(d).

4. Let r be finitely cancellative, E' € P} (K) and F' € P¢(K). Then E, is r-finitely r-cancellative, and
as F, € M, ¢(K), it follows that ((EF),:E) = (E, + F,:E,) C F,.

Conversely, assume that ((EF),:E) C F, forall E € Pf(K) and F € Pe(K). If A € M, ¢(K)NPf (K),
then A = E, for some E € Pf(K), and (A, N:A) C N for all N € M, ¢(K). Indeed, if N € M, ¢(K),
then N = F, for some F € P¢(K), and (A -, N:A) = (EF),:E,) = (EF),:E) C F, = N. O

Theorem 4.2.3. Let D be a cancellative monoid, K = q(D), r: P(K) — P(K) an ideal system of
D and J € F.(D).

1. If J is r-finitely r-cancellative, then (J:J) =
2. If J is r-invertible, then J is r-cancellative.
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PRrROOF. 1. If J is r-finitely r-cancellative, then D C (J:J) C {1}, = D by Theorem 4.2.2.3, and
therefore (J:J) = D.

2. Let J be r-invertible and M, N € M,.(K) such that J-.M = J+.N. Then M =J '.. J.. M =
J 1t Jw N=N. O

Theorem 4.2.4. Let D be a ring and I < D.

1. Then the following assertions are equivalent:
(a) I is (d-)cancellative.
(b) For every M € max(D) there exists some ap € D%, such that In = apDay.
If I is finitely generated, then there is also equivalent:
(') I is (d-)finitely (d-)cancellative.

2. Let D be a domain, and let I be finitely generated. Then I is cancellative if and only if I is
invertible.

PRrOOF. 1. (a) = (a’) Obvious.

(a’) = (a) By Theorem 4.2.2.2 (a).

(b) = (a) Let B, C' < D be such that IB = IC. For M € max(D), this implies Ins By = InCh,s
hence ap By = apCh and therefore Ay = By, since apr € Dj;. Now B = C follows by Theorem
3.2.2.

(a) = (b) We prove first: If I = (a,b, A), wherea, b€ D, A<D, M € max(D) and MI C A,
then I = (a, A) or I = (b, A).
We consider the ideal J = (A2, a? + b2, ab) < D and calculate
I?J = (a*, b?, ab, aA, bA, A?)(A?, a® 4 b?, ab)
= (a®A?, b2 A%, abA?%, a A3, bA3, AL, a* + a®b?, a®b® + b*, a®b + ab®,
(a® 4+ ab®) A, (a®b+ b*)A, (a® + b*) A2, a®b, ab®, a*b*, a®bA, ab®A)
= (a®A?, b2 A%, abA?%, a A3, bA3, A%, a*, b, P A, B3 A, 3D, ab®, a®b?, a®bA, ab®A) = I*.
Hence it follows that I? = J and therefore a? € J, say a? = M\(a®?+b%)+2z, where A € D and z € (42, ab).
If A€ M, then A\a € MI C A, and a? = (Aa)a + \b? + z € (42, b?, ab, aA), and therefore

I(b,A) = (b?, ab, aA, bA, A%) = (a®, b?, ab, aA, bA, A*) = I? | which implies I = (b, A).

If A\ ¢ M, then D = (M, )\),say 1 =m-+\uforsomem € M andu € D. Since mb? = (mb)b € MIb C bA
and Ab? = (1 — N)a? — z € (a?, ab, A?), we obtain b? = mb? + \b*u € (a?, ab, bA, A?%), and therefore

I(a, A) = (a?, ab, aA, bA, A%) = (a®, b?, ab, aA, bA, A?) = I? | which implies I = (a, A).

Now we can do the actual proof.

Let M € max(D) and m: I — I/MI the canonical epimorphism. Let B C I be a subset such that
7| B is injective and m(B) is a D/M-basis of M/IM. Then I = (B)+ MI, and I D (B’)+ MI for
every subset B" C B. We assert that |B| = 1. Indeed, suppose the contrary. Then B = {a, b} U B’,
where a # b and {a, b} N B’ =0, and if A = (B')+ MI < D, then I = (a,b,A). By A we obtain
I={(a,A)orI=(bA),acontradiction. Hence |B| =1 and I =bD + M1 for some b € D.

We assert that In; = (bD)y = 2Dy, and for this we must prove that ¢ € (bD)y; for all ¢ € I. If
c€ I, then ¢l =bcD+cMI C I(bD + ¢M), which implies ¢ € bD + ¢M, say ¢ = bu+ c¢m for some u € D
and m € M. Hence ¢(1 — m) = bu and

c bu
- = bD) s .
1 1+m€( Jm




72 4. INVERTIBILITY, CANCELLATION AND INTEGRALITY

It remains to prove that % is not a zero divisor in Djy;. Let ¢ € D and s € D\ M be such that
% = % € Djs. Then teb = 0 for some t € D\ M, and we obtain (tcl)y = % Dy = {0} = (tcMI)p.
For N € max(D) \ {M} we have My = Dy and therefore (tcMI)y = (tcI)y. By Theorem 3.2.2 we
obtain tcl = teM I, which implies tc € tcM, say tc = tem for some m € M. Consequently,

¢ te(l—m) O

-=—-—=-€Dy.

s st(l—-m) 1 M

2. By Theorem 4.1.4. O

<
S

Theorem und Definition 4.2.5. Let r be a finitary weak module system on K. Then there exists
a unique finitary weak module system r, on K such that

X.,= |J (XB),:B) for all finite subsets X C K. (%)
BeP; (K)
If K is cancellative and r is a module system, then r, is a module system.

ry is called the completion of r. It has the following properties:
1. r <r,, and (x) holds for all subsets X C K.

2. 1, 1s finitely cancellative, and if q is any finitely cancellative finitary weak module system on K
such that r < g, then ry < q. In particular, (ra)a = 7a, and r is finitely cancellative if and only
if r=r,.

3. Let D C K be a submonoid. Then r[D], = ra[D]. In particular, if r is a weak D-module system,
then so is r,.

4. If T C K* is a multiplicatively closed subset, then T 1r, = (T1r),.

5. Let D be a GCD-monoid, L = q(D) and t =t(D): P(L) — P(L). Thent is finitely cancellative,
and Hom(,+ (K, L) = Hom(, 4 (K, L).

In particular, if K is divisible, then every r-valuation monoid of K is an r,-valuation monoid.

PROOF. Note that for every subset X C K, the system {((XB),:B) | B € P{(K) } is directed.
Indeed, if B, B’ € P¥(K), then ((XB),:B) C (XBB'),:BB').

By Theorem 2.2.2 we must check the conditions M1¢, M2¢ and M3¢. Suppose that X, Y € P¢(K)
and c € K.

M1¢ If B € P¥(K), then XBU{0} C (XB), implies X U{0} C (XB),:B) C X,..

M2 Suppose that X CY,, and z € X,,. Then there is some F' € P¥(K) such that z € (XF),: F).
As {(YB),: B) | B € P{(K)} is directed, there exists some B € Pf(K) such that X c ((YB),: B).
Then zFB C (XF),B C (XBF), C [(YB),F], = (YFB), and thus z € (YFB),:FB) CY,,, since

FB e P;(K).
M3 We have
cX,,= |J e(xB):B) ¢ |J («XB),:B) ¢ |J ((XB):B)=(cX)s,.

BeP; (K) BeP; (K) BeP: (K)

Here the first inclusion becomes an equality if K is cancellative, and the second one becomes an equality
if r is a module system. Consequently, r, is a module system if K is cancellative and r is a module
system.

1. If X € P¢(K) and B € P§(K), then X, B C (XB),, hence X, C ((XB),:B) C X,, and therefore
r < r,. For every subset X C K, we have

x.= U (U e),:B)- U U = E..
BePy (K) E€Pi(X) BeP; (K) E€P(X) EcP(X)

If r is a module system, then M3+ holds for r,, and thus 7, is also a module system.
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2. By Theorem 4.2.2.4 we must prove that ((EF),,: E) C F,, for all E € P§(K) and F € P¢(K).
Thuslet E € P§(K), F € P¢(K) and z € ((EF),,: E). Since zE C (EF),,, there exists some B € P{(K)
such that zE C ((EFB),:B). Hence it follows that zEB C (EFB), and z € ((EFB),:EB) C F,,,
since EB € Pf(K).

Let now ¢ be any finitely cancellative finitary weak module system on K such that r < ¢. If X € P¢(K)
and B € P{(K), Theorem 4.2.2 implies ((XB),:B) C ((XB),:B) C X,, and thus r, < ¢ by Theorem
2.3.2.1.

3. For X C K, we obtain

X.ip=(XD),,= |J (XDB),:B)= |J ((XB).p:B)=Xp),-
BeP; (K) BeP; (K)

4. By Theorem 2.4.1 we must prove that jp(E)p-1,), = T7'E,, for all E € P¢(K). Thus assume

that F = {ai,...,ay}, where n € Ny and aq,...,a, € K. Then
Jr(E)(r-1p), = U ((jr(E)B)r-1,:B).
BeP: (T-1K)
Suppose that
— b b
B = {i—m} e P{(T 1K),
t1 tm

where m € N, by,...,b, € K and ty,...,ty, € T. Then B = {b1,...,bn} € P{(K),

(BB, = {2
and ((jr(E)B)r-1,:B) = (I'"Y(EB),:T"'B) = T~*((EB),:B). Hence it follows that
B, =T (U (EB):B)) =T7E,.

BePi(K)
BNK*#£0

‘ iel,n], jel,m } — (T7YEB)p-1, = T"Y(EB),,

-r

5. By Theorem 1.5.3, every t-finitely generated t-ideal of D is principal. Hence it follows that
M¢(L) = {a'J | J € T,s(D)*, a € D*} = {2D | z € L*} is cancellative, and thus ¢ is finitely
cancellative.

Since r < r,, every (r,,t)-homomorphism is an (r,t)-homomorphism. If ¢: K — L is an (r,t)-
homomorphism, then by Proposition 2.3.6.2 we must prove that ¢(X,,) C ¢(X); for all X € P¢(K). If
X e Ps(K), z€ X,, and B € P{(K) are such that zB C (XB),, then

¢(2)p(B) C p((XB)r) C p(XB): = [p(X)p(B)]:
and therefore ¢(z) € ([p(X)@(B)li:¢(B)) C ¢(X); by Theorem 4.2.2.
Let K be divisible, V C K is a valuation monoid and ¢ = ¢(V'). It follows by Theorem 3.4.9 that V
is an - (resp. r,-)valuation monoid if and only if idg is an (r,t)- [resp. (ra,t)]-homomorphism. Hence
every r-valuation monoid is an 7,-valuation monoid. O

Theorem 4.2.6. Let D C K be a submonoid and s = s(D): P(K) - P(K). If X C K, XNK* # ()
and z € K, then z € X,_ if and only if there exist some k € Ny and | € N such that 2*T' € 2*X'D.

PROOF. Note that z € X, holds if and only if zB C (XB), = XBD for some B € P} (K).
Suppose that k € Ng and [ € N are such that 2**! € 2*X!D, and let Xy C X be a finite subset such
that Xo N K* # 0 and 2**! € 2* X D. Then
k-1
B= [J X§Hr7 ePe(K), X§T''c B, and therefore B e Pi(K),

v=0
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k+1—1 k+1—-2
:B= | xgrruft o Xo< U gzttt szg;lD) C XoBD C XBD,
v=1 v=0

and therefore it follows that z € X, .

Assume now that z € X, , and let B = {b1,...,b,} € P¢(K) be such that n > 1, b € K* and
zB C XBD. Then there exist x1,...,2, € X and a map o: [1,n] — [1,n] such that zb; € b,;)x;D
for all i € [1,n]. Let k € Ng and [ € N be such that o¥*!(1) = o*(1). Then

k-1 k-1 k411
2y, bok+i(1) H ZTouy D = bgr(1) H Tgn(1) H Tau(1y D C 0 X'D
pn=0 n=0 n==k
and therefore zFt! € 2P X! D. O

Theorem 4.2.7. Let R be a ring, D C R a subring, d =d(D): P(R) - P(R), X CR, XNR*#0
and z € R. Then z € X4, if and only if z satisfies an equation z" + a12" ' +...+ ap_12+a, =0,
where n € N and a; € (X")q for alli € [1,n].

PrROOF. Note that z € Xy, holds if and only if 2B C (XB), for some B € Pf(R).

Suppose that z € R satisfies an equation 2" + a12" ' 4+ ...+ an_12 + a, = 0, where neN and
a; € (XY)q forall i € [1,n]. Let Xo C X be a finite subset such that Xo N R* # 0 and a; € (X{)q for all
i€[l,n]. If

n—1
B=|JX{z"""" €P¢(R), then XJ'CB, hence BeP;j(R), and
v=0

n—2
2B ={z"}U U Xyt c {z"} U X B.
v=0
Since
n—1 n—1
P —— Z ay12" 0 € (U X(’;“zn‘”‘l)d C (XoB)a C (XB)a,
v=0 v=0

it follows that zB C (X B)4 and thus z € X, .
Assume now that z € Xg4,, and let B = {b1,...,b,} € P¢(R) be such that n > 1, b; € R* and
zB C (XB)g. Then there exist elements x; ; € Xg such that

zb; = inyjbj and therefore Z((Si,jz —x;;)bj =0 forall i€ [l,n]
j=1 j=1
Hence it follows that det(d; ;2 — 2 ), je[1,,01 = 0 and consequently det(d; ;2 — i ;);, je1,n) = 0, which
gives the desired equation for z. O

4.3. Integrality

Throughout this section, let K be a monoid, and P;(K)={X e Ps(K) | XNK*#0}.

Remarks and Definition 4.3.1. Let r be a finitary weak module system on K.
1. Let X C K. An element « € K is called r-integral over X if
reX,= |J ((XB):B)
BePy (K)

[equivalently : There exists some B € Pf(K) such that B C (XB), ].
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2. Let D C K be a submonoid and r a weak D-module system on K. Then

D= |J (:7)
JEMT’f(K)
JNK*#)

[an element x € K is r-integral over D if and only if there is some J € M, ¢(K) such that
JNK*#0and z € (J:J)].

Proof. By definition, € D, if and only if B C (DB), = B, and thus B, C B, for some
B € P} (K), and this holds if and only if zJ C J for some J € M, ¢(K) such that JNK* # (. O

3. Let D C B C K be submonoids.
e c?(D)=D, NB is called the r-(integral) closure of D in B.
e Bis called r-integral over D if cl?(D)= B.
e Dis called r-(integrally) closed in B if cl?(D) = D.

By definition, B is r-integral over D if and only if B C D,,, and D is r-integrally closed in B if
and only if D, N B = D.

4. If K is aring, D C B C K are subrings and = d = d(K), then (by Theorem 4.2.7) the above
definitions coincide with the usual ones in ring theory as follows.

e z€ K iscalled integral over D if z is d-integral over D [equivalently, z € Dy, |.
e cl?(D) =Dy NB is called the integral closure of D in B.

o Bis called integral over D if c1®(D) = B.

e Dis called integrally closed in B if c1®(D) = D.

By definition, B is integral over D if and only if B C Dy,, and D is integrally closed in B if and
only if Dy, N B = D.

5. Let D be cancellative, K = q(D) and r: P(K) — P(K) a finitary ideal system of D. Then
(D) = X (D) = D,, is called the r-(integral) closure of D, and D is called r-(integrally)
closed if cl.(D) = D. By 2. we have

(D)= |J (),
JET, +(D)*
and consequently D is r-closed if and only if (J:J) =D for all J € Z,¢(D)*.
[Indeed, {J € M,.¢(D) | JNK* £ 0} = F,¢(D)* ={c"'J | ce D*, J€Z.¢(D)*}, and if c € D*
and J € Z,¢(D)®, then (c7*J:c71J) = (J:J)].
In particular:

(a) If s = s(D): P(K) — P(K), then cly(D) = {z € K | 2" € D forsome n € N} by
Theorem 4.2.6. cls(D) is called the root closure of D, and if D = cls(D), then D is called
root-closed.

(b) If D is a domain, and d = d(D): P(K) — P(K), then D is called integrally closed if it is
d-integrally closed.

Theorem 4.3.2. Let D be a cancellative monoid, K = q(D), and let r, q: P(K) — P(K) be finitary
ideal systems of D such that r < q.

1. If r is finitely cancellative, then D is r-closed.

2. cl.(D) C cly(D), and if D is q-closed, then D is r-closed and, in particular, D is root-closed.
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PrROOF. 1. By Theorem 4.2.3 we have (J:J) = D for all J € Z,¢(D). Hence D is r-closed by
Remark 4.3.1.4.

2. If x € cl, (D), then there exists some J € Z,¢(D)*® such that x € (J:J). Then J, € Z,¢(D)*® and
zJy = (2J)q C Jy implies z € (J,:J,) C cly(D). If D is g-closed, then D = cl,(D) D cl,.(D) D D. Hence
D is r-closed, and since s(D) < r, it is also root-closed by Remark 4.3.1.5. (]

Theorem 4.3.3. Let D be an integrally closed domain, K = q(D) and d = d(D): P(K) — P(K).
Then d, is a finitary ideal system of D, dy-max(D) = d-max(D), and if X C D, then X4, = D if and
only if X4=D.

PROOF. d, is a finitary D-module system on K, and as Dy, = D, it is even an ideal system of D.

If X C D, then X4 C X4, C D, and therefore Xy = D implies X4, = D. Conversely, if X4, = D,
then 1 € Xg4,, and thus there is an equation 1+4+a; + ...+ a, =0, where n € N and a; € (Xi)d for all

€ [1,n]. Since Xg < D and (X%)g = (X4)" C X for all i € [1,n], it follows that 1 € X; and therefore
Xy=D.

If M € d-max(D), then M C My, € D, and there is some M* € dy-max(D) such that My, C M*.
But M* € Zyg(D), and therefore M = M* € d,-max(D). Conversely, if M € d,-max(D), then M € Zy4(D),
and there exists some M € d-max(D) such that M C M. Since M4, C D, we obtain M = M,, and
therefore M = M € d-max(D). O

Theorem 4.3.4. Let D C B C K be submonoids and r a finitary weak module system on K.
1. Let B be an r-monoid and B' = CIF(D) C B. Then B’ is an r-monoid which is r-closed in B.
2. Let B be r-integral over D. If z € K is r-integral over B, then z is r-integral over D.
3. If T C D*® is a multiplicatively closed subset, then cl?jf(T‘lD) =T X (D).
4. For P € rp-max(D) let jp: K — Kp be the natural embedding. Then
D)= () ip'(afr(Dp).
Péerp-max(D)
In particular:
(a) An element z € K is r-integral over D if and only if, for all P € rp-max(D), the element

¥ € Kp is rp-integral over Dp.
(b) If D* C K*, then Dp C Kp = K for all P € rp-max(D), and

X (D) = (| dE(Dp).
Perp-max(D)

(¢) If D is cancellative and K = q(D), then D is r-closed if and only if, for all P € r-max(D),
Dp is rp-closed.

PROOF. 1. Since r < r,, it follows that D, is an r-monoid. Hence B’ = clf(D) =D, NB isan
r-monoid, and cl?(B’) = B, N B = (D,, N B),, N B = D,, N B.

2. If B is r-integral over D, then B C D,,, and therefore B, = D,,.

3. If T C D* is multiplicatively closed, then (T~'D)p-1,y, = (I"'D)p-1,, = T~'D,, by the
Theorems 4.2.5.4 and 2.4.1.

4. Since D,, is a D-module, Theorem 3.2.2 implies

Cli{(D) =D,, = ﬂ jlgl((Dra)P) .
Perp-max(D)

If P€rp-max(D),then (D,)p = (Dp)u)p, = (Dp)irp), = clir (Dp).
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If D* C KX, then Dp C Kp = K, jp = idK, and (Dp) = Cli{(DP) by Theorem 2.5.4. O

(Ta)P
We reformulate Theorem 4.3.4 for the classical case of integral ring extensions.

Theorem 4.3.5. Let D C B C K be rings.
1. B’ = CIB(D) is a subring of B which is integrally closed in B.
2. If B is integral over D and z € K 1is integral over B, then z is integral over D.
3. If T C D* is a multiplicatively closed subset, then o1’ X(T~1D) = T~1c1%(D).
4. For P € max(D) let jp: K — Kp be the natural embedding. Then
d“(D)y=" () Jp' ("7 (Dp).
Pemax(D)
In particular:

(a) An element z € K is integral over D if and only if, for all P € max(D), the element ¥ € Kp
1s integral over Dp.

(b) If D* C K*, then Dp C Kp = K for all P € max(D), and

d¥(py=" () d*(Dp).
Pemax(D)

(¢) If D is a domain and K = q(D), then D is integrally closed if and only if Dp is integrally
closed for all P € max(D).

PROOF. By Theorem 4.3.4, observing that T-'d = d(T~'D) for every multiplively closed subset
T C D*, and that dp = d|P(D). O

4.4. Lorenzen monoids

Remarks and Definition 4.4.1. Let D be a cancellative monoid, K = q(D), r a finitary module
system on K and D C {1},, (then D, = {1},,).

By Theorem 4.2.5.2, the monoid M, ¢(K) is cancellative, and M, ¢(K)®* ={C € M, ¢(D) | C* #0}.
We define
A(K) =q(M,, ¢(K)), and wecall A.(K)* =A.(K)* the Lorenzen r-group of K.
For an element X € A,.(K)®, we denote by X!~! its inverse in A,.(K). Then we obtain
A(K)={CUA| A Ce M, ¢(K), C*#0}.

If A, A" € M, ¢(K) and C,C" € M, ¢(K)*, then CI"1A = C'[=UA" if and only if (AC"),, = (A'C),.,,

and multiplication in A, (K) is given by the formula (C[-HA). (C'-14") = (CC"),,[mHU(AA4"),,. In

particular, D, = {1}, is the unit element and {0} is the zero element of A, (K). The submonoid
AHK)={CFUA | A, Ce M, ¢(K), C*#0, ACcC} C A(K)

is called the Lorenzen r-monoid of K.

The map 7,:K — A, (K) is defined by 7.(a) = {a},, =aD,, € M, ¢(K) C A (K) forall a € K,isa

monoid homomorphism, called the Lorenzen r-homomorphism.

By definition, 7.(D) C 7.(D,,) € Af(K), and 7.|K*: K* — A,(K)* is a group homomorphism

satisfying Ker(r, | K*) = DJX.
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Theorem 4.4.2. Let D be a cancellative monoid, K = q(D), r a finitary module system on K,
D {1}, and t = HAF(K)): B(A,(K)) — P(A,(K)).

1AL (K) = a(AF(K).

2. If A, Ce M, +(K) and C* # 0, then CHUA € AF(K) if and only if A C C. In particular,
A € AF(K) holds if and only if AC D,.,.

3. A (K) is a reduced GCD-monoid. If X,Y € A (K), then there exist A, B, C € M,, ¢(K) such
that C* # 0, AUBCC, X =CIFUA andY = CI-UB. In this case, we have X |Y if and
only if BC A, and ged(X,Y) = C-U(AU B),,.

4. If E € P¢(D,,), then E,, = ged(7(E)) € AF(K). In particular, for every X € A,.(K) there
exist B, E' € P¢(D) such that E'* #£0, X = E;[;l]Era = ged(r.(E") " ged(r,.(E)), and then
we have X € Af(K) if and only if EC E]_.

5. 1, = 7t. In particular, 7, is an (ra,t)-homomorphism and thus also an (r,t)-homomorphism,
X, =7, 7.(X)] for all X C K, and D,, = 7,1 (A} (K)).

ProOF. We will thorough use the fact that r, is finitely cancellative and apply Theorem 4.2.2.

1. If X = C-1A € A (K), where A, C € M, ¢(D) and C* # 0, then (C U AL VC € AH(K),
(CuA A et (K), and X = [(Cua)To)-[(cua)l Al

2. Let A, C € M,¢(K) and C* # (). If A C C, then CI"UA € A} (K) by definition. Thus suppose
that C[-1UA4 e AT (K), say cl-14 = C{711A1 for some Ay, C; € M,.¢(K) such that C} # 0 and A; C Cy.
Then (C1A),, = (CA1),, C (CC),,, and thus A C C.

3. We prove first that A (K) is reduced. Let X € A} (K)*, say X = Cl71A and X[=1 = C’{_”Al,
where A, Ay, C, C1 € M, ¢(K), C*#0, Ct #0, AC C and A; C Cy. Then (CCy); . (AAy),, = D,
hence A} # ) and (AA;),, = (CC1)r, D (CA1),,. Now it follows again that A D C, hence A = C and
X =D,.

Now let X, Y € A (K). As A (K) C q(M.,, ¢(K), there exist A, B, C € M, ¢(K) such that C* # 0,
X =ClU4 and Y = C-UB, and by 2. we obtain AUB C C.

Assume that X |Y, say Y = X-Z, where Z = WI=UU € A} (K) for some U, W € M,, ¢(K) such
that W* # () and U C W. Therefore we obtain Cl-1B = cl-UA. W1y = (CW)L:” (AU),,, which
implies (BCW),, = (CAU),,, hence (BW),, = (AU),, C (AW),, and B C A by cancelation.

Assume now that B C A. If B®* = (), then B = (BA),, € A} (K), Y =C-UB = (C"14).B=X.B
and therefore X | Y. If B® # (), then A® # (), hence U = Al"'IB € A (K) and Y = X - U, which again
implies X | Y.

To prove the assertion concerning the ged, set Z = CI=(AUB),,. Then Z | X and Z|Y. We assume
that Z; € AJ(K) is another element such that Z; | X and Z;|Y. We must prove that Z; | Z. By 1.,

there exist Ay, By, C1, U, W € M, ¢(K) such that C? #0, A{UB,UUUW C Cy, X =Ci YA,
v =clBy, z=cl™U and 7, = C7UW. Then it follows that Ay UB; C W, (CAj),, = (C1A),.,
(CBy)y, = (C1B),, and (CU),, = (C1(AU B)),,. Moreover, we obtain
(C(A1 U B1))r, = ((CA1)y, U(CB1)r,)r, = ((C14)r, U(C1B)y,)r, = (C1(AU B)),, = (CU)y,,
and therefore U = (A; U By),, C W, which implies Z; | Z.
4. If E € P¢(D,,), then E,, € AJ(K), 7.(E) C Af(K), and 2. implies
E=(Uleh) = (U n@) =ed{n(e)|ec B}) = ged(r(E)).
e€E e e€E "
If X € A (K), then X = CI7HA, where A, C € M, ¢(K), A C C and C* # (. Then there exist
E, E' € P¢(D) and ¢ € D* such that C = (¢7'E’),, and A = (¢"'E),,, and it follows that E’® # () and
X = (e BBy, = ged(r (B)!1) ged (r, (B))
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5. Since t is finitary, it suffices to prove that Z,, = Z-; = 7,71 (7(Z),) for all Z € P¢(K). Let
Z € P¢(K) and a € D*® such that E = aZ C D. Then E,, = gcd(7,-(E)) by 4., and therefore it follows
that 7,.(E); = E,, A} (K). For ¢ € K, we obtain (observing that 7, is a module system)

c€Z,, << ac€aZ,, =FE, < 7.(ac)={ac},, CE, ET[.:”TT.(ac) € AH(K)
< 71.(a)7.(c) = 7.(ac) € B, AN (K) = 1.(E); = 1.(aZ); = 7.(a)7(2);
— 1.(c) €T (Z) = cer N1 (Z)y).

The remaining assertions are obvious. ]

Theorem 4.4.3 (Universal property of the Lorenzen monoid). Let D be a cancellative monoid,
K =q(D), r a finitary module system on K, D C {1},, and t =t(AS(K)): P(A.(K)) — P(A(K)).

1. Let G be a reduced GCD-monoid, L = q(G) and t' = t(G): P(L) — P(L). Then there is a
biyjective map

Homy 4y (Ar(K), L) — Homg. 4 (K,L), given by @ — Por,.

2. Let V be the set of all r-valuation monoids of K and W the set of all t-valuation monoids of
A (K).

(a) Suppose that W € W, and let w: A.(K)* — T' be a valuation morphism of W. Then
V=71 (W)eV, and wor, | K*: K* — T is a valuation morphism of V. If E € P{(K),
then w(E,,) = min{wor,.(E*)}.

(b) The assignment W — 7, Y(W) defines a bijective map 7.: W — V.

T

Proor. 1. If ®: A.(K) — L is a (¢,t')-homomorphism, then ®o7.: K — L is an (r,¢')-homo-
morphism, since 7, is an (r,t)-homomorphism. We prove that for every (r,¢')-homomorphism ¢: K — L
there is a unique (¢,t')-homomorphism @: A,.(K) — L such that ®o7,. = ¢.

Thus let ¢ € Hom,. ;) (K, L) = Hom(,, (K, L) (see Theorem 4.2.5.5). By Theorem 2.6.5, the map
Hom; 4y (A, (K), L) — Homgep (A (K),G), ® — @ |Af(K), is bijective, and if @ € Homy 1) (A (K), L),
then ¢ = ®or, if and only if p| D = (®| A (K))or,. | D. Hence it suffices to prove that there exists a
unique ¥ € Homgep (A (K), G) such that ¢ o 7,.(a) = ¢(a) for all a € D*.

Uniqueness: Let ¢ € Homgop (A7 (K), G) be such that o7,.(a) = p(a) for all @ € D*, and assume
that X € Af(K), say X = ged(r(E'))"Y ged(7,-(E)), where E, E' € Pg(D), E'® # 0 and E,, C E..
Then it follows that (X) = ged[¥(7,.(E’)) ]! ged[¢(7-(E))] = ged[ @(E’) 71 ged[ ¢(F) ], and thus v is
uniquely determined by .

Existence : Define ¢ provisionally by

P(X) = ged(p(E') " ged(p(B)) € L if X = ged(r,(E')" Y ged(r,(B)) = BLITE,, € A} (K),
where E, E' € P¢(D), E' # 0, and E C E; . We must prove: 1) ¢(X) e G; 2) the definition is
independent of the choice of E and E’'; 3) ¢ is a GCD-homomorphism.
If this is done and a € D, then (putting E' = {1} and E = {a}) we obtain o7.(a) = ¢ ({a},,) = ¢(a).

1) Since ¢ is an (r,,t’)-homomorphism, we obtain (E) C ¢(E]) C ¢(E')y, and therefore
ged(p(E))G = ¢(E)r C ¢(E")y = ged(p(E')G. Hence (X) = ged(p(E")) ™ ged(p(E)) € G-
2) Suppose that X = E;,[fl]Era = Fr/[fl]Fra7 where E, E', F, F' € P¢(D), E'* # 0, F'* # 0,

a a

ECE, and F C F] . Then (EF'),, = (E'F),,, and since ¢ is an (r,,t’)-homomorphism, we obtain
P(EF) C o((BF')y,) = ((E'F)r, C @(E'F)p and  @(EF')y C @(E'F)yr .
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Similarly, ¢(E'F)y C ¢(EF')y, and thus equality holds. Therefore it follows that

ged(p(E)) ged(p(F"))G = ged(p(EF'))G = o(EF')y
= @(E'F)y = ged(p(E'F))G = ged(p(E')) ged(p(F))G
hence ged(p(E)) ged(w(F')) = ged(o(E")) ged(p(F)) (since G is reduced), which finally implies that
ged(E') "t ged(E) = ged(F') ! ged(F).
3) Let X1, Xo € AS(K) and E, Ey, E5 € P¢(D) be such that E* # 0, FE;UFE; C E,, and
X; = EL (B, fori € {1,2}. Then ged(X1,Xs) = EL (B U By),.,

(X1 - Xs) = ¢((B?)N(ELE),,) = ged(p(E?)) ™! ged(p(E1E))
= [ged(p(E)) " ged(p(E1)) ] [ged(@(E)) " ged(p(E2)) ] = 9 (X1)¥(Xa)
and
P (ged(X)) = ged(@(E)) " ged(p(E1 U By)) = ged(p(E)) ™" ged [ ged(p(Er)), ged(p(E2)) |
= ged[ged(@(E)) " ged((Br)), ged(p(E)) ™! ged(p(E2)) | = ged (v(X1), (X)) -

2.(a) If W € W, then 7,71 (W) is an r,-valuation monoid (and hence also an r-valuation monoid) by
Theorem 3.4.10, and therefore 7,71 (W) € V.

If £ € P{(D), then E,, = gcd(r-(E)). Hence it follows that E, A} (K) = 7.(E):, E,, W =7,.(E)W
and w(E,,) = min{w(r,.(E)} € wor,(K*) by Theorem 3.4.2.2, and w(M,, ¢(K)®) = wor,.(K*) CT
is a subgroup. Since A, (K)* = q(M,, ¢(K)*), we obtain I' = q(worr(KX)) = wor,.(K*). By definition,
V =71 (W) = (wor,.)"}(T4), and since wor, | K*: K* — T' is surjective, it is a valuation morphism
of V.

(b) By (a) we must prove that 7. is bijective.

7, is injective: Fori € {1,2}, let W; € W be such that 7,-}(W;) =V € V, and let w;: A,.(K)* — T
be a valuation morphism of W;. Then w;or,.|K*: K* — T'; is a valuation morphism of V| and by
Theorem 3.4.2.2 there exists an order isomorphism ¢: I';y — I's such that pow;or,. | K* = wgor, | K*.

If X € Ap(K)*, then X = E;[a_l]Era for some E, E' € P{(D). Hence we obtain
wa(X) = wa(Ey,) — we(E,,) = min{wyo7,.(E*®)} — min{wso7,.(E"*)}
= min{pow; o7, (E*)} — min{pow; o7.(E"*)} = ¢(min{w; o7, (E*)} — min{w; o7, (E"*)})
= p(wi(E,) —wi(E},)) = powi(X).
Therefore wy(X) > 0 holds if and only if wy(X) > 0, and consequently Wy =

7, is surjective: Let V € V, and let e: K — K/V* be the natural epimorphism. By the Theorems
2.3.7 and 3.4.10, V/V* is an e(r)-monoid of K/V*, and if t* = t(V/V*), then e(r) = ¢*, since £(r) is
finitary, and ¢ is an (r, t*)-homomorphism.

By 1. the map Hom ¢+ (A, (K), K/V*) — Hom, ;-\ (K, K/V*), given by ® — ®or,, is bijective.
Hence there exists a unique (¢,¢*)-homomorphism &: A.(K) — K/V* such that ®o7. = ¢, and we
set W =&"Y(V/V*)C A.(K). Then 7, }(W) = (®or, )"} (V/V*) = 1(V/V*) =V, and since ® is a
(t,t*)-homomorphism, Theorem 3.4.10 implies W € W. O

Theorem 4.4.4. Let D be a cancellative monoid, K = q(D), r a finitary module system on K,
D c {1},, and V, the set of all r-valuation monoids of K. Then V, =V,,, and for all X C K we have

X, = (] XV.
Vev,.(D)

In particular, cl.(D) = D, is the intersection of all r-valuation monoids of K.
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PROOF. By Theorem 4.2.5.5 we have V., = V,.. Let 7.: K — A.(K) be the Lorenzen r-homo-
morphism, ¢t = t(A;(K)) and W the set of all t-valuation monoids of A,(K). Then 7t = r, and
V, ={r'(W) | W e W}. If X C K, then 7,7 (7(X)) = XD}, and therefore, using Theorem 3.4.9.3,

X, = X)) = () wXW) = ) 7m0 ) = () xDgv= () XV. O
wWew wWew Vev,. (D) Vev, (D)

Corollary 4.4.5. Let D be a domain, K = q(D) and d = d(D): P(K) — P(K). Let r be a finitary
module system on K such that d <.

1. Let V C K be a subset.

(a) V is an r-valuation monoid of K if and only if V is a valuation domain satisfying V. = V.
If this is the case, then D C D, C V.

(b) V is a d-valuation monoid of K if and only if V is a valuation domain satisfying D C V.
2. The r-closure cl,.(D) of D is the intersection of all valuation domains V of K satisfying V. = V.

In particular, the integral closure cly(D) of D is the intersection of all valuation domains V' of
K containing D.

ProOOF. Obvious by the Theorems 4.4.3 and 4.4.4. |






CHAPTER 5

Complete integral closures

Throughout this Chapter, let D be a cancellative monoid, K = q(D) # D, v =wv(D) and t = t(D).
5.1. Strong ideals

Theorem und Definition 5.1.1.
1. For an ideal I C D, the following assertions are equivalent:
@ e (D),
(b) 171 = (I:1),
(c) I71 is an overmonoid of D.
(d) There exists an overmonoid T D D such that [ =T~ = (D:T).
(€) In=(II"")o.
A non-zero ideal I C D satisfying these conditions is called strong (in D).
2. Let D be a Mori domain and {0} # P € v-spec(D).
(a) P is not strong if and only if Dp is a dv-monoid (and then P € X(D)).
(b) If P € v-max(D), then P is not strong if and only if P is v-invertible.
(c) If T C D* is a multiplicatively closed subset, then P is strong if and only if TP is strong
in T~1D.
PrOOF. 1. (a) = (b) (I:I)C (D:I)=1"1.
(b) = (¢) (I:I) D D is an overmonoid.
(¢) = (d) Obvious.
(d) = (e) Let T D D be an overmonoid such that I = T~1. Then I=! =T, D T is a monoid, and
by Theorem 2.6.2.2 we obtain ([I-')~t = ("1:17Y)=(T,:T,) =T, =1"'. Hence (II71), = I,.
() = (a) (I:1)= I Y)"t={II"Y,'=1I;1=1I"!(by Theorem 2.6.2.2, applied with X = I~1).
2.(a) If P is not strong and a € P!\ (P: P), then aP C D and aP ¢ P, which implies that
aPp = Dp. Since Dp is a Mori monoid, it satisfies the ascending chain condition on principal ideals.
Hence it is atomic by Theorem 1.5.5, and by Theorem 3.4.8, it is a dv-monoid.
If P is strong, then (D:P) = (P:P) implies (Dp:Pp) = (Pp: Pp), and therefore Dp is not a
dv-monoid.

(b) Assume that P € v-max(D). If P is strong, then (PP~'), = P by 1., and therefore P is
not v-invertible. If P is not strong, then Dp is a dv-monoid and Pp is a principal ideal of Dp. If
M € v-max(D)\ {P}, then Py; = Dys. Hence P is t-invertible (and thus v-invertible) by Theorem 4.1.4.

(c) By Theorem 1.3.8 we have Dp = (I'"'D)p-1p, and thus the assertion follows by (a). O

Theorem 5.1.2. Let I C D be a strong ideal, C = (D:I) = (I:1) and Q C C a prime ideal such
that I = oI C Q. Then (Q:Q) =

83
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PRrOOF. It suffices to prove that (Q:Q) C (I:1). Indeed, then C' C (Q:Q) C (I:1) = C, hence
(Q:Q) = C, and if @ is strong, then (C:Q) = C and Q,c) = C # Q.
Thus assume that « € (Q:Q) and y € I. We must prove that xy € I, and since

I=cVI= ﬂ P,
PePc(D)

it suffices to prove that zy € P for all P € Po(I). If Q € Po(I), then zy € (Q: Q)] C (Q:Q)Q C Q. If
PePe(I)and P+#Q, then Q ¢ P and zyQ C I(Q:Q)Q C IQ C I C P, which implies zy € P. O

Theorem 5.1.3. Let I C D be a strong ideal, C = (D:I) = (I:1I) and v* =v(C).
1. If D is a Mori monoid, then C is also a Mori monoid, and F,-(C) C F,(D).
2. The assignment P (P:I) defines a bijective map
®:{PCD|Pisaprimeideal, I ¢ P} — {Q CC|Q isaprimeideal, I Z Q},

whose inverse is given by Q — QN D.

3. Let P C D be a prime ideal such that I ¢ P and Q= (P:I).
(a) Dp = CQ.
(b) If JC D and J* C C are ideals such that J*ND =J C P, then J* C Q.
(c) If P € v-spec(D), then Q € v*-spec(C).
(d) If D is a Mori monoid and P € v-max(D), then Q € v*-max(C).

PROOF. 1. Since (D:I) € F,(D) C F(D), Theorem 2.6.6.3 implies that C is a Mori monoid, and
For(C) = Fy)(C) € Fi(D) = Fu(D).

2. Let P C D be a prime ideal, I ¢ P and Q = (P:1I).

Clearly, @ C (D:I) = C, and CQI C QI C P implies CQ C (P:I) = Q. Hence @ C C is an
ideal, and we prove that it is a prime ideal of C. Suppose that z,y € C, zy € Q and = ¢ . Then
xyl? C (P:I)I? C PI C P, and since xI ¢ P, we obtain yI C P and y € (P:I) = Q.

Next we prove that Q N D = P. Clearly, PI C P implies P C (P:I)N D = Q N D. Conversely, if
z€@ND,then 2zI C Pand I ¢ P implies z € P.

It remains to prove that ® is surjective. Thus let R C C be a prime ideal ideal such that I ¢ R.
Then RN D C D is a prime ideal, I ¢ RN D, and we assert that R = (RN D:I). If x € R, then
RcC=(D:I)implieszI CRND and z € (RN D:I). Conversely, if v € (RN D:I, then I C R and
I ¢ R implies = € R.

3.(a) Since D\ P C C'\ Q, we obtain Dp C Cgp. Thus let 2 = s71c € Cp, where ¢ € C and
se€C\Q. Ifye I\ P, thency e CI =1 C D, and sI ¢ P implies sy € CI\ P C D\ P. Hence it
follows that 2 = (sy)~tcy € Dp.

(b) Let J C D and J* C C be ideals such that J C P and J* N D = J. Then it follows that
J*ICJ*NCICJ*ND=JC P, and therefore J* C (P:I)=Q.

(¢) Suppose that P € v-spec(D). We must prove that (P:1),~ C (P:I). We have

I(P:1)y = I(C:(C:(P:1))) =I(I"":((I:1):(P:1))) € (II"":(I:I(P:1))) C (D:(I:1(P:1))),
and we shall prove that P~! C (I:I(P:I)). If this is done, then I(P:I),- C (I:1(P:1))"' C P, = P,
and therefore (P:1),« C (P:1). If z € P71, then 2I(P:I)C I(zP:I)CcII ' CI(I:I)C I

(d) Suppose that D is a Mori monoid and P € v-max(D). Then @ € v*-spec(C), and since C is a
Mori monoid, there exists some M € v*-max(C') such that M > Q. Then M N D € F,(D) is a prime

ideal of D, hence M N D € v-spec(D), and P C MND. Hence P=MND, I ¢ M, and by 1. it follows
that Q@ = M € v*-max(D). O
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5.2. Complete integral closures and Krull monoids

Definition 5.2.1.

1. Anelement a € K is called almost integral over D if there exists some ¢ € D*® such that ca™ € D
for all n € N.

2. The set D = {a € K | a is almost integral over D} is called the complete integral closure of D,
and Fp = (D:D) is called the conductor of D.

3. D is called completely integrally closed if D = D.

4. D is called a Krull monoid if D is a completely integrally closed Mori monoid.

Theorem 5.2.2. Let r be an ideal system on D.
1. D is a submonoid of K,

b=\ r'= Yy o= U = U G

I1€z,(D) JeF,(D)*® JeF.(D)* JEI (D)
I strong

and if r is finitary, then ﬁr =D.
In particular, if D is a domain, then D is also a domain.

2. D//FX = B/DX. In particular, D is completely integrally closed if and only if D/D* is com-
pletely integrally closed.

3. cl.(D) C ﬁ, and if D is r-noetherian, then D = cl. (D). In particular, if D is completely
integrally closed, then D is r-closed, and the converse holds if D is r-noetherian.

4. Fp s the intersection of all strong v-ideals of D.
5. Fp #0 if and only if D contains a smallest strong v-ideal F. If F is the smallest strong v-ideal
of D, then Fp =F, D=F~'¢€ F,D), and D is completely integrally closed.
PrOOF. 1. We show that

Dc yrtec Jy winec Y = \J @) cD.
IeZ,(D) JeF,(D)* JEF(D)* JEZL.(D)*
I strong

If # € D, then there is some ¢ € D*® such that X = {cz™ | n € N} € D. By Theorem 5.1.1.1 (b),
I=(X,:X,)"! € Z,(D) is strong, and since X C X, it follows that X, C X, and thus z € I~ 1.

The two following inclusions are obvious. If J € F,.(D)® and ¢ € D* is such that ¢J C D, then
(J:J)=(cJ:cJ). f J €Z,(D)*, ce J® and z € (J:J), then 2" € (J:J) and therefore cx™ € J C D
for all n € N, which implies x € D.

If J, J' € Z.(D)®, then ((JJ')p:(JJ')y) D (J:J). Therefore {(J:J)|J €Z.(D)*} is a directed set
of r-monoids. Hence D is a monoid, and if r is finitary, then lA)T =D.

If D is a domain, then ﬁd( D) = D. Hence D is a D-module and therefore itself a domain.

2. By definition, q(D/D*) = K/D*, and if = € K, then = € D if and only if D* € D/D*. Hence
D/D* = D/D*, and D = D if and only if D/D* = D/Dx.
3. By Theorem 4.3.3 we have
(D)= |J (J:J).

JGITJ(D)

Hence cl,.(D) C D. If D is r-noetherian, then Z, (D) = Z, (D), and therefore equality holds.
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4. By 1., we obtain

FD:B—lz( U 1—1)_1: n I

I€Z,(D) Ie7,(D)
I strong I strong

5. If Fp, # (), then Fp is a strong v-ideal by Theorem 5.1.1, and by 4. it is the smallest strong v-ideal
of D. Conversely, if F' is the smallest strong v-ideal of D, then F' = Fp by 4. Hence ﬁv =F1lcC ﬁ,
and therefore F~! = D € F,(D). In particular, if F(D) resp. F(D) denotes the set of all fractional
semigroup ideals of D resp. D, then f(ﬁ) C F(D), hence

U e |J (J:0)cDh,

JeF (D) JeF (D)

D

and therefore equality follows. O

Theorem 5.2.3. The following assertions are equivalent:

(a) D is completely integrally closed.

(b) Fu(D)* =F,(D)* [equivalently: every non-zero ( fractional) v-ideal of D is v-invertible].

(¢) D is the only strong v-ideal of D.

PrROOF. (a) = (b) If J € F,(D)®, then (J:J) C D = D, hence (J:J) = D, and therefore
J € F,(D)* by Theorem 4.1.2.

(b) = (c) If J € F,(D)*® is strong and invertible, then J = J-, J~! = D.

(¢) = (a) By Theorem 5.2.2.1. O

Theorem 5.2.4. Let D be a Mori monoid.
1. If Fp #0, then D is a Krull monoid.
2. Let T C D*® be a multiplicatively closed subset. Then T/—E =T-D. In particular, if D is a
Krull monoid, then T~1D is a Krull monoid.
3. D*ND=Dx*.
PRrROOF. 1. If Fp, # 0, then D is completely integrally closed by Theorem 5.2.2.5, and D is a Mori
monoid by Theorem 5.1.1.2.
2. Observe that Tt = ¢(I~'D), and T-'D = clp-1,7-'D) = T-'cl(D) = T-'D by the
Theorems 2.6.6.2 and 4.3.4.3.

3. Obviously, D* C D*ND. Ifac DN D, then there is some ¢ € D*® such that ca™™ € D for all
n € N. Hence it follows that ¢ € a”D for all n € N, and therefore the set {a"D | n € N} C Z,(D) has
a smallest element. Consequently, there is some n € N such that "D = a"*! D, which implies D = aD
and a € D*. ]

Theorem 5.2.5.
1. The following assertions are equivalent:
(a) D is a Krull monoid.
(b) F(D)* = F(D)* |equivalently: every non-zero ( fractional) t-ideal of D is t-invertible].
(¢) D is a Mori monoid, and for every M € t-max(D), Dys is a dv-monoid.
In particular, if D is a Krull monoid, then t-max(D) = X(D), and therefore Dp is a discrete
valuation monoid for every non-zero prime t-ideal.
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2. D is factorial if and only if D is a Krull monoid and C,(D) = 0.
3. D is a dv-monoid if and only if D is a t-local Krull monoid.

ProoOF. 1. (a) = (b) v=t, and by Theorem 5.2.3 we have F,(D)® = F,(D)*.

(b) = (c) Since every non-zero t-ideal is t-invertible and hence ¢-finitely generated, it follows that
D is a Mori monoid. If M € t-max(D), then D), is t-noetherian, hence atomic, and My, is a principal
ideal. By Theorem 3.4.8, Dp is a dv-monoid.

(¢) = (a) If J € Fu(D)* = Fe(D)®, then Jy is principal for all M € t-max(D). Hence J is
t-invertible, and as t = v, D is completely integrally closed by Theorem 5.2.3.

In particular, if D is a Krull monoid and P € t-max(D), then P is t-invertible and thus P € X(D)
by Theorem 5.1.1.4.

2. By Theorem 2.6.3.2, D is factorial if and only if every non-zero t-ideal is principal. However, this
holds if and only if ever J € Z;(D)* is t-invertible and principal. By 1., the assertion follows.

3. Obvious by 1.(c). O

Theorem 5.2.6. Let D be a Krull monoid. Then A(K) = Fi¢(D), and A/ (K) = Z; (D) is free
with basis t-max(D).

PROOF. Since M, ¢(K) = F; (D) and Fy¢(D)® is a group, it follows that ¢ is finitely cancellative,
hence t = t,, Ay(K) = q(M(K)) = Fis(D), and Af (K) ={C € F¢(D) | C C Dy, = D} = Z,¢(D) is
a reduced GCD-monoid by Theorem 4.4.2. Moreover, for all I, J € Z, ¢(D) we have I | J in Z; ¢(D) if and
only if J C I. Hence A} (D) satisfies the ACC for principal ideals, and as it is a reduced GCD-monoid,
it is factorial and therefore free with the set of prime elements as a basis. An element P € Z,¢(D) \ {D}
is a prime element if and only if it is maximal with respect to inclusion, that is, if and only if it is a
t-maximal ¢-ideal. ]

Definition 5.2.7. A domain D is called a
o Krull domain if it is a Krull monoid;
e Dedekind domain if it is a Krull domain, and d(D) =t [equivalently, every ideal is divisorial ].

Theorem 5.2.8. For a domain D, the following assertions are equivalent:

(a) D is a Dedekind domain.

(b) D is a Krull domain and dim(D) = 1 [ equivalently, every non-zero prime ideal of D is mazimal].

(c) Ewvery non-zero ideal of D is invertible.

(d

(e) D is noetherian, integrally closed, and dim(D) =1 [equivalently, every non-zero prime ideal of
D is mazimal].

PROOF. Set d = d(D).

(a) = (b) If P € spec(D) = t-spec(D) and P*® # (), then P is not strong by Theorem 5.2.3, and
thus P € X(D) by Theorem 5.1.1.4.

(b) = (c) Let J € Z(D)* be a non-zero ideal. Then J; € Z,¢(D), and by Theorem 4.1.4 we must
prove that Jp is principal for all P € max(D). If P € t-max(D), then Dp is a discrete valuation domain
and therefore Jp is principal. However, max(D) = X(D) by assumption, and by the Theorems 3.1.6.4
and 5.2.5 it follows that max(D) = t-max(D).

(¢) = (a) Every non-zero ideal of D is invertible, hence a t-ideal by Theorem 4.1.2. Therefore
t =d, and D is a Krull domain by Theorem 5.2.5.

~—

D is noetherian, and for every non-zero prime ideal P, Dp is a discrete valuation domain.
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(a) = (d) Obvious by Theorem 5.2.5.

(d) = (e) If P €spec(D) and P* # (), then Dp is a discrete valuation domain, hence primary, and
therefore P € X(D) by Theorem 3.4.6.3. Hence dim(D) = 1. Moreover, for all non-zero P € spec(D),
Dp is a Krull domain and thus (completely) integrally closed. Hence D is integrally closed by Theorem
4.3.4.4.

(e) = (a) It suffices to prove that Z(D) C Z;(D). Since dim(D) = 1, we have max(D) = t-max(D),
and we assert that, for every P € max(D), Dp is a discrete valuation domain. If P € max(D), then Dp
is noetherian and integrally closed, hence v-noetherian and completely integrally closed and therefore a
Krull domain. Being t-local, Dp is a discrete valuation domain, and tp = s(Dp). Thus, if J € Z(D),
then (Jy)p = (Jp)tp = Jp, and therefore (using Theorem 3.2.2),

L= (] Ge= () Je=JeL(D). 0
Pet- max(D) Pemax(D)

The following example shows that the complete integral closure need not be completely integrally
closed.

Example 5.2.9. Let K be a field,
R=K[{X#Hly"®+D | p e Ny}] and S=K[{XY"|neNy}]|.

Then RC SC K[X,Y]=q(R), S=R and K[X,Y]=25.

Proof. By definition, R C S C K[X,Y], and for alln € Ny, (XY")?"*! € R. Hence S is integral over
R, and therefore S C R. Since {X, X3Y3, X°Y10} C R, we obtain ¥ = X4(X3Y3)=3(X5Y1%) ¢ q(R)
and therefore q(R) = K[X,Y]. Since XY™ € S for all n € Ny, it follows that K[X,Y] C 5. On the
other hand, K[X,Y] is factorial, hence a Krull domain and therefore completely integrally closed. Thus

we obtain S C Km] = K[X,Y], and it remains to prove that R C S. We show the following two
assertions :

A. K[X,Y]=5+K]Y].

B. K[Y]NR=K.

Suppose that A and B hold, and let f € R C K[X,Y]. By A we have f = g+ h, where g € S and
h € K[Y]. Since S C R, it follows that h=f — g € K[Y]N R = K and therefore f =g+ h € S.

Proof of A. Tt suffices to prove that X'Y7 € S+ K[Y] for all i, j € Ny. This is obvious for i = 0,
and if i > 1, then X°YJ = X"~ 1(XY7) € S, since X € S. O[A.]

Proof of B. Assume to the contrary, that there is some f € K[Y]N R such that deg(f) =n>1,
and let @ € K* be the leading coefficient of f. Then there exists some g € R® such that g¢f* € R for
all k € N. Suppose that g = (bX' + hy)Y" + go, where I, r € Ny, b€ K*, h; € K[X], deg(h1) < I,
go € K[X,Y] and degy (go) <. Let k € N be such that

l
rnk>1Y i(2i+1).
=0

Then gf* = ba* XY™ 4 gi., where g € K[X,Y] and degy (gi) < 7 +nk. A K-basis of R is given by
the set of all products of the form

N
H X2ovtlyse@svtl)  where N €Ny and sp,...,sy € Np.

v=0
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Hence there exist some N € N and sq,...,sy € NO such that

X Yr+nk H X2s +1ysy(2s,,+1)
v=0

For i € Ny, we define r; = |{v € [0,N] | s, =i }|, and then we obtain

N
lzz 25, +1) = Zrl 2i+1) and r—l—nk::Zsl,(Qsl,—i—l):Zrﬂ'(%—i—l).
v=0 >0 v=0 >0

Hence it follows that r; <[ for all 7 > 0, and

r+nk < ZZ i(2i+1) <r+mnl, a contradiction. O
i>0

5.3. Overmonoids of Mori monoids

Theorem 5.3.1. Let (Dy)xen be a family of monoids such that D C Dy C K for all A € A,
= m -D)\a
AEA
and assume that, for every a € D*, the set {A\ € A |a ¢ DS} is finite.
1. If T C D*® is a multiplicatively closed subset, then
T7'D'= () T7'Dx.
AEA

2. If (Da)xea is a family of Mori monoids, then D' is a Mori monoid.
PROOF. 1. Obviously, T='D’ c T~'D, for all A € A. Thus suppose that

T € ﬂT‘lD,\, say z=a ‘b, where a€D® and beD.
AEA

The set A ={AeA|a¢ D} is finite, and if A € A\ A, then € D). For each A € A, there exist
ax € Dy and t) € T such that = = t;la,\7 and we set

t= Ht,\.

AEA
Then it follows that t € T, tx € D' and x =t~ 1(tz) € T71D’.
2. For every subset X C D', we set
= ﬂ Xy(py)» and we assert that X € X' C X,(p).
A€EA

Obviously, X € X', and if ¢ € K is such that X C D’c, then X,p,) C D;(Dk)c C Dyc for all A € A,
and therefore X’ C D’c. Hence it follows that
X'c () De=Xup-

ceK
XcD'e

We prove that for every subset X C D’ there exists some E € Pf(X) such that X C E,(psy. Thus let
X C D’. We may assume that X* # (), and we fix some a € X*. Then the set A={AeA|a¢ D }is
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finite, and for every A € A, there is some Ey € P¢(X) such that a € Ex and X,(p,) = (Ex)y(D,). Now
we consider the set

E= U E\ € P¢(X).

AEA
If A € A, then Ev(DA) D (E)\)U(D,\) = XU(D)\), and if A € A\ A, then Ev(D;) =Dy = Xv(D,\) = D,.
Hence we obtain
Eyp)y D E = () Eupy 2 () Xey =X DX. O
AEA AEA

Definition 5.3.2. Let D be a Mori monoid. We define
S(D) ={P €v-max(D) | P strong} and R(D)={P € v-max(D) | P not strong },

5: ﬂ Dpﬁ m Dp PP 5:1)(5) and Z:t(ﬁ)
PeR(D) PeS(D
If P € v-max(D), then Theorem 5.1.1.2 1mphes that P € R(D) if and only if Dp is a dv-monoid, and

P € §(D) if and only if Dp is not a dv-monoid. In particular, Theorem 5.2.5 implies that D is a Krull
monoid if and only if S(D) = 0.

Theorem 5.3.3. Let D be a Mori monoid.
1. D € My(K) is a Mori monoid, and D C cly(D) C D.

2. If Q € S(D), then Dg = (Dg:Q0) = (Qo:Qq)-
3. If Re i?—spec(ﬁ), then RN D € v-spec(D), and if R is strong, then RN D is strong, too.

PrOOF. 1. If P € §(D), then (Dp:Pp) = (D:P)p = (P:P)p C D is an overmonoid, and therefore
D D D is an overmonoid. If P € v-max(D), then (Dp); = Dp € My(K) by Theorem 2.5.4, hence
(Dp: Pp) € My(K), and therefore it follows that D € M,(K). By Theorem 2.6.6 it follows that Dp
is a Mori monoid for all P € R(D), and that (Dp:Pp) = (P:P)p is a Mori monoid for all P € S(D). If
a € D*®, then the set {P € v-spec(D) | a € P} is finite by Theorem 3.2.7.2. If P € R(D) and a ¢ P,
then a € Dj. If P € S(D) and a ¢ P; then a™' € (P:P)p = (Dp: Pp), and therefore a € (Dp: Pp)*.
By Theorem 5.3.1.2 it follows that D is a Mori monoid.

IfPe S(D), then (DPZPP) = (D:P)p = (P:P)p C Clt(D)p, and therefore

Dc () c(D)p=c(D)CD.
Pev-max(D)

2. Assume that @ € S(D). If P € v-max(D) and P # @, then (D:Q) C Dp by Theorem 1.3.9.1,
and therefore (Dg:Qq) = (D:Q)g C (Dp)g C (Dp:Pp)g. If P € R(D), then Dp is a dv-monoid, and
since P ¢ @, Theorem 1.3.9.2 implies that Dp C (Dp)g. By Theorem 3.4.8, Dp is primary, and by
Theorem 3.4.6 we obtain (Dp)g = K. Collecting these arguments, we obtain, using Theorem 5.3.1.1,

Do= () (Dr)en [ (De:Pp)o= () (Dr:Pp)oN(De:Qq) = (Do:Qq).
PeR(D) PeS(D) Pgig)

Finally, (Dg:Qq) = (Qq:Qq), since Qg is strong in Dg.

3. By Theorem 2.5.2.4, t[D] is an ideal system of D, and therefore t < ¢[D] < . If R € ¥-spec(D),
then (RND), = (RND); C (RND); C Ry = R, hence (RND),, C RND and therefore RND € v-spec(D).

If RN D is not strong, then Dpgnap is a dv-monoid, and since Dgnp C ER C K, it follows that
Dgr = Drnap. Hence R is not strong. O
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Theorem 5.3.4. Let D be a Mori monoid and P € v-spec(D) \ S(D). Then there exists a unique
P € v-spec(D) such that PN D = P, and the following assertions hold:

e Dp=Dj.

e P is strong if and only if P s strong.

e If P e R(D), then P € R(D).

o IfI€Z,(D), I€Zy(D) and IND=1C P, then 1C P, and I = Ip.

PROOF. We assume first that all statements of the Theorem except the equality I 5 = Ip in in the
last assertion hold, and we show how this equahty follows. Since Dp = D , we obtain P~ = Pp C Pp7
and since D\ P C D\ P, it follows that Pp C P~ and therefore Pp = Pp Let now I € Z,(D) and
T € Zy(D) be such that IND =1C Pand I C P. Then PNT =1, and I =1Dp=1Dp =1Ip =
PPQIP—PPQIP— (Pﬂ[)p = Ip.

For the main part of the proof we distinguish two cases. Since P € v-spec(D) \ S(D), it follows that

either P € R(D), or that P is not v-maximal. In this second case, there is some M € v-max(D) such
that P C M, and then necessarily M € S(D).

CASE 1: P e R(D).

In this case, Dp is a dv-monoid, DcC Dp, and we set P=PpnD. Then PC Disa prime ideal,
and PN D = - Pp N D = P. Suppose now that P’ C D is another prime ideal satisfying P’ N D = P.
Then Dp C Dp/ C K, hence Dp = Dp/ and Pp = Pp, is a principal ideal. Therefore it follows that
P=PpND = Pp N D=P et- spec(D) by Theorem 2.6.6.2 (c). Since D~ = Dp is a dv-monoid, P
is not strong, and we assert that P € v-max(D). Indeed, if P € - spec(D) is such that P C P, then
P=PNDcCPND,and since PN D € v-spec(D) by Theorem 5.3.3.3, it follows that PND=Pand
therefore P = P € v-max(D) by the uniqueness of P.

Assume finally that [ € Z,(D), I € Zy(D) and IND =1 C P. We must prove that I C P, and we
may assume that I* # (. Then Theorem 3.2.7.2 implies that {P’ € o-max(D) | I c P'} = {P],...,P.}
for some n € N. For i € [1,n], we set P, = P/ N D, and then we obtain

P>I=INnD=1= (\ IrnD=Ipn...0Ip,ND>IpN...0Ip, ND.
P’€b-max(D)

Hence there exists some i € [1,n] such that Ip, N D C P, and therefore

P> \/Ip,ND>\/Ip, ND=+/Ip. N D = ﬂ QnD.

QeP(Ip;)

Hence it follows that @ N D C P for some Q € P(Ip,) C vp,-spec(Dp,), and since Q N D € v-spec(D)
and P € X(D), we obtain P=QND C (P)p, "D = P;. As P € v-max(D), we get P = P, and (by the
uniqueness of P) P =P/ > 1.

CASE 2: There is some M € S(D) is such that P C M.

In this case, Dy = (Dpr: Mag) = (Mg : MM) by Theorem 5.3.3, and Py; € vp-spec(Dys). By
Theorem 5.1.3, applies to the extension Djy; C DM, there exists a unique P* € vjs-spec(Djy) such that
P*N Dy = Py, and the following assertions hold :

o (Dy)p- = (Dur)py-
o If Py € vpy-max(Dyy), then P* € 5M—max(l~)M).
o If J C Dy and J* C EM are ideals such that J* N Dy, = J C Py, then J* C P*.
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Now we set P = P*ND. Then PN D =P*NDyND=PyND =P, and by the Theorems 2.6.6.2(c)
and 1.3.6.2. it follows that P € o- -spec(D D) and P* = Py;.

To prove the uniqueness of P, suppose that P’ € - spec(D) is such that P’ N D = P. Then
P, € UM—spec(DM)) and Py, N Dy = (P’ N D)y = P, hence Py, = P* (by the uniqueness of P*),
and P'=Pj,ND=P*ND=P.

It remains to prove that P has the asserted properties. By Theorem 1.3.8 we obtain

DP = (DJVI)PM = (EJW)P* = (5M)15M = E}S

Hence Dp is a dv-monoid if and only if D p is a dv-monoid, and therefore P is strong if and only if P
is strong. If P € R(D ) C v-max(D), then Py € vy- max(DM) hence P* = Py € ﬁM—maX(ﬁM), and
therefore P - max(D). Since P is not strong, it follows that Pec R(D D). Assume finally that I € Z,,(D),
[€Zy(D)and IND =1 C P. Then Iyy € Dy, Inr € Dy and Iyy N Dy = (IN D)y = Iy C Pay.
Hence it follows that IM Cc P*= PM, and I C IM NDcC PM NnD=P. O

Theorem 5.3.5. Let D be a Mori monoid, I € T, (D), and suppose that there is no P € S(D) such
that I C P. Then there exists a unique Ie Zs(D ) such that TN D = 1, and there is no P* € S(D) such
that P* > I.

Proor. By Theorem 3.2.7.2, {P € v-max(D) | I C P} = {P,...,P,} for some n € N. For
i € [1,n] we have P, € R(D), and by Theorem 5.3.4 there exists some P; € R(D) such that P,ND = P;,
Dp, = Dﬁ’i and, if I’ € Zy(D) is such that I’ D = I, then I’ C P; and I =1Ip,.

We set [ = Ip,N...NIp, ND. Foric [1,n], Dp, = D13 is a dv—m0n01d hence Ipl =IDp, = IB~
is a principal ideal, and therefore Ip, N D € -spec(D). Hence it follows that I € Z(D) and IND = I
since

I= ﬂ Ip=1Ip N...NIp, ND
Pecv-max(D)

If P* € v-max(D) is such that P* D I, then P*N D € v-spec(D) and P* N D D I. Hence there
exists some ¢ € [1,n] such that P*N D C P;, and as P; € X(D), we obtain P*N D = P, and therefore
P* =P, e R(D). N N N

It remains to prove the uniqueness of I. Let I" € Z3(D) be such that I'ND = I. Then I = Ip, = Ip,
for all i € [1,n], and it suffices to prove that {Py,...,P,} = {P’ € t-max(D) | P’ > I' }. Indeed, once
this is done, we obtain

' () Ip=I;n..0l ND=IpN...0Ip,ND=1.
P’€-max(D)

For i € [1,n], we have P; = (P) NnD > Iz N D > I'. Conversely, assume that P’ € o-max(D) is such
that P’ > I'. Then P'ND € v- spec(D), P’ ND D> I'ND = I, and therefore there exists some i € [1,n]
such that PN D C P;. Since P; € X(D), we obtain PN D = P, and P’ = P;. |

5.4. Seminormal Mori monoids

Theorem und Definition 5.4.1.

1. The following assertions are equivalent:
(a) If v € K and {22, 23} C D, then x € D.
(b) If x € K and ™ € D for all sufficiently large n € N, then x € D.
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If D satisfies these conditions, then it is called seminormal.

If D is root-closed, then D is seminormal.
2. Let D be seminormal and T C D* a multiplicatively closed subset. T hen T~ 'D is seminormal.
3. Let (Dy)xea be a family of seminormal monoids such that Dy C K for all A € A and

D= ﬂDA.

AEA
Then D is seminormal.

4. Let D be seminormal, x,y € D* and k € N such that z*(zy=')" € D for alln € N. Then it
follows that already x(xy=')" € D for alln € N.

PROOF. 1.(a) = (b) Let z € K, and let m € Ny be minimal such that 2™ € D for all n > m.
We must prove that m = 0, and we assume to the contrary that m > 1. Then 2™ ¢ D, and since
3m > 2m > m, we obtain {(z™)2, (z™)3} C D, a contradiction.

(b) = (a) If x € K is such that {22, 23} C D, then z¥ € D for all k > 2, and thus also x € D.

2. Let * € K be such that {z? 23} C T7'D. Then there exist a, b € D and t € T such that
2? =t~ 'a and 23 = t7'b, and therefore (tz)? = ta € D and (tz)3 = t?a € D. Since D is seminormal, it
follows that tz € D and z =t~ !(tz) € T~ D.

3. Let x € K be such that {2%, 3} C D. For all A € A, this implies {22, 23} C Dy, hence z € Dy,
and therefore we obtain x € D.

4. If n € N, then it follows that [z(zy= ")) = 2¥(xy=1)" 29~k € D for all j > k, which implies
z(zy~ " € D. O

Theorem 5.4.2. Let D be a seminormal Mori monoid.
1. If z,y € D*, then xy~ '€ D if and only if x(zy=*)" € D for all n € N.
2. D is completely integrally closed.

PROOF. 1. By definition, if x, y € D* and z(zy~')" € D for all n € N, then xy~! € D.
Thus assume that x, y € D*, xy~! € D, and let ¢ € D*® be such that c(zy~!)" € D for all n € N.
For n € N, we consider the ideal

I, = ﬂ ((z7'y)'DN D).
=0

By definition, I,, € Z,(D), I, D I,+1 and c¢ € I, for all n € N. As D is a Mori monoid, there exists
some k € N such that I = I, for all n € N, and since y* = (z~'y)*2* € I}, we obtain y* € I, for
all n € N. Hence for every n € N there exists some b, € D such that y* = (z71y)¥*"b,, and therefore
zF(zy~1)" = 2¥b, € D. Consequently, x(xy~')" € D for all n € N holds by Theorem 5.4.1.4.

2. Suppose that u =y~ 'z € 13, where z, y € D®, and let d € D* be such that du” = da™(y™)~t e D
for all n € N. We may assume that d € D®. By 1. it follows that dz™[dz"y ™]™ € D for all m, n € N.
For m € N and n > m + 1, this implies that [dax(y~'2)™]" = da™(dz"y ")™d" ™ 1 € D, hence
dr(y~lz)™ € D, since D is seminormal and therefore u = y~ 'z € D. Hence D is completely integrally

closed. O

Theorem 5.4.3. Let D be a seminormal Mori domain.

1. Let I C D be a strong ideal and C = (D:1I) = (I:1I). If I is a radical ideal of C, then C is
seminormal.

2. D is seminormal, and if P € S(D), then PDp = Pp is a radical ideal of Dp.
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3.If Q € S(IND), then @ N D ¢ v-max(D). In particular, the assignment Q — Q N D defines a
bijective map

{Q € v-spec(D) | Q strong} — {P € v-spec(D), P strong, P ¢ S(D)}.
PRrROOF. 1. By Theorem 5.1.3.1 C'is a Mori monoid. If v* = v(C), then

c= () C»p,

Pev*-max(C)
and therefore it suffices to prove that Cp is seminormal for all P € v*-max(C). Suppose that P € v*-
max(C'), and consider the following two cases.

CASE 1: I ¢ P. Theorem 5.1.3 implies that Cp = Dpnp, and the latter monoid is seminormal by
Theorem 5.4.1.2.

CASE 2: I C P. By Theorem 5.1.2 we obtain (P: P) = C, and since P € v*-max(C), it follows
that (C':P) 2 C. Hence P is not strong, and by Theorem 5.1.1.2 Cp is a dv-monoid. Hence Cp is
root-closed and therefore seminormal.

2. If P € R(D), then Dp is a dv-monoid, hence it is root-closed and therefore seminormal.

Assume now that P € S(D). Then Dp = (Pp : Pp) by Theorem 5.3.3, and therefore we get
PDp = PpDp = Pp(Pp : Pp) = Pp. We show that Pp is a radical ideal of (Pp : Pp). Thus let
x € (Pp: Pp) be in the radical of Pp. Then 2™ € Pp C Dp for all sufficiently large n € N, and as Dp
is seminormal, it follows that z € Dp. Hence x € Pp, since Pp C Dp is a prime ideal. By 1. it follows
that Ep is seminormal.

Now D is seminormal, since

5: ﬂ DpnN ﬂ (DP Pp m DpnN ﬂ Dp

PER(D) PeS(D) PER(D) PesS(D)

3. Suppose to the contrary that Q € S(ﬁ) and P = QN D € v-max(D). Then Theorem 5.3.3 yields
P € §(D) and Dp = (Dp:Pp) = (Pp Pp). By 2., Pp is a radical ideal of ﬁp, and since Pp C Qp,
Theorem 5.1.2 implies (Qp: Qp) = Dp. On the other hand, Qp is strong, hence (Dp:Qp) = (Qp:
Dp) = Dp and Qp = (Qp)sp = Dp7 a contradiction.

In particular, if Q € v- spec(D) is strong, then the arguments above together with Theorem 5.3.3
show that @ N P € v-spec(D) \ S(D) is strong. Conversely, if P € v-spec(D)\ S(D), then Theorem 5.3.4
shows that there is a unique strong @ € 5—Spec(5) such that @ N D = P. ]

Theorem 5.4.4. Let D be a seminormal Mori monoid, and let the sequence (D;);>0 of Mori monoids
be recursively defined by Do =D and D;41 = E for alli > 0.

If k € N and Q € S(Dy), then there exist strong prime ideals Py, ..., Py € v-spec(D) such that
Ph=QNDC P C...C Fg.

Proor. 1. We use induction on k.

k=1: If Q € S(D), then Py = Q N D € v-spec(D) is strong and Py ¢ S(D) by Theorem 5.4.3.3.
Hence there exists some P € v-spec(D) such that Py C Pj, and P is strong, since P, ¢ X(D).

k>2, k—1— k: Note that Dy = D. By the induction hypothesis, there exist strong prime
ideals Pj,..., P}, € v-spec(D ) such that Pj = QnD CPC...C P _,,and weset P, = P/ND
for all i« € [0,k — 1]. By Theorem 5.4.3.3 it follows that Po = Q ND C P C...C P,_q, and
P, € v-spec(D) \ S(D) is strong for all i € [0,k — 1]. Hence there exists some Pj, € v-max(D) such that
Py_1 C Py, and clearly Py is strong. O
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Theorem 5.4.5. Let D be a seminormal Mori monoids, let the sequence (D;);>o of Mori monoids

be recursively defined by Do =D and D;y1 = D for all i > 0. Then
D= U D; is a Krull monoid.
i>0
PROOF. (D;)i>¢ is an ascending sequence of Mori monoids. Hence
=|\JDicK
i>0

is a monoid. We set v* = v(D*), t* = t(D*) and v; = v(D;), t; = t(D;), and we obtain ¢t <t; <t; 41 <t*
for all 4 > 0. In particular, if J € Z,«(D*) or if J € Z,,,,(Djt1), then JND; € Z,,(D;). It is now
sufficient to prove the following three assertions.

I. D*c D.
II. D* is a Mori monoid.
I1. S(D*) =0.

Indeed, by II and III it follows that D* is a Mori monoid satisfying v*-max(D*) = R(D*). Hence
D% is a dv-monoid for all P € v*-max(D*), and therefore D* is a Krull monoid by Theorem 5.2.5. In

particular, D* is completely integrally closed, hence Dc D= D*, and therefore D* = D by I.

I. Tt clearly suffices to prove that D; C D for all i > 0, and we proceed by induction on i. For i =0,
there is nothing to do. Thus suppose that ¢ > 0 and D C D Since D is completely integrally closed by
Theorem 5.4.2, Theorem 5.3.3 implies that D;;; C D c D.

II. Let (I,)n>0 be an ascending chain in Z,-(D*). For i, n > 0, we set I, ; = I, N D;. For every
>0, (Ini)n>0 is an ascending sequence in Z,, (D;), and it terminates since D; is a Mori domain. Let
n; > 0 be minimal such that I,; = I,41,; for all n > n,;. Then the sequence (n;);>¢ is monotonically
increasing, and since

I, = UI”J forall n>0,
i>0
it suffices to prove that there exists some k > 0 such that n;y; = n; for all ¢ > k. Indeed, then it follows
that I,, = I, for all n > ng. Replacing the sequence (I,,),>0 by a suitable end piece, we may assume
that I = Iy # {0} and ng = 0. Then it follows that I,,; "D =1 for all n, i > 0.

Let k € N be such that there is no chain I C Py C Py C ... C Pg, where Py,..., P, € v-spec(D),
and suppose that there is some ¢ > k such that n;;; > n;. Then there exists some n > n; such that
Iniv1 € Ingi,i41, and since I, ;41 ND; = I 41,41 N D; = I, ;, Theorem 5.3.5 implies that there is some
P € S(D;) such that I,; C P. By Theorem 5.4.4 there exists a chain PND =P C P, C...C P in
v-spec(D), and since I =1,,;ND C Py and i > k, this contradicts our choice of k.

ITI. Assume to the contrary that there is some P* € S(D*). Fori > 0, set P, = P*ND; € v;-spec(D;).
Then (D;)p, C D3 C K, P? # 0, and D3 is not a dv-monoid. Hence (D;)p, is not a dv-monoid, and
therefore P; is strong. If Q; € v;-max(D;) is such that P; C Q;, then @; € S(D;), Py C Q; N D, and
Theorem 5.4.4 implies that there is a chain Py C P; € ... C P; in v-spec(D). As i > 0 is arbitrary, this
contradicts Theorem 3.2.7.2. O






CHAPTER 6

Ideal theory of polynomial rings

6.1. The content and the Dedekind-Mertens Lemma
Throughout this Section, let D be a ring, D[X]| a polynomial ring, d = d(D) and v = v(D).

Definition 6.1.1. Let R D D be an overring. For D-submodules M, N C R we write (as usual in
ring theory) MN instead of p(MN).

For a polynomial g =bg+ X + ...+ b, X™ € R[X], the D-module
cp(9) = p(bo,...,bm) =Y Db C R
7=0

is called the D-content of g. If J C R is a D-submodule, then g € J[X] if and only if cp(g) C J.

Obviously, cp(af) = acp(f) and cp(fg) C cp(f)ep(g) for all a € R and f, g € R[X], but equality

need not hold [indeed, if D = R = Z[2i] and f = 2i + 2X, then f? = —4 + 8iX + 4X?, hence

c(f) = (2i,2), c(f?) =(4), and c(f)* = (4,40) # c(f*)].

The Dedekind-Mertens number of a non-zero polynomial g € R[X] with respect to D is defined by
pp(g) = inf{k € N | cp(f)*ep(g) = cp(f)*'ep(fg) for all f € R[X]} € NU {oo} .

If f, g € R[X], then cp(fg) < cp(f)cp(g) implies cp(f)*Lep(fg) < cp(f)Fep(g) for all k € N, and
therefore

1p(g) = inf{k € N|cp(f)¥en(g) < cp(f)* tep(fg) for all f € R[X]} € NU{oo}.

We shall see in Theorem 6.1.2 that up(g) only depends on the D-module cp(g) and not on the embedding
ring R.

The classical Dedekind-Mertens Lemma asserts that up(g) < degp(g)+1 for all g € D[X]®. We shall
prove a more general statement in Theorem 6.1.2.

Theorem 6.1.2. Let R D D be an overring, g € R[X] and §(g) the number of non-zero coefficients
of g. For M € max(D), we denote by pp(g) the minimal number of generators of the Dps-module

cp(9)m, that is, pr(g) = dimp/a(cp(g)m/Mcp(g)nr). Then
p(g) < max{pn(g) | M € max(D)} < é(g) < deg(g) +1.

For the proof we need the following variant of Nakayama’s Lemma.

Lemma 6.1.3. Let D be local with maximal ideal M .

1. Let A, B be D-modules such that A C B and B/A is finitely generated. If B = A+ MB, then
B = A.

2. Let L be a D-module and A, B C L submodules. If A is finitely generated and A C B+ MA,
then A C B.

97



98 6. IDEAL THEORY OF POLYNOMIAL RINGS

PRrOOF. 1. This is the classical form of Nakayama’s Lemma.

2.fAC B+MA, then A+BC B+MA C B+M(A+B) C A+B implies A+ B = B+M(A+B),
and by 1. we obtain B=A+ B D A. a

PRrROOF OF THEOREM 6.1.2. For f € R[X], we set Cy =cp(f). If f, g € R[X], then we obviously
have C;yC, C C4 and therefore C’J?Cg C C)lffleg for all kK € N.

It suffices to prove the result if D is local with maximal ideal M. Indeed, suppose that this is done. Let
g € R[X] and k € N be such that k > pps(g) for all M € max(D). We must prove that C’}“C’g = C'J]f_lC’fg
for all f € R[X]. For f € R[X] and M € max(D), let fay € Ry[X] be the image of f in Ry/[X]. Then
cpu (far) = (Cy)ar, and the local result implies cp,, (far)¥cp,, (9ar) = cpy (far)*"Lep,, (fargar), that is,
(C”;C’g)M = C’fM Con = C;f;lchgM = (C]’f_lcfg)M. Since this holds for all M € max(D), the assertion
follows.

Assume now that D is local, M = D\ D*, R D D is an overring, and for g € R[X], we set

p(g) = par(g). We prove first :

A. If g, g1 € R[X] and Cy_4 C MCy, then Cy = Cy, and pp(g) = up(g1).

Proof of A. Since g = g1 + (g — g1), we obtain C, C Cy, + Cy_y, C Cy, + MC, and therefore
Cy C Cy by Lemma 6.1.3. But Cy,_y = Cy—y, C MCy C MCy,, hence we obtain also Cy, C Cy and
therefore Cy = Cy, .

By symmetry, it is now sufficient to prove that up(g) < pp(g1), and for this we may assume that
k= pup(g1) < oo. If f € R[X], then

CIJ?CQ = CJ%Cgl = C’;_lcfgl = C}C_lcfg+f(grg) - C];_I(Cfg + Cf(grg))
C CF H(Cpg + CCyy—g) = CF'Cpy + MCFC, .

By Lemma 6.1.3 we obtain C’]]?C’g C CJ]f*leg. O[A.]
We prove Theorem 6.1.2 by induction on p(g). If g = 0, then pup(g) = 0. Thus we may assume that

9=> _bX7, where meNg, bo,....,bm €R and by #0.
=0

p(g) =1: Then Cy = Db for some b € R. For j € [0,m], there exists some d; € D such that
b; = d;b, and we assert that there is some [ € [0,m] such that d; ¢ M (indeed, otherwise we have
Cy C MC, and consequently Cy = 0 by Lemma 6.1.3). Let [ € [0, m] be such that d; ¢ M and d; € M
for all j € [0,1 — 1]. We must prove that CyC, C Cf4 for all f € R[X]. Thus suppose that

n k
f= ZaiXi, where n € Ny, ag,...,a, € R and ¢, = Zak_idib.
i=0 i=0
Then C;C, = Cyb = plagb,...,anb). If a; =0 for all i > n and b; = 0 for all j > m, then
m+n k
fg= Z e X¥, where ¢ = Zak_idib for all k€ [0,m+n].
k=0 i=0

It suffices to prove that a;b € Cyy + MCyC, for all i € [0,n]. Indeed, once this is done, it follows that
CyCy C Crg + MCyCy and therefore CyC,; C Cyy by Lemma 6.1.3.

We proceed by induction on 4. Let ¢ € [0,n]| and suppose that a,b € Cyy + MC;Cy for all v € [0,¢ — 1].

Then
-1 I+i

Citl = a;dib + Zai+l_udyb + Z ai+l—vdub S Cfg.
v=0 v=Il+1
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If v € [0,l — 1], then d, € M and a;4;—,d,b € MC;Cy. If v € [l + 1,1+ 4], then i +1 —v € [0,i — 1]
and a;1;—,d,b € D(Cyy + MC;Cy) = Cyg + MCyCy by the induction hypothesis. Hence it follows that
a;dib € Cyg + MC;Cy, and since d; € D\ M = D*, we obtain a;b € Cy, + MC;C,.

p(g)=k>2,k—1—>k: If

m
o= Y bjX/, then Cy4 CMC,, hence Cy=Cy and pup(g)=pplg).

=0
b;¢MCy

Therefore we may assume that g = g1. Since b, ¢ MCj, there exists a subset L C [0,m — 1] such that
|IL| = k—1and {b,}U{b, | n € L} is a minimal generating set of Cy. Then Cy = Db+ E, where
E=p{by|pe€L}), and for every j € [0,m], there is a representation
bj = Ajbm + b}, where ;=" \;.b, €E,
neL
such that A;, X\j, € D for all j € [0,m] and p € L, A\,, =1 and A, , =0forall p e L, and if j € L,
then \j; =1land A\; =\, =0forall ve L\ {j}. We set

m m—1

go=Y dipX7 =0, X™+... and g1 =) b;X7.
j=0 Jj=0

Then g = go + 91, Cgy = bD, Cy, = E, p(go) =1, and p(g1) = k — 1. By the induction hypothesis

and since p(go) = 1, we have C’Jlf_ngl = C’}“_chgl and Cjg, = C;Cy, = b,,,Cy for all f € R[X], and

we must prove that C”;Cg C C’}“_lc’fg for all f € R[X]. We proceed by induction on deg(f). We may

assume that f # 0,

f:ZaiXi =a, X"+ f1, where n €Ny, ag,...,a, € R, a, #0 and C}iC’g CC’IJfl_lelg.
i=0

Then it follows that a,by,, € Crq. We use the induction hypothesis to prove the following assertion.
B. Cfg, CCpg+bynCy and Cp gy C Cpg+ anCy,

Proof of B. Since Cfgo = CanX"go-‘rflgo C CanX"go + Cflgo C anbmD + C’f1bm c Cfg + Cflbm’ we
obtain Cyg, = Cf(g—go) C Crg + Crgy C Cpg +bmCy,.
In the same way, Cy, xng = Cxn(a,go+ang1) C Cango T Cangi = @nbmD + anCy, C Cyy + a,Cy,, and

therefore Cy, 4 = C(y_q,xn)g C Crg+ Ca,xng C Cryg+anCy,. OB.]
C§Cy is the D-module generated by the set A of all elements « = ag® - ... - a,"7'a’b; € R, where
Voy -5 Un—1, ¥ € Ng, v9+...+vp_1+v=Fkand j€[0,m]
elfv#£0andje€J, then a=a ... a"7'a’ tabd; € C}C_lc’fg.
eIfv#0andjé¢ . J, then a=al’ ... a, " 7'a" tab; € C/;_lanl.
e If v =0, then a=ay’ ... a,"3'b; € Ck Cy C C’Jf:lelg C C]f“*lelg C 01;71(6?9 +a,Cy,)

(by the induction hypothesis, B, and since Cy, C Cj).
Putting the three cases together, we get
CECry C CF ' Cry + Cf anCy, + CF M (Crg + anCy,) = CF ' Cg + CanCy, .
Using B and the induction hypothesis, it follows that
Ci anCy, CanCi?Crq, C anCl (Crg +bimCy) C anCyCrg + C§ anbm C CF ' Cyy,
which completes the proof. |
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Corollary 6.1.4. Let R D D be an overring.

1. For every g € R[X] there exists some m € N such that cp(f)™cp(g9) = cp(f)™ tep(fg) for all
f € R[X].

2. Let f, g € R[X], and suppose that cp(f) is a finitely cancellative D-submodule of R ( that means,
cp(fYM =cp(f)N implies M = N for all finitely generated D-submodules M, N C R). Then
co(fg) =cp(f)en(g)-

3. Let D be a domain, K = q(D) and r a module system on K such that r > d. If f € K[X] and
cp(f)r is r-finitely r-cancellative, then cp(fg), = [cp(f)ep(g)]. for all g € K[X].

PrOOF. Obvious by Theorem 6.1.2. |

Theorem 6.1.5. Let D be a domain and K = q(D). Then the following assertions are equivalent:

(a) D is integrally closed.

(b) For all f, g € K[X] we have cp(fg)e = [cn(/)en(9)]o-

(c) Forall f, g € K[X] we have cp(f)cp(g) Ccp(fg)w.

(d) For all fe K[X] we have fK[X]ND[X]= fep(f)~1[X].

PROOF. (a) = (b) Since D is integrally closed, we have Dy, = D, and therefore d, is a finitely
cancellative ideal system on D. Hence cp(fg)a, = [cp(f)cp(g) ]4,, and since dy < v, the assertion follows.

(b) = (¢) Obvious.

(¢) = (d) Let f € K[X]. We must prove that, for all g € K[X], we have fg € D[X] if and only if
ge€cp(f)HX]. Ifg € K[X] and fg € D[X], then cp(f)cp(g) Ccp(fg)y C D, hence cp(g) Ccp(f)~!
and therefore g € cp(f)~1[X]. Conversely, if g € cp(f)~1[X], then cp(g) C cp(f)~! and therefore
cp(fg) Cep(f)ep(g) € D, which implies fg € D[X].

(d) = (a) Let u € K be integral over D, and let g € D[X] be a monic polynomials such that g(u) = 0.
Then g = (X — u)h, where h € K[X], and therefore g € (X —u)K[X]N D[X] = (X — u){1,u}"1[X].
Hence h € {1,u}~*[X], which implies that uh € D[X] and thus u € D, since h is monic. O

Theorem 6.1.6. Let D be a domain and K = q(D). Then the following assertions are equivalent:
(a) D is local and integrally closed.
(b) If feD[X], ue K*, f(u)=0 and cp(f) is invertible, then u € D or u~! € D.

(¢) If f € D[X] be such that some coefficient of [ lies in D* and w € K* is such that f(u) =0,
thenuw € D or u™!' € D.

PrOOF. (a) = (b) Let f € D[X] and u = b~'a € K*, where a, b € D*®, be such that f(u) =0 and
cp(f) is invertible. Then f = (bX —a)h for some h € K[X], and

co(f) = co(f)v D cp(bX —a)ep(h) = (a,b) cp(h) D cp(f).
Hence cp(f) = (a,b) cp(h), and therefore (a,b) is invertible. Since D is local, Theorem 4.1.4 implies
(a,b) = (b) or (a,b) = (a), and therefore u € D or u=* € D.
(b) = (c¢) Let f € D[X] and some coefficient of f lies in D*, then cp(f) = D.

(c) = (a) Let u € K* be integral over D, and let f = X" +a, 1 X" '+ ... + a1X + ag € D[X]
be a monic polynomial of minimal degree such that f(u) = 0. If u ¢ D, then n > 2, u~! € D and
Wl ut T4+ (a1 + aou_l) = 0, which contradicts the minimality of n. Hence D is integrally
closed.

In order to prove that D is local, we take some M € max(D) and prove that D\ M C D*. If
u € D\ M, then M + Du = D, and there exist elements a € M and b € D*® such that a + bu = 1. If
a =0, then v € DX and we are done. Thus suppose that a # 0. Then u~'a is a zero of the polynomial
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f=wX—-a)(X—-b) =uX?— X +ab € D[X], and therefore either u"'a € Dora™*u e D. Ifa~tu € D,
then u € aD C M, a contradiction. If u=ta € D, then a = ud for some d € D, hence 1 = u(d + b) and
u € D*. |

6.2. Nagata rings

Remarks and Definition 6.2.1. Let D be a ring and K = q(D) its total quotient ring.

1. We denote by F(D) = {¢c7'J | ¢ € D*, J < D} the set of all fractional ideals of D. If
I, Je F(D)and a € D, then al, I + J, IJ € F(D). For I € F(D), we define

I[x] = {zn: a; X’

2. Let R D D be an overring such that R* C D*, and assume that q(D) C q(R) . For I € F(D),
we denote by

n € Ny, ao,...,anEI}CK[X].

IR=pgrI={z1a01+... +xpay, | n €N, z1,...;2, €I, a1,...,a, € R} € F(R)
the the R-submodule of q(R) generated by I. If I, J € F(D), then (IJ)R = (IR)(JR), and if
I=plai,...,an) =Day + ...+ Day,, then IR = g(a1,...,a,) = Ra; + ...+ Ra,.
3. For a D[X]-submodule J C K[X], we call

CD(J) = ZCD(f) CK

feJ
the content of J. By definition, cp(J) C K is a D-submodule.

4. Let I < D be an ideal. We identify the rings DI[X]/I[X] and (D/I)[X] by means of the
canonical isomorphism. Explicitly, we set

Z a; X'+ I[X] = Z(ai +1)X* for every polynomial f = Z a; X" € D[X].
i>0 i>0 i>0

For a multiplicatively closed subset T C D®, we identify the rings (T-!D)[X] and T-1D[X] by
means of the canonical isomorphism. Explicitly, we set

Qi 5 vy . _ vy
YX 72(11)( /t for every polynomial ffZalX €D[X] and teT.

i>0 i>0 i>0

Theorem 6.2.2. Let D be a ring, K =q(D) and I, J € F(D).

1. ID[X] = I[X] = {f € K[X] | cp(f) € I} € F(D[X]), cpU[X]) =1, I[X]NK =1, and
(IJ)[X] = I[X]J[X].

2. I is finitely generated |principal] if and only if I[X] is finitely generated [principal]. More
precisely, if I = p(ai,...,a,) for some ai,...,a, € K, then I[X] = pxj(ai,...,a,), and if
IX] = pix)(f1, .-+ fn) for some fi,..., fn € K[X], then I = p(f1(0),...,fn(0)).

3. Let D be a domain and J* # 0. Then (I:J)[X]| = (I[X]:J[X]). In particular (for I = D),
JUX] = J[X]L

PRrOOF. 1. By definition, I[X] = {f € K[X] | cp(f) € I} € ID[X], cp(I[X]) C I, and I C I|X]
implies I =cp(I) C cp(I[X]. Therefore I X]NK ={a € K |cp(a)=aD C I} =1.

If felID[X],then f=uaifi+...+anfn, wheren € N, ay,...,a, € I and fi,..., f, € D[X].
For ¢ € [1,n], we have cp(a;f;) = a;cp(fi) C a;D C I, hence a;f; € I[X] and f € I[X]. Consequently,
(IJ)[X] = (IJ)D[X] = (ID[X])(JD[X]) = I[X]J[X].
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2. Obviously, I = p(a1,...,a,) implies I[X] = pixj(ai,...,a,). Thus let fi,...,f, € K[X]
be such that I[X] = pix)(fi,...,fn). Foralli e [1,n], f; € I[X] implies f;(0) € I, and therefore
p(f1(0),...,fn(0)) C I. fa eI C Iz ] then a = fig1 + ... + fngn, for some g1,...,g, € D[X], and
therefore a = (f1g1 + ...+ fngn)(0) = f1(0)g1(0) + ... + £, (0)g,(0) € p(f1(0),... f,(0)).

3. Since (I:J)[X ] J[X] = ((I:J)J)[X] C I[X], we obtain (I:J)[X] C (I[X]:J[X]). Suppose now
that ¢ € I* and F € (I[X]:J[X]) C K(X). Then Fc € I|X] C K[X] and therefore F C K[X]. If b € J,
then bF € I[X] implies I D cp(bF) = bcp(F), hence Jep(F) C I, cp(F) C (I:J) and consequently

e (I:J)[X]. O

Theorem und Definition 6.2.3. Let D be a ring, K = q(D[X]) the total quotient ring of the
polynomial ring D[X] and N = {f € D[X] | cp(f) = D}.
1. N C D[X]* is a multiplicatively closed subset.
The ring D(X) = N7'D[X] C K is called the Nagata ring of D. If D is a field, then
N = D[X]*, and D(X) is just the field of rational functions (thus the terminology is consistent).

2. Let J C D be an ideal, and let w: D[X]| — D/J[X] be the canonical epimorphism. Then
JD(X)=N"1JX] < D(X), JD(X)ND=J[X|ND=J, and there is an isomorphism

, : f _ m(f)
®: D(X)/JD(X) — (DJJ)(X), given by @(5 +JD(X)) = o
3. If P € spec(D), then P[X] € specD[X]|, PD(X) € spec D(X), and the natural embedding
jp: D[X] — Dp[X] = (D\ P)"'D[X] induces an isomorphism vp: D[X]px) — Dp(X).
4. max D(X) ={PD(X) | P € max(D)}.

ProoF. 1. If f € N and g € D[X]°*, then cp(fg) =cp(f)ep(g) =cp(g) # {0} by Corollary 6.1.4.
Hence fg # 0, which implies f € D[X]*. If f, g € N, then cp(fg) = cp(f)cp(g) = D, hence fg € N,
and N is multiplicatively closed.

2. Cleatly, JD(X) = JN-'D[X] = N-'JD[X] = N-'J[X] < D(X). If a € JD(X) N D, then there
is some f € N such that af € J[X], and therefore cp(af) = ace(f) = aD C J, which implies a € J.
Hence JD(X)ND C JC JX]ND C JD(X)N D, and thus equality holds.

There is an isomorphism

®: D(X)/JD(X) = N"'D[X]/N"'J[X] = N™YD[X]/J[X]) = N~'(D/J)[X] = =n(N)""(D/J)[X],
given by

cb(i + JD(X)) _ ™) forall feD[X] and geN.
9 (9)
Therefore it suffices to prove that w(N) = {n(f) | f € D[X], cp,;(n(f)) = D/J}. If f € D[X], then
cpys(m(f)) =cp(f)+ J/J, and therefore f € N implies cp,;(7(f)) = D/J. To prove the converse, let
f € D[X] be such that cp,;(w(f)) = D/J. Then cp(f)+J = D, and there exists some u € J such that
cp(f)+uD =D. If n € Nand n > deg(f), then cp(f +uX"™) =cp(f)+uD = D, hence f+uX" € N
and 7(f) = n(f + uX™) € w(N).
3. Let P € spec(D). Then D[X]/P[X] = (D/P)[X] is a domain. Hence P[X] € spec D[X], and
since P[X] N N = 0, it follows that PD(X) = N~1P[X] € spec D(X). By definition,
Dp(X) = Nz'Dp[X], where Np={F € Dp[X]|cp,(F)=Dp}.

If f € DIX]\ P[X], then cp(f) ¢ P, hence cp,(jr(f)) = cp(f)p = Dp and therefore jp(f) € Np.
Hence it follows that jp(D[X]\ P[X]) C Np, and therefore jp induces a ring homomorphism

vp: D[X]px — Dp(X), given by Lp(g) _ 9L o all geDIX] and fe DIX]\ PLX].

7N
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tp is surjective: If z € Dp(X), then there exist g € D[X]|, f € D[X]\ P[X] and s, t € D\ P such that
L= 95 /L

S/t sf/L

tp is injective: If z € Ker(tp) C D[X]p[x], then

LP(%) (note that sf € D[X]\ P[X]).

1
= %, where g € D[X], f € D[X]\ P[X] and %1 =0 € Dp(X), hence % = % € Dp[X].
Therefore there exists some s € D\ P such that sg =0, and as s € D[X] \ P[X], this implies z = 0.
4. If P € max(D), then D(X)/PD(X) ~ (P/D)(X) is a field, and therefore PD(X) € max D(X).
Thus assume that M € max D(X). Then M = N~'Q, where Q € spec D[X] is maximal such that
QNN = 0. It is now sufficient to prove that

J = Z cp(f) # D.
feQ
Indeed, then there exists some P € max(D) such that J C P, hence Q C P[X], and it follows that
M = N"'Q c N7'P[X] = PD(X), and therefore M = PD(X).
Assume to the contrary that J = D. Then there exist fi,..., fm € @ such that 1 € c(f1) +...+c(fm).
Let ko, ...,k € N be such that k; > deg(f1 + X* fo+...+ Xki-1f, 1) for all j € [2,m], and consider

the polynomial f = f; + X*2fo 4+ ...+ X¥nf . Then cp(f) =cp(fi)+...+cp(fm), hence 1 € cp(f)
and f € @, a contradiction. O

Theorem 6.2.4. Let K be a field, v be valuation of K and v* the trivial extension of v to K(X).
Then Oy« = O,(X).

PROOF. By definition, O,(X)= N—10,[X], where
N ={f € O,[X] | co,() = O} = {>aix' € O,[X]

i>0

v(a;) = 0 for some i > O},

and therefore N = {f € O,[X]|v*(f) =0}. If f € O,[X]*, then f = afy, where a € OF, fo € N and
v(a) = v*(fp). Therefore we obtain

OU*:{%‘) ac K, va)>0, anQOEN}:{giO’fEOv[X]a QOGN}:OU(X)- 0

Theorem und Definition 6.2.5. Let D be a domain, K = q(D) and r be a finitary module system
on K such that r > d = d(D) (then {1}4 = D implies {1}, = D, D D).

1. N, ={f € D|X] | cp(f)r = D} C D[X] is a multiplicatively closed subset.
The domain N,(D) = N, !D[X] c K[X] is called the r-Nagata domain of D. Note that
D(X) = Nu(D).

2. Let J € F(D) be a fractional ideal of D. Then JN,(D) = N, 1J[X] is a fractional ideal of
N, (D), and J € JN,(D)NK C J,.

3. If I,J e F(D), J*#0 and I. = I, then (I:J)N.(D)= (IN.(D):JN.(D)). In particular,
(JN.(D))"* = J "N, (D).

4. max N.(D) = {PN,(D) | P € rp-max(D)}. If P € rp-max(D) and M = PN,(D), then
N, (D) = D[X]px) = Dp(X).

5. If Je F(D), then

JN,.(D)NK = N e

Perp-max(D)



104 6. IDEAL THEORY OF POLYNOMIAL RINGS

6. If J € F(D), then (JJ™Y),. = D, if and only if JN,.(D) is an invertible fractional ideal of
N, (D). In particular, if r is an ideal system on D and J € F,.(D), then J is r-invertible if and
only if JN,(D) is an invertible fractional ideal of N,(D).

7. PicN,.(D) = 0. Every invertible fractional ideal of N,.(D) is principal.

Proor. 1. Since D, = {1}, is r-cancellative, we may apply Corollary 6.1.4. If f, g € N,, then
cp(f9)r = [en(f)ep(9)]r = cn(f)r +r cp(9)r = D, and thus fg € N,..

2. Clearly, N 1J[X] is an N,.(D)-submodule of K(X) = q(N,.(D)), and if a € D*® and aJ C D, then
aN,1J[X] C N,(D). Hence N, 1J[X] is a fractional ideal of N,.(D), and J C J[X] C N, 'J[X]N K.
If @ € N7'J[X] N K, then there exists some g € N, such that ag € J[X], hence cp(ag) C J and
cp(ag), = acp(g), = aD, C J,, and therefore a € J,.

N YID)[X]) = N YI[X] J[X]) = (N, H[X]) (N7 J[X]). Hence it follows that
(N YLD [X)) (N VIXT]) = N Y((2:0) ) [X] € NI

and therefore N,~'(I:J)[X] C (N, 'I[X]: N1 J[X]). If J = {0}, then equality holds.

Assume now that I = I, b€ J* and F € (N, 'I[X]: N71J[X]). Since J C N, 1J[X], we obtain
bF € N, 'I[X], and therefore there exist some f € b~1I[X] C K[X] and g € N, such that gF = f. If
a € J, then af = aFg € N, 'I[X], and there exists some h € N, such that afh € I[X]. Hence it follows
that cp(afh) C I, and acp(f) =cp(af) C cplaf)r = cplaf)r +r cp(h)r = cp(afh), C I, = I. Since
a € J was arbitrary, we obtain Jcp(f) C I, hence cp(f) C (I:J), and F € N, Y(I:J)[X].

4. For the proof of max N,(D) = {PN,(D) | P € rp-max(D)} we proceed in three steps:

o If P € rp-spec(D), then N, 'P[X] € specN,.(D).

If P € rp-spec(D) and f € P[X], then cp(f) C P = P.N D. Hence it follows that cp(f), C P. € D,,
P[X]N N, =0, and N, 'P[X] € specN,(D).

e If M € max N,(D), then there exists some P € rp-max(D) such that M = PN,.(D).
Suppose that M € max N,.(D), say M = N,71Q for some Q € spec D[X] such that @ N N,. = (). We set

J = Z cp(f) € D, and we assert that J, = (U cD(f)) #+D,.
reQ reQ "

Assume the contrary. Since r is finitary, there exist fi,..., f;n € @ such that 1 € [cp(f1)U...Ucp(fim)]r-
Let ka, ..., ky € N be such that k; > deg(f1+X"* fo+...+X"-1f;_;) for all j € [2,m]. Then we obtain
f=h+X"fo4. . 4+ X"f,€Q,and cp(f)r = [cp(fi)+...+cp(fm)]r = [ep(fi)U...Ucp(fm) ],
hence cp(f), = D, and f € N,, a contradiction.

As J. # D,, we obtain J C J,, = J.ND C D, and there exists some P € rp-max(D) such that
JCP.If f e, then cp(f) C J C P, hence f € P[X], and therefore ) C P[X]. Hence it follows that
M = N;'Q Cc N7 'P[X] = PN,.(D), and therefore M = PN,(D).

e If P € rp-max(D), then PN,(D) € max N, (D).
If P € rp-max(D), then PN,(D) € specN,(D), and there exists some M € max N,(D) such that
PN,(D) ¢ M. As we have just proved, M = P'N,(D) for some P’ € rp-max(D), and we obtain
PcC PN.(D)NDcC P'N.(D)NnD C P, =P, hence P =P’ and PN,(D) = M.

If P € rp-max(D), then Ny(D)y-1px = Nr_lD[X]N:IP[X] = D[X]pix) = Dp(X) by Theorem
6.2.3.3 (note that in our case all rings are subrings of K (X) the isomorphism ¢p given there is the identity
map).

5. If J € F(D), then Theorem 3.2.2 implies

N, (D)NK = (N IN(D)uNEK = (1 JDr(X)NK.
Meéemax N, (D) Perp-max(D)
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Hence it suffices to prove that JDp(X)NK = Jp forall P € rp-max(D). If P € rp-max(D), then clearly
Jp C JDp(X)N K. Thus suppose that a € JDp(X)NK. Since JDp(X) = JN5'Dp[X] = N ' Jp[X],
where Np = {g € Dp[X] | cp,(g9) = Dp}, there exists some g € Np such that ag € Jp[X]. Hence
cpplag) =acpp(9) C Jp, and if s € cp,(9) \ Pp = DS, then as € Jp and therefore a € Jp.

6. Suppose that (JJ 1), # D,. Then (JJ~ 1), = (JJ1).ND # D, and therefore there exists some
P € rp-max(D) such that JJ~! C P. Hence JN,(D)(JN,(D))~! = (JJ Y)N,(D) c PN,.(D) € N,.(D)
by 3., and therefore JN,.(D) is not invertible.

Conversely, assume that JN,. (D) is not invertible. Then there exists some M € max N, (D) such
that JN,.(D)(JN,.(D))~! € M. By 4. there exists some P € rp-max(D) such that M = PN,.(D), and
then JJ~' C (JJ-YN.(D)N D = JN,(D)(JN,(D))~* N D C PN,(D)N D C P,, which implies that
(JJ™Y, C P, C D,.

6. Let J C N,.(D) = N !D[X] be an invertible ideal. Then J = (f1,..., f;n) for some m € N and
fis--os fm € DIX]®. Let ko,...,ky € N be such that k; > deg(fs + X*2fo + ...+ X*i-1f;_1) for all
jeRm]. If f=f+Xrfot+...+XFnf, €J then cp(f) =cp(fi)+...+cp(fm), and we assert
that J = fN,.(D). By Theorem 3.2.2 it suffices to prove that Jy; = fN,.(D)s for all M € max N, (D).
Let M € max N,.(D) and P € rp-max(D) such that M = PN, (D). Then N,(D)y = D[X]p[x], and by
Theorem 4.1.4 there exists some j € [1,m] such that Jy = f;N.(D)y = f;D[X]p[x). Since f € Ju,
there exists some h € D[X]\ P[X] and some g € D[X] such that fh = f;g, and it suffice to prove that
g ¢ P[X], for then g, h € (D[X]p[x))* = N..(D)p > and Jar = fjN,.(D)ar = fN.(D)nr-

Assume to the contrary that ¢ € P[X]. Then cp(fh) = cp(f;9) C cpn(fj)ep(g) C cp(f;)P, and
since h ¢ P[X], it follows that cp(h) ¢ P and cp,(h) = cp(h)p = Dp. Hence we obtain

co(fi)p Cep(f)p =cp,(f) =cpp(fh) = cp(fh)p Ccp(fj)p Pp
and therefore cp(f;)a = {0} by Lemma 6.1.3. But this implies that f; = 0, a contradiction. O

6.3. Kronecker domains

Definition 6.3.1. Let K be a field. A subring R C K(X) is called a Kronecker domain if X € R*
and f(0) € fR for all f € K[X].

Theorem 6.3.2. Let K be a field and R C K(X) a Kronecker domain.
L Iff=a+aX+...+a, X" € K[X], then fR= Rap+ ...+ Ray.
2. R is a Bezout domain, and K(X) = q(R). In particular, R is a GCD-domain, t(R) = d(R),
Pic(R) = C(R) = 0, and a domain Y such that R C'Y C K(X) is a valuation domain if and
only if Y is a t(R)-valuation monoid.

3. Let RCY C K(X) be a valuation domain. Then V =Y N K is a valuation domain of K, and
Y =V(X).

ProoF. 1. Clearly, X € R implies fR C agR + ...+ a,R. For the reverse inclusion we prove that
a; € fR for all i € [0,n] by induction on 3.

i=0: ap= f(0) € fR.

i€[l,n], i—1—i:1If ag,...,a;—1 € fR, then f'=X"[f —(ap+ a1 X +...+a;1 X" 1] € fR,
and therefore a; = f/(0) € f'R C fR.

2. We prove that every ideal of R generated by two elements is a principal ideal. Thus let o, 6 € R and
[, 9, h € K[X]* such that o = 4 and 3 = £. If n > deg(f), then fR+gR = fR+X"gR = (f+X"g)R
by 1., and therefore aR+ SR = (a+ X"3)R.

In order to prove that K(X) = q(R), it suffices to prove that K[X] C q(R). If f € K[X], then
h=(1+Xf)"! € R, and therefore f = X~} (h™! — 1) € q(R).
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3. f x € K\V, then z € K(X)\Y, hence x7! € KNY =V, and therefore V is a valuation
domain of K. Let y: K(X) — I'U {oo} be a valuation such that O, =Y. Then y(X) = 0, and if
f=ao+aX+...4+a,X" € K[X], then a; € fR C fY and therefore y(a;) > y(f) for all i € [0,n]. On
the other hand, y(f) > min{y(a;X?) |i € [0,n] } = min{y(a;) | i € [0,n] } > y(f ) Hence equality holds,
and we obtain y(K) = y(K[X]). Since I = y(K(X)*) = q(y(K[X]*)) = q(y ( X)) = y(K*), it follows
that v=y|K: K — T'U{oco} is a valuation such that O, =V, and y = v*, the trivial extension of v
to K(X). Hence Y = V(X) by Theorem 6.2.4. O

Definition 6.3.3. Let D be a domain, K = q(D) and r a finitary module system on K such that
r > d(D). Then

< (0) = {1 | 1€ DX). g€ DIXI", o) € el } < K(X)

is called the r-Kronecker function domain of D.

Theorem 6.3.4. Let D be a domain, K = q(D) and r a finitary module system on K such that
r > d(D).
1. K.(D) is a Kronecker domain of K(X), and if f € K[X] and g € K[X]®, then 5 € K.(D) if
and only if cp(f) C cp(g)r,
2. There is a surjective monoid homomorphism

e: K(X) — A (K), given by 5(%) —cD(g)[al] cp(f)r, forall € K[X] and g € K[X]*.

e 1 (AS(K)) =K.(D), e (1) = K.(D)*, and € induces monoid isomorphisms
KX)/MKAD)* = Af(K) and K.(D)/K,(D)* = AF(K).

e|K=1.: K— A.(K) is the Lorenzen r-homomorphism.

3. Let t = t(AS(K)). Denote by W the set of all t-valuation monoids of A,.(K), by Y set of all
valuation domains Y such that K.(D) CY C K(X) and by V the set of all valuation domains
V C K such that V. =V . Then there are bijective maps

- (wy Sfy-ewo [y -y g v -y
AW ), Y e, T Y e YK, TV VX)),

where n = T,0 and 6= 7L

PRrROOF. 1. Let f, g € K[X], g # 0 and a € D® such that af, ag € D[X]. If cp(f) C cp(9)r.,
then cp(af) = acD(f) C acp(g)r, = cplaf),, and therefore g = % € K,.(D) by definition. Conversely,

assume that £ € K,.(D), and let fi, g1 € D[X] be such that ¢1 # 0, cp(f1) C cp(g1)r, and f = (J;
Then CD(f1>Ta C cp(91)r,, f91 = f1g, and since r, is finitely cancellative, we obtain

len(f) ep(g1) Ir, = cn(f91)r, = c(f19)r, = [cD(f1) cD(9) ]r, C [cD(91) cD(9) |1,

and therefore cp(f) C cp(f)r, C cp(g)ra
Next we prove that K,.(D) C K(X) is a subring. Suppose that «, § € K,.(D), say a = 7 and

B = 4, where f, g, h € K[X], h# 0and cp(f)Ucp(g) C cp(h),,. Then a + 3 = fzg, aff = hQ,
CD(f + g) C CD(f) + CD(g) C CD(h)ra and CD(fg) C CD(f)CD(g) C CD(h)Ta = CD(h )Ta’ which implies
a+p €K, (D) and af € K, (D

Clearly, X € K,.(D), X~! € K,(D), and if f € K[X], then cp(f(0)) = Df(0) C cp(f) C cp(f)r,,
hence @ € K,.(D) and therefore f(0) € fK,.(D). Hence K, (D) is a Kronecker domain.
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2. If f, f1 € K[X] and g, ¢1 € K[X]*® are such that 5 = Z%’ then fg1 = fig, and as r, is finitely
cancellative, we obtain [cp(f)cp(g1)]r, = co(fo1)r, = cn(f19)r, = [cp(f1)cn(9)]r,, and therefore
cD(g)L:” cp(f)r, = CD(gl)q[fl] cp(f1)r,- Hence there is a map e: K(X) — A,.(K) as announced, and it
obviously is a homomorphism. If E = {ag,...,a,} € P¢(K), then FE, =cplao+ a1 X + ...+ anX"),,,
and since A, (K) = {E,CE_I]ETa | E, E' € P¢(K), E'* # 0}, it follows that € is surjective.

If f € D[X] and g € D[X]®, then 5(5) = cD(g)[T:l]cD(f)Ta € Af(K) if and only if cp(f)r, C cp(9)r.,
which is equivalent to g € K,(D), and 5(5) = 1if and only if% € K.(D)*. Hence e~ }(A}(K)) = K,.(D),
e71(1) = K,(D)*, and ¢ induces an isomorphism €* as asserted.

If a € K, then e(a) = cp(a),, = {a},, = 7-(a), and therefore ¢ | K = 7.

3. By Theorem 4.4.3.2 (b) 7, is bijective. By 2., ¢ induces a commutative diagram

7 K —— K(X) —— A(K)

dl ] w]
D —— K. (D) —— Af(K),
where the upwards arrows are inclusions. If t* = (K, (D)), then t* = ¢*t by Theorem 2.6.2, and by
Theorem 6.3.2.2, Y is the set of all ¢-valuation monoids Y such that K,.(D) C Y C K(X), and by
Theorem 3.4.10 the assignment Y — £(Y) defines a bijective map £: Y — W. Hence 71 =T7.0e: Y — V
is bijective. If Y € ), then K,.(D)* =e }(1) CY,and 7(Y) =7 toe(Y) = (¢| K) loc(Y) =Y NK. If

VeV, then Y =7"1(V)e), V=YnNK,and therefore Y = V(X) = 6(V) by Theorem 6.3.2.3. [

6.4. v-ideals and t-ideals in polynomial domains

Throughout this section, let D be a domain and K = q(D).
We use t and v for the corresponding operations both for D and D[X].

Definition 6.4.1.
1. An ideal J < D[X] is called almost principal if there exist f € J\ D and r € D*® such that
J Cr L fD[X].
2. For a D[X]-submodule J C K[X], we call
co(J) = cen(f)
feJ
the content of J. By definition, cp(J) C K is a D-submodule, and J C cp(J)[X].

Theorem 6.4.2.

1. Let J < D[X] be an ideal. Then JK = JK[X] = fK[X] for some f € J, and the following
assertions are equivalent:

(a) feDe°.
(b) JND* #0.
(¢) JK = K[X].
In particular, if J is almost principal and f € J\ D and r € D* are such that J C r~fD[X],
then JK = fK[X] # K[X], and JN D* = 0.

2. Let q be an ideal system on D[X] such that ¢ > d(D[X]), S C D[X]® a set of polynomials of
bounded degree and J = S, < D[X]. If JK # K[X], then J is almost principal.
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3. If fe DIX], then (fK[X|ND[X))K = fK[X].
4. If {0} # J C D[X], then J is a prime ideal such that JND®* = 0 if and only if J = fK[X]ND[X]
for some irreducible polynomial f € K[X].
5. The following assertions are equivalent:
(a) For every fractional ideal F' € F(D[X]) such that F C K[X] there exists some s € D*® such
that sF C D[X].
(b) Every fractional ideal F € F(D[X]) is of the form F = hB, where h € K(X) and B <1 D[X]
is an ideal satisfying B N D® # (.
(c) For every f € D[X]® we have fK[X]ND[X]=1r"1fB, wherer € D* and B < D[X] is an
ideal satisfying BN D® # (.
(d) Ewvery non-zero ideal J < D[X] such that JK # K|[X] is almost principal.
6. The equivalent conditions in 5. are fulfilled in the following cases:
e D is noetherian or D[X] is q-noetherian for some ideal system q > d(D[X]).
e If D denotes the integral closure of D, then there exists some ¢ € D® such that ¢D C D.

PrROOF. 1. Clearly, JK ={cg | c€e K, g€ J} = JKD[X] = JK[X]| = f'K[X] for some f' € JK.
If f'=cf, where f € J and c € K*, then JK = f'K[X]| = fK[X].

(a) = (b) feJnDe.

(b) = (c¢) Ifce JND®, then 1 =cc™! € JK, and therefore JK = K|[z].

(¢) = (a) If JK = K[X] = fK[X], then f € K[X]*NJ C KX ND[X] = D*.

In particular, if f € D\ J and 7 € D*® are such that J C r~'fD[X], then fD[X] C J C r~'fD[X]
implies JK = fK|[X], and by the above we obtain JK # K[X] and J N D* = 0.

2. Since JK # K[X], there exists some polynomial f € J\ D such that JK = fK[X]. We set
f=X"(a,X"+...4a1X +ag), where t,n € Ny, t+n =deg(f) >0, ag,...,a, € D and apa, # 0. Let
m € Ny be such that deg(h) < m + deg(f) for all h € S. Tt suffices to prove that af'"™'h C fD[X] for
all b € S. Indeed, if this is done, then it follows that aj'*'S C fD[X] and J = S, C (af""")~' fD[X].

Thus let h € S C J C fK[X], say h = fg, where g € K[X]. Then deg(g) = deg(h) deg(f) < m,
and we set g = b, X™ + b1 X™ 1+ ...+ by, where bg,...,b, € K. Then

n+m l
h=fg=X" Z ;X" € D[X], where ¢ = Zal,ibi forall 1€ [0,m] (witha;=0fori>mn).
i=0 ‘
We use induction on [ to prove that al+1bl € D for all I € [0,m]. Clearly, aghg = ¢ € D. Thus let
I € [1,m], and suppose that aOHb € D for all j € [0,{ — 1]. Then

aocl = aé“bl + Zal 1al 1= H'1bi) € D, and therefore a6+1bl eD.

Hence it follows that ay't'g € D[X] and af'"'h € fD[X].

3. If f € D[X], then fK[X] = fDIX]|K C (fK[X]|NnD[X))K C fK[X].

4. Suppose that {0} # J C D[X]. If J = fK[X]| N D[X] for some irreducible polynomial f € K[X],
then JND®* =0 by 1., and J is a prime ideal of D[X], since fK[X] is a prime ideal of K[X].

To prove the converse, let J be a prime ideal such that J N D®* = . Then JK = fK[X] for some
f€Jby 1., and since JK = D*~1J and J N D* = (), it follows that JK is a prime ideal of K[X], and
J=JKND[X]=fK[X]nD[X].

5. (a) = (b) Let F € F(D[X]) be a fractional ideal and v € D[X]® such that C = vF C D[X]. If

C = {0}, then J = {0} and the assertion follows with h = 0 and B = D[X]. If C N D*® # 0, then the
assertion follows with h = v~! and B = C.
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We may now assume that C' # {0} and C N D® = (). Then CK ¢ K[X] is a non-zero ideal, and thus
CK = fK[X] for some f € D[X]\ D. Consequently, E = f~'C C K[X] is a fractional ideal, and by
(a) there exists some s € D*® such that B = sE < D[X]. Since fK[X] = CK = fs"'BK = fBK, we
obtain BK = K|[X] and therefore BN D® # (). As F = v='C = v~ 1 fs7 1B, the assertion follows with
h=v"1fs7! e K(X).

(b) = (c¢) Let f € D[X]*. By assumption, fK[X]|N D[X]= hB’, where h € K(X), B’ < D[X]
and B' N D* # 0. Hence B'K = K[X], and fK[X] = (fK[X] N D[X])K = hB'K = hK[X] (by 3.).
Therefore we obtain h = r~taf for some a, r € D*, and fK[X]N D[X] = r~tafB’ = r~'fB, where
B =aB’' < D[X], and BN D®* D a(B' N D*) # (.

(¢c) = (d) Let {0} # J < D[X] be such that JK # K[X]. By 1. there exists some f € J\ D such
that JK = fK[X]. By (c) there exist » € D®* and B < D[X] such that fK[X] N D[X] C r~'fB, and
therefore J C fK[X]ND[X] Cr~'fB cCr-lfD[X].

(d) = (a) Let F € F(D[X]) be a fractional ideal such that F C K[X], and let f € D[X]® be such
that J = fF C D[X]. If f € D, we are done. Thus suppose that f ¢ D. Then J C J' = fK[X]ND[X],
and J'K = fK[X] # K[X]. By (d) there exists some f' € J'\ D and some r € D*® such that
J' C r~1f'D[X], and therefore f'K[X] = J'K = fK[X] by 3. Hence f' = b~'af for some a, b € D*®,
and if s =br € D*, then sF =brF =brf~'J Cbf~'rJ' Cbf~1f' D[X]=aD[X] C D[X].

6. If D is noetherian, then D[X] is noetherian, and if D[X] is g-noetherian for some ideal system
q > d(D[X]), then (d) follows by 2.

If D is integrally closed, we verify (c). Let f € D[X]*. If f € D, then fK[X]N D[X] = D[X] and
(c) holds with r = f and B = D[X]. If f ¢ D, then fK[X]ND[X]= fcp(f)~[X] by Theorem 6.1.5.
If 0 # r € cp(f), then (c) holds with B = rcp(f)~1[X].

Assume finally that D is the integral closure of D and there is some ¢ € D*® such that ¢D C D. Then
(d) holds for D, and we verify it for D. Let J <t D[X] be a non-zero ideal such that JK # K[X]. Then
J = JDI[X] is a non-zero ideal of D[X] and JK = JK[X] # K|[X]. Hence there exist some f € J\ D
and 7 € D* such that 7J C f D[X]. Then f =cf € J\ D, r=c*F € D*, and rJ C ¢*7J C (cf)eD[X] C
fD[X]. O

Theorem 6.4.3.
1. The assignment I — I[X] defines injective monoid homomorphisms j: F(D) — F(D[X]),

g =JlFu(D): Fe(D) = Fu(DIX]), jo=7j|Fu(D): Fo(D) — Fu(D[X]),
and it induces group monomorphisms j. = j, | F,(D)*: F,(D)* — F,(D[X])*,
J' =3, | F(D)*: F(D)* — F(D[X])*  and ji = j,|F(D)*: Fo(D)* — F(DIX])*.

2. Let I € F(D)* be a non-zero fractional ideal.

(a) I isinvertible [ finitely generated, a principal ideal] if and only if I[X] is invertible | finitely
generated, a principal ideal] .

(b) IX], = L,[X], and if I € F,(D), then I is v-invertible [v-finitely generated] if and only
if 1[X] is v-invertible [v-finitely generated) .

(c) I[X]; = L[X], and if I € F(D), then I is t-invertible [t-finitely generated] if and only if
I[X] is t-invertible [t-finitely generated] .

In particular, ji induces a group monomorphism j*: C,(D) — C,(D[X]), mapping Pic(D) into

Pic(D[X]) and C(D) into C(D[X]).

PrROOF. By Theorem 6.2.2, the assignment I +— I[X] defines an injective monoid homomorphism
j: F(D) — F(D[X]). If I € F(D), then I7'[X] = I[X]~!, and [ is finitely generated [a principal ideal ]
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if and only if I[X] is finitely generated [a principal ideal]. Hence j’' = j|F(D)*: F(D)* — F(D[X])*
is a group monomorphism.

If I € F(D), then I[X], = (I[X]"1)~! = (I"!)7}[X] = [,[X]. To prove the corresponding result
for the t-operation, let F(I) denote the set of all finitely generated fractional ideals J € F(D) such that
JCI. It Je F(I), then J[X] € F(D[X]) is also finitely generated, hence J; = J,,, J[X]; = J[X],, and

we obtain
U zxi= U 2x1= U JXL= | JIX] (UJ)_I]

JEF() JEF() JEF() JEF() JeF(I)
(note that the union is taken over a directed family).

Next we prove that a fractional t-ideal I € F;(D) is t-finitely generated if and only if I[X] is ¢-finitely
generated (note that a fractional v-ideal is v-finitely generated if and only if it is ¢-finitely generated).
If I € Fi5(D), then I = J, for some J € F(I), and therefore I[X] = J,[X] = J[X]; € F¢(D[X]).
Conversely, assume that I[X] € F; f(D[X]). Then I[X] = E, for some finite set E C I[X]. Since

U J¢[X] (directed union),
JEF(I)

there exists some J € F(I) such that E C J;[X], which implies I[X] = E;, = J;[X], and therefore
I=IXINK =JL[X|NK =J, € Fi¢(D).

We have proved that j(F,(D)) C F,(D[X]) and j(F(D)) C Fi(D[X]), and we assert that the
injective maps j, = j | Fu(D): Fy(D) — F,(D[X]) and j, = j|Fu(D): Fi(D) — F(D[X]) are monoid
homomorphisms. Indeed, if I, Iy € F,(D), then (I1+,12)[X] = (I112),[X] = (1 12)[X]o = L[ X]v
I5[X],, and the same argument holds for ¢ instead of v. Hence j, and j; induce group monomorphisms
g Fo(D)* — Fo(D[X])* and j;: Fe(D)* — F(D[X])*. Since F(D)* C F(D)* C F,(D)* are
subgroups, we obtain j' = j/ | F(D)* and j, = j., | F:(D)* by definition. In particular, if I € F(D)*
is invertible [I, is v-invertible, I; is ¢-invertible], then I[X] is invertible [I[X], is v-invertible, I[X]; is
t-invertible ].

If I € F(D)* and I[X] is invertible, then D[X] = I[X]I[X]™! = I[X]I7}[X] = (II71)[X], and
therefore D = (II71)[X] N D = IT1~!. Hence I is invertible.

If I,[X] is v-invertible, then D[X] = (I,[X]L,[X]™), = (I,I,;1)[X], = (I,I;1),[X], and therefore
D= (LI;Y),[X]NnD = (I,I,;!),. Hence I, is v-invertible. The same argument holds for ¢ instead of v.

If I € F,(D)*, then I[X] is principal if and only if I[X] is principal. Hence j! induces a group
monomorphism j*: C,(D) — C,(D[X]). For I € F,(D)*, we denote by [I] € C,(D) the class of I, and for
J € F,(D[X])* we denote by [J] € C,(D[X]) the class of J. If ¢ = [I] € F,(D)*, then j*(¢) = [I[X]].
If ¢ € Pic(D), then I € F(D)*, hence I[X] € F(D[X])* and j*(c) = [I[X]] € Pic(D[X]). If ¢ € C(D),
then I € F(D)*, hence I[X] € F(D[X])* and j*(¢) = [I[X]] € C(D[X]). O

Theorem 6.4.4. The following assertions are equivalent:

(a) D is integrally closed.

(b) If J < D[X] and JND* # 0, then J, = cp(J),[X].

If JeZ,(D[X]) and JND* #0, then JN D € I,(D), and J = (J N D)[X].

(c)

(d) If JeZy(D[X]) and JND* #£0, then JND € (D), and J = (J N D)[X].

(e) If J<D[X] and JND* #0, then Jp = cp(J)[X].

(f) If f, g € DIX]®* and a € D* are such that cp(fg) C aD, then cp(f)cp(g) C aD.

Proor. (a) = (b) Suppose that J <« D[X] and JN D® # (). Then J C cp(J)[X] and therefore
Jyv C cp(N)[X]y = cp(J)o[X]. For the proof of the reverse inclusion, observe that J, is the intersection
of all fractional principal ideals containing J. Hence it suffices to prove:
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If h e K(X)* and J C hD[X], then cp(J)[X], C hD[X].

Let h = g~'b € K(X), where g, b € D[X]® are coprime in K[X], and suppose that J C hD[X]. Then it
clearly suffices to prove that cp(J)[X] C hD[X]. We have gJ C bD[X], and if ¢ € J N D*, then cg = bq
for some ¢ € D[X], and as b and g are coprime in K[X], we obtain b € D*®. For all ¢ € J, we obtain
cp(gq) C bD, and therefore, by Theorem 6.1.5, cp(g)cp(q) C [cn(9)en(q)]v = cp(gq)y C bD, hence
gcp(g) € bD[X]. Consequently, we obtain gcp(J) C bD[X] and cp(J) C g~ 1bD[X] = hD[X].

(b) = (¢) If J € Z,(D[X]) and J N D* # (), then J = cp(J),[X] by (b), and thus it follows that
cp(J)y = JND € T,(D).

(¢) = (d) Let J € Zy(D[X]) be such that J N D* # (), and denote by F(J) the set of all finitely
generated ideals B C J such that B, N D® # (). Then

J=Ji= |J B, implies JND= |J B,nD and (JND)X]= |J (B,nD)X].
BeF(J) BeF!(J) BEF!(J)
If Be F(J), then B,ND €Z,(D),and B, = (B, N D)[X]. Since all unions are directed, it follows that
JND e ZyD) and J=(JND)[X].
(d) = (e) Suppose that J < D[X] and J N D* # (. By (d) we have J; = (J; N D)[X], and
cp(Ji) =JeND eZy(D). As cp(J) C cp(Jy), it follows that cp(J): C cp(J;), and therefore

Ji Cep()X]i = ep(J)i[X] Cep(Jn)[X] = (S N D)[X] = J; .

(e) = (f) Let f, g € D[X]®* and a € D* be such that cp(fg) C aD, and set J = p[xj(a,g) < D[X].
Then J N D* # ), and therefore J; = cp(J):[X] by (e). Since fJ = pix|(fa, fg) C aD[X], we obtain
fep(9)[X] C fep(I)e[X] = fJr C aD[X], and therefore cp(f)cp(g) C aD.

(f) = (a) Let u € K be integral over D and f € D[X] a monic polynomial such that f(u) = 0. Then
f = (X — u)g for some monic polynomial g € K[X]. Let ¢t € D*® be such that tu € D and tg € D[X].
Then h = t2f = t(X —u)(tg) € t>?D[X], hence cp(h) C t>D, and therefore cp(t(X — u))cp(tg) C t2D.
Since tu € cp(t(X —u)) and t € cp(tg), we obtain t?u € 2D and therefore u € D. O

Theorem 6.4.5. Let D be integrally closed. Then the group monomorphism j*: C,(D) — C,(D[X])
(see Theorem 6.4.3) is an isomorphism, j*(Pic(D)) = Pic(D[X]) and j*(C(D)) = C(D[X]).

)

PROOF. By Theorem 6.4.3 it suffices to prove that C,(D[X]) C 7*(C,(D)), Pic(D[X]) C j*(Pic(D))
and C;(D[X]) C j*(C¢(D)). For I € F,(D)* we denote by [I] € C,(D) the class of I, for J € F,(D[X])*
we denote by [J] € C,(D[X]) the class of J.

Let ¢ = [F] € C,(D[X]), where F € F,(D[X])*. By Theorem 6.4.2 it follows that FF = hB for
some ideal B < D[X] such that BN D*® # (. Then B € C,(D[X])* and ¢ = [B]. By the Theorems 6.4.4
and 6.4.3 it follows that BN D € F,(D)* and B = (BN D)[X]. Hence we obtain [BN D] € C,(D) and
¢=j*([BNDJ).

If ¢ € C(D[X]), then F € F(D[X])*, B = (BN D)[X] € F(D[X])%, hence BN D € Fi(D)*,
[BN D] eC(D) and ¢ = j*([BN D)) € j*(C(D)).

If ¢ € Pic(D[X]), then F € F(D[X])*, B = (BN D)[X] € F(D[X])*, hence BN D € F(D)*,
(BN D] € Pic(D) and ¢ = j*([B N D)) € j*(Pic(D)). O

Theorem 6.4.6. Each of the following assertions hold for R = D if and only if it holds for R = D[X].
. R is integrally closed.

. R is completely integrally closed ( equivalently, every non-zero v-ideal is v-invertible).

1
2
3. R is a v-domain ( equivalently, every v-finitely generated non-zero v-ideal is v-invertible).
4. R is a Krull domain ( equivalently, every non-zero t-ideal is t-invertible ).

5

. Ris a PVMD ( equivalently, every t-finitely generated non-zero t-ideal is t-invertible).
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6. R is factorial ( equivalently, R is a Krull domain and C(R) =0).
7. R is a GCD-domain ( equivalently, R is a PVMD and C(R) =0).

ProOOF. A. We prove first : If D[X] is integrally closed, then D is integrally closed.

Let D[X] be integrally closed and z € K integral over D. Then z € K(X) is integral over D[X],
hence x € D[X]NK = D. OJA.]

B. Let r € {v, t}. To prove 2. 3. 4. and 5., it suffices to show the equivalence of the following two
assertions :

(a) Every (r-finitely generated ) non-zero r-ideal of D is r-invertible.

(b) Every (r-finitely generated ) non-zero r-ideal of D[X] is r-invertible.

Proof. 1f every r-finitely generated r-ideal of D is r-invertible, then r is finitely cancellative, hence
D is r-closed and thus integrally closed by Theorem 4.3.2. In the same was, if every r-finitely generated
r-ideal of D[X] is r-invertible, then D[X] is integrally closed, and therefore D is integrally closed by A..
Hence for the proof of B we may assume that D is integrally closed.

(a) = (b) Let F C D[X] be an (r-finitely generated ) non-zero r-ideal. By Theorem 6.4.2 F' = hB
for some h € K(X)* and B < D[X] such that BND® # (. Then B is an (r-finitely generated ) non-zero
r-ideal. By Theorem 6.4.4 BN D is an r-ideal, and B = (B N D)[X]. If B is r-finitely generated, then
BN D is also r-finitely generated by Theorem 6.4.3. By assumption, B N D is r-invertible, hence B is
r-invertible by Theorem 6.4.3, and therefore F' is r-invertible.

(b) = (a) Let I C D be an (r-finitely generated ) non-zero r-ideal. By Theorem 6.4.3, I[X] is
an (r-finitely generated ) non-zero r-ideal and as I[X] is r-invertible by assumption, it follows that I is
r-invertible.

C. The assertions 6. and 7. follow by B and Theorem 6.4.5.
D. Finally we prove: If D is integrally closed, then D[X] is integrally closed.
Proof. Let D be integrally closed. By Corollary 4.4.5

D= ﬂ V' and therefore D[X]= ﬂ ViX],
vev vev
where V is the set of all valuation domains V' such that D C V' C K. Therefore it suffices to prove that
V[X] is integrally closed for all V € V.
If V € V, then every t-ideal of V is principal, hence V is a PVMD, and by B, V[X] is a PVMD.
Hence V[X] is integrally closed. O

Theorem 6.4.7. Let D be a Mori domain, and suppose that either D integrally closed or D contains
an uncountable subfield. Then D[X] is a Mori domain.

Proor. CASE 1: D is integrally closed.

We prove that every J € Z;(D[X])® is t-finitely generated. If J € Z;,(D[X])®, then Theorem 6.4.2
implies that J = hB for some h € K(X)* and B < J[X] such that BN D*® # (). By Theorem 6.4.4 we
obtain BN D € Z;(D) and B = (BN D)[X] € T, ¢(D), since D is a Mori domain. By Theorem 6.4.3 it
follows that B and therefore also J is t-finitely generated.

CASE 2: D contains an uncountable field A.

Assume to the contrary that D[X] is not ¢t-noetherian. Then there exists a sequence (gn)n>0 in
DI[X] such that {go,...,an-1}v S {go,-..,an}, for all n > 1, and therefore

(D[X]:{90,---san}) € (D[X]:{90,--san-11}).
For n € N, let h,, € K(X) be such that h,g; € D[X] for all i € [0,n — 1] and h,g, ¢ D[X]. Since K[X]
is noetherian, there exists some m € N such that, for all n > m,

(K[X}{g&yan}) = (K[X}:{gm'“,an—l}) .
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For n > m we have h, € (K[X]:{g0,-..,an-1}), hence h,g, € K[X]\ D[X], and by the subsequent
Lemma 6.4.8 the set C,, = {c € A| (hngn)(c) € D} is finite. Hence there exists some ¢ € A such that
for all n > m we have h,(c)g,(c) ¢ D, and h,(c)g;(c) € D for all ¢ € [m,n — 1]. Consequently,

(D:{90(6)7 ce 7gn(c)}) -,C«- (D:{90(6)7 ce 7gn—1(c)})

and ({go (0),... ’9"(0)}U)n>m is a properly ascending sequence of v-ideals of D, a contradiction. |

Lemma 6.4.8. Let D be a domain, K = q(D), A C D a subfield, g € K[X] a polynomial such that
deg(g) =d e N. If co,...,cq € A are distinct such that g(c;) € D for alli € [0,d], then g € D[X].

PROOF. If g=ap+ a1 X +...+asX% then (ag,...,aq) is a solution of the system of equations
1 cg 2 ... ¢\ [ao g(co)
1 ¢ & ... ¢ ar | _ [ g(cr) c pitt
Ve & noet) \ao)  \glew)

with a determinant in A* C D*. Hence ag,...,aq € D. |



