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CHAPTER 1

Generalities on Monoids

For a set X, we denote by P(X) the power set and by Pf(X) the set of all finite subsets of X. If A, B
are sets, then A ⊂ B or B ⊃ A means that A is a subset of B which may be equal to B. If A is a proper
subset of B, we write A ( B or B ) A.

As usual, we denote by Z, Q, R and C the sets of integers, rational numbers, real numbers and
complex numbers. We denote by N = {x ∈ Z | x > 0} the set of positive integers, and we set
N0 = N ∪ {0}. If x, y ∈ Z and x ≤ y, we set [x, y] = {z ∈ Z | x ≤ z ≤ y}. For a set X, we denote by
|X| ∈ N0 ∪ {∞} its cardinality.

Let X be a set. A subset Σ ⊂ P(X) is called
• directed if, for any A, B ∈ Σ, there is some C ∈ Σ such that A ∪B ⊂ C;
• a chain if, for any A, B ∈ Σ, we have A ⊂ B or B ⊂ A.

A family (Aλ)λ∈Λ of subsets of X is called directed or a chain if the set {Aλ | λ ∈ Λ} has this
property. If (Aλ)λ∈Λ is directed and E is a finite set, then

E ⊂
⋃
λ∈Λ

Aλ implies E ⊂ Aλ for some λ ∈ Λ.

We shall frequently use Zorn’s Lemma in the following form :
Let X be a set, ∅ 6= Σ ⊂ P(X), and suppose that the union of every chain in Σ belongs to Σ.
Then Σ contains maximal elements (with respect to the inclusion ).

A partial ordering on a set X is a binary relation ≤ such that the following assertions hold for all
x, y ∈ X :

• x ≤ x ;
• x ≤ y and y ≤ x implies x = y.
• x ≤ y and y ≤ z implies x ≤ z.

If ≤ is a partial ordering on X, we call (X,≤) a partially ordered set. We call ≤ a total ordering and
(X,≤) a totally ordered set if, for all x, y ∈ X we have either x ≤ y or y ≤ x.
Let (X,≤) be a partially ordered set. Then every subset of X is again a partially ordered set with the
induced order. A totally ordered subset of X is called a chain. Sometimes we will use the abstract form
of Zorn’s Lemma as follows :

Let (X,≤) be a non-empty partially ordered set, and assume that every non-empty chain in X
has an upper bound. Then X contains maximal elements.

For a partially ordered set (X,≤), the following assertions are equivalent :
• For every sequence (an)n≥0 in X satisfying an ≤ an+1 for all n ≥ 0, there exists some m ≥ 0 such

that an = am for all n ≥ m [ in other words, every ascending sequence in X becomes ultimately
stationary ].
• Every non-empty subset of X contains a maximal element.
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4 1. GENERALITIES ON MONOIDS

If these conditions are fulfilled, then (X,≤) is said to be noetherian or to satisfy the ACC (the
ascending chain condition ).

1.1. Preliminaries on Monoids

Let K be a multiplicative semigroup. An element n ∈ K is called a zero element if na = n for all
a ∈ K. An element e ∈ K is called a unit element if ea = a for all a ∈ K. Plainly, K possesses at most
one zero element, denoted by 0 = 0K and at most one unit element, denoted by 1 = 1K . For subsets
X, Y ⊂ K and a ∈ K, we define XY = {xy | x ∈ X, y ∈ Y } and aX = {a}X. For n ∈ N, we define Xn

recursively by X1 = 1 and Xn+1 = XnX, and we set X(n) = {xn | x ∈ X}.
By a monoid we mean a multiplicative semigroup K containing a zero element 0 = 0K and a unit

element 1 = 1K . Clearly, 0K = 1K if and only if |K| = 1, and in this case K is called a trivial monoid.
A monoid without zero is a multiplicative semigroup K which is either trivial or does not contain a zero
element. Thus the trivial monoid is both a monoid and a monoid without zero. A subset S ⊂ K is called
multiplicatively closed if 1 ∈ S and SS ⊂ S.

Let K be a monoid. An element a ∈ K is called cancellative if ab = ac implies b = c for all b, c ∈ K.
For a subset X ⊂ K, we set X• = X \ {0}, and we denote by X∗ the set of all cancellative elements of
X. If K is non-trivial, then K∗ ⊂ K•. K is called cancellative if K• ⊂ K∗. Hence K is cancellative if
and only if either K is trivial or K• = K∗.

An element u ∈ K is called invertible if there exists some u′ ∈ K such that uu′ = 1. In this case, u′

is uniquely determined by u, it is called the inverse of u and denoted by u−1. We denote by K× the set
of all invertible elements of K. Endowed with the induced multiplication, K× is a group, and K× ⊂ K∗.
The monoid K is called

• reduced if K× = {1};
• divisible if K• ⊂ K×.

By definition, K is divisible if and only if either K is trivial or K• = K×. If K is divisible, then K is
cancellative.

The most important example of a monoid is the multiplicative monoid D = (D, ·) of a ring D
( throughout this volume, rings are assumed to be commutative and unitary, and modules and ring
homomorphisms are assumed to be unitary ). Note that D is a trivial monoid if and only if D is a zero
ring, and D \D∗ is the set of zero divisors of D. If D is non-trivial, then D is cancellative if and only if
D is a domain, and D is divisible if and only if D is a field.

Let D be a monoid. A subset Q ⊂ D is called
• multiplicatively closed if 1 ∈ Q and QQ ⊂ Q ( then QQ = Q );
• a submonoid if it is multiplicatively closed and 0 ∈ Q;
• a ( semigroup ) ideal of D if 0 ∈ Q and DQ ⊂ Q ( then DQ = Q );
• a principal ideal of D if Q = Da for some a ∈ D.
• a prime ideal of D if Q is an ideal and D \Q is multiplicatively closed.

By definition, {0, 1} is the smallest submonoid of D, {0} = D0 and D = D1 are principal ideals of D,
and D \D× is a prime ideal of D.
If D is cancellative [ reduced ], then every submonoid of D is also cancellative [ reduced ].

For a, b ∈ D we define a | b if bD ⊂ aD. If b = au for some u ∈ D×, then aD = bD. Conversely, if
D is cancellative and aD = bD, then b = au for some u ∈ D×.

Lemma 1.1.1. Let D be a monoid.
1. If J ⊂ D is an ideal, then J = D if and only if J ∩D× 6= ∅.
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2. D is divisible if and only if {0} and D are the only ideals of D.
3. If D is cancellative and not trivial, then D• is a multiplicatively closed subset and {0} is a prime

ideal of D.
4. Let (Qλ)λ∈Λ be a family of subsets of D,

Q∗ =
⋃
λ∈Λ

Qλ and Q∗ =
⋂
λ∈Λ

Qλ .

(a) If (Qλ)λ∈Λ is a family of ideals of D, then Q∗ and Q∗ are ideals of D.
(b) If (Qλ)λ∈Λ is a family of prime ideals of D, then Q∗ is a prime ideal of D, and if (Qλ)λ∈Λ

is a chain, then Q∗ is also a prime ideal of D.
(c) If (Qλ)λ∈Λ is a family of submonoids of D, then Q∗ is a submonoid of D, and if (Qλ)λ∈Λ

is directed, then Q∗ is also a submonoid of D.

Proof. 1. Let J ⊂ D be an ideal. If J = D, then J ∩D× = D× 6= ∅. If u ∈ J ∩D× and a ∈ D,
then a = (au−1)u ∈ J and therefore J = D.

2. Let D be divisible and J ⊂ D an ideal of D. If a ∈ J•, then 1 = a−1a ∈ J and therefore J = D.
If D is not divisible and a ∈ D• \D×, then 1 /∈ aD, and therefore aD is a non-zero ideal distinct from D.

3. If D is cancellative and not trivial, then D• = D∗ is multiplicatively closed, and therefore {0} is
a prime ideal of D.

4. (a) If a ∈ D and x ∈ Q∗, then x ∈ Qλ for some λ ∈ Λ and therefore ax ∈ Qλ ⊂ Q∗. If a ∈ D and
x ∈ Q∗, then x ∈ Qλ and thus ax ∈ Qλ for all λ ∈ Λ, and therefore ax ∈ Q∗.

(b) If a, b ∈ D \ Q∗, then a, b ∈ D \ Qλ and therefore ab ∈ D \ Qλ for all λ ∈ Λ. Hence it follows
that ab ∈ D \Q∗, and therefore Q∗ is a prime ideal of D.

Let now (Qλ)λ∈Λ be a chain and a, b ∈ D \ Q∗. Then there exist λ, µ ∈ Λ such that a /∈ Qλ and
b /∈ Qµ, and we may assume that Qλ ⊂ Qµ. Then it follows that a, b /∈ Qλ, hence ab /∈ Qλ and therefore
ab /∈ Q∗. Hence Q∗ is a prime ideal of D.

(c) Let (Qλ)λ∈Λ be a family of submonoids of D. Then 0 ∈ Q∗ ⊂ Q∗. If a, b ∈ Q∗, then a, b ∈ Qλ

and therefore ab ∈ Qλ for all λ ∈ Λ. Hence ab ∈ Q∗, and therefore Q∗ is a submonoid of D.
Let now (Qλ)λ∈Λ be directed and a, b ∈ Q∗. Then there exists some λ ∈ Λ such that a, b ∈ Qλ.

Hence ab ∈ Qλ ⊂ Q∗, and therefore Q∗ is a submonoid of D. �

Let K and L be a monoids. A map f : K → L is called a (monoid ) homomorphism if

f(1K) = 1L , f(0K) = 0L , and f(xy) = f(x)f(y) for all x, y ∈ K.

As usual, a homomorphism is called a monomorphism [ an epimorphism, an isomorphism ] if it
is injective [ surjective, bijective ]. The monoids K and L are called isomorphic if there exists an
isomorphism f : K → L, and in this case we write f : K ∼→ L.

Let f : K → L be a monoid homomorphism. Then f(K×) ⊂ L×, and f |K× : K× → L× is a
group homomorphism. If J ⊂ L is an ideal, then f−1(J) ⊂ K is also an ideal [ indeed, if x ∈ f−1(J)
and a ∈ K, then f(ax) = f(a)f(x) ∈ LJ = J and therefore ax ∈ f−1(J) ].

Let K be a monoid and G ⊂ K× a subgroup. Then we set K/G = {aG | a ∈ K}, and we define a
multiplication on K/G by means of (aG)(bG) = abG for all a, b ∈ K. This definition does not depend
on the representatives, it makes K/G into a monoid, and π : K → K/G, defined by π(a) = aG for
all a ∈ K, is a monoid epimorphism, called canonical. By definition, (K/G)• = {aG | a ∈ K•},
(K/G)∗ = {aG | a ∈ K∗}, and (K/G)× = K×/G ( the factor group ). Consequently, K/G is cancellative
[ divisible ] if and only if K is cancellative [ divisible ].

If G ⊂ K× is a subgroup, then the canonical epimorphism π : K → K/G is an isomorphism if and
only if G = {1}, and in this case we identify K with K/{1} by means of π and set K = K/{1}. The
monoid K/K× is reduced. It is called the associated reduced monoid of K.
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Let f : K → L be a monoid homomorphism, and let G ⊂ K× and H ⊂ L× be subgroups such that
f(G) ⊂ H. Then there is a unique homomorphism f∗ : K/G → L/H such that f∗(aG) = f(a)H for
all a ∈ K. We say that f∗ is induced by f .

Let K and L be divisible monoids. A map f : K → L is a monoid homomorphism if and only if
f(0K) = 0L, and f |K× : K× → L× is a group homomorphism. In this case, f−1(1) = Ker(f |K×) is a
subgroup of K×, and f induces a monomorphism f∗ : K/f−1(1)→ L.

Let K be a monoid. For subsets X, Y ⊂ K and y ∈ K, we define

(X :Y ) = (X :KY ) = {z ∈ K | zY ⊂ X} and (X :y) = (X :{y}) .

Lemma 1.1.2. Let K be a monoid and X, X ′, Y, Y ′ ⊂ K.

1. If X ⊂ X ′ and Y ⊂ Y ′, then (X :Y ′) ⊂ (X ′ :Y ).

2. (X :Y Y ′) = ((X :Y ) :Y ′).

3. (X :X) is a submonoid of K.

4. If a ∈ K×, then (aX :Y ) = a(X :Y ) and (X :aY ) = a−1(X :Y ).

5. If (Yλ)λ∈Λ is a family of subsets of K, then(
X :

⋃
λ∈Λ

Yλ

)
=

⋂
λ∈Λ

(X :YΛ) , and if Y ⊂ K× , then (X :Y ) =
⋂

y∈Y

y−1X .

Proof. 1. If z ∈ (X :Y ′), then zY ⊂ zY ′ ⊂ X ⊂ X ′, and therefore z ∈ (X ′ :Y ).

2. If z ∈ K, then

z ∈ (X :Y Y ′) ⇐⇒ zY Y ′ = (zY ′)Y ⊂ X ⇐⇒ zY ′ ⊂ (X :Y ) ⇐⇒ z ∈ ((X :Y ) :Y ′) .

3. Clearly, 0 ∈ (X : X), and if x, y ∈ (X : X), then xyX = x(yX) ⊂ xX ⊂ X, and therefore
xy ∈ (X :Y ).

4. Let a ∈ K× and z ∈ K. Then

z ∈ (aX :Y ) ⇐⇒ zY ⊂ aX ⇐⇒ a−1zY ⊂ X ⇐⇒ a−1z ∈ (X :Y ) ⇐⇒ z ∈ a(X :Y )

and

z ∈ (X :aY ) ⇐⇒ zaY ⊂ X ⇐⇒ za ∈ (X :Y ) ⇐⇒ z ∈ a−1(X :Y ) .

5. Let (Yλ)λ∈Λ be a family of subsets of K and z ∈ K. Then

z ∈
(
X :

⋃
λ∈Λ

Yλ

)
⇐⇒ zYλ ⊂ X for all λ ∈ Λ ⇐⇒ z ∈ (X :Yλ) for all λ ∈ Λ ⇐⇒ z ∈

⋂
λ∈Λ

(X :YΛ) .

If Y ⊂ K×, then

(X :Y ) =
(
X :

⋃
y∈Y

{y}
)

=
⋂

y∈Y

(X :{y}) =
⋂

y∈Y

y−1(X :{1}) =
⋂

y∈Y

y−1X . �
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1.2. Quotient Monoids

Remarks and Definition 1.2.1. Let K be a monoid and T ⊂ K a multiplicatively closed subset.
For (x, t), (x′, t′) ∈ K×T , we define

(x, t) ∼ (x′, t′) if st′x = stx′ for some s ∈ T .
Then ∼ is an equivalence relation on K×T .
Proof. Obviously, ∼ is reflexive and symmetric. To prove transitivity, let (x, t), (x′, t′), (x′′, t′′) ∈ K×T
be such that (x, t) ∼ (x′, t′) and (x′, t′) ∼ (x′′, t′′). Then there exist s, s′ ∈ T such that st′x = stx′

and s′t′′x′ = s′t′x′′. Then it follows that s′st′ ∈ T and (s′st′)t′′x = s′t′′stx′ = (s′st′)tx′′, hence
(x, t) ∼ (x′′, t′′). �

We define the quotient monoid T−1K of K with respect to T by T−1K = K×T/ ∼. For
(x, t) ∈ K×T , we denote by

x

t
∈ T−1X the equivalence class of (x, t) , and we define jT : K → T−1K by jT (x) =

x

1
.

The map jT is called the natural embedding ( although it need not be injective ). By definition, if
(x, t), (x′, t′) ∈ K×T , then

x

t
=
x′

t′
if and only if st′x = stx′ for some s ∈ T ,

and if T ⊂ K∗, then
x

t
=
x′

t′
if and only if t′x = tx′ .

If n ∈ N and z1, . . . , zn ∈ T−1K, then z1, . . . , zn have a common denominator, that is, there exist
x1, . . . , xn ∈ K and t ∈ T such that

zi =
xi

t
for all i ∈ [1, n] .

For x, x′ ∈ K and t, t′ ∈ T , we define
x

t
· x

′

t′
=
xx′

tt′
.

This definition does not depend on the choice of the representatives. Endowed with this multiplication,
T−1K becomes a monoid with unit element 1

1 and zero element 0
1 , and jT is a monoid homomorphism.

If 0 ∈ T , then T−1K is a trivial monoid.
Proof. Suppose that (x, t), (x1, t1), (x′, t′), (x′1, t

′
1) ∈ K×T , (x, t) ∼ (x1, t1) and (x′, t′) ∼ (x′1, t

′
1). We

must prove that (xx′, tt′) ∼ (x1x
′
1, t1t

′
1). Let s, s′ ∈ T be such that st1x = stx1 and s′t′1x

′ = s′t′x′1.
Then it follows that ss′ ∈ T and ss′t1t

′
1xx

′ = ss′tt′x1x
′
1, which implies (xx′, tt′) ∼ (x1x

′
1, t1t

′
1). Now it

is obvious that this multiplication is associative and commutative, 1
1 is a unit element and 0

1 is a zero
element. If x, y ∈ K, then

jT (xy) =
xy

1
=
x

1
y

1
= jT (x)jT (y) , jT (0) =

0
1

and jT (1) =
1
1
.

Hence jT is a monoid homomorphism. If 0 ∈ T , then (x, t) ∼ (x′, t′) for all (x, t), (x′, t′) ∈ K×T , and
therefore |T−1K| = 1. �

For every subset X ⊂ K, we set

T−1X =
{x
t

∣∣∣ x ∈ X , t ∈ T
}
⊂ T−1K .

If X ′ ⊂ X ⊂ K, then T−1X ′ ⊂ T−1X ⊂ T−1K. Hence it follows that T−1(X ∩ Y ) ⊂ T−1X ∩ T−1Y
for any subsets X, Y ⊂ K.
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Theorem 1.2.2. Let K be a monoid, T ⊂ K a multiplicatively closed subset and jT : K → T−1K
the natural embedding.

1. If X, Y ⊂ K, then T−1(XY ) = (T−1X)(T−1Y ), and if additionally TX = X and TY = Y ,
then T−1(X ∩ Y ) = T−1X ∩ T−1Y .

2. If (Xλ)λ∈Λ is a family of subsets of K, then

T−1
( ⋃

λ∈Λ

Xλ

)
=

⋃
λ∈Λ

T−1Xλ .

3. If J is an ideal of K, then T−1J is an ideal of T−1K, J ⊂ j−1
T (T−1J), and T−1J = T−1K if

and only if J ∩ T 6= ∅.
4. If V is an ideal of T−1J , then J = j−1

T (V ) is an ideal of K, and V = T−1J .

Proof. 1. Let X, Y ⊂ K. If z ∈ T−1(XY ), then z = xy
t for some x ∈ X, y ∈ Y and t ∈ T , and

therefore z = x
t

y
1 ∈ (T−1X)(T−1Y ). Conversely, if z ∈ (T−1X)(T−1Y ), then z = x

t
y
s for some x ∈ X,

y ∈ Y and s, t ∈ T . Hence z = xy
st ∈ T

−1(XY ).
Assume now that TX = X and TY = Y . Clearly, T−1(X∩Y ) ⊂ T−1X∩T−1Y . If z ∈ T−1X∩T−1Y ,

then z = x
t = y

s , where x ∈ X, y ∈ Y and s, t ∈ T . Then there is some w ∈ T such that wsx = xty.
Since wsx = wty ∈ TX ∩ TY = X ∩ Y it follows that

z =
wsx

wst
∈ T−1X ∩ T−1Y .

2. If α ∈ Λ, then

Xα ⊂
⋃
λ∈Λ

Xλ implies T−1Xα ⊂ T−1
( ⋃

λ∈Λ

Xλ

)
, and therefore

⋃
λ∈Λ

T−1Xλ ⊂ T−1
( ⋃

λ∈Λ

Xλ

)
.

Conversely, if

z ∈ T−1
( ⋃

λ∈Λ

Xλ

)
, , then z =

x

t
, where t ∈ T and x ∈ Xα for some α ∈ Λ

and therefore
z ∈ T−1Xα ⊂

⋃
λ∈Λ

T−1Xλ .

3. Obviously, T−1J is an ideal of T−1K, and J ⊂ j−1
T (T−1J). If T−1K = T−1J , then 1

1 ∈ T
−1J .

Hence 1
1 = a

t for some a ∈ J and t ∈ T , and there exists some s ∈ T such that st = sa ∈ T ∩ J .
Conversely, if s ∈ T ∩ J , then 1

1 = s
s ∈ T

−1J , which implies T−1J = T−1K.

4. Since jT is a monoid homomorphism, it follows that J = j−1
T (V ) is an ideal of K. If a ∈ J and

t ∈ T , then a
1 ∈ V and therefore a

t = 1
t

a
1 ∈ V . Hence T−1J ⊂ V . To prove the converse, let a

t ∈ V ,
where a ∈ K and t ∈ T . Then a

1 = t
1

a
t ∈ V , hence a ∈ J and a

t ∈ T
−1J . �

Theorem 1.2.3. Let K and L be a monoids, T ⊂ K a multiplicatively closed subset and ϕ : K → L
be a homomorphism such that ϕ(T ) ⊂ L×. Then there exists a unique homomorphism Φ: T−1K → L
such that Φ◦jT = ϕ. It is given by

Φ
(a
t

)
= ϕ(t)−1ϕ(a) for all a ∈ K and t ∈ T .

Proof. Let Φ: T−1K → L be a homomorphism satisfying Φ◦jT = ϕ. For a ∈ K and t ∈ T we have
ϕ(t) ∈ L×,

ϕ(t)Φ
(a
t

)
= Φ

( t
1

)
Φ

(a
t

)
= Φ

(at
t

)
= Φ

(a
1

)
= ϕ(a) , and therefore Φ

(a
t

)
= ϕ(t)−1ϕ(a) .
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This proves uniqueness and the formula for Φ. To prove existence we define Φ by the formula above and
prove that this definition does not depend on the choice of representatives.

If a, a′ ∈ K and t, t′ ∈ T are such that a
t = a′

t′ , then there is some s ∈ T such that st′a = sta′, hence
ϕ(s)ϕ(t′)ϕ(a) = ϕ(s)ϕ(t)ϕ(a′) and therefore ϕ(t)−1ϕ(a) = ϕ(t′)−1ϕ(a′).

By the very definition, Φ◦jT = ϕ, Φ
(

0
1

)
= ϕ(1)−1ϕ(0) = 0 and Φ

(
1
1

)
= ϕ(1)−1ϕ(1) = 1. If

a, a′ ∈ K and t, t′ ∈ T , then

Φ
(a
t

a′

t′

)
= Φ

(aa′
tt′

)
= ϕ(tt′)−1ϕ(aa′) = ϕ(t)−1ϕ(a)ϕ(t′)−1ϕ(a′) = Φ

(a
t

)
Φ

(a′
t′

)
.

Hence Φ is a homomorphism. �

Theorem und Definition 1.2.4. Let K be a monoid, T ⊂ K a multiplicatively closed subset, and

T = {s ∈ K | sK ∩ T 6= ∅ } .
T is called the divisor-closure of T , and T is called divisor-closed if T = T .

1. Let JT be the set of all ideals J ⊂ K such that J ∩ T = ∅ and

P =
⋃

J∈JT

J .

Then T = K \ P is multiplicatively closed, T ⊂ T = T , and if T 6= K, then P is a prime ideal,
and it is the greatest ideal of K such that P ∩ T = ∅.

2. (T−1K)× = T−1T , and there is an isomorphism

ι : T−1K
∼→ T−1K , given by ι

(x
t

)
=
x

t
for all x ∈ K and t ∈ T .

Note that ι is not the identity map, since the two fractions appearing in its description denote
different equivalence classes. However, we shall identify them : T−1K = T−1K.

3. Let S ⊂ T be a multiplicatively closed subset. Then ST ⊂ K and T−1S ⊂ T−1K are multiplica-
tively closed subsets, and there is an isomorphism

Φ: (T−1S)−1(T−1K) ∼→ (ST )−1K , given by Φ
( x

t
s
t′

)
=
t′x

st

for all ∈ K, t, t′ ∈ T and s ∈ S.
4. If X, Y ⊂ K, then (T−1X :T−1K T−1Y ) = (T−1X : T−1Y ) = (T−1X : jT (Y )) ⊃ T−1(X : Y ),

and equality holds if TX = X and Y is finite.

Proof. 1. Suppose that s ∈ T , and let J ∈ JT . If a ∈ K is such that sa ∈ T , then sa /∈ J and thus
s /∈ J . Hence T ⊂ K \ P . Conversely, if s ∈ K \ P , then sK /∈ JT , hence sK ∩ T 6= ∅ and s ∈ T .

Clearly T ⊂ T ⊂ T . If s ∈ T , then ts ∈ T for some t ∈ K, hence t′ts ∈ T for some t′ ∈ K, and
therefore s ∈ T . Hence T = T . If s1, s2 ∈ T , there exist t1, t2 ∈ K such that s1t1, s2t2 ∈ T , which
implies s1s2t1t2 ∈ T and thus s1s2 ∈ T . Hence T is multiplicatively closed. If T 6= K, then P is an ideal
of K by Lemma 1.1.1. By definition, P is the greatest ideal of K such that P ∩ T = ∅, and it is a prime
ideal since T is multiplicatively closed.

2. Let x ∈ K and t ∈ T . We shall prove that x
t ∈ (T−1K)× if and only if t ∈ T .

If x
t ∈ (T−1K)×, then there exist x′ ∈ K and t′ ∈ T such that x

t
x′

t′ = 1
1 . Hence there is some w ∈ T

such that wxx′ = wtt′, and wtt′ ∈ T implies x ∈ T . Conversely, if x ∈ T and t ∈ T , let w ∈ K be such
that xw ∈ T . Then tw

xw ∈ T
−1K and x

t
tw
xw = 1

1 , and therefore x
t ∈ (t−1K)×.

Let jT : K → T−1K be the natural embedding. Since jT (T ) ⊂ T−1T ⊂ (T−1K)×, Theorem 1.2.3
implies the existence of some homomorphism ι : T−1K → T−1K satisfying ι

(
x
t

)
= x

t for all x ∈ K and
t ∈ T .
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ι is injective : Let x, x′ ∈ K and t, t′ ∈ T be such that x
t = x′

t′ in T−1K. Then there exists some
s ∈ T such that st′x = stx′. If w ∈ K is such that ws ∈ T , then (ws)t′x = (ws)tx′ and therefore x

t = x′

t′

in T−1K.
ι is surjective : Let z ∈ T−1K, say z = x

s , where x ∈ K and s ∈ T . If t ∈ K is such that st ∈ T ,
then y = xt

st ∈ T
−1K, and ι(y) = z.

3. Clearly, ST ⊂ K and T−1S ⊂ T−1K are multiplicatively closed, and the homomorphism
jST : K → (ST )−1K satisfies jST (T ) ⊂ (ST )−1T ⊂ ((ST )−1K)×. Hence Theorem 1.2.3 implies the
existence of some homomorphism ϕ : T−1K → (ST )−1K satisfying ϕ

(
x
t

)
=

(
t
1

)−1 x
1 = x

t for all x ∈ K
and t ∈ T . Since ϕ(T−1S) ⊂ (ST )−1S ⊂ ((ST )−1K)×, again Theorem 1.2.3 implies the existence of a
homomorphism Φ: (T−1S)−1(T−1K)→ (ST )−1K satisfying

Φ
( x

t
s
t′

)
= ϕ

( s
t′

)−1

ϕ
(x
t

)
=
t′x

st
for all x ∈ K , s ∈ S and t, t′ ∈ T .

Φ is injective : Let x, x1 ∈ K, s, s1 ∈ S and t, t1, t′, t′1 ∈ T be such that

Φ
( x

t
s
t′

)
= Φ

( x1
t1
s1
t′1

)
∈ (ST )−1K , that is,

t′x

st
=
t1x1

s1t1
.

Then there exist some v ∈ S and w ∈ T such that vws1t1t
′x = vwstt′1x1. Hence

v

w

x

t

s1
t′1

=
v

w

x1

t1

s

t′
∈ T−1K , and therefore

x
t
s
t′

=
x1
t1
s1
t′1

∈ (T−1S)−1(T−1K) .

Φ is surjective : Let z = x
st ∈ (ST )−1K, where s ∈ S, t ∈ T and x ∈ K. Then

y =
x
t
s
1

∈ (T−1S)−1(T−1K) and Φ(y) = z .

4. We may assume that Y 6= ∅. Since [T−1(X : Y ) ](T−1Y ) = T−1[ (X : Y )Y ] ⊂ T−1X and
jT (Y ) ⊂ T−1Y , we obtain

T−1(X :Y ) ⊂ (T−1X :T−1Y ) ⊂ (T−1X :jT (Y ) .

For the proof of (T−1X :jT (Y ) ⊂ (T−1X :T−1Y ), let z ∈ K and s ∈ T be such that z
s ∈ (T−1X :jT (Y )).

If y
t ∈ T

−1Y (where y ∈ Y and t ∈ T ), then y
1 ∈ jT (Y ), and therefore y

1
z
s = yz

s ∈ T
−1X, say yz

s = x
w

for some x ∈ X and w ∈ T , which implies that z
s

y
t = x

wt ∈ T
−1X.

Assume now that TX = X and Y = {y1, . . . , ym} for some m ∈ N, and let z
t ∈ (T−1X : T−1Y ),

where z ∈ K and t ∈ T . For j ∈ [1,m], it follows that z
t

yj

1 ∈ T
−1X, and thus there exist x1, . . . , xm ∈ X

and s ∈ T such that, for all j ∈ [1,m], we have z
t

yj

1 = xj

s and therefore wjszyj = wjtxj for some
wj ∈ T . Then w = w1 · . . . · wm ∈ T and wszyj = wtxj ∈ TX = X for all j ∈ [1,m]. Hence we obtain
wsz ∈ (X :Y ), and z

t = wsz
wst ∈ T

−1(X :Y ). �

Theorem und Definition 1.2.5. Let K and L be monoids, T ⊂ K a multiplicatively closed subset
and ϕ : K → L be a homomorphism. Then ϕ(T ) ⊂ L is a multiplicatively closed subset, and there exists
a unique homomorphism T−1ϕ : T−1K → ϕ(T )−1L such that (T−1ϕ)◦jT = jϕ(T )◦ϕ. It is given by

(T−1ϕ)
(x
t

)
=
ϕ(x)
ϕ(t)

for all x ∈ K and t ∈ T .

T−1ϕ is called the quotient homomorphism of ϕ with respect to T .
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Proof. Clearly, 1 = ϕ(1) ∈ ϕ(T ), and ϕ(T )ϕ(T ) = ϕ(TT ) = ϕ(T ), and therefore ϕ(T ) ⊂ L is
multiplicatively closed.

By Theorem 1.2.4.2 we have jϕ(T )(ϕ(T )) ⊂ (ϕ(T )−1L)×, and by Theorem 1.2.3 there exists a
monoid homomorphism T−1ϕ : T−1K → ϕ(T )−1L such that (T−1ϕ)◦jT = jϕ(T )◦ϕ.

It remains to prove uniqueness and the formula. Thus let Φ: T−1K → ϕ(T )−1L be a homomorphism
such that Φ◦jT = jϕ(T )◦ϕ. If x ∈ K and t ∈ T , then

Φ
(x
t

)
= Φ

(
jT (t)−1jT (x)

)
= Φ◦jT (t)−1 Φ◦jT (x) =

(ϕ(t)
1

)−1(ϕ(x)
1

)
=
ϕ(x)
ϕ(t)

. �

Theorem 1.2.6. Let K be a monoid and T ⊂ K∗ a multiplicatively closed subset.
1. The natural embedding jT : K → T−1K is a monomorphism, and (T−1K)• = T−1K•.
2. If a ∈ K and s ∈ T , then a

s ∈ (T−1K)∗ if and only if a ∈ K∗. In particular, (T−1K)∗ = T−1K∗,
and T−1K is cancellative if and only if K is cancellative.

Proof. 1. If x, y ∈ K are such that jT (x) = jT (y), then sx = sy for some s ∈ T and consequently
x = y. In particular, if jT (x) = 0

1 , then x = 0, and therefore (T−1K)• = T−1K•.
2. Let a ∈ K and s ∈ T . If a ∈ K∗ and

a

s

x

t
=
a

s

x′

t′
for some x, x′ ∈ K and t, t′ ∈ T , then st′ax = stax′ , hence t′x = tx′ and

x

t
=
x′

t′
,

since sa ∈ K∗. If a /∈ K∗, then there exist x, x′ ∈ K such that x 6= x′ and ax = ax′. But then it follows
that

a

s

x

1
=
a

s

x′

1
and

x

1
6= x′

1
, hence

a

s
/∈ (T−1K)∗ .

Hence it follows that (T−1K)∗ = T−1K∗.
If K is cancellative, then K• ⊂ K∗, hence (T−1K)• = T−1K• ⊂ T−1K∗ = (T−1K)∗, and thus T−1K

is cancellative. If K is not cancellative, then there is some a ∈ K• \K∗. Since a
1 ∈ (T−1K)• \ (T−1K)∗,

it follows that also T−1K is not cancellative. �

Remarks and Definition 1.2.7. Let K be a monoid and T ⊂ K∗ a multiplicatively closed subset.
Then we identify K with jT (K) ⊂ T−1K by means of jT . Hence

K ⊂ T−1K , a =
a

1
for all a ∈ K , T ⊂ (T−1K)×, and

a

t
= t−1a for all a ∈ K and t ∈ T .

In particular, it follows that T−1K = K if and only if T ⊂ K×.
Let K ⊂ K1 be a submonoid and T ⊂ K ∩K×

1 a multiplicatively closed subset. Then T ⊂ K∗ and
T−1K ⊂ T−1K1 = K1. Hence we obtain K ⊂ T−1K = {t−1x | x ∈ K , t ∈ T } ⊂ K1.

The monoid q(K) = K∗−1K is called the total quotient monoid of K. By Theorem 1.2.6 it follows
that

q(K)• = K∗−1K• and q(K)× = q(K)∗ = K∗−1K∗ .

In particular, K∗ ⊂ q(K)×, and therefore K ⊂ T−1K ⊂ q(K) for every multiplicatively closed subset
T ⊂ K∗.

If ϕ : K → L is a monoid homomorphism satisfying ϕ(K∗) ⊂ L∗, then q(ϕ) = K∗−1ϕ : q(K)→ q(L)
is called the quotient homomorphism of ϕ.

Theorem 1.2.8. Let D be a monoid and K = q(D).
1. K is divisible if and only if D is cancellative.
2. If G ⊂ D× is a subgroup, then K/G = q(D/G). In particular, K/D× = q(D/D×).
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3. The following assertions are equivalent :

(a) D = K . (b) zD = K for some z ∈ K . (c) D∗ ∩
⋂

a∈D∗

aD 6= ∅ .

Proof. 1. If D is cancellative, then then K• = D∗−1D• ⊂ D∗−1D∗ = K×, and therefore K is
divisible. The converse is obvious, since D ⊂ K is a submonoid.

2. By definition, D/G ⊂ K/G, and we assert that (D/G)∗ ⊂ (K/G)×. Indeed, if aG ∈ (D/G)∗ for
some a ∈ D, then a ∈ D∗ ⊂ K× and aG ∈ (K/G)×. Consequently, q(D/G) ⊂ K/G, and if z ∈ K/G, say
z = a−1bG, where a ∈ D∗ and b ∈ D, then z = (aG)−1(bG) ∈ q(D/G). Hence q(D/G) = K/G.

3. (a) ⇒ (b) Obvious.
(b) ⇒ (c) Let z ∈ K be such that zD = K. Then z ∈ K×, say z = b−1c, where b, c ∈ D∗, and

b−1D = c−1K = K. We assert that b ∈ aD for all a ∈ D∗. Indeed, if a ∈ D∗, then a−1 = b−1u for some
u ∈ D and therefore b = au ∈ aD.

(c) ⇒ (a) Let b ∈ D∗ be such that b ∈ aD for all a ∈ D∗. If x = a−1c ∈ K, where a ∈ D∗ and
c ∈ D, then x = b−1c(a−1b) ∈ b−1D. Hence K = b−1D, and therefore D = bK = K. �

Remark 1.2.9. Let K be a ring and T ⊂ K a multiplicatively closed subset.
For z, z′ ∈ T−1K, let x, x′ ∈ K and t ∈ T be such that

z =
x

t
, z′ =

x′

t
, and define z + z′ =

x+ x′

t
.

This definition does not depend on the choice of representatives. Endowed with this addition, T−1K is
the usual quotient ring of commutative ring theory. In particular, q(K) is the total quotient ring, and if
K is a domain, then q(K) is the quotient field of K.

1.3. Prime and primary ideals

Throughout this section, let D be a monoid, and for X, Y ⊂ D, we set (X :Y ) = (X :D Y ).

Lemma 1.3.1. Let Q ⊂ D be an ideal.
1. If Q 6= D, then Q is a prime ideal if and only if, for all A, B ⊂ D, AB ⊂ Q implies A ⊂ Q or
B ⊂ Q.

2. Let Q be a prime ideal, n ∈ N, and let J1, . . . , Jn ⊂ D be ideals such that either J1 · . . . · Jn ⊂ Q
or J1 ∩ . . . ∩ Jn ⊂ Q. Then there exists some i ∈ [1, n] such that Ji ⊂ Q.

Proof. 1. Let Q 6= D be a prime ideal, A, B ⊂ D, AB ⊂ Q and A 6⊂ Q. If a ∈ A \Q and b ∈ B,
then ab ∈ AB ⊂ Q and therefore b ∈ Q. Hence it follows that B ⊂ Q.

2. Since J1 · . . . · Jn ⊂ J1 ∩ . . .∩ Jn, it suffices to prove the assertion for the product. But this follows
from 1. by induction on n. �

Theorem und Definition 1.3.2. Let J ⊂ D be an ideal. We call
√
J = D

√
J = {x ∈ D | xn ∈ J for some n ∈ N }

the radical of J (in D), and we call J a radical ideal of D if J =
√
J . We denote by Σ(J) = ΣD(J)

the set of all prime ideals P ⊂ D such that J ⊂ P , and we denote by P(J) = PD(J) the set of minimal
elements of Σ(J). The elements of P(J) are called prime divisors of J .

1. Let I ⊂ D be another ideal of D.
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(a) I ⊂
√
I =

√√
I, and I ⊂ J implies

√
I ⊂
√
J .

(b)
√
IJ =

√
I ∩ J =

√
I ∩
√
J .

2. If J 6= D, then P(J) 6= ∅, and for every P ∈ Σ(J) there exists some P0 ∈ P(J) such that P0 ⊂ P .

3. If J 6= D, then
√
J 6= D, √

J =
⋂

P∈P(J)

P ,

and
√
J is a prime ideal if and only if it is the only prime divisor of J .

Proof. 1. (a) Clearly, I ⊂
√
I, and I ⊂ J implies

√
I ⊂
√
J . If x ∈

√√
I, then xn ∈

√
I for some

n ∈ N, hence xnm = (xn)m ∈ I for some m ∈ N, and therefore x ∈
√
I.

(b) Since IJ ⊂ I ∩ J ⊂ I, J , we obtain
√
IJ ⊂

√
I ·r J ⊂

√
I ∩ J ⊂

√
I ∩
√
J . If a ∈

√
I ∩
√
J ,

then there exist m, n ∈ N such that am ∈ I and an ∈ J . Hence am+n = aman ∈ IJ , and a ∈
√
IJ .

2. If J 6= P , then D\D× ∈ Σ(J). For P ∈ Σ(J), let ΩP = {P ′ ∈ Σ(J) | P ′ ⊂ P}. The intersection of
every family in ΩP belongs to ΩP , and by Zorn’s Lemma, applied for the partially ordered set (ΩP ,⊃),
it follows that ΩP has a minimal element P0 with respect to the inclusion. Then P0 ∈ P(J) and P0 ⊂ P .

3. If
√
J = D, then 1 ∈

√
J implies 1 ∈ J and thus J = D. Clearly,

√
J ⊂ P for all P ∈ P(J).

We prove that for every a ∈ D \
√
J there exists some P0 ∈ P(J) such that a /∈ P0. Thus suppose that

a ∈ D \
√
J . Then T = {an | n ∈ N0} is a multiplicatively closed subset of D satisfying T ∩ J = ∅. If T

denotes the divisor-closure of T , then Theorem 1.2.4 implies P = D \ T is a prime ideal, and it is the
greatest ideal of D such that P ∩T = ∅. Hence J ⊂ P , and by 2. there exists some P0 ∈ P(J) such that
P0 ⊂ P and therefore a /∈ P0. �

Theorem und Definition 1.3.3. An ideal Q ⊂ D is called primary if Q 6= D and, for all a, b ∈ D,
if ab ∈ Q and a /∈ Q, then b ∈

√
Q.

1. Let Q ⊂ D be an ideal.
(a) Q is a prime ideal if and only if Q it is a primary ideal, and

√
Q = Q.

(b) If Q is a primary ideal, then
√
Q is the only prime divisor of Q.

If Q is a primary ideal and P =
√
Q, then Q is called P -primary.

2. For ideals Q, P ( D the following assertions are equivalent :
(a) Q is P -primary.
(b) Q ⊂ P ⊂

√
Q, and for all a, b ∈ D, if ab ∈ Q and a /∈ Q, then b ∈ P .

(c) Q ⊂ P ⊂
√
Q, and for all A, B ⊂ D, if AB ⊂ Q and A 6⊂ Q, then B ⊂ P .

3. Let P ⊂ D be a prime ideal.
(a) If Q and Q′ are P -primary ideals, then Q ∩Q′ is also P -primary.
(b) If Q is a P -primary ideal and B ⊂ D is any subset such that B 6⊂ Q, then (Q :D B) is

also P -primary.
4. Let ϕ : D → D′ be a monoid homomorphism and Q′ ⊂ D′ an ideal. Then ϕ−1(Q′) ⊂ D is an

ideal,
√
ϕ−1(Q′) = ϕ−1(

√
Q′). If Q′ is primary [ a prime ideal ], then so is ϕ−1(Q′).

Proof. 1. Suppose that a, b ∈ D, ab ∈
√
Q and a /∈

√
Q. Then there is some n ∈ N such that

(ab)n = anbn ∈ Q and an /∈ Q. Since Q is primary, we obtain bn ∈
√
Q and therefore b ∈

√√
Q =

√
Q.

Hence
√
Q is a prime ideal, and we must prove that

√
Q is the smallest prime ideal containing Q. Indeed,

if P ⊂ D is a prime ideal and Q ⊂ P , then
√
Q ⊂

√
P = P .

2. (a) ⇒ (b) and (c) ⇒ (b) Obvious.



14 1. GENERALITIES ON MONOIDS

(b) ⇒ (c) Suppose that Q ⊂ P ⊂
√
Q, A, B ⊂ D, AB ⊂ Q and A 6⊂ Q. Let a ∈ A \Q. For all

b ∈ B, we have ab ∈ AB ⊂ Q and therefore b ∈ P . Hence B ⊂ P .
(b) ⇒ (a) If Q ⊂ P ⊂

√
Q, then P =

√
Q by 1. Hence Q is P -primary.

3.(a) If
√
Q =

√
Q′ = P , then

√
Q ∩Q′ =

√
Q ∩
√
Q′ = P . Suppose that a, b ∈ D, ab ∈ Q ∩ Q′

and a /∈ Q ∩Q′, say a /∈ Q. Then it follows that b ∈ P , and thus Q ∩Q′ is P -primary.

(b) Note that Q ⊂ (Q :B) ( D, since B 6⊂ Q. Hence P =
√
Q ⊂

√
(Q :B), and by 2. it suffices to

prove that, for all a, b ∈ D, if ab ∈ (Q :B) and a /∈ (Q :B), then b ∈ P .
If a, b ∈ D, ab ∈ (Q :B) and a /∈ (Q :B), then abB ⊂ Q, aB 6⊂ Q and hence b ∈ P , again by 2.
4. Obviously, ϕ−1(Q′) ⊂ D is an ideal. If a ∈ D, then

a ∈
√
ϕ−1(Q′) ⇐⇒ an ∈ ϕ−1(Q′) for some n ∈ N ⇐⇒ ϕ(a)n ∈ Q′ for some n ∈ N

⇐⇒ ϕ(a) ∈
√
Q′ ⇐⇒ a ∈ ϕ−1(

√
Q′) . Hence

√
ϕ−1(Q′) = ϕ−1(

√
Q′).

Now let Q′ be primary, a, b ∈ D, ab ∈ ϕ−1(Q′) and a /∈ ϕ−1(Q′). Then ϕ(a)ϕ(b) ∈ Q′ and ϕ(a) /∈ Q′,
hence ϕ(b) ∈

√
Q′ and therefore b ∈ ϕ−1(

√
Q′) =

√
ϕ−1(Q′). If Q′ is a prime ideal, then it is primary

and
√
Q′ = Q′. Hence the same holds for ϕ−1(Q′). �

Definition 1.3.4. Let J ⊂ D be an ideal, n ∈ N0, Q1, . . . , Qn ⊂ D distinct primary ideals, and
Q = {Q1, . . . , Qn}.

1. Q is called a primary decomposition of J if J = Q1 ∩ . . . ∩Qn.
2. Q is called reduced if

√
Q1, . . . ,

√
Qn are distinct, and Q1 ∩ . . . ∩Qi−1 ∩Qi+1 ∩ . . . ∩Qn 6⊂ Qi

for all i ∈ [1, n].

Theorem 1.3.5. Let J ⊂ D be an ideal..
1. If Q is a primary decomposition of J for which |Q| is minimal, then Q is reduced. In particular,

if J possesses a primary decomposition, then it also possesses a reduced one.
2. Let Q be a reduced primary decomposition of J . For a prime ideal P ⊂ D, the following conditions

are equivalent :
(a) P =

√
Q for some Q ∈ Q.

(b) There exists some z ∈ D \ J such that P =
√

(J :z).
3. Let Q and Q′ be reduced primary decompositions of J . Then there is a bijective map σ : Q→ Q′

such that
√
σ(Q) =

√
Q for all Q ∈ Q, and if

√
Q1 is minimal in {

√
Q | Q ∈ Q}, then

σ(Q1) = Q1.

Proof. 1. Assume to the contrary that |Q| = n and Q = {Q1, . . . , Qn} is not reduced. Then n ≥ 2
and after renumbering (if necessary) we may assume that either

√
Q1 =

√
Q2 or Q2 ∩ . . . ∩Qn ⊂ Q1.

We set Q1 = {Q1 ∩ Q2, Q3, . . . , Qn} if
√
Q1 =

√
Q2, and Q1 = {Q2, . . . , Qn} if Q2 ∩ . . . ∩ Qn ⊂ Q1.

Then Q1 is a primary decomposition of J satisfying |Q1| = n− 1, a contradiction.
2. Suppose that Q = {Q1, . . . , Qn}, where n ∈ N0 and Q1, . . . , Qn are distinct. If n = 0, then J = D,

and there is nothing to do. If n = 1, then Q = {J}, and the assertion follows by Theorem 1.3.3. Thus
we may assume that n ≥ 2.

(a) ⇒ (b) Assume that P =
√
Q1. If z ∈ (Q2 ∩ . . . ∩Qn) \ Q1, then (Qi : z) = D for all i ∈ [2, n],

and

(J :z) = (Q1 ∩ . . . ∩Qn :z) =
n⋂

i=1

(Qi :z) = (Q1 :z) is P -primary by Theorem 1.3.3.3 (b).
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(b) ⇒ (a) Let z ∈ D \ J be such that P =
√

(J :z). Then

P =
√

(Q1 ∩ . . . ∩Qn :z) =
n⋂

i=1

√
(Qi :z) =

n⋂
i=1

z/∈Qi

√
Qi ,

and therefore P = Qi for some i ∈ [1, n].
3. By 2. it follows that {

√
Q | Q ∈ Q} = {

√
Q | Q ∈ Q′} consists of all prime ideals of the form

(J :z) for some z ∈ D \ J . Therefore there exists a bijective map σ : Q→ Q′ such that
√
σ(Q) =

√
Q

for all Q ∈ Q.
Assume now that Q = {Q1, . . . , Qn}, where n ∈ N0, Q1, . . . , Qn are distinct, and let

√
Q1 be minimal

in the set {
√
Q1, . . .

√
Qn }. By symmetry, it suffices to prove that σ(Q1) ⊂ Q1. Assume the contrary,

and consider the ideal B = σ(Q2) ∩ . . . ∩ σ(Qn). Since Q1 ⊃ J = B ∩ σ(Q1) ⊃ Bσ(Q1), it follows that
B ⊂

√
Q1 and thus

√
Qi =

√
σ(Qi) ⊂

√
Q1 for some i ∈ [2, n], a contradiction, since

√
Q1 was minimal

and
√
Q1 6=

√
Qi. �

Theorem 1.3.6. Let T ⊂ D• a multiplicatively closed subset and jT : D → T−1D the natural
embedding.

1. If J ⊂ D is an ideal, then T−1
√
J =
√
T−1J .

2. The assignment Q 7→ T−1Q defines an inclusion-preserving bijective map

j∗T : {Q ⊂ D | Q is a primary ideal, Q ∩ T = ∅ } → {Q ∈⊂ T−1D | Q is a primary ideal } .

Its inverse is given by Q 7→ j−1
T (Q), and if Q ⊂ D is a primary ideal, then T−1

√
Q =

√
T−1Q.

In particular :
• j∗T induces an inclusion-preserving bijective map from the set of all prime ideals P ⊂ D such

that P ∩ T = ∅ onto the set of all prime ideals of T−1D.
• If P ⊂ D is a prime ideal and P ∩ T = ∅, then j∗T induces an inclusion-preserving bijective

map from the set of all P -primary ideals of D onto the set of all T−1P -primary ideals of
T−1D.

3. Let J ⊂ D be an ideal and Q is a reduced primary decomposition of J . Then

QT = {T−1Q | Q ∈ Q , Q ∩ T = ∅}

is a reduced primary decomposition of T−1J .

Proof. 1. Let J ⊂ D be an ideal. If x ∈ T−1
√
J , then x = a

t , where a ∈
√
J and t ∈ T . If n ∈ N is

such that an ∈ J , then

xn =
an

tn
∈ T−1J and x ∈

√
T−1J .

Conversely, suppose that x = a
t ∈
√
T−1J , where a ∈ D and t ∈ T , and let n ∈ N be such that xn ∈ T−1J .

Then

xn =
an

tn
=
c

s
for some c ∈ J and s ∈ T .

Let w ∈ T be such that wsan = wctn ∈ J . Then (wsa)n = (ws)n−1wsan ∈ J , hence wsa ∈
√
J and

x =
wsa

wst
∈ T−1

√
J .

2. It suffices to prove the following assertion :

A. If Q ⊂ D is a primary ideal and Q ∩ T = ∅, then T−1Q is primary, and Q = j−1
T (T−1Q).
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Indeed, suppose that A holds. If Q ⊂ T−1D is a primary ideal, then j−1
T (Q) ⊂ D is primary

and Q = T−1j−1
T (Q) by the Theorems 1.3.3.4 and 1.2.2.4. Moreover, for every ideal Q ⊂ D we have

T−1
√
Q =

√
T−1Q by 1., and the assertions follow.

Proof of A. Let Q ⊂ D be a primary ideal and Q∩T = ∅. Let x, y ∈ T−1D be such that xy ∈ T−1Q
and x /∈ T−1Q. We set

x =
a

t
, y =

b

s
and xy =

c

w
, where a, b ∈ D , c ∈ Q , t, s, w ∈ T and a /∈ Q.

Then there exists some v ∈ T such that vwab = vtsc ∈ Q, and as a /∈ Q, we obtain vwb ∈
√
Q. If n ∈ N

is such that (vwb)n ∈ Q, then

yn =
(vwb)n

(vws)n
∈ T−1Q . Hence T−1Q is primary.

Obviously, j−1
T (T−1Q) ⊃ Q. To prove the reverse inclusion, let c ∈ j−1

T (T−1Q). Then c
1 = a

t for some
a ∈ Q and t ∈ T , and there exists some s ∈ T such that cst = sa ∈ Q. If c /∈ Q, then there is some n ∈ N
such that (st)n ∈ Q ∩ T , a contradiction.

3. By 1. and 2., QT is a primary decomposition of T−1J , since

J =
⋂

Q∈Q

Q implies T−1J =
⋂

Q∈Q

T−1Q =
⋂

Q∈QT

T−1Q .

We must prove that QT is reduced. Assume first that Q, Q′ ∈ QT are such that
√
T−1Q =

√
T−1Q′.

Then
√
Q = j−1

T (T−1
√
Q) = j−1

T (
√
T−1Q) = j−1

T (
√
T−1Q′) = j−1

T (T−1
√
Q′) =

√
Q′ and therefore

Q = Q′. If Q1 ∈ QT , then⋂
Q∈QT
Q6=Q1

T−1Q ⊂ T−1Q1 implies
⋂

Q∈QT
Q6=Q1

Q =
⋂

Q∈QT
Q6=Q1

j−1
T (T−1Q) = j−1

T

( ⋂
Q∈QT
Q6=Q1

T−1Q
)
⊂ j−1

T (T−1Q1) = Q1 ,

which is impossible. Hence QT is reduced. �

Definition 1.3.7. Let P ⊂ D be a prime ideal and K ⊃ D an overmonoid. Then the monoid
KP = (D \ P )−1K is called the localization of K at P . We denote by jP = jD\P : K → KP the
natural embedding, and for X ⊂ K, we set XP = (D \ P )−1X ⊂ KP .

Theorem 1.3.8. Let P ⊂ D be a prime ideal, T ⊂ D• a multiplicatively closed subset and P ∩T = ∅.
If a ∈ D and s ∈ T , then a

s ∈ T
−1P if and only if a ∈ P . In particular, T−1(D \ P ) = T−1D \ T−1P ,

and there is an isomorphism

Φ: (T−1D)T−1P
∼→ DP , given by Φ

( a
s
c
t

)
=
at

cs
for all a ∈ D , c ∈ D \ P and s, t ∈ T .

In particular, if D is cancellative, then (T−1D)T−1P = DP ⊂ q(D).

Proof. Clearly, a ∈ P and s ∈ T implies a
s ∈ T

−1P . Conversely, if a ∈ D and s ∈ T are such that
a
s ∈ T

−1P , then a
1 = s

1
a
s ∈ T

−1P and thus a ∈ P by Theorem 1.3.6. Hence T−1(D\P ) = T−1D\T−1P ,
and Theorem 1.2.4.3, applied with S = D \ P , gives the asserted isomorphism. �

Theorem 1.3.9. Let D be a cancellative monoid, K = q(D), and let P, Q ⊂ D be prime ideals.

1. If Q 6⊂ P , then (D :Q) ⊂ DP .
2. If P 6⊂ Q, then DP ( (DP )Q.

3. If I ⊂ D is an ideal such that I =
√
I ⊂ P , then (P :P ) ⊂ (I :I).
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Proof. 1. If x ∈ (D :Q) and y ∈ Q \ P , then xy ∈ D, and x = y−1(xy) ∈ DP .
2. By definition, DP ⊂ (DP )Q. If x ∈ P \Q, then x ∈ PP = DP \D×

P , and therefore it follows that
x−1 ∈ (DP )Q \DP .

3. Let x ∈ (P :P ) and y ∈ I. We must prove that xy ∈ I. Since I =
√
I, Theorem 1.3.2.3 shows that

it suffices to prove that xy ∈ Q for all Q ∈ P(I). If Q = P ∈ P(I), then xy ∈ (P :P )I ⊂ (P :P )P ⊂ P .
If Q ∈ P(I) \ {P}, then P 6⊂ Q, and xyP ⊂ I(P :P )P ⊂ IP ⊂ I ⊂ Q implies xy ∈ Q. �

1.4. Fractional subsets

Definition 1.4.1. Let D be a monoid, K = q(D) its total quotient monoid and X ⊂ K.
1. X is called D-fractional if there exists some a ∈ D∗ such that aX ⊂ D.

Every finite subset of K is D-fractional, and every subset of a D-fractional set is D-fractional.
2. X is called a fractional ( semigroup ) ideal of D if X is D-factional, 0 ∈ X and DX ⊂ X

( then DX = X ).
3. X is called a fractional principal ideal of D if X = Da for some a ∈ K.

By definition, if X ⊂ D, then X is a fractional [ principal ] ideal of D if and only if X is a
[ principal ] ideal of D.

Theorem 1.4.2. Let D be a monoid, K = q(D) its total quotient monoid and X, Y ⊂ K.
1. If c ∈ K and X is D-fractional, then cX is D-fractional.
2. X is D-fractional if and only if there exists some c ∈ K× such that cX ⊂ D.
3. If X, Y ⊂ K are D-fractional, then X ∪ Y , X ∩ Y and XY are also D-fractional.
4. If X is D-fractional and Y ∩K× 6= ∅, then (X :Y ) is D-fractional.
5. Let T ⊂ D∗ be a multiplicatively closed subset [ and T−1D ⊂ q(D) ]. Then X is T−1D-fractio-

nal if and only if cX ⊂ T−1D for some c ∈ D∗. In particular, if Y ⊂ K is D-fractional, then
T−1Y is T−1D-fractional.

6. Let C be a monoid such that D ⊂ C ⊂ K. If C is D-fractional, then every C-fractional subset
X ⊂ K is D-fractional.

Proof. 1. Let c = b−1d ∈ K ( where b ∈ D∗ and d ∈ D ). If X is D-fractional and a ∈ D∗ is such
that aX ⊂ D, then ba ∈ D∗ and ba(cX) = daX ⊂ dD ⊂ D. Hence cX is D-fractional.

2. If X is D-fractional, then there exists some c ∈ D∗ ⊂ K× such that cX ⊂ D. Conversely, let
c = b−1d ∈ K× (where b, d ∈ D∗) be such cX ⊂ D. Then dX ⊂ bcX ⊂ bD ⊂ D, and thus X is
D-fractional.

3. Let a, b ∈ D∗ be such that aX ⊂ D and bY ⊂ D. Then a(X ∩ Y ) ⊂ D, ab(X ∪ Y ) ⊂ D and
abXY ⊂ D. Hence X ∩ Y , X ∪ Y and XY are D-fractional.

4. If y ∈ Y ∩K×, then y−1X is D-fractional by 1., and since (X :Y ) ⊂ y−1X, it follows that (X :Y )
is D-fractional.

5. Let X be T−1D-fractional and z = (T−1D)∗ = T−1D∗ such that zX ⊂ T−1D. Then z = t−1c,
where t ∈ T and c ∈ D∗, and cX = tzX ⊂ T−1D. The converse is obvious, since D∗ ⊂ (T−1D)∗. If
Y ⊂ K is D-fractional and c ∈ D∗ is such that cY ⊂ D, then cT−1Y = T−1cY ⊂ T−1D, and thus T−1Y
is T−1D-fractional.

6. Let a ∈ K× be such that aC ⊂ D. If X ⊂ K is C-fractional and c ∈ K× is such that cX ⊂ C,
then ac ∈ K× and acX ⊂ D. �
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1.5. Free monoids, factorial monoids and GCD-monoids

Throughout this section, let D be a cancellative monoid and K = q(D).

Definition 1.5.1.
1. Let X ⊂ D. An element d ∈ D is called a greatest common divisor of D if dD is the smallest

principal ideal containing X [ equivalently, d |x for all x ∈ X, and if e ∈ D and e |x for all x ∈ D,
then e | d ]. We denote by GCD(X) = GCDD(X) the set of all greatest common divisors of X.
By definition, GCD(X) = {0} if and only if X• = ∅, and GCD(X ∪ {0}) = GCD(X). If
d ∈ GCD(X), then GCD(X) = dD×. Consequently, if D is reduced, then |GCD(X)| ≤ 1,
and we write d = gcd(X) instead of GCD(X) = {d}. If X = {a1, . . . , an} for some n ∈ N
and a1, . . . an ∈ D, we set GCD(a1, . . . , an) = GCD(X) resp. gcd(a1, . . . , an) = gcd(X). In
particular, GCD(a) = aD× for all a ∈ D. Two elements a, b ∈ D are called coprime if
GCD(a, b) = D×.
If X ⊂ D, d ∈ GCD(X) and ε : D → D/D× denotes the reduction homomorphism, then
ε(d) = dD× = gcd(π(X)).

2. D is called a GCD-monoid if GCD(E) 6= ∅ for all E ∈ Pf(D). Hence D is a GCD-monoid if and
only if D/D× is a GCD-monoid. Every divisible monoid is a GCD-monoid.

3. A homomorphism ϕ : D → D′ of GCD-monoids is called a GCD-homomorphism if

ϕ(GCD(E)) ⊂ GCD(ϕ(E)) for every E ∈ Pf(D) .

We denote by HomGCD(D,D′) the set of all GCD-homomorphisms ϕ : D → D′.

Theorem 1.5.2.
1. Let (Xλ)λ∈Λ be a family of subsets of D, bλ ∈ GCD(Xλ) for every λ ∈ Λ, and B = {bλ | λ ∈ Λ}.

Then
X =

⋃
λ∈Λ

Xλ implies GCD(X) = GCD(B) .

In particular, D is a GCD-monoid if and only if GCD(a, b) 6= ∅ for all a, b ∈ D•.
2. If X ⊂ D, a ∈ D and GCD(aX) 6= ∅, then GCD(aX) = aGCD(X).

Proof. 1. It suffices to prove that X and B are contained in the same principal ideals of D. If
b ∈ D, then

X ⊂ bD ⇐⇒ Xλ ∈ bD for all λ ∈ Λ ⇐⇒ bλD ⊂ bD for all λ ∈ Λ ⇐⇒ B ∈ bD .

If D is a GCD-monoid, then GCD(a, b) 6= ∅ for all a, b ∈ D. Conversely, suppose that GCD(a, b) 6= ∅ for
all a, b ∈ D×, and let E ∈ Pf(D). We must prove that GCD(E) 6= ∅, and since GCD(E) = GCD(E\{0}),
we may assume that E ⊂ D•. We use induction on |E|. If |E| ≤ 2, there is nothing to do. Thus assume
that |E| ≥ 3 and a ∈ E. If b ∈ GCD(E \ {a}) and d ∈ GCD(a, b), then d ∈ GCD(E).

2. It suffices to prove that GCD(aX) ⊂ aGCD(X). For a = 0, this is obvious. Thus suppose
that a ∈ D•, and let c ∈ GCD(aX). Then aX ⊂ aD implies cD ⊂ aD, hence c = ab for some b ∈ D,
and X ⊂ bD. If b′ ∈ D is such that X ⊂ b′D, then aX ⊂ ab′D, hence cD = abD ⊂ ab′D and
therefore bD ⊂ b′D. Consequently, bD is the smallest principal ideal containing X, b ∈ GCD(X), and
c = ab ∈ aGCD(X). �

Theorem 1.5.3. Let D be a GCD-monoid.
1. If E, F ∈ Pf(D) and b ∈ D, then GCD(EF ) = GCD(E) GCD(F ) and GCD(bE) = bGCD(E).
2. Let a, b, c ∈ D be such that a | bc. Then there exist b′, c′ ∈ D such that a = b′c′, b′ | b and
c′ | c. In particular, if GCD(a, b) = D×, then a | c.
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3. Every z ∈ K has a representation in the form z = a−1b with a ∈ D• and b ∈ D such that
GCD(a, b) = D×. In this representation aD× and bD× are uniquely determined by z.

Proof. We use Theorem 1.5.2.

1. Suppose that e ∈ GCD(E) and f ∈ GCD(F ), and observe that

EF =
⋃
b∈E

bF .

For every b ∈ E, we have bf ∈ GCD(bF ), and since {bf | b ∈ E} = Ef , we obtain ef ∈ GCD(EF ).

2. Let b′ ∈ GCD(a, b) and c′ ∈ D such that a = b′c′. Then it follows that b′c ∈ GCD(ac, bc),
and b′GCD(c′, c) = GCD(b′c′, b′c) = GCD(a, ac, bc) = GCD(a, bc) = aD× = b′c′D×, which implies that
GCD(c′, c) = c′D× and therefore c | c′. In particular, if GCD(a, b) = D×, we may assume that b′ = 1,
and then a = c′ | c.

3. If z ∈ K, then z = a−1
1 b1, where a1 ∈ D• and b1 ∈ D. If d ∈ GCD(a1, b1), then a1 = ad and

b1 = bd, where a, b ∈ D, and d = GCD(ad, bd) = dGCD(a, b). Hence GCD(a, b) = D× and z = a−1b.
To prove uniqueness, suppose that z = a′−1b′, where a′ ∈ D•, b′ ∈ D and GCD(a′, b′) = D×. Then
a′b = ab′, and since GCD(a, b) = GCD(a′, b′) = D×, it follows that a | a′, b | b′, a′ | a and a | a′. Hence
aD = a′D and bD = b′D. �

Definition 1.5.4.

1. An element q ∈ D• is called

• an atom if q /∈ D× and, for all a, b ∈ D, q = ab implies a ∈ D× or b ∈ D× [ equivalently,
qD is maximal in the set {aD | a ∈ D \D× } ];

• a prime element if q /∈ D× and, for all a, b ∈ D•, q | ab implies q | a or q | b [ equivalently,
qD is a prime ideal ].

2. D is called

• atomic if every a ∈ D• \D× is a product of atoms;

• factorial if every a ∈ D• \D× is a product of prime elements.

3. D is said to satisfy the ACCP ( ascending chain condition for principal ideals ) if there is no
sequence (anD)n≥0 of principal ideals of D such that anD ( an+1D for all n ∈ N [ equivalently,
every non-empty set of principal ideals of D contains a maximal element ].

4. D is called free with basis P ⊂ D if the map

χP : N(P )
0 → D• , defined by χ

(
(np)p∈P

)
=

∏
p∈P

pnp , is bijective.

5. A subset P ⊂ D is called a complete set of primes if every p ∈ P is a prime element and, for
every prime element p ∈ D there is a unique p0 ∈ P such that pD = p0D [ equivalently, p = p0u
for some u ∈ D× ].

Theorem 1.5.5.

1. If D satisfies the ACCP, then D is atomic.

2. Every prime element of D is an atom, and if D is a GCD-monoid, then every atom is a prime
element.

3. D is factorial if and only if D is atomic and every atom is a prime element.
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Proof. 1. Let Ω be the set of all principal ideals aD, where a ∈ D• \D× is not a product of atoms.
Assume that, contrary to the assertion, Ω 6= ∅. Since D satisfies the ACCP, Ω contains a maximal
element aD, and since a is not an atom, it has a factorization a = bc, where b, c ∈ D \D×. In particular,
it follows that aD ( bD and aD ( cD, and therefore bD, cD /∈ Ω. Hence both b and c are products of
atoms, and therefore a = bc is also a product of atoms, a contradiction.

2. Let p ∈ D be a prime element and a ∈ D\D× such that pD ⊂ aD. We must prove that pD = aD.
Since p = au for some u ∈ D and therefore p | au, it follows that p | a or p |u. If p | a, then aD = pD
and we are done. If p |u, then u = pv for some v ∈ D, hence p = apv, and from 1 = av it follows that
a ∈ D×, a contradiction.

Assume now that D is a GCD-monoid, and let q ∈ D be an atom. If a, b ∈ D and q | ab, then
Theorem 1.5.3.2 implies that there exist a′, b′ ∈ D such that a′ | a, b′ | b and q = a′b′. Hence it follows
that a′ ∈ D× or b′ ∈ D×, say a′ ∈ D×. But then b′ | b implies q | b.

3. If D is atomic and every atom is a prime element, then every a ∈ D \ D× is product of prime
elements and thus D is factorial.

If D is factorial, then D is atomic, since every prime element is an atom. If q ∈ D is an atom, then
q = p1 · . . . · pr, where r ∈ N and p1, . . . , pr are prime elements. But then it follows that r = 1 and q = p1

is a prime element. �

Theorem und Definition 1.5.6.

1. For a subset P ⊂ D, the following assertions are equivalent :

(a) D is factorial and P is a complete set of primes.

(b) Every a ∈ D• has a unique representation

a = u
∏
p∈P

pvp(a) , where u ∈ D×, vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

(c) D/D× is free with basis ε(P ), where ε : D → D/D× denotes the canonical epimorphism.

For a ∈ D•, we call vp(a) the p-adic exponent of a, and we set vp(0) =∞.

2. D is free with basis P if and only if D is factorial and reduced and P is the set of prime elements
of D.

3. Let D be factorial, P a complete set of primes and ∅ 6= X ⊂ D•. Then

d =
∏
p∈P

pmin{vp(x)|x∈X} ∈ GCD(X) ,

and there exists some E ∈ Pf(X) such that d ∈ GCD(E).

4. D is factorial if and only if D is an atomic GCD-monoid.

Proof. 1. (a) ⇒ (b) Let a ∈ D•. Then a = u′p′1 · . . . · p′r, where r ∈ N0, u′ ∈ D×, and
p′1, . . . , p

′
r ∈ D are prime elements. For i ∈ [1, r], let pi ∈ P and ui ∈ D× be such that p′i = piui. Then

u = u′u1 · . . . · ur ∈ D×, and a = up1 · . . . · pr. For p ∈ P , let np = |{i ∈ [1, r] | pi = p}| ∈ N0. Then
np = 0 for almost all p ∈ P , and

a = u
∏
p∈P

pnp .

We must prove uniqueness. Thus assume that

a = u
∏
p∈P

pnp = u′
∏
p∈P

pn′p ,
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where u, u′ ∈ D×, np, n
′
p ∈ N0 for all p ∈ P , and np = n′p = 0 for almost all p ∈ P . Then we obtain

u−1u′
∏
p∈P

n′p>np

pn′p−np =
∏
p∈P

n′p<np

pnp−n′p .

Assume now that there is some q ∈ P such that n′q > nq. Then it follows that∏
p∈P

n′p<np

pnp−n′p ∈ qP , and therefore p ∈ qP for some p ∈ P such that n′p < np ,

a contradiction. Hence there is no p ∈ P such that n′p > np, and for the same reason there is no p ∈ P
such that n′p > np. Hence it follows that np = n′p for all p ∈ P , and consequently u = u′.

(b) ⇔ (c) By definition, ε |P : P → ε(P ) is bijective, and if a ∈ D•, u ∈ D× and (np)p∈P ∈ N(P )
0 ,

then
a = u

∏
p∈P

pnp if and only if ε(a) =
∏
p∈P

ε(p)np .

(b) ⇒ (a) It suffices to prove that P is a complete set of primes. From the uniqueness in (b) we
obtain :

• If a, b ∈ D•, then vp(ab) = vp(a) + vp(b).
• If a ∈ D• and p ∈ P , then a ∈ pD if and only if vp(a) > 0.

Hence every p ∈ P is a prime element. Indeed, if p ∈ P and a, b ∈ D• are such that ab ∈ pD, then
vp(ab) = vp(a) + vp(b) > 0, hence vp(a) > 0 or vp(b) > 0 and therefore a ∈ pD or p ∈ pD.

If q ∈ D is a prime element, then q ∈ pD for every p ∈ P such that vp(D) > 0. But if q ∈ pD, then
qD = pD, since q is an atom and qD is a maximal principal ideal. Hence there is a unique p ∈ P such
that qD = pD.

2. Obvious by 1.
3. Clearly, min{vp(x) | x ∈ X} ∈ N0 for all p ∈ P , and min{vp(x) | x ∈ X} = 0 for almost all

p ∈ P . Hence d ∈ D•. If b ∈ D•, then X ⊂ bD holds if and only if vp(b) ≤ vp(x) for all x ∈ X and
p ∈ P . Therefore we obtain d ∈ GCD(X).

Let now b ∈ X be arbitrary. Then vp(d) ≤ vp(b), and the set P0 = {p ∈ P | vp(b) 6= 0} is finite.
For every p ∈ P0 there is some xp ∈ X such that vp(xp) = vp(dp). If E = {b} ∪ {xp | p ∈ P0}, then
d ∈ GCD(E).

4. If D is factorial, then D is atomic by Theorem 1.5.5, and D is a GCD-monoid by 3. If D is an
atomic GCD-monoid, then every atom is a prime element and therefore D is factorial, again by Theorem
1.5.5. �





CHAPTER 2

The formalism of module and ideal systems

2.1. Weak module and ideal systems

Definition 2.1.1. Let K be a monoid.

1. A weak module system on K is a map r : P(K)→ P(K), X 7→ Xr such that, for all c ∈ K and
X, Y ∈ P(K) the following conditions are fulfilled :

M1. X ∪ {0} ⊂ Xr.

M2. If X ⊂ Yr, then Xr ⊂ Yr.

M3. cXr ⊂ (cX)r.

2. A module system on K is a weak module system r on K such that equality holds in M3 for
all c ∈ K and X ∈ P(K).

3. Let r be a weak module system on K. A subset J ⊂ K is called an r-module if J = Xr for
some subset X ⊂ K (then X ∪ {0} ⊂ J by M1 ). An r-module J ⊂ K is called r-finitely
generated if J = Er for some finite subset E ⊂ K.

We denote by

• Mr(K) the set of all r-modules in K, and by
• Mr,f(K) the set of all r-finitely generated r-modules in K.

A submonoid D ⊂ K is called an r-monoid if it is an r-module.

4. For two r-modules J1, J2 ⊂ K, we define their r-product by J1 ·r J2 = (J1J2)r, and we call ·r
the r-multiplication.

Theorem 2.1.2. Let K be a monoid, r be a weak module system on K and X, Y ⊂ K.

1. (Xr)r = Xr. In particular, X is an r-module if and only if X = Xr.

2. If X ⊂ Y , then Xr ⊂ Yr. In particular,

Xr =
⋂

J∈Mr(K)
J⊃X

J

is the smallest r-module containing X.

3. Xr = (X ∪ {0})r, ∅r = {0}r, and if r is a module system, then ∅r = {0}r = {0}.
4. The intersection of any family of r-modules is again an r-module.

5. For every family (Xλ)λ∈Λ in P(K) we have⋃
λ∈Λ

(Xλ)r ⊂
( ⋃

λ∈Λ

Xλ

)
r

=
( ⋃

λ∈Λ

(Xλ)r

)
r
.

23
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6. (XY )r = (XrY )r = (XYr)r = (XrYr)r. If T ⊂ K and 1 ∈ T , then the following assertions are
equivalent :

(a) Xr = TXr (b) Xr = (TX)r . (c) Xr = TrXr .

In particular, if TX = X, then TrXr = Xr.
7. Equipped with the r-multiplication,Mr(K) is a monoid with unit element {1}r, zero element ∅r,

and Mr,f(K) ⊂Mr(K) is a submonoid.
8. For every family (Xλ)λ∈Λ in P(K) we have the distributive law( ⋃

λ∈Λ

XλY
)

r
=

( ⋃
λ∈Λ

Xλ

)
r
·r Yr =

( ⋃
λ∈Λ

(Xλ)r ·r Yr

)
r
.

9. (X :Y )r ⊂ (Xr :Y ) = (Xr :Yr) = (Xr :Y )r. In particular, if X is an r-module, then (X :Y ) is
also an r-module.

Proof. 1. M1 implies Xr ⊂ (Xr)r, and since Xr ⊂ Xr, we obtain (Xr)r ⊂ Xr by M2. Hence
(Xr)r = Xr.

If X = Xr, then X is an r-module by definition. Conversely, if X is an r-module, then X = Zr for
some subset Z ⊂ K, and then Xr = (Zr)r = Zr = X.

2. If X ⊂ Y , then X ⊂ Yr and therefore Xr ⊂ Yr, again by M1 and M2.
If J ∈Mr(K) and X ⊂ J , then Xr ⊂ Jr = J , and therefore

Xr ⊂
⋂

J∈Mr(K)
J⊃X

J .

Since Xr = (Xr)r ∈Mr(K), the reverse inclusion is obvious.
3. By M1 we have X ∪ {0} ⊂ Xr, hence (X ∪ {0})r ⊂ Xr by M2, and since Xr ⊂ (X ∪ {0})r by

2., equality follows. If r is a module system, then {0} = 0{1}r = {0}r.
4. Let (Jλ)λ∈Λ be a family of r-modules, and

X =
⋂
λ∈Λ

Jλ .

Then {Jλ | λ ∈ Λ} ⊂ {J ∈Mr(K) | J ⊃ X} and therefore

Xr =
⋂

J∈Mr(K)
J⊃X

J ⊂
⋂
λ∈Λ

Jλ = X ⊂ Xr , which implies equality.

5. For each α ∈ Λ we have

Xα ⊂
⋃
λ∈Λ

Xλ ⊂
( ⋃

λ∈Λ

Xλ

)
r
, hence (Xα)r ⊂

( ⋃
λ∈Λ

Xλ

)
r

and
⋃
λ∈Λ

(Xλ)r ⊂
( ⋃

λ∈Λ

Xλ

)
r
.

Now it follows by M2 that( ⋃
λ∈Λ

(Xλ)r

)
r
⊂

( ⋃
λ∈Λ

Xλ

)
r
, and

⋃
λ∈Λ

Xλ ⊂
⋃
λ∈Λ

(Xλ)r implies
( ⋃

λ∈Λ

Xλ

)
r
⊂

( ⋃
λ∈Λ

(Xλ)r

)
r
.

6. Using M3, we obtain

XYr =
⋃

x∈X

xYr ⊂
⋃

x∈X

(xY )r ⊂ (XY )r and XrYr =
⋃

y∈Yr

Xry ⊂
⋃

y∈Yr

(Xy)r ⊂ (XYr)r .

Hence it follows, using M2, that (XrYr)r ⊂ (XYr)r ⊂ (XY )r ⊂ XrYr ⊂ (XrYr)r, an thus equality
holds throughout.

(a) ⇒ (b) From TX ⊂ TXr = Xr we obtain (TX)r ⊂ Xr ⊂ (TX)r, and thus Xr = (TX)r.
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(b) ⇒ (c) From Xr ⊂ TrXr ⊂ (TrXr)r = (TX)r = Xr we obtain Xr = TrXr.
(c) ⇒ (a) From Xr ⊂ TXr ⊂ TrXr = Xr we obtain Xr = TXr.

If TX = X, then (TX)r = Xr and therefore TrXr = Xr.
7. Obviously, ·r is commutative, and for every subset X ⊂ K we have (1X)r = Xr and (∅X)r = ∅r.

If J1, J2, J3 ∈Mr(K), then (J1 ·r J2) ·r J3 = ((J1J2)rJ3)r = (J1J2J3)r = (J1(J2J3)r)r = J1 ·r (J2 ·J3)).
Hence ·r is associative, andMr(K) is a monoid with unit element {1}r and zero element ∅r.

If J1, J2 ∈Mr,f(K), then there exist finite subsets E1, E2 ⊂ K such that J1 = (E1)r and J2 = (E2)r.
Hence it follows that J1 ·r J2 = ((E1)r(E2)r)r = (E1E2)r ∈Mr,f(K).

8. If (Xλ)λ∈Λ is a family in P(K), then 5. implies that( ⋃
λ∈Λ

XλY
)

r
=

(( ⋃
λ∈Λ

Xλ

)
Y

)
r

=
( ⋃

λ∈Λ

Xλ

)
r
·r Yr =

( ⋃
λ∈Λ

(XλY )r

)
r

=
( ⋃

λ∈Λ

(Xλ)r ·r Yr

)
r
.

9. Since (Xr : Y )Y ⊂ (Xr : Y )rY ⊂ (Xr : Y )rYr ⊂ ((Xr : Y )Y )r ⊂ (Xr)r = Xr, it follows that
(Xr :Y )r ⊂ (Xr :Y ) ⊂ (Xr :Y )r ⊂ (Xr :Yr) ⊂ (Xr :Y ) and therefore (Xr :Y ) = (Xr :Yr) = (Xr :Y )r.
Since (X :Y ) ⊂ (Xr :Y ) = (Xr :Y )r it follows that (X :Y )r ⊂ (Xr :Y ).

If X is an r-module, then (X :Y )r = (Xr :Y )r = (Xr :Y ) = (X :Y ), and therefore (X :Y ) is also an
r-module. �

Remarks and Definition 2.1.3. Let K be a monoid and D ⊂ K a submonoid.
1. A (weak) module system r : P(K)→ P(K) is called a

• (weak ) D-module system if DJ ⊂ J ( and thus DJ = J ) for every J ∈Mr(K).
• (weak ) ideal system of D if it is a ( weak ) D-module system and Dr = D.

In this case, we say more precisely that r is a (weak) ideal system of D defined on K.
Whenever it does not matter on which overmonoid of D the ideal system r is defined, we
say that r is an ideal system of D.

If r is a (weak) ideal system of D defined on K, then r |P(D) : P(D) → P(D) is also a (weak)
ideal system of D.

2. Let r : P(K) → P(K) be a weak ideal system of D. An r-modules J ∈ Mr(K) is called an
r-ideal of D if J ⊂ D. If J is an r-ideal of D, then 0 ∈ J and DJ = J , and thus J is a
(semigroup) ideal of D. We denote by
• Ir(D) = {J ∈Mr(K) | J ⊂ D} the set of all r-ideals of D and by
• Ir,f(D) = Ir(D) ∩Mr,f(K) the set of all r-finitely generated r-ideals of D.

By definition, Ir,f(D) ⊂ Ir(D) ⊂Mr(K) are submonoids.
3. Let again r : P(K)→ P(K) be a weak ideal system of D, and assume that K = q(D). Then an
r-module J ∈Mr(K) is called a fractional r-ideal of D if J is D-fractional. If J is a fractional
r-ideal of D, then 0 ∈ J and DJ = J , and thus J is a fractional (semigroup) ideal of D. We
denote by
• Fr(D) = {J ∈Mr(K) | J is D-fractional } the set of all fractional r-ideals of D,

and we assert that Mr,f(K) ⊂ Fr(D) [ Proof : If J ∈Mr,f(K), then J = Er for some E ∈ Pf(K).
Hence there exists some a ∈ D∗ such that aE ⊂ D, and therefore aJ = aEr ⊂ (aE)r ⊂ Dr = D ].
Consequently, we denote by
• Fr,f(D) =Mr,f(K) the set of all r-finitely generated fractional r-ideals of D.

By definition, Fr,f(D) =Mr,f(K) ⊂ Fr(D) ⊂Mr(K), and Mr,f(K) ⊂Mr(K) is a submonoid.
We assert that also Fr(D) ⊂ Mr(K) is a submonoid. [ Proof : If J1, J2 ∈ Fr(D), then J1J2

is D-fractional by Theorem 1.4.2.3. Hence there exists some c ∈ D∗ such that cJ1J2 ⊂ D, and
then c(J1J2)r ⊂ (cJ1J2)r ⊂ Dr = D implies that J1 ·r J2 = (J1J2)r ∈ Fr(D) ].
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Consequently, Ir(D) ⊂ Fr(D) and Ir,f(D) ⊂ Fr,f(D) are also submonoids.

Theorem 2.1.4. Let K be a monoid and D ⊂ K a submonoid. Assume that K = q(D), and let
r : P(K)→ P(K) be an ideal system of D. Then

Fr(D) = {a−1I | I ∈ Ir(D) , a ∈ D∗ } = {J ∈ P(K) | aJ ∈ Ir(D) for some a ∈ D∗ }

and

Fr,f(D) = {a−1I | I ∈ Ir,f(D) , a ∈ D∗ } = {J ∈ P(K) | aJ ∈ Ir,f(D) for some a ∈ D∗ }

Proof. We show that

Fr(D) ⊂ {a−1I | I ∈ Ir(D) , a ∈ D∗ } ⊂ {J ∈ P(K) | aJ ∈ Ir(D) for some a ∈ D∗ } ⊂ Fr(D) .

If J ∈ Fr(D), then there exists some a ∈ D∗ such that I = aJ ⊂ D, and Ir = aJr = aJ = I. Hence
I ∈ Ir(D) and J = a−1I. If I ∈ Ir(D) and a ∈ D∗, then J = a−1I ⊂ K and I = aJ . If J ⊂ K, a ∈ D∗

and I = aJ ∈ Ir(D), then J is D-fractional, and Jr = (a−1I)r = a−1Ir = a−1I = J , hence J ∈ Fr(D).
In all arguments above, J is r-finitely generated if and only if I is r-finitely generated, and thus also

the second set of equalities holds. �

Examples 2.1.5 (Some (weak) ideal systems).

1. Trivial systems. Let K be a monoid. There are two trivial weak ideal systems y, y1 on K,
defined as follows.

y1 : P(K)→ P(K), defined by Xy1 = K for all subsets X ⊂ K.
y : P(K)→ P(K), defined by Xy = {0} if X ⊂ {0}, and Xy = K if X 6⊂ {0}.

It is easily checked that y and y1 are weak ideal systems of K.
Let K be divisible. Then K and {0} are the only semigroup ideals of K. Hence y and y1 are the only
weak ideal systems of K, and y is even an ideal system of K.

2. The semigroup system. Let K be a monoid and D ⊂ K a submonoid. The semigroup system
of D defined on K is the system s(D) : P(K)→ P(K), defined by

∅s(D) = {0} , and Xs(D) = DX =
⋃

a∈X

Da if X 6= ∅ .

It is plain that s(D) is an ideal system of D, and Ms(D)(K) = {J ⊂ K | 0 ∈ J and DJ = J}. In
particular, Is(D)(D) is the set of all semigroup ideals of D. If c ∈ K, then {c}s(D) = cD, the union of
any family of s(D)-modules is again an s(D)-module, and if J1, J2 ∈Ms(D)(K), then J1 ·s(D)J2 = J1J2.

If K = q(D), then Fs(D)(D) is the set of all fractional (semigroup) ideals of D, and

Fs(D),f(D) = {c1D ∪ . . . ∪ cmD | m ∈ N , c1, . . . , cm ∈ K } .

If K is divisible, then s(K) is the only ideal system of K. In fact, it coincides with the trivial system
y considered in Example 1.

3. The Dedekind system. Let K be a ring and D ⊂ K a subring. The Dedekind system of D
defined on K is the system d(D) : P(K)→ P(K), defined by

Xd(D) = {a1x1 + . . .+ anxn | n ∈ N , x1, . . . , xn ∈ X , a1, . . . , an ∈ K} = K(X) for all X ∈ P(K) ,

[Xd(D) is the D-submodule of K generated by X ].
It is plain that d(D) is an ideal system of D, and Md(D)(K) is the set of all D-submodules of K. A
D-module J ∈ Md(D)(K) is d(D)-finitely generated if and only if it is a finitely generated D-module.
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Id(D)(D) is the set of all ideals of D, and if c ∈ K, then {c}d(D) = {c}s(D) = cD. For every family
(Jλ)λ∈Λ inMd(D)(K), we have ( ⋃

λ∈Λ

Jλ

)
d(K)

=
∑
λ∈Λ

Jλ .

If J1, J2 ∈ Id(K)(K), then J1 ·d(K) J2 is the additive abelian group generated by J1J2.
If K is a field, then d(K) = s(K) is the only ideal system of K.
4. The system of homogenous ideals. Let K be a graded ring with homogeneous components

(Ki)i≥0, that means,

K =
⊕
i≥0

Ki as an additive abelian group, and KiKj ⊂ Ki+j for all i, j ≥ 0 .

An element x ∈ K is called homogenous of degree i ≥ 0 if x ∈ Ki. Every x ∈ K has a unique
representation

x =
∑
i≥0

xi , where xi ∈ Ki and xi = 0 for almost all i ≥ 0.

In this representation we call xi the i-th homogenous component of x. For every subset X ⊂ K let Xh

be the set of all homogeneous components of elements of X. An ideal J ⊂ K is called homogenous if
Jh ⊂ J , equivalently

J =
∑
i≥0

J ∩Ki .

Then Xh = (Xh)d(K) is the smallest homogeneous ideal containing X, and

h : P(K)→ P(K) , X 7→ Xh , is a weak ideal system of K.

6. The system of filters. Let (K,≤, 0, 1) be a lattice. That means, (K,≤) is a partially ordered
set, 0 = max(K), 1 = min(K), and any two elements a, b ∈ K possess a supremum ab = a ∨ b and an
infimum a ∧ b. Then K is a monoid with unit 1 and zero 0.
If M is a set, then (K,≤, 0, 1) = (P(M),⊂,M, ∅) is a lattice ( the subset lattice of M ).
Let (K,≤, 0, 1) be a lattice. A non-empty subset F ⊂ K is called a filter if for all a, b ∈ K the following
assertions hold :

• If a ≤ b and a ∈ F , then b ∈ F .
• If a, b ∈ F , then ab ∈ F .

For a subset X ⊂ K, let Xf be the smallest filter containing X. Then ∅f = {0}, and if X 6= ∅, then

Xf =
⋂

X⊂F
F is a filter

F = {x ∈ K | there exist x1, . . . , xr ∈ X such that x ≥ x1 · . . . · xr} .

The map f : P(X)→ P(X), X 7→ Xf , is a weak ideal system on K, and for every c ∈ K it follows
that {c}f = {x ∈ K | x ≥ c} = cK. [ All this is easily checked, observing that, for all x, y ∈ K, x ≤ y
holds if and only if xy = y ].

Theorem 2.1.6. Let K be a monoid, D ⊂ K a submonoid and r a weak module system on K.
1. Dr is an r-monoid. In particular, {1}r is the smallest r-monoid in K, and if D ⊂ {1}r, then
{1}r = Dr.

2. Let r be a weak D-module system. Then r is a weak Dr-module system, {1}r = Dr, and if
X ⊂ K, then Xr = DXr = DrXr = (DX)r and Dr ⊂ (Xr :X).

3. r is a weak D-module system if and only if D ⊂ {1}r. In particular :
(a) r is a weak {1}r-module system.
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(b) If r is a D-module system, then {c}r = cDr for all c ∈ K.
(c) If r is an ideal system of D, then {c}r = cD for all c ∈ K.

4. If r is a weak ideal system of D and I, J ∈ Ir(D), then I ·r J ⊂ I ∩ J .

Proof. 1. By Theorem 2.1.2.6, DD = D implies DrDr = Dr. Hence Dr ⊂ K is a submonoid and
thus an r-monoid. In particular, {1}r = {0, 1}r is an r-monoid, and it is the smallest r-monoid in K.

If D ⊂ {1}r, then Dr ⊂ {1}r ⊂ Dr, and therefore {1}r = Dr.
2. If X ⊂ K, then Xr = DXr by definition, and therefore Xr = DrXr = (DX)r by Theorem 2.1.2.6.

In particular, Dr ⊂ Dr{1}r = {1}r and therefore Dr = {1}r. If J ∈ Mr(K), then J = Jr and J = DJ
implies J = DrJ , and therefore r is a weak Dr-module system.

If X ⊂ K, then (Xr :X) is an r-module and 1 ∈ (Xr :X). Hence it follows that Dr = {1}r ⊂ (Xr :X).
3. If r is a weakD-module system, then {1}r = D{1}r ⊃ D. Conversely, ifD ⊂ {1}r and J ∈Mr(K),

then J ⊂ DJ =⊂ {1}rJ ⊂ Jr = J , and thus r is a weak D-module system.
(a) Since r is obviously a {0, 1}-module system and {0, 1}r = {1}r, it is also an {1}r-module system.
(b), (c) If r is a D-module system, then {c}r = c{1}r = cDr, and if r is an ideal system of D, then

Dr = D.
4. Let r be a weak ideal system of D and I, J ∈ Ir(D). Then I ∩ J ∈ Ir(D), and since I and J are

semigroup ideals, it follows that IJ ⊂ I ∩ J , and consequently I ·r J = (IJ)r ⊂ I ∩ J . �

2.2. Finitary and noetherian (weak) module systems

Theorem und Definition 2.2.1. Let K be a monoid and r a weak module system on K.
1. The following assertions are equivalent :

(a) For every subset X ⊂ K, we have

Xr =
⋃

E∈Pf(X)

Er .

(b) For all X ⊂ K and a ∈ Xr there exists a finite subset E ⊂ X such that a ∈ Er.
(c) For every directed family (Xλ)λ∈Λ in P(K) we have( ⋃

λ∈Λ

Xλ

)
r

=
⋃
λ∈Λ

(Xλ)r .

(d) The union of every directed family of r-modules is again an r-module.
(e) If X ⊂ K, J ∈Mr,f(K) and J ⊂ Xr, then there exists some E ∈ Pf(X) such that J ⊂ Er.

If r satisfies these equivalent conditions, then r is called finitary.
2. If r is finitary, X ⊂ K and Xr ∈Mr,f(K), then there exists some E ∈ Pf(X) such that Er = Xr.
3. If r and q are finitary weak module systems on K, then r = q if and only if Er = Eq for all
E ∈ Pf(X).

Proof. 1. (a) ⇒ (b) Obvious.
(b) ⇒ (c) If

X =
⋃
λ∈Λ

Xλ , then Xr ⊃
⋃
λ∈Λ

(Xλ)r .
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To prove the converse, let x ∈ Xr and E ⊂ X finite such that x ∈ Er. Since (Xλ)λ∈Λ is directed, there
exists some α ∈ Λ such that E ⊂ Xα, hence Er ⊂ (Xα)r, and consequently

x ∈ Er ⊂
⋃
λ∈Λ

(Xλ)r .

(c) ⇒ (d) Let (Xλ)λ∈Λ be a directed family of r-modules. Then( ⋃
λ∈Λ

Xλ

)
r

=
⋃
λ∈Λ

(Xλ)r =
⋃
λ∈Λ

Xλ .

(d) ⇒ (a) Obviously, ⋃
E∈Pf(X)

Er ⊂ Xr .

For E, F ∈ Pf(X), we have Er ∪ Fr ⊂ (E ∪ F )r. Hence (Er)E∈Pf(X) is directed, and we obtain

Xr =
( ⋃

E∈Pf(X)

E
)
r
⊂

( ⋃
E∈Pf(X)

Er

)
r

=
⋃

E∈Pf(X)

Er .

(b) ⇒ (e) Suppose that X ⊂ K and J = Fr ⊂ Xr, where F ∈ Pf(K). For every c ∈ F , there is
some E(c) ∈ Pf(X) such that c ∈ E(c)r. Then

E =
⋃
c∈E

E(c) ∈ Pf(X) , F ⊂
⋃
c∈E

E(c)r ⊂ Er and thus J = Fr ⊂ Er .

(e) ⇒ (b) If X ⊂ K and a ∈ Xr, then {a}r ∈ Mr,f(K) and {a}r ⊂ Xr. Hence there exists a
finite subset E ⊂ X such that a ∈ {a}r ⊂ Er.

2. If r is finitary, X ⊂ K and Xr ∈ Mr,f(K), then we apply 1.(e) with J = Xr ∈ Mr,f to obtain
Xr ⊂ Er for some E ∈ Pf(X), and thus Xr = Er.

3. By 1.(a), two finitary weak module systems coincide if and only if they coincide on finite sets. �

Theorem und Definition 2.2.2. Let K be a monoid and D ⊂ K a submonoid.
1. Let r : Pf(K) → P(K) be a map such that, for all c ∈ K and E, F ∈ Pf(K) the following

conditions are fulfilled :

M1 f . E ∪ {0} ⊂ Er.
M2 f . If E ⊂ Fr, then Er ⊂ Fr.
M3 f . cEr ⊂ (cE)r.

Then there exists a unique finitary weak module system r on K satisfying r |Pf(K) = r. It is
given by

Xr =
⋃

E∈Pf(X)

Er for all X ⊂ K .

r is a weak D-module system if and only if cD ⊂ {c}r for all c ∈ K, and it is a module system
if and only if (cE)r = cEr for all c ∈ K and E ∈ Pf(K).
r is called that total system defined by r and is usually again denoted by r.

2. Let r be a weak module system on K. Then there exists a unique finitary weak module system rf
on K such that Er = Erf

for all finite subsets of K. It is given by

Xrf
=

⋃
E∈Pf(X)

Er for all X ⊂ K ,

and it has the following properties :
(a) Xrf

⊂ Xr for all X ∈ P(K), Mr(K) ⊂Mrf
(K), and Mrf ,f(K) =Mr,f(K).
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(b) (rf)f = rf , and r is finitary if and only if r = rf .
(c) If r is a module system, then rf is a module system, too.
(d) rf is a weak D-module system [ a weak ideal system of D ] if and only if r is a weak

D-module system [ a weak ideal system of D ] .
rf is called the finitary system associated with r.

Proof. 1. Let r : P(K)→ P(K) be defined by

Xr =
⋃

E∈Pf(X)

Er for all X ⊂ K .

We prove that r satisfies the properties M1, M2, M3 for all c ∈ K and X, Y ⊂ K. Once this is done,
it is obvious that Er = Er for all E ∈ Pf(X). Hence r |Pf(K) = r, and r is finitary.

M1. Since E ∪ {0} ⊂ Er for all E ∈ Pf(X), we obtain X ∪ {0} ⊂ Xr.
M2. Suppose that X ⊂ Yr, and let x ∈ Xr. There exists some E ∈ Pf(X) such that x ∈ Er, and

E ⊂ Yr =
⋃

F∈Pf(Y )

Fr .

For every e ∈ E, there exists some F (e) ∈ Pf(Y ) such that e ∈ F (e)r, and we obtain

F =
⋃
e∈E

F (e) ∈ Pf(Y ) , and E ⊂
⋃
e∈E

F (e)r ⊂ Fr ,

hence Er ⊂ Fr ⊂ Yr and x ∈ Yr.
M3. Note that Pf(cX) = {cE | E ∈ Pf(X)}. Hence it follows that

cXr =
⋃

E∈Pf(X)

cEr ⊂
⋃

E∈Pf(X)

(cE)r =
⋃

F∈Pf(cX)

Fr = (cX)r ,

and cXr = (cX)r holds if and only if cEr = (cE)r for all E ∈ Pf(X). Consequently, r is a module
system if and only if cEr = (cE)r for all E ∈ Pf(X). By Theorem 2.1.6.3 it follows that r is a weak
D-module system if and only if cD ⊂ {c}r for all c ∈ K.

It remains to prove the uniqueness of r. If r̃ is any finitary weak module system on K satisfying
r̃ |Pf(K) = r, then

Xr̃ =
⋃

E∈Pf(X)

Er̃ =
⋃

E∈Pf(X)

Er = Xr for all X ⊂ K, and therefore r̃ = r .

2. By 1., applied with r |Pf(X), there exists a unique weak module system rf on K such that
Erf

= Er for all E ∈ Pf(X), and if X ⊂ K, then Xrf
is given as asserted.

(a) If X ∈ P(K), then Er ⊂ Xr for all E ∈ Pf(X), and therefore Xrf
⊂ Xr. If X ∈ Mr(K), then

Xrf
⊂ Xr = X and therefore X = Xrf

∈ Mrf
(K). Since Er = Erf

for all E ∈ Pf(K), it follows that
Mrf ,f(K) =Mr,f(K).

(b) By the uniqueness of rf it follows that rf = r if and only if r is finitary, and since rf is finitary,
we obtain (rf)f = rf .

(c) If r is a module system, then (cE)r = cEr for all c ∈ K and E ∈ Pf(K), and then rf is a module
system by 1.

(d) Since {1}r = {1}rf
, Theorem 2.1.6.3 implies that rf is a weak D-module system if and only if

r is a weak D-module system. In this case, Dr = {1}r = {1}rf
= Drf

, and therefore rf is a weak ideal
system of D if and only if r is a weak ideal system of D. �
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Remark 2.2.3.

1. Let K be a monoid, D ⊂ K a submonoid and s(D) the semigroup system of D defined on K
( see Example 2.1.5.2 ). If ∅ 6= X ⊂ K, then

Xs(D) = DX =
⋃

a∈X

Da ⊂
⋃

E∈Pf(X)

DE =
⋃

E∈Pf(X)

Es(D) ⊂ DX ,

and therefore s(D) is finitary.
2. Let K be a ring, D ⊂ K a subring and d(D) the Dedekind system of D defined on K ( see

Example 2.1.5.3 ). Since every D-module is the union of its finitely generated submodules, the
system d(D) is finitary.

Example 2.2.4. Let K be a topological monoid ( that is, a monoid equipped with a topology such
that the multiplication K×K → K, (x, y) 7→ xy, is continuous ). Let c : P(K)→ P(K) be defined by

Xc = Xs(K) =

{
{0} if X = ∅ ,
XK if X 6= ∅ .

Then Xc is the smallest closed semigroup ideal of K containing X. If ∅ 6= X ⊂ K and z ∈ K, then
zXK ⊂ zXK ⊂ XK, and therefore c is a weak ideal system on K. If z ∈ K is such that the map
τz : K → K, defined by τz(x) = zx, is closed, then (zX)c = zXc for all X ∈ P(K). In particular, if τz is
a closed map for all z ∈ K, then c is an ideal system of K. In particular, this holds if K is compact. In
general however, c is not finitary.
We consider the additive monoid R≥0. For every z ∈ R≥0, the map x 7→ z + x is closed, and thus c
is an ideal system on R≥0. If γ ∈ R≥0 and X = (γ,∞), then Xc = [γ,∞), but for every finite subset
E ⊂ (γ,∞), it follows that Ec = [min(E),∞) ⊂ (γ,∞). Hence Xcf

= X, c 6= cf , and c is not finitary.

Theorem und Definition 2.2.5. Let K be a monoid, D ⊂ K a submonoid and r : P(K) → P(K)
a weak ideal system of D defined on K.

1. The following conditions are equivalent :
(a) Ir(D) satisfies the ACC :

• For every sequence (Jn)n≥0 in Ir(D) satisfying Jn ⊂ Jn+1 for all n ≥ 0, there exists
some m ≥ 0 such that Jn = Jm for all n ≥ m.

• Every non-empty set of r-ideals has a maximal element.
(b) For every subset X ⊂ D, there exists some E ∈ Pf(X) such that X ⊂ Er ( and then

Xr = Er ).
(c) r |P(D) is finitary, and Ir(D) = Ir,f(D).

If these conditions are fulfilled, then r is called a noetherian weak ideal system, and D is called
r-noetherian.

2. D is r-noetherian if and only if D is rf-noetherian.
3. If K = q(D) and D is r-noetherian, then Fr(D) = Fr,f(D) ( that is, every fractional r-ideal is
r-finitely generated ).

Proof. 1. (a) ⇒ (b) Let X ⊂ D and Ω = {Fr | F ∈ Pf(X)}. By assumption, there exists some
E ∈ Pf(X) such that Er is maximal in Ω, and we assert that Er = Xr. Indeed, if Er ( Xr, then X 6⊂ Er,
and if c ∈ X \ Er, then Er ( (E ∪ {c})r, which contradicts the maximality of Er.
Clearly, if E ∈ Pf(X), then X ⊂ Er if and only if Xr = Er.

(b) ⇒ (c) By (b), every r-ideal is r-finitely generated. Hence Ir(D) = Ir,f(D), and r is finitary.
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(c) ⇒ (a) Let (Jn)n≥0 be an ascending sequence in Ir(D). Then

J =
⋃
n≥0

Jn

is an r-ideal (since r |P(D) is finitary), and there exists some E ∈ Pf(J) such that J = Er. There is some
m ∈ N such that E ⊂ Jm, and then it follows that Jn = Jm for all n ≥ m.

2. If D is rf -noetherian, then D is r-noetherian, since Ir(D) ⊂ Irf
(D) by Theorem 2.2.2.2 (a). If D

is r-noetherian, then r |P(D) = rf |P(D) by 1.(c), and thus D is rf -noetherian.
3. Since Ir(D) = Ir,f(D), Theorem 2.1.4 implies

Fr(D) = {a−1I | I ∈ Ir(D) , a ∈ D•} = {a−1I | I ∈ Ir,f(D) , a ∈ D•} = Fr,f(D) . �

2.3. Comparison and mappings of module systems

Definition 2.3.1. Let K be a monoid, and let r and q be weak module systems on K. We call q
finer than r and r coarser than q and write r ≤ q if Xr ⊂ Xq for all subsets X ⊂ K.
≤ is a partial order on the set of all weak module systems on K.

Theorem 2.3.2. Let K be a monoid, and let r and q be weak module systems on K. Then rf ≤ r,
and the following assertions are equivalent :

(a) r ≤ q.
(b) Xq = (Xr)q for all subsets X ⊂ K.
(c) Mq(K) ⊂Mr(K).

If r is finitary, then there are also equivalent :

(d) Er ⊂ Eq for all finite subsets E ⊂ K.
(e) Mqf

(K) ⊂Mr(K).
(f) Mq,f(K) ⊂Mr(K).
(g) r ≤ qf .
Proof. It follows by Theorem 2.2.2 that rf ≤ r.
(a) ⇒ (b) If X ⊂ K, then Xr ⊂ Xq by assumption, hence (Xr)q ⊂ Xq, and since X ⊂ Xr, it follows

that Xq ⊂ (Xr)q.
(b) ⇒ (c) If J ∈Mq(K), then Jr ⊂ (Jr)q = Jq = J ⊂ Jr, and therefore J = Jr ∈Mr(K).
(c) ⇒ (a) If X ⊂ K, then Xq ∈Mq(K) ⊂Mr(K), and therefore Xq = (Xq)r ⊃ Xr.

Assume now that r is finitary.
(a) ⇒ (d) Obvious.
(d) ⇒ (e) If J ∈Mqf

(K), then

J = Jqf
=

⋃
E∈Pf(J)

Eq ⊃
⋃

E∈Pf(J)

Er = Jr ⊃ J implies that J = Jr ∈Mr(K) .

(e) ⇒ (f) Mq,f(K) =Mqf ,f(K) ⊂Mqf
(K) ⊂Mr(K).

(f) ⇒ (g) If E ∈ Pf(K), then Eq ∈ Mq,f(K) ⊂ Mr(K), and therefore Eq = (Eq)r ⊃ Er. Conse-
quently, if X ⊂ K, then

Xr =
⋃

E∈Pf(X)

Er ⊂
⋃

E∈Pf(X)

Eq = Xqf
, and therefore r ≤ qf .

(g) ⇒ (a) r ≤ qf ≤ q. �
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Theorem 2.3.3. Let K be a monoid and D ⊂ K a submonoid.
1. Let r : P(K)→ P(K) be a weak module system on K. Then r is a D-module system if and only

if s(D) ≤ r.
2. Let r and q be ideal systems of D such that r ≤ q. If D is r-noetherian, then D is q-noetherian.

Proof. 1. By definition, r is a D-module system if and only if Mr(K) ⊂ Ms(D)(K), and by
Theorem 2.3.2 this is equivalent to s(D) ≤ r.

2. If r ≤ q, then Iq(D) ⊂ Ir(D). �

Definition 2.3.4. Let ϕ : K → L be a monoid homomorphism, r a weak module system on K and
q a weak module system on L.

1. Let ϕ∗q : P(K) → P(K) be defined by Xϕ∗q = ϕ−1(ϕ(X)q). ϕ∗q is called the pullback of q
under ϕ.

2. ϕ is called an (r, q)-homomorphism if ϕ(Xr) ⊂ ϕ(X)q for all subsets X ⊂ K. We denote by
Hom(r,q)(K,L) the set of all (r, q)-homomorphisms ϕ : K → L.

Remarks 2.3.5. Let ϕ : K → L and ψ : L → M be monoid homomorphisms, r a weak module
system on K, q a weak module system on L and y a weak module system on M .

1. Let r be finitary. Then ϕ is an (r, q)-homomorphism if and only if ϕ(Er) ⊂ ϕ(E)r for all
E ∈ Pf(K).

2. (ψ◦ϕ)∗y = ϕ∗(ψ∗y).
3. If ϕ is an (r, q)-homomorphism and ψ is a (q, y)-homomorphism, then ψ◦ϕ is an (r, y)-homo-

morphism.
In particular, monoids together with weak module systems form a category.

Theorem 2.3.6. Let ϕ : K → L a monoid homomorphism, r a weak module system on K and q a
weak module system on L.

1. ϕ∗q is a weak module system on K, Mϕ∗q(K) = {ϕ−1(J) | J ∈ Mq(L)}, and if q is finitary,
then ϕ∗q is also finitary.
If B ⊂ L is a submonoid and q is a weak B-module system, then ϕ∗q is a weak ϕ−1(B)-module
system.

2. ϕ is an (r, q)-homomorphism if and only if r ≤ ϕ∗q [ that is, if and only if ϕ−1(J) ∈ Mr(K)
for all J ∈Mq(L) ].

Proof. 1. We check the properties M1, M2 and M3 for ϕ∗q. Let X, Y ⊂ K and c ∈ K.
M1. Xϕ∗q = ϕ−1(ϕ(X)q) ⊃ ϕ−1(ϕ(X) ∪ {0}) ⊃ X ∪ {0}.
M2. If X ⊂ Yϕ∗q = ϕ−1(ϕ(Y )q), then ϕ(X) ⊂ (ϕ(Y )q, hence ϕ(X)q ⊂ (ϕ(Y )q, and therefore

Xϕ∗q = ϕ−1(ϕ(X)q) ⊂ ϕ−1(ϕ(Y )q) = Yϕ∗q.
M3. ϕ(cXϕ∗q) = ϕ(c)ϕ(Xϕ∗q) ⊂ ϕ(c)ϕ(X)q ⊂ [ϕ(c)ϕ(X)]q = ϕ(cX)q. Hence it follows that

cXϕ∗q ⊂ ϕ−1(ϕ(cX)q) = (cX)ϕ∗q.
Let q be finitary and X ⊂ K. Then Pf(X) = {ϕ(E) | E ∈ Pf(X)} and therefore

Xϕ∗q = ϕ−1(ϕ(X)q) = ϕ−1
( ⋃

E∈Pf(X)

ϕ(E)q

)
=

( ⋃
E∈Pf(X)

ϕ−1(ϕ(E)q)
)

=
⋃

E∈Pf(X)

Eϕ∗q .

Hence ϕ∗q is finitary.
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Let B ⊂ L be a submonoid such that q is a weak B-module homomorphism. If X ⊂ K, then
ϕ−1(B)Xϕ∗q = ϕ−1(B)ϕ−1(ϕ(X)q) ⊂ ϕ−1(Bϕ(X)q) = ϕ−1(ϕ(X)q) = Xϕ∗q, and therefore ϕ∗q is a weak
ϕ−1(B)-module system.

It remains to prove that Mϕ∗q(K) = {ϕ−1(J) | J ∈Mq(L)}. If I ∈Mϕ∗q(K), then ϕ(I)q ∈Mq(L),
and I = Iϕ∗q = ϕ−1(ϕ(I)q). Conversely, if J ∈Mq(L), then

ϕ−1(J)ϕ∗q = ϕ−1
(
ϕ(ϕ−1(J))q

)
⊂ ϕ−1(Jq) = ϕ−1(J) ⊂ ϕ−1(J)ϕ∗q .

Hence equality holds, and ϕ−1(J) ∈Mϕ∗q(K).
2. If X ⊂ K, then ϕ(Xr) ⊂ ϕ(X)q holds if and only if Xr ⊂ ϕ−1(ϕ(X)q) = Xϕ∗q. Consequently,

ϕ is an (r, q)-homomorphism if and only if r ≤ ϕ∗q. �

Theorem und Definition 2.3.7. Let ε : K → K ′ be a surjective monoid homomorphism, D ⊂ K
a submonoid, D′ = ε(D), and G ⊂ D× a subgroup such that ε−1(ε(x)) = xG for all x ∈ K. If
π : K → K/G denotes the natural epimorphism, defined by π(a) = aG, then ε factorizes in the form

ε : K π→ K/G
∼→ K ′ and induces an isomorphism D/G

∼→ D′ .

For a weak D-module system r on K we define

ε(r) : P(K ′)→ P(K ′) by X ′
ε(r) = ε

[
ε−1(X ′)r] for all X ′ ⊂ K ′ .

1. ε(r) is a weak D′-module system on K ′. If X ⊂ K, then ε(X)ε(r) = ε(Xr), and ε∗ε(r) = r.
ε(r) is a module system if and only if r is an module system, and ε(r)f = ε(rf).
ε(r) is called the weak D′-module system induced by r. In particular, if K ′ = K/G and ε = π,
then π(r) is called the reduction of r modulo G.

2. The assignment r 7→ ε(r) defines a bijective map from the set of all weak D-module systems on
K onto the set of all weak D′-module systems on K ′. If r′ is a weak D′-module system on K ′,
then ε∗r′ is a weak D-module system on K, and r′ = ε(ε∗r′).

3. If r is a weak D-module system on K, then the maps

Mr(K)→Mε(r)(K ′) , J 7→ ε(J) and Mε(r)(K ′)→Mr(K) , J ′ 7→ ε−1(J ′)

are inclusion-preserving, bijective and inverse to each other. In particular, if r is a weak ideal
system of D, then D is r-noetherian if and only if D′ is ε(r)-noetherian.

Proof. By definition, ε factors as asserted and induces isomorphisms K/G→ K ′ and D/G→ D′.
For every subset X ⊂ K, we have ε−1(ε(X)) = XG, and Xr = GXr = (GX)r [ indeed, since r is a
D-module system, we have Xr ⊂ GXr ⊂ (GX)r ⊂ (DX)r = Xr ].

1. If X ⊂ K, then ε(X)ε(r) = ε
(
[ ε−1(ε(X) ]r

)
= ε [ (XG)r ] = ε(Xr). We prove that ε(r) satisfies the

properties M1, M2, M3 for all c′ ∈ K ′ and X ′, Y ′ ⊂ K ′. We may assume that c′ = ε(c), X ′ = ε(X)
and Y ′ = ε(Y ), where c ∈ K and X, Y ⊂ K.

M1. X ′
ε(r) = ε(X)ε(r) = ε(Xr) ⊃ ε(X ∪ {0}) = X ′ ∪ {0}.

M2. If X ′ ⊂ Yε(r), then ε(X) ⊂ ε(Yr), hence X ⊂ YrG = Yr, Xr ⊂ Yr, and therefore we obtain
X ′

ε(r) = ε(X)r ⊂ ε(Y )r = Y ′ε(r).

M3. Since c′X ′ = ε(cX), we obtain (c′X ′)ε(r) = ε [ (cX)r ] ⊃ ε(cXr) = ε(c)ε(Xr) = c′X ′
ε(r), and

equality holds if and only if (cX)rG = cXrG, that is, if and only if (cX)r = cXr.
Hence ε(r) is a weak module system, it is a module system if and only if r is a module system, and

it is a D′-module system since D′X ′
ε(r) = ε(D)ε(Xr) = ε(DXr) = ε(Xr) = X ′

ε(r).
If X ′ = ε(X) ⊂ K ′, then Pf(X ′) = {ε(E) | E ∈ Pf(X)}, and therefore

X ′
ε(r)f

=
⋃

E′∈Pf(X′)

E′ε(r) =
⋃

E∈Pf(X)

ε(Er) = ε
( ⋃

E∈Pf(X)

Er

)
= ε(Xrf

) = X ′
ε(rf)

,
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Hence ε(r)f = ε(rf). If X ⊂ K, then Xε∗ε(r) = ε−1 [ ε(X)ε(r) ] = ε−1 [ ε(Xr) ] = XrG = Xr, and therefore
ε∗ε(r) = r.

2. Since ε∗ε(r) = r for every weak D-module system r on K, the assignment r 7→ ε(r) defines an
injective map from the set of all weak D-module systems on K onto the set of all weak D′-module systems
on K ′.

Let now r′ be a weak D′-module system on K ′. Since D = ε−1(D′), Theorem 2.3.6 implies that ε∗r′

is a weak D-module system on K, and it suffices to prove that r′ = ε(ε∗r′). If X ′ = ε(X) ⊂ K ′, then

X ′
ε(ε∗r′) = ε(Xε∗r′) = ε [ ε−1(ε(X)r′) ] = ε [ε−1(X ′

r′) ] = X ′
r′ .

3. Let r be a weak D-module system on K. If J ∈ Mr(K), then ε(J)ε(r) = ε(Jr) = ε(J), hence
ε(J) ∈ Mε(r)(K ′), and ε−1(ε(J)) = JG = J . If J ′ ∈ Mε(r)(K ′), then J ′ = J ′ε(r) = ε [ ε−1(J ′)r ], and
therefore ε−1(J ′) = ε−1(J ′)rG = ε−1(J ′)r. Hence ε−1(J ′) ∈Mr(K), and J ′ = ε(ε−1(J ′)). �

2.4. Quotient monoids and module systems

Theorem 2.4.1. Let K be a monoid, D ⊂ K a submonoid and T ⊂ D a multiplicatively closed
subset. Let jT : K → T−1K be the natural embedding and r a finitary weak D-module system on K.

1. There exists a unique finitary weak T−1D-module system T−1r on T−1K such that

jT (E)T−1r = T−1Er for all finite subsets E ⊂ K.

On finite subsets of T−1K is given by{a1

t1
, . . . ,

am

tm

}
T−1r

= T−1{a1, . . . , am}r for all m ∈ N, a1, . . . , am ∈ K and t1, . . . , tm ∈ T .

If r is a weak ideal system of D, then T−1r is a weak ideal system of T−1D, and if r is a
module system, then T−1r is a module system, too.

2. If X ⊂ K, then T−1Xr = (T−1X)T−1r = jT (X)T−1r.
3. If V ∈MT−1r(T−1K), then J = j−1

T (V ) ∈Mr(K), and V = T−1J .
4. The map

j∗T :Mr(K) → MT−1r(T−1K) , defined by j∗T (J) = T−1J ,

is an inclusion-preserving monoid epimorphism satisfying j∗T (Mr,f(K)) =MT−1r,f(T−1K) and
T−1(J1 ∩ J2) = T−1J1 ∩ T−1J2 for all J1, J2 ∈Mr(K).

5. Let r be a weak ideal system of D. If V ∈ IT−1r(T−1D), then J = j−1
T (V ) ∩D ∈ Ir(D), and

V = T−1J . In particular, j∗T (Ir(D)) = IT−1r(T−1D), j∗T (Ir,f(D)) = IT−1r,f(T−1D), and if D
is r-noetherian, then T−1D is T−1r-noetherian.

Proof. 1. We prove first :
A. T−1{a1, . . . , am}r = T−1{t1a1, . . . , tmam}r (for m ∈ N, a1, . . . , am ∈ K and t1, . . . , tm ∈ T ).

Proof of A. By Theorem 2.1.6.2, {t1a1, . . . , tmam}r ⊂ (D{a1, . . . , am})r = {a1, . . . , am}r, which
implies T−1{t1a1, . . . , tmam}r ⊂ T−1{a1, . . . , am}r. To prove the reverse inclusion, let c ∈ {a1, . . . , am}r
and t ∈ T . Since t1 · . . . · tmc ∈ t1 · . . . · tm{a1, . . . , am}r ⊂ (D{t1a1, . . . , tmam})r = {t1a1, . . . , tmam}r,
we obtain

c

t
=
t1 · . . . · tmc
t1 · . . . · tmt

∈ T−1{t1a1, . . . , tmam}r . �[A.]

Now we define a map T−1r : Pf(T−1K)→ P(T−1K) by{a1

t1
, . . . ,

am

tm

}
T−1r

= T−1{a1, . . . , am}r for all m ∈ N0, a1, . . . , am ∈ K and t1, . . . , tm ∈ T ,
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and we must prove that this assignment does not depend on the choice of representatives. We show that,
for all m ∈ N, a1, . . . , am, , a

′
1, . . . a

′
m ∈ K and t1, . . . , tm, t

′
1, . . . , t

′
m ∈ T ,

aj

tj
=
a′j
t′j

for all j ∈ [1,m] implies T−1{a1, . . . , am}r = T−1{a′1, . . . , a′m}r .

For j ∈ [1,m], let sj ∈ T be such that sjt
′
jaj = sjtja

′
j . Then A implies

T−1{a1, . . . , am}r = T−1{st′1a1, . . . , st
′
mam} = T−1{st′1a1, . . . , st

′
mam}r = T−1{a′1, . . . , a′m}r .

We shall prove that T−1r satisfies M1 f , M2 f , M3 f and {c}T−1r ⊃ cT−1D for all c ∈ T−1K and
E, F ∈ Pf(T−1K), and that equality holds in M3 f if r is a module system.

Once this is done, Theorem 2.2.2 implies the existence of a finitary weak T−1D-module system on
T−1K, again denoted by T−1r, such that jT (E)T−1r = T−1Er for all E ∈ Pf(K), and that T−1r
is a module system if r is a module system. If r is a weak ideal system of D, then {1}r = D, hence{

1
1

}
T−1r

= T−1{1}r = T−1D, and therefore T−1r is a weak ideal system of T−1D.
Assume that

E =
{a1

t1
, . . . ,

am

tm

}
, F =

{ b1
s1
, . . . ,

bn
sn

}
and c =

a

t
,

where m, n ∈ N0, a1, . . . , am, b1, . . . bn, a ∈ K and t1, . . . , tm, s1, . . . , sn, t ∈ T .
M1 f . For j ∈ [1,m],

aj

tj
∈ T−1{a1, . . . , am} ⊂ T−1{a1, . . . , am}r = ET−1r implies E ⊂ ET−1r ,

and 0 ∈ {a1, . . . , am}r implies 0
1 ∈ ET−1r.

M2 f . Suppose that E ⊂ FT−1r = T−1{b1, . . . , bn}r, say
aj

tj
=
cj
vj

for all j ∈ [1,m], where cj ∈ {b1, . . . , bn}r and vj ∈ T .

For j ∈ [1,m], let wj ∈ T be such that wjvjaj = wjtjcj . Then wjvjaj ∈ {b1, . . . , bn}r, and therefore
ET−1r = T−1{a1, . . . , am}r = T−1{w1v1a1, . . . , wmvmam}r ⊂ T−1{b1, . . . , bn}r = FT−1r.

M3 f . We have

(cE)T−1r =
{aa1

tt1
, . . . ,

aam

ttm

}
T−1r

= T−1{aa1, . . . , aam}r

⊃ T−1a{a1, . . . , am}r = cT−1{a1, . . . , am}r = cET−1r ,

and equality holds if r is a module system.
Since r is a weak D-module system, it follows that {c}T−1r = T−1{a}r ⊃ T−1aD ⊃ cT−1D.
It remains to prove the uniqueness of T−1r. Thus let r̃ be a finitary weak T−1D-module system on

T−1K satisfying jT (E)r̃ = T−1Er for all finite subsets E ⊂ K. By Theorem 2.2.1.3 it suffices to prove
that Fr̃ = FT−1r for every finite subset F ⊂ T−1K. Thus assume that

F =
{a1

t1
, . . . ,

am

tm

}
, where m ∈ N , a1, . . . , am ∈ K and t1, . . . , tm ∈ T .

If E = {a1, . . . , am}, then (T−1D)F = (T−1D)jT (E), and

Fr̃ = ((T−1D)F )r̃ = ((T−1D)jT (E))r̃ = jT (E)r̃ = T−1Er = FT−1r .

2. Observing that Pf(jT (X)) = {jT (E) | E ∈ Pf(X)}, we obtain

T−1Xr = T−1
⋃

E∈Pf(X)

Er =
⋃

E∈Pf(X)

T−1Er =
⋃

E∈Pf(X)

jT (E)T−1r =
⋃

F∈Pf(jT (X))

FT−1r = jT (X)T−1r .

Since (T−1D)(T−1X) = (T−1D)jT (X) and T−1r is a weak T−1D-module system, it follows that
(T−1X)T−1r = (jT (X))T−1r.
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3. Let V ∈MT−1r(T−1K) and J = j−1
T (V ). We prove first that V = T−1J .

If x
t ∈ V , where x ∈ K and t ∈ T , then x

1 = t
1

x
t ∈ (T−1D)V = V , hence x ∈ J and x

t ∈ T
−1J .

Conversely, if x ∈ J and t ∈ T , then x
1 ∈ V , 1

t ∈ T
−1D and x

t = 1
t

x
1 ∈ T

−1DV = V .
It remains to prove that J ∈ Mr(K), and for this it suffices to show that Jr ⊂ J . If a ∈ Jr, then

a
1 ∈ T

−1Jr = (T−1J)T−1r = VT−1r = V and therefore a ∈ J .

4. If J ∈ Mr(K), then (T−1J)T−1r = T−1Jr = T−1J ∈ MT−1r(T−1K). If J ∈ Mr,f(K), then
J = Er for some E ∈ Pf(K), and T−1J = jT (E)T−1r ∈Mr,f(T−1K). Hence j∗T is an inclusion-preserving
map as asserted, and by 3. it is surjective.

If V ∈ MT−1r,f(T−1K), then V = {a1
t1
, . . . , am

tm
}T−1r for some m ∈ N, a1, . . . , am ∈ K and

t1, . . . , tm ∈ T . If E = {a1, . . . , am} ⊂ K, then V = jT (E)T−1r ∈ j∗T (Mr,f(K)).
If J1, J2 ∈ Mr(K), then T−1(J1 ∩ J2) = T−1J1 ∩ T−1J2, since TJ1 = J1 and TJ2 = J2. Moreover,

T−1(J1 ·r J2) = T−1(J1J2)r = (T−1J1J2)T−1r = ((T−1J1)(T−1J2)T−1r = (T−1J1) ·T−1r (T−1J2), and
therefore j∗T is a homomorphism.

5. By 1., T−1r is a weak ideal system of T−1D. If V ∈ IT−1r(T−1D), then j−1
T (V ) ∈ Mr(K) by

3., and consequently J = j−1
T (V ) ∩ D ∈ Ir(D). If a ∈ J and t ∈ T , then a

t = a
1

1
t ∈ T

−1DV = V ,
and therefore T−1J ⊂ V . To prove the reverse inclusion, assume that a

t ∈ V , where a ∈ D and t ∈ T .
Then it follows that a

1 = t
1

a
t ∈ V , hence a ∈ jT (V ) ∩D = J and a

t ∈ T
−1J . If V ∈ IT−1r,f(T−1D), then

V = {a1
t1
, . . . , am

tm
}T−1r for some m ∈ N, a1, . . . , am ∈ D and t1, . . . , tm ∈ T . If E = {a1, . . . , am} ⊂ D,

then V = jT (E)T−1r ∈ j∗T (Ir,f(D)).
Clearly, j∗T (Ir(D)) ⊂ IT−1r(T−1D)) and j∗T (Ir,f(D)) ⊂ IT−1r,f(T−1D), and as we have just

proved, equality holds. In particular, if D is r-noetherian, then Ir(D) = Ir,f(D), hence IT−r (T−1D) =
IT−r,f(T−1D), and therefore T−1D is T−1r-noetherian. �

Theorem 2.4.2.
1. Let K be a monoid, D ⊂ K a submonoid, s(D) : P(K) → P(K) the semigroup system of D

defined on K and T ⊂ D a multiplicatively closed subset. Then

T−1s(D) = s(T−1D) : T−1K → T−1K

is the semigroup system of T−1D defined on T−1K.
2. Let K be a ring, D ⊂ K a subring, d(D) : P(K)→ P(K) the Dedekind system of D defined on
K and T ⊂ D a multiplicatively closed subset. Then

T−1d(D) = d(T−1D) : T−1K → T−1K

is the Dedekind system of T−1D defined on T−1K.

Proof. 1. We prove that jT (E)s(T−1D) = T−1Es(D) for all E ∈ Pf(K). The the assertion follows
from the uniqueness of T−1s(D) in Theorem 2.4.1.

If E = {a1, . . . , am}, where m ∈ N and a1, . . . , am ∈ K, then

jT (E)s(T−1D) =
m⋃

j=1

T−1D
aj

1
=

m⋃
j=1

T−1(Daj) = T−1
m⋃

j=1

Daj = T−1Es(D) .

2. As in 1. it suffices to prove that jT (E)d(T−1D) = T−1Ed(D) for all E ∈ Pf(K).
If E = {a1, . . . , am}, where m ∈ N and a1, . . . , am ∈ K, then

jT (E)d(T−1D) =
m∑

j=1

T−1D
aj

1
=

m∑
j=1

T−1(Daj) = T−1
m∑

j=1

Daj = T−1Es(D) . �
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2.5. Extension and restriction of module systems

Definition 2.5.1. Let K be a monoid, D ⊂ K a submonoid and r a weak module system on K.
Then we define

r[D] : P(K)→ P(K) by Xr[D] = (XD)r for all X ⊂ K ,

r(D) : P(D)→ P(D) by Xr(D) = Xr ∩D for all X ⊂ D , and we set rD = r[D](D) : P(D)→ P(D) .

By definition, we have XrD
= Xr[D] ∩ D = (XD)r ∩ D for all X ⊂ D, and if T ⊂ K is another

submonoid, then r[D][T ] = r[DT ].
We call r[D] the extension of r by D and rD the weak ideal system induced by r on D (see
Theorem 2.5.2.4).

Theorem 2.5.2. Let K be a monoid, D ⊂ K a submonoid and r a weak module system on K.
1. r(D) is a weak module system on D. If r is finitary, then r(D) is also finitary, and if r is a weak
D-module system, then r(D) is a weak ideal system of D.

2. If Dr = D, then r(D) = r |P(D), and if r is a module system [ an ideal system of D ] , then r(D)

is also a module system [ an ideal system of D ] .
3. r[D] is a weak D-module system on K. If r is a module system, then r[D] is also a module

system, and if r is finitary, then r[D] is also finitary.
Moreover, we have r ≤ r[D], Mr[D](K) = {J ∈ Mr(K) | DJ = J}, and r = r[D] if and only
if r is a weak D-module system.

4. rD = r[D](D) is a weak ideal system on D and if J ∈Mr[D](K), then J ∩D ∈ IrD
(D).

If r is finitary, then rD is also finitary. If Dr = D, then r[D] is an ideal system of D, and
rD = r[D] |P(D). In particular, if r is a weak ideal system of D, then rD = r |P(D).

Proof. 1. We check the properties M1 , M2 , M3 for r(D). Let X, Y ∈ P(D) and c ∈ D.
M1. Xr(D) = Xr ∩D ⊃ X ∪ {0}.
M2. If X ⊂ Yr(D) = Yr ∩D, then Xr(D) = Xr ∩D ⊂ Yr ∩D = Yr(D) .
M3. (cX)r(D) = (cX)r ∩D ⊃ cXr ∩D ⊃ c(Xr ∩D) = cXr(D) .
Let r be finitary, X ⊂ D and a ∈ Xr(D) = Xr ∩ D. Then there exists some E ∈ Pf(X) such that

a ∈ Er ∩D = Er(D) . Hence r(D) is finitary.
If r is a weakD-module system and X ⊂ D, then DXr(D) = D(Xr∩D) ⊂ DXr∩D = Xr∩D = Xr(D) .

Hence r(D) is a weak D-module system, and since Dr(D) = Dr ∩D = D, it is a weak ideal system of D.
2. If X ⊂ D, then Xr ⊂ D and Xr(D) = Xr ∩D = Xr. Hence r(D) = r |P(D), and if r is a module

system [ an ideal system of D ] , then r(D) is also a module system [ an ideal system of D ] .
3. We check the properties M1, M2, M3 for r[D]. Let X, Y ∈ P(K) and c ∈ K.
M1. Xr[D] = (DX)r ⊃ DX ∪ {0} ⊃ X ∪ {0}.
M2. If X ⊂ Yr[D] = (DY )r, then DX ⊂ D(DY )r ⊂ (DY )r, and Xr[D] = (DX)r ⊂ (DY )r = Yr[D].
M3. (cX)r[D] = (cDX)r ⊃ c(DX)r = cXr[D], and equality holds if r is a module system.

Hence r[D] is a weak module system on K, and it is a module system if r is a module system. If r is
finitary, X ⊂ K and a ∈ Xr[D] = (DX)r, then there exists some E ∈ Pf(X) such that a ∈ (DE)r = Er[D],
and therefore r[D] is also finitary.

Next we prove that Mr[D](K) = {J ∈ Mr(K) | DJ = J}. Once this is done, it follows that r[D] is
a D-module system, r ≤ r[D], and r = r[D] if and only if r is a weak D-module system.

If J ∈ Mr(K) and DJ = J , then Jr[D] = (DJ)r = J ∈ Mr[D](K). Conversely, if J ∈ Mr[D](K),
then J = Jr[D] = (DJ)r ∈Mr(K), and DJ = (DJ)r = Jr[D] = J .
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4. It suffices to prove that J ∈ Mr[D](K) implies J ∩D ∈ IrD
(D). The remaining assertions follow

by 1., 2. and 3.
If J ∈Mr[D](K), then DJ = J and therefore (J ∩D)rD

= ((J ∩D)D)r ∩D ⊂ (JD)r ∩D = J ∩D.
Hence (J ∩D)rD

= J ∩D is an rD-ideal. �

Examples 2.5.3.
1. Let K be a monoid, and let D ⊂ T ⊂ K be submonoids. If s(D) : P(K)→ P(K) is the semigroup

system of D defined on K, then s(D)[T ] : P(K) → P(K) is the semigroup system of T defined on K,
and s(D)T = s(D) |P(T ) : P(T )→ P(T ) is the semigroup system of D defined on T .

2. Let K be a ring, and let D ⊂ T ⊂ K be subrings. If d(D) : P(K) → P(K) is the Dedekind
system of D defined on K, then d(D)[T ] : P(K) → P(K) is the Dedekind system of T defined on K,
and d(D)T = d(D) |P(T ) : P(T )→ P(T ) is the Dedekind system of D defined on T .

Theorem 2.5.4. Let K be a monoid, D ⊂ K a submonoid, r a finitary D-module system on K and
T ⊂ K× ∩D a multiplicatively closed subset ( then T ⊂ K∗ and T−1D ⊂ T−1K = K ). Then

T−1r = r[T−1D] and rT−1D = T−1rD .

In particular :

1. If X ⊂ K, then XT−1r = T−1Xr = (T−1X)r = Xr[T−1D].

2. If X ⊂ D, then XrT−1D
= T−1XrD

.

Proof. It suffices to prove 1. and 2. Indeed, 1. implies that T−1r = r[T−1D], and from 2. and
the uniqueness of T−1rD in Theorem 2.4.1 it follows that rT−1D = T−1rD.

1. We start with a preliminary remark. If Y ⊂ K and TY = Y , then

T−1Y =
⋃
t∈T

t−1Y and (T−1Y )r =
⋃
t∈T

t−1Yr ,

since the family (t−1Y )t∈T is directed [ indeed, if t1, t2 ∈ Y , then t−1
1 Y = (t1t2)−1(t2Y ) ⊂ (t1t2)−1Y ].

If X ⊂ K, then TDX = DX and TXr = Xr. By the preliminary remark we obtain

(T−1X)r = (T−1DX)r =
⋃
t∈T

(t−1DX)r =
⋃
t∈T

t−1Xr = T−1Xr = XT−1r .

2. If X ⊂ D, then

XrT−1D
= Xr[T−1D] ∩ T−1D = (T−1DX)r ∩ T−1D = T−1Xr ∩ T−1D = T−1(Xr ∩D)T−1XrD

. �

Theorem 2.5.5. Let K be a monoid, D ⊂ K a submonoid, K = q(D), r : P(K)→ P(K) a finitary
ideal system of D and T ⊂ D∗ a multiplicatively closed subset ( then T ⊂ K× and T−1D ⊂ T−1K = K ).

1. (T−1D)r = T−1D, T−1r : P(K)→ P(K) is a finitary ideal system of T−1D,

FT−1r(T−1D) = {a−1T−1I | I ∈ Ir(D) , a ∈ D∗ } = {T−1J | J ∈ Fr(D) } ,

FT−1r,f(T−1D) = {a−1T−1I | I ∈ Ir,f(D) , a ∈ D∗ } = {T−1J | J ∈ Fr,f(D) } ,
and the map j∗T : Fr(D) → FT−1r(T−1D), defined by j∗T (J) = T−1J , is a surjective monoid
homomorphism satisfying j∗T (Fr,f(D)) = FT−1r,f(T−1D) and T−1(J1 ∩ J2) = T−1J1 ∩ T−1J2

for all J1, J2 ∈ Fr(D).
2. Let D be r-noetherian. If J ∈ Fr(D) and X ⊂ K is D-fractional, then

T−1(J :X) = (T−1J :T−1X) = (T−1J :X) .
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Proof. 1. By Theorem 2.5.4.1, (T−1D)r = T−1Dr = T−1D, and by Theorem 2.4.1 T−1r is a
finitary ideal system of T−1D. Next we prove that

FT−1r(T−1D) ⊂ {a−1T−1I | I ∈ Ir(D) , a ∈ D∗ } ⊂ {T−1J | J ∈ Fr(D) } ⊂ FT−1r(T−1D)

and

FT−1r,f(T−1D) ⊂ {a−1T−1I | I ∈ Ir,f(D) , a ∈ D∗ } ⊂ {T−1J | J ∈ Fr,f(D) } ⊂ FT−1r,f(T−1D) .

If V ∈ FT−1r(T−1D), then Theorem 2.1.4 implies that V = a−1
1 I1, where a1 ∈ (T−1D)∗ and

I1 ∈ IT−1r(T−1D). By Theorem 1.2.6, a1 = t−1a for some t ∈ T and a ∈ D∗, and by Theorem 2.4.1
I1 = T−1I for some I ∈ Ir(D). Hence we obtain V = ta−1T−1I = a−1T−1I. If V is T−1r-finitely
generated, then I1 is also T−1r-finitely generated and I is r-finitely generated.

If I ∈ Ir(D) and a ∈ D∗, then J = a−1I ∈ Fr(D) and a−1T−1I = T−1J . If I is r-finitely generated,
then J is r-finitely generated, too.

If J ∈ Fr(D), then T−1J ∈ MT−1r(K), and there is some a ∈ D∗ such that aJ ∈ Ir(D). Then
T−1aJ = aT−1J ∈ IT−1r(T−1D), and since a ∈ (T−1D)∗, it follows that T−1J ∈ FT−1r(T−1J). If J is
r-finitely generated, then T−1J is T−1r-finitely generated.

By the above, j∗T : Fr(D) → FT−1r(T−1D) is surjective map and j∗T (Fr,f(D)) = FT−1r,f(T−1D).
The proof of the remaining assertions is literally the same as in Theorem 2.4.1.4.

2. Since X is D-fractional, it follows that Xr ∈ Fr(D) = Fr,f(D), and therefore Xr = Er for some
E ∈ Pf(X). Hence XT−1r = T−1Xr = T−1Er = ET−1r = (T−1E)T−1r and, using Theorems 1.2.4.4 and
2.1.2.9,

T−1(J :X) = T−1(J :Xr) = T−1(J :E) = (T−1J :T−1E) = (T−1J : (T−1E)T−1r) = (T−1J :X) .

Finally, XT−1r = (T−1X)T−1r implies (T−1J :X) = (T−1J :T−1X). �

Theorem und Definition 2.5.6. Let D be a cancellative monoid, K = q(D) and r : P(D)→ P(D)
a module system on D.

1. There exists a unique module system r∞ on K such that, for all X ⊂ K,

Xr∞ =

{
K if X is not D-fractional ,

a−1(aX)r if a ∈ D• and aX ⊂ D .

r∞ |P(D) = r, and if r is an ideal system of D, then r∞ is also an ideal system of D. If q is
any module system on K such that q |P(D) = r, then q ≤ r∞.
r∞ is called the trivial extension of r to K.

2. (r∞)f is the unique finitary module system on K satisfying (r∞)f |P(D) = rf . If rf is an ideal
system of D, then (r∞)f is also an ideal system of D.
(r∞)f is called the natural extension of rf to K.
In particular, for every finitary module system r on D there exists a unique finitary module
system r on K such that r |P(D) = r.

3. If q : P(K)→ P(K) is any finitary ideal system of D, then q = ((qD)∞)f .

Proof. 1. Uniqueness is obvious. We define r∞ as in the assertion. Note that this definition does
not depend on the choice of a ∈ D• with aX ⊂ D. Indeed, if X ⊂ K and a1, a2 ∈ D• are such
that a1X ⊂ D and a2X ⊂ D, then a1a2X ⊂ D and (a1a2X)r = a1(a2X)r = a2(a1X)r and therefore
a−1
2 (a2X)r = a−1

1 (a1X)r. By definition, r∞ |P(D) = r.
We check the conditions M1 , M2 , M3 for r∞. Let X, Y ⊂ K and c = b−1d ∈ K, where b ∈ D•

and d ∈ D.
M1. If X is not D-fractional, then Xr∞ = K ⊃ X ∪ {0}. If a ∈ D• is such that aX ⊂ D, then

Xr∞ = a−1(aX)r ⊃ a−1(aX) ∪ {0} = X ∪ {0}.
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M2. Suppose that X ⊂ Yr∞ . If Y is not D-fractional, then Yr∞ = K ⊃ Xr∞ . Thus let a ∈ D• be
such that aY ⊂ D. Then X ⊂ Yr∞ = a−1(aY )r, hence aX ⊂ (aY )r ⊂ D, and therefore it follows that
Xr∞ = a−1(aX)r ⊂ a−1(aY )r = Yr∞ .

M3. We may assume that c 6= 0, hence c ∈ K× and d ∈ D•. If X is not D-fractional, then (by
Lemma 1.4.2 ) also cX is not D-fractional, and (cX)r∞ = K = cK = cXr∞ .

Thus assume that aX ⊂ D for some a ∈ D•. Then ab(cX) = adX ⊂ dD ⊂ D and therefore
(cX)r∞ = (ab)−1(abcX)r = (ab)−1bc(aX)r = ca−1(aX)r = cXr∞ .

Let q be any module system on K such that q |P(D) = r and X ⊂ K. If a ∈ D• is such that aX ⊂ D,
then Xq = a−1(aX)q = a−1(aX)r = Xr∞ , and if X is not D-fractional, then Xq ⊂ K = Xr∞ . Hence it
follows that q ≤ r∞.

Let r be an ideal system of D. Since Dr∞ = Dr = D and DXr∞ = Xr∞ for all X ∈ P(K), it follows
that r∞ is also an ideal system of D.

2. By definition, (r∞)f is a finitary module system on K. If X ⊂ D, then

X(r∞)f
=

⋃
E∈Pf(X)

Er∞ =
⋃

E∈Pf(X)

Er = Xrf
, and therefore (r∞)f |P(D) = rf .

Let now rf be an ideal system of D and X ⊂ K. For E ∈ Pf(X), let a ∈ D• be such that aE ⊂ D.
Then DEr∞ = Da−1(aE)r = Da−1(aE)rf

= a−1(aE)rf
= a−1(aE)r = Er∞ , and

DX(r∞)f
=

⋃
E∈Pf(X)

DEr∞ =
⋃

E∈Pf(X)

Er∞ = X(r∞)f
.

Hence (r∞)f is an ideal system of D.
To prove uniqueness of rf , let r̃ be a finitary module system on K such that r̃ |Pf(D) = rf . We

must prove that Er̃ = E(r∞)f
for all E ∈ Pf(K). If E ∈ Pf(K), let c ∈ D• be such that cE ⊂ D. Then

Er̃ = c−1(cE)r̃ = c−1(cE)rf
= c−1(cE)r = Er∞ = E(r∞)f

.
3. Let q : P(K) → P(K) be a finitary ideal system of D. Then qD = q |P(D) by Theorem 2.5.2.4,

and it suffices to prove that E((qD)∞)f
= Eq for all E ∈ Pf(K). If E ∈ Pf(K) and a ∈ D• is such that

aE ⊂ K, then E((qD)∞)f
= E(qD)∞ = a−1(aE)qD

= a−1(aE)q = Eq. �

Example 2.5.7. Let D be a domain, K = q(D) and F(D) =Md(D)(K)• the set of all non-zero
D-submodules of K.

A semistar operation of D is a map ∗ : F(D) → F(D), M 7→ M∗, such that, for all c ∈ K and
M, N ∈ F(D), the following conditions are satisfied :

∗1. M ⊂M∗ ; ∗2. M ⊂ N∗ implies M∗ ⊂ N∗ ; ∗3. cM∗ = (cM)∗ .

If moreover D∗ = D, then ∗ is called a (semi)star operation, and the restriction ∗ |F(D) is called a
star operation.

Let ∗ be a semistar operation of D, and define r∗ : P(K)→ P(K), X 7→ Xr∗ , by

Xr∗ =

{
{0} if X ⊂ {0} ,

D(X)∗ if X 6⊂ {0} .

Then r∗ is a D-module system on K, d(D) ≤ r∗ and Dr∗ = D∗. Hence r∗ is an ideal system of D if
and only if ∗ is a (semi)star operation.

Conversely, let r : P(K)→ P(K) be a D-module system on K and d(D) ≤ r. ThenMr(K)• ⊂ F(D),
and we define ∗r : F(D)→ F(D) by M∗r = Mr. Then ∗r is a semistar operation, r∗r

= r, and for every
semistar operation ∗ of D we have ∗r∗ = ∗.
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2.6. The ideal systems v and t

Throughout this section, let D be a cancellative monoid, K = q(D), and for X ⊂ K, let X−1 = (D :X).

Definition 2.6.1. If D 6= K, we define v = v(D) : P(K)→ P(K) by Xv = (X−1)−1 for all X ⊂ D,
and if D = K, we set v(K) = s(K) : P(K)→ P(K). We shall see in Theorem 2.6.2 that v(D) is an ideal
system of D, and we define t = t(D) = v(D)f : P(K)→ P(K).

v(D) is called the divisorial system and t(D) is called the total system of D defined on K.

Theorem 2.6.2. Assume that D 6= K, and set v = v(D) : P(K)→ P(K).
1. If X ⊂ K, then

• X−1 = K if and only if X• = ∅,
• (X−1)• 6= ∅ if and only if X is D-fractional,
• Xv = K if and only if X is not D-fractional,
• Xv = {0} if and only if X ⊂ {0}.

In any case, we have
Xv =

⋂
z∈K

X⊂zD

zD . (∗)

2. If X ⊂ K, then X ∪ {0} ⊂ Xv, X−1
v = X−1 = (X−1)v, and (XX−1)−1 = (X−1 :X−1).

3. v is a ideal system of D, Mv(K) = {X−1 | X ⊂ K}, and (vD)∞ = v. If q is any ideal system
of D defined on K, then q ≤ v.

4. The system t = t(D) = v(D)f : P(K) → P(K) is a finitary ideal system of D. If q is any
finitary ideal system of D defined on K, then q ≤ t.

5. Let D′ be another cancellative monoid, K ′ = q(D′), v′ = v(D′) and t′ = t(D′). Let ε : K → K ′

be a surjective monoid homomorsphism, D′ = ε(D), and let G ⊂ D× be a subgroup such that
ε−1(ε(x)) = xG for all x ∈ K. Then we have ε(X)−1 = ε(X−1) for all subsets X ⊂ K,
v′ = ε(v) and t′ = ε(t).

Proof. 1. Let X ⊂ K.
If X• = ∅, then KX = X and X−1 = K. If z ∈ X•, then zK = K 6= D, and therefore X−1 6= K.

By definition, (X−1)• 6= ∅ if and only if X is D-fractional. Therefore we obtain Xv = (X−1)−1 = K if
and only if (X−1)• = ∅, that is, if and only if X is not D-fractional. Similarly, Xv = (X−1)−1 ⊂ {0} if
and only if X−1 is not D-fractional which holds if and only if X• = ∅.

It remains to prove (∗). If X ⊂ {0}, (∗) holds by Theorem 1.2.8. Thus assume that X 6= {0}. Since
(X−1)• = {y ∈ K× | yX ⊂ D} = {z−1 | z ∈ K×, X ⊂ zD }, we obtain

Xv = (D :X−1) = (D : (X−1)•) =
⋂

y∈(X−1)•

y−1D =
⋂

z∈K×

X⊂zD

zD =
⋂

z∈K
X⊂zD

zD .

2. If X ⊂ K, then (X ∪ {0})X−1 ⊂ D implies that X ∪ {0} ⊂ (X−1)−1 = Xv. Hence we obtain
X−1

v ⊂ X−1 ⊂ (X−1)v = [(X−1)−1]−1 = X−1
v , and thus X−1

v = X−1 = (X−1)v. Finally,

(X−1 :X−1) = ((D :X) :X−1) = (D :XX−1) = (XX−1)−1 .

3. We verify the conditions M1, M2 and M3. Let X, Y ⊂ K and c ∈ K.
M1. By 1.
M2. If X ⊂ Yv, then Y −1 = Y −1

v ⊂ X−1, and therefore Xv = (X−1)−1 ⊂ (Y −1)−1 = Yv.
M3. We may assume that c 6= 0. Then cXv = c(X−1)−1 = (c−1X−1)−1 = ((cX)−1)−1 = (cX)v.
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If c ∈ D and X ⊂ K, then cXv ⊂ Xv by (∗). Hence v is a D-module system, and since Dv = D
it is even an ideal system of D. In particular, vD = v |P(D), and if X ⊂ K is not D-fractional, then
Xv = K = X(vD)∞ . Hence it follows that v = (vD)∞.

If X ∈ Mv(K), then Xv = (X−1)−1, and if X ⊂ K, then (X−1)v = X−1. Hence we obtain
Mv(K) = {X−1 | X ⊂ K}.

Let q be any ideal system of D defined on K and X ⊂ K. If z ∈ K is such that X ⊂ zD, then
Xq ⊂ zD, and therefore Xq ⊂ Xv by (∗). Hence q ≤ v.

4. By Theorem 2.2.2, t is a finitary ideal system of D. If q is any finitary ideal system of D defined
on K, then q ≤ v by 3., and therefore q = qf ≤ vf = t.

5. If X ⊂ K and x′ = ε(x) ∈ K ′, then x′ε(X) = ε(xX) ⊂ D′ = ε(D) if and only if xX ⊂ D.
Hence we obtain ε(X)−1 = ε(X−1), and ε(X)v′ = (ε(X)−1)−1 = ε((X−1)−1) = ε(Xv) = ε(X)ε(v).
Consequently, v′ = ε(v), and by Theorem 2.3.7 it follows that ε(t) = ε(vf) = ε(v)f = v′f = t′. �

Theorem 2.6.3. Let v = v(D) : P(K)→ P(K), X ⊂ D and a, d ∈ D.
1. If Xv = dD, then GCD(X) = dD×.
2. If GCD(X) = dD× and GCD(bX) 6= ∅ for all b ∈ D, then Xv = dD.
3. The following assertions are equivalent :

(a) GCD(X) 6= ∅ for all X ∈ P(D).
(b) Every ( fractional ) v-ideal of D is principal.

4. If D is a GCD-monoid, X ⊂ D and d ∈ D, then

Xv =
⋂

a∈D
X⊂aD

aD ,

and Xv = dD if and only if d ∈ GCD(X).

Proof. We may assume that D 6= K.
1. If Xv = dD, then X ⊂ dD, and if b ∈ D is such that X ⊂ bD, then dD = Xv ⊂ bD. Hence dD is

the smallest principal ideal containing X, and dD× = GCD(X).
2. If GCD(X) = dD×, then X ⊂ dD, and therefore

Xv =
⋂

z∈K
X⊂zD

zD ⊂ dD .

Hence it suffices to prove that, for all z ∈ K, X ⊂ zD implies dD ⊂ zD. Thus suppose that z = b−1c ∈ K,
where b ∈ D• and c ∈ D, and X ⊂ zD. Then bX ⊂ cD, and since GCD(bX) 6= ∅, it follows that
GCD(bX) = bdD×. Therefore we obtain bdD ⊂ cD, and dD ⊂ b−1cD = zD.

3. Obvious by 1. and 2.
4. Clearly,

X =
⋂

a∈D
X⊂aD

aD ⊃
⋂

z∈K
X⊂zD

zD = Xv .

To prove the converse, suppose that x ∈ X ⊂ D, and let z ∈ K be such that X ⊂ zD. Then z = a−1b,
where a ∈ D•, b ∈ D, GCD(a, b) = D×, and it suffices to prove that X ⊂ bD. If x ∈ X, then x = zc for
some c ∈ D, hence ax = bc, and since a is coprime to b, it follows that a | c, say c = ad for some d ∈ D.
But then x = bd ∈ bD.

By 1. and 2. it follows that Xv = dD if and only if d ∈ GCD(X). �
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Theorem 2.6.4. Let v = v(D) : P(K)→ P(K) and t = t(D) : P(K)→ P(K).

1. D is a GCD-monoid if and only if every v-finitely generated v-ideal is principal [ equivalently,
every t-finitely generated t-ideal is principal ].

In this case, Ft,f(D)• = Fv,f(D)• = {aD | a ∈ K×} ∼= K×/D× is a group.

2. D is factorial if and only if every t-ideal of D is principal.

In this case, Ft(D)• = {aD | a ∈ K×} ∼= K×/D× is a group.

3. Let D′ be another cancellative monoid, ε : D → D′ a surjective monoid homomorphism and
G ⊂ D× a subgroup such that ε−1(ε(x) = xG for all x ∈ D. Then D′ is factorial [ a GCD-
monoid ] if and only if D is factorial [ a GCD-monoid ] .

Proof. 1. Let D be a GCD-monoid and J ∈ Iv,f(D). Then J = Ev for some E ∈ Pf(D), and if
d ∈ GCD(E), then J = Ev = dD by Theorem 2.6.3.2.

Conversely, if every v-finitely generated v-ideal is principal and E ∈ Pf(D), then Ev = dD for some
d ∈ D, and then d ∈ GCD(E) by Theorem 1.5.2.1.

2. Let D be factorial. Then Theorem 1.5.6.3 implies that GCD(X) 6= ∅ for every subset X ⊂ D. If
J ∈ It(D)• and d ∈ GCD(J), then J = dD by Theorem 2.6.3.2.

Conversely, assume that every t-ideal is principal. Then D is t-noetherian, and as every principal
ideal is a t-ideal, it satisfies the ACCP. By 1., D is a GCD-monoid, and by Theorem 1.5.5, it is an
atomic GCD-monoid and thus it is factorial by Theorem 1.5.6.4.

3. Let ε : K → K ′ be the extension of ε to the quotient monoids and t′ = t(D′). By the Theorems
2.6.2 and 2.3.7 we have ε(t) = t′, ε(X)t′ = ε(Xt) for all subsets X ⊂ D, and J 7→ ε(J) defines a
bijective map It(D) → It′(D′). Hence every [ t-finitely generated ] t-ideal of D is principal if and only
if every [ t′-finitely generated ] t′-ideal of D′ is principal, and the assertion follows by 1. and 2. �

Theorem 2.6.5. For i ∈{1, 2}, let Di be a GCD-monoid, Ki = q(Di), ti = t(Di) : P(Ki)→ P(Ki),
and let ϕ : K1 → K2 be a monoid homomorphism. Then ϕ is a (t1, t2)-homomorphism if and only if
ϕ(D1) ⊂ D2 and ϕ |D1 : D1 → D2 is a GCD-homomorphism. In particular, there is a bijective map

Hom(t1,t2)(K1,K2) → HomGCD(D1, D2) , given by ϕ 7→ ϕ |D1 .

Proof. Let first ϕ be a (t1, t2)-homomorphism. Then

ϕ(D1) = ϕ({1D1}t1) ⊂ {ϕ(1D1)}t2 = {1D2}t2 = D2 .

Let E ⊂ D1 be finite and d ∈ GCD(E). Then Et1 = dD1 and ϕ(d) ∈ ϕ(Et1) ⊂ ϕ(E)t2 = d′D2, where
d′ ∈ GCD(ϕ(E)). Since E ⊂ dD1, it follows that ϕ(E) ⊂ ϕ(d)D2, hence d′D2 ⊂ ϕ(d)D2, and since
ϕ(d) ∈ d′D2, we obtain ϕ(d) ∈ d′D×

2 = GCD(ϕ(E)).
Assume now that ϕ(D1) ⊂ D2, and let ϕ |D1 : D1 → D2 be a GCD-homomorphism. We must prove

that ϕ(Et1) ⊂ ϕ(E)t2 for all E ∈ Pf(K1). If E ∈ Pf(K1) and c ∈ D•
1 such that cE ⊂ D1. If d ∈ GCD(cE),

then ϕ(d) ∈ GCD(ϕ(c)ϕ(E)) and therefore

ϕ(Et1) = ϕ(c−1(cE)t1) = ϕ(c)−1ϕ(dD1) ⊂ ϕ(c)−1ϕ(d)D2 = ϕ(c)−1(ϕ(c)ϕ(E))t2 = ϕ(E)t2 . �

Theorem und Definition 2.6.6. Let v = v(D) : P(K)→ P(K) and t = t(D) : P(K)→ P(K).

1. The following assertions are equivalent :

(a) D is v-noetherian.

(b) D is t-noetherian.
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(c) For every sequence (Jn)n≥0 in Fv(D) such that

Jn ⊃ Jn+1 for all n ≥ 0, and
( ⋂

n≥0

Jn

)
• 6= ∅ ,

there exists some m ≥ 0 such that Jn = Jm for all n ≥ m.
(d) Every non-empty subset Ω ⊂ Fv(D) satisfying( ⋂

J∈Ω

J
)
• 6= ∅

possesses a minimal element (with respect to inclusion ).
(e) For every subset X ⊂ D there exists some E ∈ Pf(X) such that X−1 = E−1 ⊂ K.

If these conditions are satisfied, then D is called a Mori monoid.
In particular, if D is a Mori monoid, then Xv = Xt for every D-fractional subset X ⊂ K,
Fv(D) = Ft(D) and Iv(D) = It(D).

2. Let D be a Mori monoid and T ⊂ D be a multiplicatively closed subset.
(a) T−1D is a Mori monoid, and t(T−1D) = T−1t : P(K)→ P(K).
(b) If X ⊂ K is D-fractional, then T−1(D : X) = (T−1D : T−1X) = (T−1D : X), and

T−1Xv = (T−1X)v(T−1D) = Xv(T−1D).
(c) Let P ⊂ D be a prime ideal such that P ∩ T = ∅. Then P ∈ v-spec(D) if and only if

T−1P ∈ v(T−1D)-spec(T−1D).
3. Let C ∈ Ft(D) be an overmonoid of D. Then Ft(C)(C) ⊂ Ft(D). In particular, if D is a Mori

monoid, then C is also a Mori monoid.

Proof. We may assume that D 6= K.
1. (a) ⇔ (b) By Theorem 2.2.5.3, since t = vf . In particular, it follows that v |P(D) = t |P(D),

and therefore Xv = Xt for every D-fractional subset X ⊂ K, Fv(D) = Ft(D) and Iv(D) = It(D).
(b) ⇒ (c) Let (Jn)n≥0 be a sequence in Fv(D) such that Jn ⊃ Jn+1 for all n ≥ 0, and let c ∈ K×

be such that c ∈ Jn for all n ≥ 0. Then (cJ−1
n )n≥0 is an ascending sequence in Iv(D). Hence it becomes

stationary, and therefore the sequence (Jn)n≥0 becomes stationary, too.
(c) ⇒ (d) Assume to the contrary that there exists a subset ∅ 6= Ω ⊂ Fv(D) without a smallest

element, and that there is some c ∈ K• such that c ∈ J for all J ∈ Ω. Consequently, for every J ∈ Ω
there exists some J ′ ∈ Ω such that J ′ ( J . If J0 ∈ Ω is arbitrary and (Jn)n≥0 is recursively defined by
Jn+1 = J ′n for all n ≥ 0, then the sequence (Jn)n≥0 contradicts (c).

(d) ⇒ (e) If X ⊂ D and X• = ∅, we set E = X. Thus assume that X ⊂ D, X• 6= ∅, and set
Ω = {F−1 | F ∈ Pf(X) , F • 6= ∅ }. Then Ω 6= ∅, and if F ∈ Pf(X) and F • 6= ∅, then F−1 ∈ Fv(D)
and 1 ∈ F−1. Thus by (d) there exists some E ∈ Pf(X) such that E• 6= ∅ and E−1 is minimal in Ω.
Clearly, X−1 ⊂ E−1, and we assert that equality holds. Indeed, suppose to the contrary that there is
some c ∈ E−1 \X−1, and let a ∈ X be such that ca /∈ D. Then (E ∪ {a})−1 ∈ Ω, c /∈ (E ∪ {a})−1 and
therefore (E ∪ {a})−1 ( E−1, a contradiction.

(e) ⇒ (a) If X ⊂ D, there exists some E ∈ Pf(X) such that E−1 = X−1 and thus Ev = Xv. Hence
D is v-noetherian.

2. (a), (b) By Theorem 2.4.1.5 T−1D is T−1t-noetherian, and thus it is a Mori monoid. If X ⊂ K
is D-fractional, then T−1(D :X) = (T−1D :T−1X) = (T−1D :X) by Theorem 2.5.5.2, and therefore

T−1Xv = T−1(D : (D :X)) = (T−1D : (T−1D :T−1X)) = (T−1X)v(T−1D)

= (T−1D : (T−1D :X)) = Xv(T−1D) .

In particular, if E ∈ Pf(K), then ET−1t = T−1Et = T−1Ev = Ev(T−1D) = Et(T−1D), and therefore
T−1t = t(T−1D).
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(c) If P ∈ v-spec(D), then (T−1P )v(T−1D) = T−1Pv = T−1P ∈ v(T−1D)-spec(T−1D). Conversely,
if T−1P ∈ v(T−1D)-spec(T−1D) = t(T−1D)-spec(T−1D), then t ≤ t(T−1D) implies (T−1P )t = T−1P ,
hence Pt = (T−1P ∩D)t = T−1P ∩D = P , and consequently P ∈ t-spec(D) = v-spec(D).

3. Since t[C] is an ideal system of C, it follows that t ≤ t[C] ≤ t(C), and therefore we obtain
Ft(C)(C) ⊂ Mt(C)(K) ⊂ Mt(K). By Theorem 1.4.2.6 every C-fractional subset of K is D-fractional,
and therefore it follows that Ft(C)(C) ⊂ Ft(D). �



CHAPTER 3

Prime Ideals and Valuation Monoids

Throughout this chapter, let D be a monoid, K = q(D), s = s(D) : P(K)→ P(K),
and if D is cancellative, then v = v(D) : P(K)→ P(K) and t = t(D) : P(K)→ P(K).

3.1. Prime ideals and Krull’s Theorem

Definition 3.1.1. Let r be a weak ideal system of D.
1. We denote by

• r-spec(D) ⊂ Ir(D) the set of all prime r-ideals ( in particular, s-spec(D) is the set of all
prime ideals of D );

• X(D) the set of all minimal non-zero prime ideals of D;
• r-max(D) the set of all maximal elements of Ir(D) \ {D} ( they are called r-maximal
r-ideals ).

2. An r-ideal Q ∈ Ir(D) is called r-irreducible if Q 6= D and, for all I, J ∈ Ir(D), Q = I ∩ J
implies Q = I or Q = J .

3. D is called r-local if |r-max(D)| = 1.
If D\D× ∈ Ir(D), then r-max(D) = {D\D×}, and D is r-local. In particular, D\D× ∈ Is(D),
and D is s-local.

Theorem 3.1.2 (Krull). Let r be a weak ideal system of D. Let ∅ 6= L ⊂ P(D) be such that, for
all M, N ∈ L it follows that MN ∈ L, and set Ω = {C ∈ Ir(D) |M 6⊂ C for all M ∈ L} .

1. Every (with respect to the inclusion ) maximal element of Ω is a prime ideal.
2. Suppose that r is finitary and Mr ∈ Ir,f(D) for all M ∈ L. For every C0 ∈ Ω, there exists a

maximal element P ∈ Ω such that C0 ⊂ P .
In particular, there exists some P ∈ Ω ∩ r-spec(D) such that C0 ⊂ P .

Proof. 1. Assume to the contrary that there is a maximal element P ∈ Ω which is not a prime
ideal. As L 6= ∅, it follows that P 6= D. Let a, b ∈ D \ P be such that ab ∈ P . Then it follows by the
maximality of P that (P ∪ {a})r, (P ∪ {b})r /∈ Ω, and there exist M, N ∈ L such that M ⊂ (P ∪ {a})r

and N ⊂ (P ∪ {b})r. Hence we obtain MN ⊂ (P ∪ {a})r (P ∪ {b})r ⊂ (P 2 ∪ Pa ∪ Pb ∪ {ab})r ⊂ P , a
contradiction, since MN ∈ L.

2. By assumption, Ω1 = {C ∈ Ω | C0 ⊂ C} 6= ∅, and we prove that every chain in (Ω1,⊂) has an
upper bound in Ω1. Then the assertion follows by 1. and Zorn’s Lemma. Let Σ ⊂ Ω1 be a chain, and

P =
⋃

C∈Σ

C .

Then P ∈ Ir(D), and we assert that P ∈ Ω1. Clearly, C0 ⊂ P , and we assume to the contrary that
M ⊂ P for some M ∈ L. Then there is some E ∈ Pf(D) such that Mr = Er, hence E ⊂ P , and

47
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as Σ is a chain, we obtain E ⊂ C for some C ∈ Σ. But then it follows that M ⊂ Mr = Er ⊂ C, a
contradiction. �

Corollary 3.1.3. Let r be a weak ideal system of D, T ⊂ D• a multiplicatively closed subset and
Ω = {C ∈ Ir(D) | C ∩ T = ∅}.

1. Every (with respect to the inclusion ) maximal element of Ω is a prime ideal.
2. Suppose that r is finitary and C0 ∈ Ω. Then there exists a maximal element P ∈ Ω such that
C0 ⊂ P . In particular, there exists some P ∈ Ω ∩ r-spec(D) such that C0 ⊂ P .

Proof. By Theorem 3.1.2, applied with L =
{
{a} | a ∈ T

}
. �

Corollary 3.1.4. Let r be a weak ideal system of D.
1. r-max(D) ⊂ r-spec(D).
2. If r is finitary and J ∈ Ir(D) \ {D}, then there exists some M ∈ r-max(D) such that J ⊂M .

In particular, if ∅r 6= D, then r-max(D) 6= ∅.

Proof. We apply Corollary 3.1.3 with T = D×.
1. If M ∈ r-max(D), then M is maximal in {C ∈ Ir(D) | C ∩D× = ∅ }.
2. If J ∈ Ir(D), and M is maximal in {C ∈ Ir(D) | J ⊂ C , J ∩D× = ∅}, then M ∈ r-max(D). �

Corollary 3.1.5. Let r be a finitary ideal system of D. If D is r-local, then r-max(D) = {D\D×}.

Proof. Let D be r-local and r-max(D) = {M}. If a ∈ D \ D×, then aD ∈ Ir(D) and aD 6= D.
By Corollary 3.1.4 there exists some P ∈ r-max(D) such that aD ⊂ P , and by assumption we have
P = M . �

Theorem 3.1.6. Let r be a finitary weak ideal system of D and J ∈ Ir(D) \ {D}.
1. P(J) ⊂ r-spec(D).
2. If P(J) ∩ r-spec(D) ⊂ Ir,f(D), then P(J) is finite.
3. Suppose that every principal ideal of D is an r-ideal. Then X(D) ⊂ r-spec(D). In particular, if
D is cancellative, then X(D) ⊂ t-spec(D).

4. If r is finitary, then
√
J ∈ Ir(D). If I ∈ Ir,f(D) and I ⊂

√
J , then there is some n ∈ N such

that In ⊂ J .
5. If r is finitary, then

√
r : P(D)→ P(D), defined by X√r =

√
Xr, is a finitary weak ideal system

of D, and
√
r ≤ r.

Proof. 1. If P ∈ P(J), then D \ P is multiplicatively closed, and by Corollary 3.1.3 there exists
some P0 ∈ r-spec(D) such that J ⊂ P0 ⊂ P . Hence P0 ∈ Σ(J) and therefore P0 = P ∈ r-spec(D).

2. Let L = {P1 · . . . · Pm | m ∈ N , P1, . . . , Pm ∈ Σ(J)}, Ω = {C ∈ Ir(D) | L 6⊂ C for all L ∈ L},
and assume that J ∈ Ω. For every L ∈ L, we have Lr ∈ Ir,f(D), and if L1, L2 ∈ L, then L1L2 ∈ L.
By Theorem 3.1.2 there exists some P ∈ r-spec(D) ∩ Ω such that J ⊂ P , and by Theorem 1.3.2 there
exists some P0 ∈ P(J) such that P0 ⊂ P , which implies P0 ∈ Ω ∩ L, a contradiction. Hence there exists
some L ∈ L such that L ⊂ J , say L = P1 · . . . ·Pm, where m ∈ N and P1, . . . , Pm ∈ P(J). We assert that
P(J) ⊂ {P1, . . . , Pm}. Indeed, if P ∈ P(J), then P1 · . . . ·Pm ⊂ J ⊂ P implies Pj ⊂ P for some j ∈ [1,m]
and hence P = Pj by the minimality of P .

3. If P ∈ X(D) and a ∈ P •, then aD ∈ Ir(D) and P ∈ P(aD) ⊂ r-spec(D).
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4. By Theorem 1.3.2, √
J =

⋂
P∈P(J)

P ,

and as P(J) ⊂ r-spec(D), we obtain
√
J ∈ Ir(D).

Assume now that I ∈ Ir,f(D) and I ⊂
√
J , say I = Er, where E = {a1, . . . , am} ∈ Pf(D). For

j ∈ [1,m], let nj ∈ N be such that anj

j ∈ J , and set n = n1 + . . .+ nm. We assert that En ⊂ J . Indeed,
if a ∈ En, then a = aν1

1 · . . . · aνm
m , where ν1, . . . , νm ∈ N0, ν1 + . . .+ νm = n, and there is some j ∈ [1,m]

such that νj ≥ nj , which implies a ∈ J . Now it follows that In = En
r ⊂ (En)r ⊂ J .

5. We verify the properties M1, M2 and M3 . Let X, Y ⊂ D and c ∈ D.
M1. X√r =

√
Xr ⊃ Xr ⊃ X ∪ {0}.

M2. If X ⊂ Y√r =
√
Yr, then Xr ⊂

√
Yr ( since

√
Yr ∈ Ir(D) ), and consequently

√
Xr ⊂

√
Yr.

M3. If x ∈ X√r =
√
Xr and n ∈ N is such that xn ∈ Xr, then (cx)n ∈ cnXr ⊂ cXr ⊂ (cX)r and

therefore cx ∈
√

(cX)r = (cX)√r. Hence cX√r ⊂ (cX)√r.
Clearly, Xr ⊂ X√r implies

√
r ≤ r. If X ⊂ D and x ∈ X√r, let n ∈ N be such that xn ∈ Xr. As r is

finitary, there exists some E ∈ Pf(X) such that xn ∈ Er and consequently x ∈ E√r. Hence
√
r is finitary.

If X ⊂ D, then
√
Xr ⊂ D is an ideal, and therefore

√
r is a weak ideal system of D. �

Theorem 3.1.7. Let r be a finitary weak ideal system of D. Then D is
√
r-noetherian if and only

if r-spec(D) satisfies the ACC and for every J ∈ Ir(D) the set P(J) is finite.

Proof. Assume first that D is
√
r-noetherian. As r-spec(D) ⊂ {J ∈ Ir(D) |

√
J = J} = I√r(D), it

satisfies the ACC. If J ∈ Ir(D), then
√
J ∈ I√r(D), and P(J) = P(

√
J ) ⊂ I√r(D) = I√r,f(D). Hence

P(J) is finite by Theorem 3.1.6.2.
Assume now that r-spec(D) satisfies the ACC , P(J) is finite for all J ∈ Ir(D), and yet there exists

a properly ascending sequence (Jn)n≥0 in I√r(D). As
√
r is finitary, we obtain

J =
⋃
n≥0

Jn ∈ I√r(D) .

Let P(D) = {J (1), . . . , J (N)}. For n ≥ 0, let {P ∈ P(Jn) | J 6⊂ P} = {P (1)
n , . . . , P

(Nn)
n }. By Theorem

1.3.2.3 it follows that J = P (1) ∩ . . . ∩ P (N) and Jn = J ∩ P (1)
n ∩ . . . ∩ P (Nn)

n . We denote by Ln the
(finite) set of all sequences (ν0, . . . , νn) ∈ [1, N0]×. . .×[1, Nn] such that P

(ν0)
0 ⊂ P

(ν1)
1 ⊂ . . . ⊂ P

(νn)
n ,

and we assert that Ln 6= ∅.
We proceed by induction on n. For n = 0, there is nothing to do. Thus suppose that n ≥ 1 and

νn ∈ [1, Nn]. Since Jn−1 = J ∩ P (1)
n−1 ∩ . . . ∩ P

(Nn−1)
n−1 ⊂ Jn ⊂ P

(νn)
n and J 6⊂ P

(νn)
n , it follows that

P
(νn−1)
n−1 ⊂ P

(νn)
n for some νn−1 ∈ [1, Nn−1], and the induction hypothesis yields the complementary

sequence (ν0, . . . , νn−1).
Now the assignment (ν0, . . . , νn) 7→ (ν0, . . . , νn−1) defines a map Ln → Ln−1, and as the projective

limit of a system of non-empty finite sets is not empty, there exists a sequence

(νn)n≥0 ∈ lim←−
n≥0

Ln .

By construction, (P (νn)
n )n≥0 is an ascending sequence in r-spec(D). Hence there exists some m ≥ 0 such

that P
(νn)
n = P

(νm)
m for all m ≥ n, and consequently

J =
⋃
n≥0

Jn ⊂
⋃
n≥0

P (νn)
n = P (νm)

m 6⊂ J , a contradiction. �
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3.2. Associated primes, localizations and primary decompositions

Throughout this section, we set (X :Y ) = (X :D Y ) for all subsets X, Y ⊂ D.

Definition 3.2.1. Let B ⊃ D be an overmonoid and P ⊂ D be a prime ideal. Recall from Definition
1.3.7 that the localization BP of B at P is defined by BP = (D \ P )−1B, that jP : B → BP denotes
the natural embedding, and for every subset X ⊂ B, XP = (D \ P )−1X.

For a finitary weak module system r on B, we define rP = (D \ P )−1r : P(BP )→ P(BP ).
If r is a finitary weak module system of B, then rD is a finitary weak ideal system on D by Theorem

2.5.2, rP is a finitary weak module system on BP and if X ⊂ B, then (Xr)P = jP (X)rP
= (XP )rP

by
Theorem 2.4.1.

Theorem 3.2.2. Let B ⊃ D be an overmonoid, r a finitary weak module system on B, and for
P ∈ rD-spec(D), let jP : B → BP be the natural embedding. If A ∈Mr(B) is a D-module, then

A =
⋂

P∈rD-max(D)

j−1
P (AP ) .

In particular :

• If A, A′ ∈Mr(B) are D-modules and AP = A′P for all P ∈ rD-max(D), then A = A′.
• Assume that D• ⊂ B×. Then B = BP ⊃ AP ⊃ A, jP = idB for all P ∈ rD-spec(D), and

A =
⋂

P∈rD-max(D)

AP .

Proof. By Theorem 2.5.2.4, rD is a finitary weak ideal system on D. Obviously, A ⊂ j−1
P (AP ) for

all P ∈ rD-max(D). Thus assume that z ∈ B, jP (z) ∈ AP for all P ∈ rD-max(D), and set J = (A :z)∩D.
Then J ⊂ D is an rD-ideal, and therefore it suffices to prove that J 6⊂ P for all P ∈ rD-max(D), for then
J = D by Corollary 3.1.4.2, hence 1 ∈ J and therefore z ∈ A.

If P ∈ rD-max(D), then
z

1
=
a

t
for some a ∈ A and t ∈ D \ P ,

and there exists some s ∈ D \ P such that stz = sa ∈ A and therefore st ∈ J \ P . �

Theorem 3.2.3. Let r be a finitary weak ideal system of D and P ∈ r-spec(D).
1. DP is rP -local with rP -maximal ideal PP = DP \D×

P .

2. If J ∈ Ir(D) and
√
J ∈ r-max(D), then J is primary.

3. Let J ∈ Ir(D) and P ∈ P(J).
(a) PP is the only prime rP -ideal of DP containing JP , JP is PP -primary, and j−1

P (JP ) is the
smallest P -primary r-ideal of D which contains J .

(b) Assume that P =
√
J and JM is PM -primary for all M ∈ r-max(D) such that M ⊃ J .

Then J = j−1
P (JP ) is P -primary.

Proof. 1. By Theorem 1.2.4, D×
P = (D \P )−1(D \P ) = DP \PP , and therefore PP is the greatest

ideal of DP .
2. Let a, b ∈ D be such that ab ∈ J and a /∈ J . Then (J :a) ∈ Ir(D), and J ∪ {b} ⊂ (J :a) ( D. By

Corollary 3.1.4.2 there exists some M ∈ r-max(D) such that (J :a) ⊂M . Now J ⊂M implies
√
J ⊂M ,

hence
√
J = M and b ∈

√
J .

3. (a) Let Q ∈ rP -spec(DP ) be such that JP ⊂ Q. By Theorem 1.3.6.2 we have Q = QP for some
Q ∈ r-spec(D) such that Q ⊂ P . Now JP ⊂ QP ⊂ PP implies J ⊂ j−1

P (JP ) ⊂ Q ⊂ P , hence Q = P and
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therefore Q = PP . Hence PP is the only prime rP -ideal containing JP , PP =
√
JP , and JP is PP -primary

by 1. By Theorem 1.3.6 j−1
P (JP ) is primary, and

√
j−1
P (JP ) = j−1

P (
√
JP ) = P . If Q is any P -primary

r-ideal containing J , then JP ⊂ QP ⊂ PP , and j−1
P (JP ) ⊂ j−1

P (QP ) = Q.
(b) Let JM be PM -primary for all M ∈ r-max(D) satisfying M ⊃ J . It suffices to prove that

j−1
P (J) ⊂ J . If a ∈ j−1

P (J), then a
1 = c

t for some c ∈ J and t ∈ D \ P , and therefore there exists some
s ∈ D \ P such that sta = sc ∈ J . By Theorem 3.2.2 it follows that

J =
⋂

M∈r- max(D)

j−1
M (JM ) ,

and therefore it suffices to prove that a ∈ j−1
M (JM ) for all M ∈ r-max(D). If M ∈ r-max(D) and

J 6⊂ M , then j−1
M (JM ) = D and there is nothing to do. If M ∈ r-max(D) and J ⊂ M , then sta

1 ∈ JM ,
and we assert that a

1 ∈ JM ( which implies a ∈ j−1
M (JM ) ). Indeed, if a

1 /∈ JM , then st
1 ∈ PM and

st ∈ j−1
M (PM ) = P , a contradiction. �

Definition 3.2.4. Let r be a weak ideal system of D and J ∈ Ir(D).
1. A prime ideal P ⊂ D is called an associated prime of J if P = (J :z) for some z ∈ D \ J . Let

AssD(J) = Ass(J) ⊂ r-spec(D) the set of all associated primes of J .
If D is cancellative, K = q(D) and z ∈ K×, then (J :z) = z−1J ∩D.

2. A primary decomposition Q of J is called an r-primary decomposition if Q ⊂ Ir(D).
By definition, a primary decomposition is just an s-primary decomposition. If J possesses an
r-primary decomposition, then it also possesses a reduced one (this is proved as in Theorem
1.3.5 ). If Q is a reduced r-primary decomposition of J , then {

√
Q | Q ∈ Q} ⊂ Ass(J) by

Theorem 1.3.5.2.
3. D is called r-laskerian if every r-ideal of D possesses an r-primary decomposition.

Theorem 3.2.5. Let r be a weak ideal system of D and J ∈ Ir(D).
1. Every maximal element in the set {(J :z) | z ∈ D \ J} belongs to Ass(J).
2. Let r be finitary, T ⊂ D a multiplicatively closed subset, P ∈ r-spec(D) and P ∩ T = ∅.

(a) If P ∈ Ass(J), then T−1P ∈ Ass(T−1J).
(b) If P ∈ Ir,f(D) and T−1P ∈ Ass(T−1J), then P ∈ Ass(J).

Proof. 1. Let c ∈ D \J be such that (J :c) is maximal in the set {(J :z) | z ∈ D \J}. Let a, b ∈ D
be such that ab ∈ (J : c) and a /∈ (J : c). Then it follows that ac /∈ J , b ∈ (J : ac). Since obviously
(J :c) ⊂ (J :ac), equality holds by the maximal choice of (J :c), and thus b ∈ (J :c). Therefore (J :c) is a
prime ideal and belongs to Ass(J).

2. (a) If P = (J :z) ∈ Ass(J), then T−1P = (T−1J :T−1D jP (z)) is a prime ideal of T−1D and thus
it belongs to Ass(T−1J).

(b) Suppose that P = {a1, . . . , an}r, where n ∈ N0 and a1, . . . , an ∈ P , and T−1P =
(
T−1J :T−1D

z
t

)
,

where z ∈ D and t ∈ T . For i ∈ [1, n], we obtain
ai

1
z

t
=
ci
si
, where ci ∈ J and si ∈ T , and therefore wisiaiz = witci ∈ J for some wi ∈ T .

If v = (w1s1) · . . . · (wnsn), then v ∈ T and vzai ∈ J for all i ∈ [1, n]. Hence it follows that vzP ⊂ J and
P ⊂ (J : vz). We assert that equality holds (which implies P ∈ Ass(J) ). Thus let x ∈ (J : vz). Then
xvz ∈ J , and

xv

1
z

t
∈ T−1J , which implies

xv

1
∈ T−1P .

Hence xv ∈ P and finally x ∈ P , since v ∈ T ⊂ D \ P . �
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Theorem 3.2.6. Let r be a weak ideal system of D such that D is r-noetherian and J ∈ Ir(D).

1. P(J) is finite, and P(J) ⊂ Ass(J).
2. If Q is a reduced r-primary decomposition of J , then Ass(J) = {

√
Q | Q ∈ Q}.

3. J possesses a representation J = Q1 ∩ . . . ∩ Qn, where n ∈ N0 and Q1, . . . , Qn ∈ Ir(D) are
r-irreducible.

4. D is r-laskerian if and only if every r-irreducible r-ideal is primary.

Proof. 1. By Theorem 3.1.6.2 the set P(J) is finite. Thus let P ∈ P(J). By Theorem 3.2.5.2 (b)
it suffices to prove that PP ∈ Ass(JP ). Since DP is rP -noetherian, the set {(JP :z) | z ∈ DP \ JP } has
maximal elements, and thus Ass(JP ) 6= ∅ by Theorem 3.2.5.1. If Q ∈ Ass(JP ), then JP ⊂ Q ⊂ PP , and
PP is the only prime rP -ideal of DP containing JP by Theorem 3.2.3.3 (a). Hence PP = Q ∈ Ass(JP ).

2. If P = (J : z) ∈ Ass(J), where z ∈ D \ P , then P =
√
Q for some Q ∈ Q by Theorem 1.3.5.2.

To prove the converse, let P =
√
Q for some Q ∈ Q. Then QP = {QP | Q ∈ Q , Q ⊂ P} is the

reduced primary decomposition of JP , and PP =
√
QP =

√
(JP :z) for some z ∈ DP \ JP . As DP is rP -

noetherian, it follows that PP is rP -finitely generated, and by Theorem 3.1.6.4 there is some k ∈ N such
that P k

P ⊂ (JP :z). If k is minimal with this property, then there exists some y ∈ P k−1
P such that yz /∈ JP .

It follows that PP yz ⊂ P k
P z ⊂ JP , hence PP ⊂ (JP :yz) ( DP , and therefore PP = (JP :yz) ∈ Ass(JP ).

Hence we obtain P ∈ Ass(J) by Theorem 3.2.5.2 (b).
3. We assume that the set Ω of all I ∈ Ir(D), which are not intersections of finitely many r-irreducible

r-ideals, is not empty. Then Ω possesses a maximal element I. Since I is not r-irreducible, there exist
I1, I2 ∈ Ir(D) such that I = I1 ∩ I2, I1 6= I and I2 6= I. Since I ( I1 and I ( I2, it follows that
I1, I2 /∈ Ω. Since both I1 and I2 are intersections of finitely many r-irreducible r-ideals, the same is true
for I, a contradiction.

4. If every r-irreducible r-ideal is primary, then D is r-laskerian by 3. If D is r-laskerian and
Q ∈ Ir(D) is irreducible and Q is a reduced r-primary decomposition of Q, then Q = {Q} and thus Q is
primary. �

Theorem 3.2.7. Let D be a Mori monoid.
1. If I ∈ Iv(D)• is v-irreducible, then I = zD ∩D for some z ∈ K×.
2. If a ∈ D•, then Ass(aD) = {P ∈ v-spec(D) | a ∈ P} is a finite set.

In particular, if X ⊂ D and X• 6= ∅, then the set {P ∈ v-spec(D) | X ⊂ P} is finite.

Proof. 1. Let I ∈ Iv(D)• be v-irreducible. By Theorem 2.6.6, the set Ω = {J ∈ Iv(D) | J ) I}
has minimal elements, and we assert that it even has a smallest element. Indeed, if J1, J2 ∈ Ω are
minimal elements, then J1 ∩ J2 ) I, since I is v-irreducible, hence J1 ∩ J2 ∈ Ω and therefore J1 = J2.

Let I∗ be the smallest element of Ω. Since

I = Iv =
⋂

z∈K×

I⊂zD

zD ( I∗ ,

there is some z ∈ K× such that I ⊂ zD and I∗ 6⊂ zD. Since zD ∩ D ∈ It(D), I ⊂ zD ∩ D and
I∗ 6⊂ zD ∩D, we obtain I = zD ∩D.

2. Let a ∈ D•. If P ∈ Ass(aD), then clearly P ∈ v-spec(D) and a ∈ P . Conversely, suppose that
P ∈ v-spec(D) and a ∈ P . As P is v-irreducible, we obtain P = zD ∩D for some z ∈ K× by 1. Hence
z−1a ∈ D, and P = zD ∩D = (z−1a)−1aD ∩D = (aD :D z−1a) ∈ Ass(aD).

It remains to prove finiteness. Assume to the contrary that the set Ω = {P ∈ v-spec(D) | a ∈ P} is
infinite. Since D is v-noetherian, there exists a sequence (P )n≥0 in Ω such that, for every n ≥ 0, Pn is
maximal in Ω \ {P0, . . . , Pn−1}. By Theorem 2.6.6, there exists some m ≥ 0 such that

P0 ∩ . . . ∩ Pm = P0 ∩ . . . ∩ Pm+1 ⊂ Pm+1
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and therefore Pj ⊂ Pm+1 for some j ∈ [1,m]. However, Pj is maximal in Ω \ {P0, . . . , Pj−1}, and since
Pm+1 ∈ Ω \ {P0, . . . , Pm} ⊂ Ω \ {P0, . . . , Pj−1}, it follows that Pm+1 = Pj , a contradiction. �

Theorem 3.2.8. Let D be a Mori monoid and I ∈ Iv(D)•.
1. If P ∈ Ass(I) and I = IP ∩D, then P is the greatest element of Ass(I).
2. If I is v-irreducible, then Ass(I) has a greatest element P , and I = IP ∩D.
3. If P ∈ v-spec(D), a ∈ P • and I = aDP ∩ D, then I is v-irreducible, and P is the greatest

element of Ass(I).

Proof. 1. Assume to the contrary that there is some Q ∈ Ass(I) such that Q 6⊂ P , and fix an
element s ∈ Q \ P . Let b ∈ D \ I be such that Q = (I :b). Then sb ∈ I and therefore b ∈ IP ∩D = I, a
contradiction.

2. Let Ω be the (finite non-empty) set of all maximal elements of Ass(I). We assert that

I =
⋂

P∈Ω

IP ∩D .

Once this is proved, it follows that |Ω| = 1 since I is v-irreducible, hence Ass(I) has a greatest element
P , and I = IP ∩D.

Clearly, I ⊂ IP ∩D for all P ∈ Ω. Thus suppose that x ∈ D \ I. By Theorem 3.2.5.1, every maximal
element in the set {(I : y) | y ∈ D \ I} belongs to Ass(I). Hence there is some Q ∈ Ω such that
(I :x) ⊂ Q, and we assert that x /∈ IQ. Indeed, if x ∈ IQ, then there is some s ∈ D \Q such that xs ∈ I
and therefore s ∈ (I :x) ⊂ Q, a contradiction.

3. If P ∈ v-spec(D), a ∈ P • and I = aDP ∩ D, then I ∈ Iv(D), IP ∩ D = I, P ∈ Ass(aD) by
Theorem 3.2.7.2, and therefore there exists some b ∈ D such that P = (aD :b) = b−1aD∩D ⊂ b−1I ∩D,
and we assert that equality holds. Indeed, if x ∈ b−1I ∩D, then xb ∈ I = aDP ∩D, hence xbs ∈ aD for
some s ∈ D \ P and therefore xs ∈ ab−1D ∩D = P , which implies x ∈ P .

Hence it follows that P = (I :b) ∈ Ass(I), and by 1. P is the greatest element of Ass(I). It remains
to show that I is t-irreducible, and for this we prove :

A. If J ∈ Iv(D) and J ) I, then aJ−1 ⊂ P and b ∈ J .

Assume that A holds. If I = J1 ∩ J2 for some J1, J2 ∈ It(D) such that J1 ) I and J2 ) I, then
b ∈ J1 ∩ J2 = I and therefore P = (I :b) = D, a contradiction.

Proof of A. Let J ∈ It(D) be such that J ) I. If aJ−1 6⊂ P , then DP = (aJ−1)P = aJ−1
P , and

as JP ∈ Iv(DP ), it follows that JP = (J−1
P )−1 = aDP and J ⊂ aDP ∩ D = I, a contradiction. Hence

aJ−1 ⊂ P and aJ−1b ⊂ Pb ⊂ aD, which implies J−1 ⊂ b−1D and therefore b ∈ bD = (J−1)−1 = J . �

Theorem 3.2.9.
1. A Mori monoid D is v-laskerian if and only if X(D) = {P ∈ v-spec(D) | P • 6= ∅}.
2. Every s-noetherian monoid is s-laskerian.

Proof. 1. Let D be a Mori monoid.
Let first D be v-laskerian and P, Q ∈ v-spec(D) such that Q• 6= ∅ and Q ⊂ P . We must prove that

Q = P . If a ∈ Q•, then P, Q ∈ Ass(aD) by Theorem 3.2.7.2, and I = aDP ∩ D is v-irreducible by
Theorem 3.2.8.3. By Theorem 3.2.6.4 I is primary, and since I = aDP ∩D ⊂ QP ∩D = Q, it follows
that I = IQ ∩D. By Theorem 3.2.8.1 Q is the greatest element of Ass(I), and therefore Q = P .

Assume now that X(D) = {P ∈ v-spec(D) | P • 6= ∅}. By Theorem 3.2.6.4 we must prove that every
v-irreducible v-ideal of D is primary. Let Q ∈ Iv(D)• be v-irreducible. By Theorem 3.2.8.2 Ass(Q) has
a greatest element P , and as P ∈ X(D), it follows that P ∈ v-max(D), and Ass(Q) = P(Q) = {P}. In
particular, P =

√
Q, and Theorem 3.2.3.2 implies that Q is primary.
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2. Let D be an s-noetherian monoid. By Theorem 3.2.6.4 we must prove that every s-irreducible
ideal of D is primary. Let Q ( D be an ideal which is not primary. Then there exist a, b ∈ D such
that ab ∈ Q, a /∈ Q and b /∈

√
Q. For all n ∈ N, we have Q ( (Q : b) ⊂ (Q : bn) ⊂ (Q : bn+1),

and as D is s-noetherian, there exists some n ∈ N such that (Q : bn) = (Q : b2n). We assert that
Q = (Q : bn) ∩ (Q ∪ bnD), which shows that Q is not s-irreducible. Clearly, Q ⊂ (Q : bn) ∩ (Q ∪ bnD),
and we assume that there is some x ∈ (Q : bn) ∩ (Q ∪ bnD) \ Q. Then x = bnu for some u ∈ D and
bnx = b2nu ∈ Q. Since (Q :bn) = (Q :b2n), it follows that bnu = x ∈ Q, a contradiction. �

3.3. Laskerian rings

In this Section, we use the common terminology of commutative ring theory.

Theorem 3.3.1. Every noetherian ring is laskerian.

Proof. LetD be a noetherian ring. By Theorem 3.2.6.4 it suffices to prove that every (d-)irreducible
ideal of D is primary. Let Q ( D be an ideal which is not primary. Then there exist a, b ∈ D such that
ab ∈ Q, a /∈ Q and b /∈

√
Q. For all n ∈ N, we have Q ( (Q : b) ⊂ (Q : bn) ⊂ (Q : bn+1), and as D is

noetherian, there exists some n ∈ N such that (Q :bn) = (Q :b2n). We assert that Q = (Q :bn)∩(Q+bnD),
which shows that Q is not irreducible. Clearly, Q ⊂ (Q :bn)∩(Q+bnD), and we assume that there is some
x ∈ (Q : bn) ∩ (Q+ bnD) \Q. Then x = q + bnu for some q ∈ Q and u ∈ D, and bnx = bnq + b2nu ∈ Q.
Hence b2nu ∈ Q, and since (Q : bn) = (Q : b2n), it follows that bnu ∈ Q and therefore also x ∈ Q, a
contradiction. �

Theorem 3.3.2. Every laskerian ring satisfies the ACC for radical ideals.

Proof. Let D be a laskerian ring. Then D satisfies the ACC for radical ideals if and only if D is√
d(D)-noetherian. By Theorem 3.1.7 we must prove :

1. For every ideal J ⊂ D the set P(J) is finite.
2. D satisfies the ACC on prime ideals.

1. Let J ⊂ D be an ideal and Q = {Q1, . . . , Qm} a primary decomposition of J . If P ∈ P(J), then
P ⊃ J = Q1 ∩ . . . ∩ Qm, and there exists some j ∈ [1,m] such that Qj ⊂ P . Since J ⊂

√
Qj ⊂ P , it

follows that P =
√
Qj , and thus P(J) ⊂ {

√
Q1, . . . ,

√
Qm}.

2. Assume to the contrary that there exists a sequence (Pn)n≥0 of prime ideals such that Pn ( Pn+1

for all n ≥ 0. For every n ≥ 1, we fix an element pn ∈ Pn \ Pn−1, and we consider the ideals

J =
∑
i≥0

p1 · . . . · piPi and Jn = (J :p1 · . . . · pn) ⊃ Pn .

Let Q = {Q1, . . . , Qm} be a primary decomposition of J . For n ≥ 1, we obtain

Jn =
( m⋂

j=1

Qj : p1 · . . . · pn

)
=

m⋂
j=1

p1·...·pn /∈Qj

(Qj :p1 · . . . · pn) ,

and we set Qn = {(Qj : p1 · . . . · pn) | j ∈ [1,m] , p1 · . . . · pn /∈ Qj }. If j ∈ [1,m] and p1 · . . . · pn /∈ Qj ,
then (Qj :p1 · . . . · pn) is primary, and

√
(Qj :p1 · . . . · pn) =

√
Qj by Theorem 1.3.3.3 (b). In particular,

it follows that {
√
Q | Q ∈ Qn} ⊂ {

√
Q1, . . . ,

√
Qm } for all n ≥ 1. Now we prove the following assertion :

A. For all n ≥ 1 and all j ∈ [1, n+ 1], we have

pjpj+1 · . . . · pnJn ⊂ Pj−1 +
∑
i≥j

pjpj+1 · . . . · piPi .
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Suppose that A holds. If n ≥ 1 and j = n+ 1, we obtain

Jn ⊂ Pn +
∑

i≥n+1

pn+1pn+2 · . . . · piPi ⊂ Pn+1 and therefore Pn ⊂ Jn =
⋂

Q∈Qn

Q ⊂ Pn+1 .

In particular, for every n ≥ 1, there exists some Q ∈ Qn such that Pn ⊂
√
Q ⊂ Pn+1. This is impossible

since the set {
√
Q | Q ∈ Qn for some n ≥ 1 } is finite. Hence it suffices to prove A.

Proof of A. Let n ≥ 1 and proceed by induction on j.
j = 1 : By definition,

p1 · . . . · pnJn ⊂ J = P0 +
∑
i≥1

p1 · . . . · piPi .

j ∈ [1, n] , j → j + 1 : Let a ∈ Jn. By the induction hypothesis, we have

pjpj+1 · . . . · pna = qj−1 +
∑
i≥j

pjpj+1 · . . . · piqi , where qν ∈ Pν for all ν ≥ j − 1 .

Hence
pj

(
pj+1 · . . . · pna−

∑
i≥j

pj+1 · . . . · piqi

)
= qj−1 ∈ Pj−1 ,

and as pj /∈ Pj−1, it follows that

pj+1 · . . . · pna ∈ Pj−1 + qj +
∑

i≥j+1

pj+1 · . . . · piPi ⊂ Pj +
∑

i≥j+1

pj+1 · . . . · piPi . �

3.4. Valuation monoids and primary monoids

Remarks and Definition 3.4.1.
1. Let Γ be a (multiplicative) abelian group.

(a) Let ≤ a partial ordering on Γ. Then (Γ,≤) is called a partially ordered abelian group
if, for all a, b, c ∈ Γ, a ≤ b implies ac ≤ bc. The set Γ+ = {x ∈ Γ | x ≥ 1} is called the
positive cone of Γ. If Γ−1

+ = {x−1 | x ∈ Γ+}, then Γ+ ∩ Γ−1
+ = {1} ( that means, Γ+

is a reduced submonoid of Γ ), and ≤ is a total order ( and thus (Γ,≤) a totally ordered
abelian group ) if and only if Γ = Γ+ ∪ Γ−1

+ .
2. Let ∆ ⊂ Γ be a reduced submonoid. Then there exists a unique partial ordering ≤ on Γ such

that (Γ,≤) is a partially ordered abelian group and Γ+ = ∆ [ indeed, define ≤ by a ≤ b if and
only if a−1b ∈ ∆ ].

3. Let Γ be an additive abelian group and ≤ a total ordering on Γ such that, for all a, b, c ∈ Γ,
a ≤ b implies a + c ≤ b + c. Then we call Γ = (Γ,≤) a totally ordered additive abelian group,
and we set Γ+ = {x ∈ Γ | x ≥ 0}. Then Γ = Γ+ ∪ −Γ+ and Γ+ ∩ −Γ+ = {0}.

4. Let D be a cancellative monoid and K = q(D). On K×/D×, we define a partial ordering ≤ by
aD× ≤ bD× if aD ⊃ bD ( equivalently, if a−1b ∈ D ). Obviously, this definition is independent
of the choice of representatives, and it makes K×/D× into a partially ordered abelian group.
G(D) = (K×/D×,≤) is called the group of divisibility of D. By definition, G(D)+ = D•/D×.

Theorem und Definition 3.4.2. Let D be cancellative.
1. The following assertions are equivalent :

(a) For all a, b ∈ D, if a /∈ bD, then b ∈ aD.
(b) Every s-finitely generated s-ideal J ∈ Is,f(D)• is principal.
(c) For all z ∈ K×, if z /∈ D, then z−1 ∈ D.
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(d) The group of divisibility G(D) is totally ordered.
(e) There exists a surjective group homomorphism w : K× → Γ onto a totally ordered additive

abelian group Γ such that D• = w−1(Γ+) = {x ∈ K× | w(x) ≥ 0}.
(f) The set Ms(D)(K) of all D-submodules of K is a chain.
(g) The set Is(D) of all ideals of D is a chain.

If these conditions are fulfilled, then D is called a valuation monoid ( of K ), and a group
epimorphism w : K× → Γ onto a totally ordered abelian group Γ such that D• = w−1(Γ+) is
called a valuation morphism of D.
If D is a valuation monoid and r is a module system on K such that D = Dr, then D is called
an r-valuation monoid.
In particular :
• Every valuation monoid is a GCD-monoid.
• A monoid D is a valuation monoid if and only if D•/D× is a valuation monoid.
• Every divisible monoid is a valuation monoid.

2. Let D be a valuation monoid and w : K× → Γ a valuation morphism of D.
(a) Ker(w) = D×, and w induces an order isomorphism

w∗ : G(D)→ Γ , given by w∗(xD×) = w(x) for all x ∈ K×.

In particular, w∗(D•/D×) = Γ+.
(b) If w1 : K× → Γ1 is another valuation morphism of D, then there exists a unique order

isomorphism ϕ : Γ→ Γ1 such that ϕ◦w = w1.
(c) If E ∈ Pf(K) and E• 6= ∅, then there exists some a ∈ E such that ED = aD, and for every

such a ∈ E we have w(a) = minw(E•).
3. If D is a valuation monoid and V is a monoid such that D ⊂ V ⊂ K, then V is a valuation

monoid, V \D ⊂ V ×, P = D \ V × ∈ s-spec(D), and V = DP = (V × ∩D)−1D.
4. Let (Vλ)λ∈Λ be a chain of valuation monoids such that q(Vλ) = K for all λ ∈ Λ. Then

V ∗ =
⋃
λ∈Λ

Vλ and V∗ =
⋂
λ∈Λ

Vλ

are valuation monoids of K.

Proof. 1. (a) ⇒ (b) Let J ∈ Is,f(D)•. Then J = Es, where ∅ 6= E ∈ Pf(D•), and we proceed by
induction on |E|. If |E| = 1, there is nothing to do. Thus suppose that E = E′ ∪ {a}, where a ∈ E \E′,
and that E′s = bD. Then J = bD ∪ aD. If a ∈ bD, then J = bD. If a /∈ bD, then b ∈ aD, and J = aD.

(b) ⇒ (c) Let z = a−1b ∈ K \D, where a, b ∈ D• and b /∈ aD. By assumption, there exists some
u ∈ D such that aD ∪ bD = uD, and thus u ∈ aD or u ∈ bD. If u ∈ aD, then aD = uD ⊃ bD and
a−1b = z ∈ D. If u ∈ bD, then bD = uD ⊃ aD and b−1a = z−1 ∈ D.

(c) ⇒ (d) If x, y ∈ K×, then either x−1y ∈ D or y−1x ∈ D, and therefore either xD× ≤ yD× or
yD× ≤ xD×. Hence G(D) is totally ordered.

(d) ⇒ (e) Let w : K× → G(D) be the canonical epimorphism.
(e) ⇒ (f) Let w : K× → Γ be an epimorphism onto a totally ordered abelian group Γ such that

D• = w−1(Γ+). Let M, N ∈ Ms(K), M 6⊂ N , a ∈ M \ N , and let b ∈ N• be arbitrary. Then
b−1a /∈ D•, since otherwise a = b−1ab ∈ DN = N . Hence w(b−1a) < 0, w(a−1b) = −w(ab−1) > 0,
hence ab−1 ∈ D and therefore b ∈ ab−1bD = aD ⊂M . Thus it follows that N ⊂M .

(f) ⇒ (g) ⇒ (a) Obvious.
2. (a) If x ∈ K×, then x ∈ Ker(w) if and only if w(x) ≥ 0 and w(x−1) = −w(x) ≥ 0, that is, if and

only if x ∈ D and x−1 ∈ D and thus x ∈ D×.
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As w is an epimorphism, it induces an isomorphism w∗ : K×/D× = G(D) → Γ, given as asserted,
and we must prove that w∗ is an order isomorphism. If x, y ∈ K× and xD× ≤ yD×, then x−1y ∈ D and
therefore 0 ≤ w(x−1y) = −w(x) + w(y), which implies w(x) ≤ w(y).

(b) Let w∗ : G(D) → Γ and w∗1 : G(D) → Γ1 be the order isomorphisms induced by w and w1

according to (a). Then ϕ = w∗1 ◦w∗−1 : Γ → Γ1 is an order isomorphism, and it is obviously the only
order isomorphism satisfying ϕ ◦ w = w1.

(c) The finite set {cD | c ∈ E•} is a chain. Hence there exists some a ∈ E• such that cD ⊂ aD
for all c ∈ E and thus ED = aD. For every such a ∈ E• we have a−1c ∈ D• for all c ∈ D•, hence
0 ≤ w(a−1c) = −w(a) + w(c), and therefore w(a) = minw(E•).

3. Let D ⊂ V ⊂ K be a monoid. Then K = q(V ), and if z ∈ K \ V , then z /∈ D and z−1 ∈ D ⊂ V .
Hence V is a valuation monoid of K. If z ∈ V \ D, then z−1 ∈ D ⊂ V and thus z ∈ V ×. Hence
V \D ⊂ V ×. If z ∈ V \D, then z ∈ V ×, z−1 ∈ D∩V ×, and therefore z ∈ (D∩V ×)−1 ⊂ (D∩V ×)−1D.
Hence it follows that V = (V \D) ∪D ⊂ (D ∩ V ×)−1D ⊂ V , and equality holds.

4. Since (Vλ)λ∈Λ is a chain, it follows that V ∗ and V∗ are submonoids of K, and by 2. V ∗ is a
valuation monoid. If x ∈ K \ V∗, then x ∈ K \ Vµ for some µ ∈ Λ, and consequently x−1 ∈ Vµ. If λ ∈ Λ
and Vµ ⊂ Vλ, then x−1 ∈ Vλ. If λ ∈ Λ and Vµ 6⊂ Vλ, then Vλ ⊂ Vµ, hence x /∈ Vλ and therefore x−1 ∈ Vλ.
Thus we have proved that x−1 ∈ Vλ for all λ ∈ Λ and therefore x−1 ∈ V∗. Consequently, also V∗ is a
valuation monoid of K. �

Theorem 3.4.3. Let Γ be an additive abelian group. Then the following assertions are equivalent :

(a) There exists an ordering ≤ on Γ such that (Γ,≤) is a totally ordered additive abelian group.
(b) Γ is torsion-free.
(c) There exists a subset P ⊂ Γ such that P + P ⊂ P , P ∩ −P = {0} and Γ = P ∪ −P .

Proof. (a) ⇒ (b) Let α ∈ Γ and n ∈ N be such that nα = 0. Then n(−α) = 0, and thus we may
assume that α ≥ 0. If α > 0, then it follows that nα ≥ α > 0, a contradiction. Hence α = 0 and Γ is
torsion-free.

(b) ⇒ (c) Let Ω be the set of all subsets R ⊂ Γ such that R + R ⊂ R and R ∩ −R = {0}.
Then {0} ∈ Ω, and the union of every chain in Ω again belongs to Ω. By Zorn’s Lemma, Ω contains a
maximal element P , and we must prove that Γ = P∪−P . Assume to the contrary that there is an element
γ ∈ Γ\(P ∪−P ). Then γ 6= 0, and we assert that either P+ = P ∪N0γ ∈ Ω or P−∪N0(−γ) ∈ Ω (which
gives the desired contradiction). Assume the contrary. Then P+ ∩−P+ ) {0} and P− ∩−P− ) {0},
and there exist p1, p

′
1, p2, p

′
2 ∈ P and n1, n

′
1, n2, n

′
2 ∈ N0, such that p1 + n1γ = −(p′1 + n′1γ) 6= 0 and

p2 − n2γ = −(p′2 − n′2γ) 6= 0. Since P ∩ −P = {0}, we have n1 + n′1 > 0 and n2 + n′2 > 0, and since
(n1 +n′1)γ = −(p1 + p′1) ∈ −P and (n2 +n′2)γ = p2 + p′2 ∈ P , we obtain (n1 +n′1)(n2 +n′2)γ ∈ P ∩−P ,
a contradiction.

(c) ⇒ (a) For α, β ∈ Γ, we define α ≤ β if and only if β − α ∈ P . Then (Γ,≤) is a totally ordered
additive abelian group and Γ+ = P . �

Theorem 3.4.4. Let D be a valuation monoid, P ⊂ D a prime ideal, Q ⊂ D an ideal and

Q0 =
⋂
n∈N

Qn .

1. Q0 and
√
Q are prime ideals.

2. If Q is P -primary and a ∈ D \P , then Q = Qa. In particular, if Q is P -primary and principal,
then P = D \D×.
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3. If Q1, Q2 ⊂ D are P -primary ideals, then Q1Q2 is P -primary. In particular, Pm is P -primary
for all m ∈ N.

4. If Q is P -primary and P 6= P 2, then Q = Pn for some n ∈ N.
5. If P = D \D× and P 6= P 2, then P = pD for some p ∈ D•.

Proof. 1. If a, b ∈ D \ Q0, then there exist m, n ∈ N such that a /∈ Qm and b /∈ Qn. Hence it
follows that Qm ( Da, Qn ( Db, Qmb ( Dab, Qm+n ⊂ Qmb ( Dab, and therefore ab /∈ Qm+n. Hence
ab /∈ Q0, and thus Q0 is a prime ideal.

Since P(Q) is a chain, it follows that |P(Q)| = 1, and if P(Q) = {P0}, then
√
Q = P0.

2. Since a /∈ P , we obtain Q ⊂ P ⊂ aD, hence A = a−1Q ⊂ D and Q = aA. Since a /∈ P , it follows
that A ⊂ Q = aA ⊂ A, hence A = Q and Q = aQ.

Assume now that Q = qD for some q ∈ D. If a ∈ D \ D×, then qD = aqD implies a ∈ D×, and
therefore we obtain P = D \D×.

3. By Theorem 1.3.2 we have
√
Q1Q2 = P . Suppose that a, b ∈ D, ab ∈ Q1Q2 and a /∈ P . Then

Q1 = Q1a by 1., hence ab ∈ aQ1Q2 and therefore b ∈ Q1Q2. Hence Q1Q2 is P -primary.
4. We prove first that Pm ⊂ Q for some m ∈ N. Assume the contrary. Then Q ⊂ Pm for all m ∈ N,

hence
Q ⊂ P0 =

⋂
m∈N

Pm .

Since P0 is a prime ideal by 1., we obtain P =
√
Q ⊂ P0 ⊂ P 2 ( P , a contradiction. Let now n ∈ N be

minimal such that Pn ⊂ Q, and let y ∈ Pn−1 \Q. Then Q ⊂ yD and A = y−1Q ∈ Is(D). Since Q = yA
and y /∈ Q, we obtain A ⊂ P and therefore Q = yA ⊂ yP ⊂ Pn. Hence Q = Pn.

5. If p ∈ P \ P 2, then P 2 ( pD ⊂ P , hence
√
pD = P and thus pD is P -primary by Theorem

3.2.3.2. Hence pD = P by 4. �

Theorem 3.4.5. Let D be a valuation monoid, K 6= D and M = D \D×.
1. If M is not a principal ideal of D, then M−1 = Mv = D.
2. If ∅ 6= X ⊂ D, then

Xv =

{
aD if Xs = aM and M is not principal,
Xs otherwise .

3. If M is principal, then v = s is the only ideal system of D. If M is not principal, then v 6= s,
v and s are the only ideal systems of D defined on K, and s = t. In any case, t = s is the only
finitary ideal system of D defined on K.

Proof. 1. Suppose that there is some z ∈M−1 \D. Then it follows that z−1 ∈ D \D× = M , hence
Mz ⊂ D and M ⊂ Dz−1 ⊂ M , which implies that M = Dz−1 is principal. Consequently, if M is not
principal, then M−1 = D and thus Mv = (M−1)−1 = D.

2. If ∅ 6= X ⊂ D, a ∈ D, Xs = aM and M is not principal, then Xv = (Xs)v = aMv = aD by 1.
Assume now that Xs 6= Xv. Then Xs ( Xv, we fix an element a ∈ Xv \ Xs, and we assert that

Xs = aM and M is not principal.
As aD 6⊂ Xs, we obtain Xs ( aD, hence a−1Xs ( D, and as a−1Xs ⊂ D is an ideal, it follows that

a−1Xs ⊂M and Xs ⊂ aM . If Xs ( aM , then there is some c ∈M such that ac /∈ Xs, hence Xs ⊂ acD
and therefore aD ⊂ Xv = (Xs)v ⊂ acD, which implies c ∈ D×, a contradiction. Therefore we obtain
Xs = aM . If M were principal, say M = pD for some p ∈ D, then Xs = aM = apD and therefore
Xv = (Xs)v = apD = Xs.

3. Let r : P(K) → P(K) be an ideal system of D. Then s ≤ r ≤ v, and Mr ∈ {M,D}. We assert
that r = s if Mr = M , and r = v if Mr = D. Indeed, let X ⊂ D be any subset such that Xs 6= Xv. Then
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Xs = aM , hence Xr = aMr, and the assertion follows by 2. Consequently, if M is a principal ideal, then
Mr = M and therefore r = s. If M is not principal, then v 6= s and r ∈ {s, v}. �

Theorem und Definition 3.4.6. Let D be cancellative, K 6= D and r : P(K)→ P(K) a finitary
ideal system of D.

1. The following assertions are equivalent :
(a) Every q ∈ D \D× the principal ideal qD is primary.
(b) For all a ∈ D \D× and b ∈ D• there is some n ∈ N such that b | an.
(c) D \D× is the only non-zero prime ideal of D.
(d) Every ideal J ( D is primary.
If these conditions are fulfilled, then D is called primary.

2. If D is primary, then D is r-local.
3. If P ∈ r-spec(D) and P • 6= ∅, then DP is primary if and only if P ∈ X(D).
4. Let T ⊂ D• be a multiplicatively closed subset such that T−1D is primary. Then T−1D = DP

for some P ∈ X(D).

Proof. 1. (a) ⇒ (b) If a ∈ D \ D× and b ∈ D•, then ab /∈ D×, hence abD is a primary ideal,
ab ∈ abD and b /∈ abD. Hence there is some n ∈ N such that an+1 ∈ abD, which implies b | an.

(b) ⇒ (c) Let b ∈ D• \ D× and P ∈ r-spec(D) be such that b ∈ P . Then P ⊂ D \ D×, and we
assert that equality holds. If a ∈ D \D×, then there exists some n ∈ N such that b | an, hence an ∈ P
and thus a ∈ P . Hence P = D \D×.

(c) ⇒ (d) If J ( D is an ideal, then Theorem 1.3.2.3 implies
√
J =

⋂
P∈P(J)

P = D \D× ∈ s- max(D) ,

and thus J is primary by Theorem 3.2.3.2.
(d) ⇒ (a) Obvious.
2. Obvious by 1.
3. By Theorem 1.3.6.2.
4. Let T be the saturation of T . Then P = D \ T ∈ s-spec(D), T−1D = DP and the assertion

follows by 3. �

Theorem 3.4.7. Let D be a valuation monoid and K 6= D. Then the following assertions are
equivalent :

(a) D is primary.
(b) There is an additive subgroup Γ ⊂ R such that D•/D× ∼= Γ+.
(c) There is no monoid B such that D ( B ( K.

Proof. (a) ⇒ (b) If D is primary, then D/D× is also primary. Hence we may assume that D is
reduced, and it suffices to prove that there is an additive subgroup Γ ⊂ R and an isomorphism Φ̃: K× → Γ
such that Φ(D•) = Γ+.

We fix an element a0 ∈ D′ = D• \ {1}, and for a ∈ D•, we define

M(a) =
{m
n

∣∣∣ m ∈ N0 , n ∈ N , am
0 | an

}
⊂ Q≥0 .

We assert that, for every a ∈ D•, the set M(a) is bounded, 0 ∈ M(a), and M(a) = {0} if and only if
a = 1. Indeed, we obviously have M(1) = {0}, and 0 ∈ M(a) for all a ∈ D. Thus let a ∈ D′. As D is
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primary, there exist k, l ∈ N such that a0 | ak and a | al
0. Hence 1

k ∈M(a), and if m
n ∈M(a) for some

m, n ∈ N, then am
0 | an | anl

0 , hence m ≤ nl and therefore 0 < supM(a) ≤ l. Now we define

Φ: D• → R≥0 by Φ(a) = supM(a) .

Then Φ(a) = 0 if and only if a = 1. We prove first that Φ is a homomorphism. Let a1, a2 ∈ D, n ∈ N,
and for i ∈ {1, 2}, let mi ∈ N0 be such that ami

0 | an
i | a

mi+1
0 . Then am1+m2

0 | (a1a2)n | am1+m2+2
0 , hence

m1

n
≤ Φ(a1) ≤

m1 + 1
n

,
m2

n
≤ Φ(a2) ≤

m2 + 1
n

and
m1 +m2

n
≤ Φ(a1a2) ≤

m1 +m2 + 2
n

,

and therefore

|Φ(a1) + Φ(a2)− Φ(a1a2)| ≤
2
n
.

As n → ∞, we obtain Φ(a1a2) = Φ(a1) + Φ(a2). If a1, a2 ∈ D and a2 | a1, then a1a
−1
2 ∈ D, and

Φ(a1) = Φ(a1a
−1
2 ) + Φ(a2) ≥ Φ(a2).

Let Φ̃ : K× → R be the extension of Φ to a homomorphism of the quotient groups, given by
Φ̃(a1a

−1
2 ) = Φ(a1) − Φ(a2) for all a1, a2 ∈ D•. If a ∈ Ker(Φ̃) ∩ D•, then Φ(a) = 0 and thus a = 0.

If a ∈ Ker(Φ̃) \ D•, then a−1 ∈ Ker(Φ̃) ∩ D• and thus again a = 0. Hence Φ̃ is a monomorphism,
Φ̃(K×) ⊂ R is a subgroup, Φ̃ : K× → Γ = Φ(K×) is an isomorphism, Φ(D•) ⊂ Γ+, and it remains to
prove equality. Let a = a1a

−1
2 ∈ K× be such that Φ(a1)−Φ(a2) = Φ̃(a) > 0. Then a2 | a1 and therefore

a = a1a
−1
2 ∈ D•.

(b) ⇒ (c) Let Γ ⊂ R be a subgroup, Φ: D•/D× ∼→ Γ+ an isomorphism and Φ̃ : K×/D× ∼→ Γ its
extension to an isomorphism of the quotient groups. Let B be a monoid such that D ( B ⊂ K. Then
D•/D× ( B•/D× ⊂ K×/D×, and if ∆ = Φ̃(B•/D×), then Γ+ ( ∆ ⊂ Γ. It is now sufficient to prove
that Γ = ∆, for then it follows that B•/D× = K×/D× and therefore B = K.

We fix an element a ∈ ∆ \ Γ+. If c ∈ Γ, then −a > 0 implies that there is some n ∈ N such that
−c ≤ n(−a), hence c− na ∈ Γ+ and c = (c− na) + na ∈ ∆.

(c) ⇒ (a) Let P ⊂ D be a prime ideal such that P • 6= ∅. If a ∈ P •, then a−1 /∈ DP . Hence
D ⊂ DP ( K, which implies D = DP and therefore P = D \ D×. Consequently, D \ D× is the only
non-zero prime ideal of D, and thus D is primary. �

Theorem und Definition 3.4.8. Let D be cancellative, K 6= D and P = D \ D×. Then the
following assertions are equivalent :

(a) D is factorial, and there is some p ∈ D such that {p} is a complete set of primes [ equivalently :
There is some p ∈ D such that every a ∈ D• has a unique representation a = pnu, where n ∈ N0

and u ∈ D• ].

(b) D is an atomic valuation monoid.

(c) D is atomic and P is a principal ideal.

(d) D is primary and contains a prime element.

(e) D is a valuation monoid, and ⋂
n∈N

Pn = {0} .

(f) D is an s-noetherian valuation monoid.

(g) D is a v-noetherian valuation monoid.

If these conditions are fulfilled, then D is called a discrete valuation monoid or a dv-monoid.
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Proof. (a) ⇒ (b) Obvious.
(b) ⇒ (c) If q1, q2 ∈ D• are atoms, then q1D ⊂ q2D or q2D ⊂ q1D, since D is a valuation monoid.

Hence q1D = q2D, and thus D possesses up to associates precisely one atom. If q ∈ D is an atom, then
D = {qnu | n ∈ N0 , u ∈ D×}, and therefore P = qD.

(c) ⇒ (d) Let p ∈ D• be such that P = pD. Then p is a prime element. Let Q ⊂ D be a prime
ideal, a ∈ Q• and a = u1 · . . . · um, where m ∈ N and u1, . . . , um are atoms of D. For every j ∈ [1,m] we
have uj ∈ D \D× = pD, hence ujD = pD and uj = pej for some ej ∈ D×. Then e = e1 · . . . · em ∈ D×

and e−1a = pm ∈ Q. Hence it follows that p ∈ Q, and therefore Q = P is the only non-zero prime ideal
of D.

(d) ⇒ (e) Let p ∈ D be a prime element, and assume to the contrary that there is some a ∈ D•

such that a ∈ Pn for all n ∈ N. As D is primary, we obtain P = pD, and there exists some m ∈ N such
that a | pm. Since a ∈ Pm+1 = pm+1D, it follows that pm+1 | a | pm, a contradiction.

If a, b ∈ D•, let m, n ∈ N0 be maximal such that a ∈ pmD and b ∈ pnD, say a = pmu and b = pnv,
where u, v ∈ D×, and suppose that m ≤ n. Then b = apn−mvu−1 ∈ aD, which implies that D is a
valuation monoid.

(e) ⇒ (f) By (e) we have P 6= P 2 and thus P = pD for some p ∈ D by Theorem 3.4.4.5. We
prove that every ideal of D is principal. Let {0} 6= J ⊂ D be an ideal, and let n ∈ N0 be maximal such
that J ⊂ Pn = pnD. If y ∈ J \ Pn+1, then y = pnu, where u ∈ D×, hence pnD = yD ⊂ J ⊂ pnD, and
J = yD.

(f) ⇒ (g) Obvious.
(g) ⇒ (a) Since v = t = s, it follows that every t-ideal of D is finitely generated and thus principal.

Hence D is factorial, and P = pD for some prime element p ∈ D. If q ∈ D is any prime element, then
q ∈ D \D× = pD, hence qD = pD, and therefore {p} is a complete set of primes. �

Theorem 3.4.9. Let D be a GCD-monoid, t = t(D) and V ⊂ K a submonoid.
1. Let V be a valuation monoid of K and r a finitary module system on K. Then the following

assertions are equivalent :
(a) V = Vr.
(b) idK is an (r, t(V ))-homomorphism.
(c) Xr ⊂ XV for all X ⊂ K.

2. The following assertions are equivalent :
(a) V is a t-valuation monoid.
(b) V is a valuation monoid, D ⊂ V , and the inclusion map D ↪→ V is a GCD-homomorphism.
(c) V = DP for some P ∈ t-spec(D).

3. For every subset X ⊂ K we have

Xt =
⋂

P∈t-spec(D)

XDP =
⋂

P∈t-max(D)

XDP =
⋂

V ∈V
XV .

where V is the set of all t-valuation monoids of K.

Proof. 1. (a) ⇒ (b) We must prove that Er ⊂ Et(V ) for all E ∈ Pf(K). If E• = ∅, this is obvious.
If E ∈ Pf(K) and E• 6= ∅, then Et(V ) = Es(V ) = EV = aV for some a ∈ E by the Theorems 3.4.2.2 (c)
and 3.4.5. Now E ⊂ aV implies Er ⊂ (aV )r = aV .

(b) ⇒ (c) If X ⊂ V , then Xr ⊂ Xt(V ) = Xs(V ) = XV by Theorem 3.4.5.
(c) ⇒ (a) Vr ⊂ V V = V implies Vr = V .
2. (a) ⇒ (b) By 1., idK is a (t, t(V ))-homomorphism, and thus Theorem 2.6.5 implies that D ⊂ V

and D ↪→ V is a GCD-homomorphism.
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(b) ⇒ (c) By Theorem 2.6.5, idK is a (t, t(V ))-homomorphism. Since s(V ) = t(V ), it follows
that V \ V × ∈ Mt(K), hence P = D ∩ (V \ V ×) ∈ t-spec(D), and obviously DP ⊂ V . To prove
the reverse inclusion, let z = a−1b ∈ V , where a, b ∈ D and GCDD(a, b) = D×. Since D ↪→ V is a
GCD-homomorphism, we obtain GCDV (a, b) = V × and thus either a ∈ V × or b ∈ V ×. If a ∈ V ×, then
a /∈ P and z ∈ DP . If b ∈ V ×, then b ∈ aV implies a ∈ V × and again z ∈ DP .

(c) ⇒ (a) By Theorem 2.5.4.1 we have (DP )t = (Dt)P = DP . It remains to prove that DP

is a valuation monoid. Thus let z ∈ K, say z = a−1b, where a, b ∈ D and GCD(a, b) = D×. Then
{a, b}t = D, hence {a, b} 6⊂ P . If a /∈ P , then z ∈ DP , and if b /∈ P , then z−1 /∈ P .

3. If P ∈ t-spec(D), then tP is a finitary DP -module system on K, hence tP = s(DP ) = sP by
Theorem 3.4.5, and for every subset X ⊂ K we have Xt ⊂ (Xt)P = XtP

= XDP . By Theorem 3.2.2
we obtain

Xt ⊂
⋂

P∈t-spec(D)

XDP ⊂
⋂

P∈t- max(D)

XDP =
⋂

P∈t- max(D)

(Xt)P = Xt ,

and the assertion follows. �

Theorem 3.4.10. Let ε : K → K ′ be a homomorphism of divisible monoids, r′ a module system
on K ′ and r = ε∗r′.

1. If V ′ is an r′-valuation monoid of K ′, then ε−1(V ′) is an r-valuation monoid of K.
2. Let ε be surjective. Then the assignment V 7→ ε(V ) defines a bijective map from the set of all
r-valuation monoids of K onto the set of all r′-valuation monoids of K ′.

Proof. 1. Let V ′ be an r′-homomorphism of K ′. If x ∈ K \ ε−1(V ′), then ε(x) ∈ K ′ \ V ′, hence
ε(x−1) = ε(x)−1 ∈ V ′ and x−1 ∈ ε−1(V ′). Hence ε−1(V ′) is a valuation monoid of K and, by Theorem
2.3.6, it is an r-valuation monoid.

2. Let V ⊂ K be an r-valuation monoid and x′ ∈ K ′ \ ε(V ). Then x′ = ε(x) for some x ∈ K \ V .
Hence we obtain x−1 ∈ V and x′−1 = ε(x)−1 = ε(x−1) ∈ ε(V ). Hence ε(V ) is a valuation monoid of K ′,
and since V = Vr = ε−1(ε(V )r′), it follows that ε(V ) = ε(V )r′ and V = ε−1(ε(V )).

Conversely, if V ′ is an r′-valuation monoid of K ′, then ε−1(V ′) is an r-valuation monoid of K by 1.,
and V ′ = ε(ε−1(V ′)). �

3.5. Valuation domains

In this Section, we use the common terminology of commutative ring theory.

A domain D is called a valuation domain if its multiplicative monoid is a valuation monoid, and
if K = q(D), then D is called a valuation domain of K. In this case, the totally ordered abelian group
G(D) = K×/D× is called the value group of D.

Theorem 3.5.1. A domain D is a valuation domain if and only if d(D) = s(D).

Proof. If D is a valuation domain, then s(D) = t(D), and as s(D) ≤ d(D) ≤ t(D), we obtain
s(D) = d(D). Conversely, assume that s(D) = d(D), and let a, b ∈ D. Then it follows that

a+ b ∈ Id(D)(D) = Is(D)(D) = aD ∪ bD ,

say a+ b ∈ aD. Consequently, a+ b = ax for some x ∈ D, and b = a(x−1) ∈ aD. Hence D is a valuation
domain. �

Remarks and Definition 3.5.2. Let (Γ,≤) be a totally ordered additive abelian group. We consider
the extension Γ ] {∞}, where α ≤ ∞ = α+∞ for all α ∈ Γ.
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1. Let K be a field. A valuation of K ( with value group Γ ) is a surjective map v : K → Γ∪{∞},
such that for all a, b ∈ K the following assertions hold :

V1. v(a) =∞ if and only if a = 0.
V2. v(ab) = v(a) + v(b).
V3. v(a+ b) ≥ min{v(a), v(b)}.

Consequences : If a, b ∈ K, then v(−a) = v(a), v(a−b) ≥ min{v(a), v(b)}, and if v(a) < v(b),
then v(a+ b) = v(a).
Proof : v |K× : K× → Γ is a homomorphism. Hence 2v(−1) = v((−1)2) = v(1) = 0, v(−1) = 0,
v(−a) = v(−1)+v(a) = v(a), and v(a− b) ≥ min{v(a), v(−b)} = min{v(a), v(b)}. If v(a) < v(b),
then v(a) = v((a+ b)− b) ≥ min{v(a+ b), v(b)} = v(a+ b).

If v is a valuation of K, then Ov = {a ∈ K | v(a) ≥ 0} is a valuation domain with maximal
ideal pv = {a ∈ K | v(a) > 0} = Ov \O×v , and v induces an isomorphism K×/O×v

∼→ Γ.
We call (K, v) a valued field , Ov the valuation domain, pv the valuation ideal and Ov/pv

the residue field of (K, v).
2. Let D be a valuation domain, K = q(D) and w : K× → Γ a valuation morphism of D. We set
w(0) =∞. Then w : K → Γ ∪ {∞} is a valuation of K, and Ow = D.
Proof : Since D = {x ∈ K | w(x) ≥ 0}, it suffices to prove that w(x+y) ≥ min{w(x), w(y)} for
all x, y ∈ K. Thus let x, y ∈ K, and assume that w(x) ≥ w(y). If y = 0, then x = 0, and there is
nothing to do. If y 6= 0, then w(y−1x) = −w(y) +w(x) ≥ 0, hence y−1x ∈ D and therefore also
1 + y−1x ∈ D. But this implies w(x+ y) = w(y(1 + y−1x)) = w(y) + w(1 + y−1x) ≥ w(y). �

3. LetD be a ring and v0 : D → Γ+∪{∞} a surjective map satisfying V1, V2, V3 for all a, b ∈ D.
Then D is a domain. If K = q(D), then there exists a unique valuation v : K → Γ ∪ {∞} such
that v |D = v0. It is given by v(a−1b) = v0(b)− v0(a) for all a ∈ D• and b ∈ D.

Theorem und Definition 3.5.3. Let K be a field, K[X] a polynomial domain and v : K → Γ∪{∞}
a valuation. Then there is a unique valuation v∗ : K(X)→ Γ ∪ {∞} such that, for all f ∈ K[X],

f =
∑
i≥0

aiX
i (where ai ∈ K, ai = 0 for almost all i ≥ 0 ) implies v∗(f) = min{v(ai) | i ≥ 0} .

v∗ is called the trivial extension of v.

Proof. It suffices to prove that v∗ |K[X] satisfies V1, V2, V3 for all f, g ∈ K[X]. V1 is obvious.
Suppose that

f =
∑
i≥0

aiX
i and g =

∑
i≥0

biX
i , where ai, bi ∈ K , ai = bi = 0 for almost all i ≥ 0.

V2. By definition,

v∗(f + g) = min{v(ai + bi) | i ≥ 0} ≥ min{min{v(ai), v(bi)} | i ≥ 0}
= min

{
min{v(ai) | i ≥ 0} ,min{v(bi) | i ≥ 0}

}
= min{v∗(f), v∗(g)} .

V3. We may assume that fg 6= 0 and k, l ∈ N0 are such that v∗(f) = v(ak) < v(ai) for all i > k,
and v∗(g) = v(bl) < v(bi) for all i > l. Then we have v(ai) ≥ v(ak) for all i ≥ 0 and v(bi) ≥ v(bl) for all
i ≥ 0. We set

fg =
∑
i≥0

ciX
i , where ci =

i∑
ν=0

aνbi−ν , and in particular ck+l = akbl +
k+l∑
ν=1

aνbk+l−ν .



64 3. PRIME IDEALS AND VALUATION MONOIDS

Hence v(ci) ≥ min{v(aν)+ v(bi−ν) | ν ∈ [0, i] } ≥ v(ak)+ v(bl) for all i ≥ 0, and v(ck+l) = v(ak)+ v(bl),
since v(aνbk+l−ν) = v(aν) + v(bk+l−ν) > v(ak + v(bl) for all ν ∈ [1, k + l]. Therefore we obtain
v∗(fg) = v(ak) + v(bl) = v∗(f) + v∗(g). �

Theorem 3.5.4. Let k be a field and (Γ,≤) an ordered additive abelian group. Then there exists
a valued field (K, v) with value group Γ and residue field k.

Proof. We consider the semigroup ring D = k[Γ+, X], consisting of all sums

a =
∑

γ∈Γ+

aγX
γ , where aγ ∈ k , aγ = 0 for almost all γ ∈ Γ+ ,

and we set
v0(a) = min{γ ∈ Γ+ | aγ 6= 0} ∈ Γ+ if a 6= 0 , and v0(0) =∞ .

Then v0 : D → Γ+ ∪ {∞} is a surjective map satisfying V1, V2 V3 for all a, b ∈ D. By 3.4.2.3, D is
a domain. If K = q(D), then there exists a unique valuation v : K → Γ ∪ {∞} such that v |D = v0. It
remains to prove that k is the residue field of (K, v).

If p = {a ∈ D | v(a) > 0}, then p ∈ spec(D) and D = k + p. Every z ∈ K× has a representation

z = Xγ a+ p

1 + q
, where γ ∈ Γ , a ∈ k , p, q ∈ p , and then v(z) = γ .

In particular, we have z ∈ Ov if and only if γ ≥ 0, and therefore Ov = Dp. Hence pv = pDp, and
Ov/pv = D/p = k. �

Theorem 3.5.5. Let K be a field, D ⊂ K a subring and P ⊂ D a prime ideal. Then there exists a
valuation domain V of K such that D ⊂ V and P = D \ V ×.

The proof requires the following Lemma from Commutative Algebra.

Lemma 3.5.6 (The (u, u−1)-Lemma). Let R ⊂ S be rings, u ∈ S×, I C R and b ∈ IR[u]∩IR[u−1].
Then there exist some k ∈ N and r0, . . . , rk−1 ∈ I such that bk + rk−1b

k−1 + . . . + r1b + r0 = 0. In
particular, if I 6= R, then IR[u] 6= R[u] or IR[u−1] 6= R[u−1].

Proof of the Lemma. Suppose that b = a0 +a1u+ . . .+anu
n = c0 + c1u

−1 + . . .+ cmu
−m, where

m, n ∈ N and a0, . . . , an, c0, . . . , cm ∈ I. We set M = R + Ru + . . . + Run+m−1, and we assert that
bM ⊂ IM . Indeed,

bul =
n∑

i=0

aiu
i+l for l ∈ [0,m− 1] , and bul =

m∑
j=0

cju
−j+l for l ∈ [m,m+ n− 1] .

In particular, for every i ∈ [0,m+ n− 1], there is a relation of the form

bui =
m+n−1∑

j=0

di,ju
j , where di,j ∈ I , and therefore

m+n−1∑
j=0

(bδi,j − di,j)uj = 0 ,

which implies det(bδi,j − di,j)i,j∈[0,m+n−1]u
l = 0 for all l ∈ [0,m + n − 1], and therefore, as u ∈ S×,

0 = det(bδi,j − di,j)i,j∈[0,m+n−1] = bm+n−1 + rm+n−2b
m+n−2 + . . . + r1b + r0, where ri ∈ I for all

i ∈ [0,m+ n− 2].
If IR[u] = R[u] and IR[u−1] = R[u−1], then 1 ∈ IR[u] ∩ IR[u−1], and the above relation implies 1 ∈ I
and thus I = R. �
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Proof of the Theorem. Let Ω be the set of all domains W satisfying DP ⊂ W ⊂ K such that
PW 6= W . Then DP ∈ Ω and the union of every chain in Ω belongs to Ω. Indeed, let (Wλ)λ∈Λ be a
chain in Ω,

W =
⋃
λ∈Λ

Wλ , and assume that 1 ∈ PW .

Then 1 = p1w1 + . . .+ pnwn for some n ∈ N, p1, . . . , pn ∈ P and w1, . . . , wn ∈ W . Hence there is some
λ ∈ Λ such that {w1, . . . , wn} ⊂Wλ and 1 ∈ PWλ, a contradiction.

By Zorn’s Lemma, Ω contains a maximal element V , and we assert that V is a valuation domain of
K such that D \ P = D ∩ V ×. Thus suppose that z ∈ K \ V . Then V [z] ⊃ V , and as V is maximal
in Ω it follows that PV [z] = V [z]. By the (u, u−1)-Lemma we obtain PV [z−1] 6= V [z−1] and therefore
z−1 ∈ V . Hence V is a valuation domain of K, and

P = PDP ∩D ⊂ PV ∩D ⊂ D \ V × = (V \ V ×) ∩DP ∩D ⊂ PDP ∩D = P .

Hence P = D \ V ×. �





CHAPTER 4

Invertibility, Cancellation and Integrality

4.1. Invertibility and class groups

Definition 4.1.1. Let D be a cancellative monoid, K = q(D) and r : P(K)→ P(K) an ideal system
of D. A fractional r-ideal J ∈ Fr(D) is called r-invertible if J ∈ Fr(D)× ( equivalently, J ·r J ′ = D
for some J ′ ∈ Fr(D) ).

If D is a domain, we use the common terminology of Commutative Algebra. In particular, we set
F(D) = Fd(D)(D) and I(D) = Id(D)(D). In this case, (fractional) d(D)-ideals are called (fractional)
ideals, and they are called invertible if they are d(D)-invertible.

Theorem 4.1.2. Let D be a cancellative monoid, K = q(D) 6= D, r : P(K)→ P(K) an ideal system
of D, v = v(D), t = t(D), and for X ⊂ K, let X−1 = (D :X).

1. Let X, Y ⊂ K be such that (XY )r = D. Then Yr = X−1 = X−1
r .

2. If J ∈ Fr(D)×, then J ·r J−1 = D [ hence J−1 is the inverse of J in Fr(D) ].
3. If q is an ideal system of D defined on K such that r ≤ q, then Fr(D)× ⊂ Fq(D)× is a subgroup.

In particular, every r-invertible fractional r-ideal is v-invertible, and Fr(D)× ⊂ Fv(D)× is a
subgroup.

4. If r is finitary, then Fr(D)× = Fr,f(D)×, and Fr(D)× ⊂ Ft(D)× is a subgroup. In particular,
if J is r-invertible, then both J and J−1 are r-finitely generated.

5. Fr,f(D)× = Frf
(D)×.

6. Fv(D)× = {J ∈ Fv(D)• | (J :J) = D}.

Proof. 1. Clearly, X−1 = (D :X) = (D :Xr) = X−1
r . Since XY ⊂ (XY )r = D, it follows that

Y ⊂ X−1 and therefore Yr ⊂ X−1, since X−1 ∈ Mv(K) ⊂ Mr(K). On the other hand, we have
X−1 = X−1(XY )r ⊂ (X−1XY )r ⊂ (DY )r = Yr.

2. Let J ′ ∈ Fr(D) be such that J ·r J ′ = (JJ ′)r = D. Then J ′ = J ′r = J−1 by 1.
3. Let q be an ideal system of D such that r ≤ q. If J ∈ Fr(D)×, then J = (J−1)−1 = Jv

and thus J ∈ Fv(D) ⊂ Fq(D). As JJ−1 ⊂ D and D = (JJ−1)r ⊂ (JJ−1)q ⊂ D, it follows that
(JJ−1)q = D whence J ∈ Fq(D)×. Hence Fr(D)× ⊂ Fq(D)×, and it remains to prove that it is
a subgroup. Thus let I, J ∈ Fr(D)×. Then (IJ)r = I ·r J ∈ Fr(D)× ⊂ Fq(D)×, and therefore
I ·q J = (IJ)q = ((IJ)r)q = (I ·r J)q = I ·r J .

4. Let r be finitary. Then r ≤ t, and thus Fr(D)× ⊂ Ft(D)× is a subgroup by 3. As Fr,f(D) ⊂ Fr(D)
is a submonoid, it follows that Fr,f(D)× ⊂ Fr(D)×. Thus let J ∈ Fr(D)×. Then

1 ∈ D = J ·r J−1 =
( ⋃

E∈Pf(J)

Er

)
·r J−1 =

( ⋃
E∈Pf(J)

Er ·r J−1
)

r
=

⋃
E∈Pf(J)

Er ·r J−1 ,

since {Er ·rJ−1 | E ∈ Pf(J)} is directed. Hence there exists some E ∈ Pf(J) such that 1 ∈ Er ·rJ−1 ⊂ D
and therefore Er ·r J−1 = D, which implies Er = (J−1)−1 = Jv = J ∈ Fr,f(D). The same argument,
applied for J−1 instead of J , shows that J−1 ∈ Fr,f(D), and consequently J ∈ Fr,f(D)×.

67
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5. Frf
(D)× = Frf ,f(D)× = Fr,f(D)×.

6. If J ∈ Fv(D), then J = X−1 for some X ⊂ K, and (J : J) = (XX−1)−1 = (X ·v X−1)−1 by
Theorem 2.6.2. Hence (J :J) = D if and only if X ·v X−1 = D. �

Theorem 4.1.3. Let D be a cancellative monoid, K = q(D) 6= D, r : P(K)→ P(K) an ideal system
of D, and for X ⊂ K, let X−1 = (D :X).

For I ∈ Fr(D)•, the following assertions are equivalent :

(a) I ∈ Fr(D)×.
(b) I ·r J = (J :I−1) for all J ∈ Fr(D).
(c) For all J ∈ Fr(D) satisfying J ⊂ I there exists some C ∈ Ir(D) such that J = I ·r C.

Proof. (a) ⇒ (b) Let J ∈ Fr(D). From I−1(I ·r J) ⊂ (I−1IJ)r = ((I−1I)rJ)r = J we obtain
I ·r J ⊂ (J :I−1). Conversely, if z ∈ (J :I−1), then z ∈ zD = I ·r zI−1 ⊂ I ·r J .

(b) ⇒ (a) With J = I−1, we obtain 1 ∈ (I−1 :I−1) = I ·r I−1 ⊂ D and therefore I ·r I−1 = D.
(a) ⇒ (c) Set C = I−1 ·r J ∈ Fr(D). Then I ·r C = I ·r I−1 ·r J = J , and since C ⊂ I−1 · I = D,

we obtain C ∈ Ir(D).
(c) ⇒ (a) If a ∈ I•, then aD ⊂ I, and there exists some C ∈ Ir(D) such that aD = I ·r C. Then

a−1C ∈ Fr(D), and I ·r (a−1C) = D, whence I ∈ Fr(D)×. �

Theorem 4.1.4. Let D be a cancellative monoid, K = q(D) 6= D, r : P(K)→ P(K) a finitary ideal
system of D and t = t(D).

1. Let D be r-local and X ⊂ K a D-fractional subset such that Xr is r-invertible. Then there exists
some a ∈ X such that Xr = aD. In particular, every r-invertible fractional r-ideal is principal.

2. If J ∈ Fr(D)× and T ⊂ D• is a multiplicatively closed subset, then T−1J ∈ FT−1r(T−1D)×.
3. For J ∈ Fr(D)•, the following assertions are equivalent :

(a) J is r-invertible.
(b) J ∈ Fr,f(D) and JP is principal for all P ∈ r-max(D).
(c) Jt ∈ Ft,f(D) and JP is principal for all P ∈ r-max(D).

Proof. 1. By Corollary 3.1.5 M = D \ D× is he only r-maximal r-ideal of D. Let X ⊂ K be a
D-fractional subset such that Xr is r-invertible. Then X 6⊂ (XM)r. Indeed, otherwise it follows that
Xr ⊂ Xr ·rM and therefore D = X−1

r ·rXr ⊂ X−1
r ·rXr ·rM = M , a contradiction. If a ∈ X \ (XM)r,

then aX−1 ∈ Ir(D), and we assert that aX−1 6⊂ M . Indeed, otherwise a ∈ aD = a(X−1X)r ⊂ (XM)r,
a contradiction. Hence aX−1 = D, and Xr = aX−1 ·rXr = a(X−1X)r = aD.

2. Obvious, since the map Fr(D)→ FT−1r(T−1D), J 7→ T−1J , is a monoid homomorphism.
3. (a) ⇒ (b) If J is r-invertible, then J is r-finitely generated by Theorem 4.1.2.4, JP is rP -invertible

by 2. and thus JP principal by 1.

(b) ⇒ (c) If J = Er for some E ∈ Pf(D), then Jt = Et.

(c) ⇒ (a) Assume that J ∈ Ft,f(D) and that for all P ∈ r-max(D) there is some aP ∈ D•
P

such that JP = aPDP . Since J ∈ Ft,f(D), we obtain (J−1)P = (JP )−1 = a−1
P DP , and therefore

(J ·r J−1)P = JP ·rP
J−1

P = (aPDP ) ·rP
(a−1

P DP ) = DP . Hence J ·r J−1 = D by Theorem 3.2.2. �

Remarks and Definition 4.1.5. Let D be a cancellative monoid, K = q(D), r : P(K)→ P(K) an
ideal system of D, v = v(D) and t = t(D).
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1. The map ∂r : K× → Fr(D)×, defined by ∂r(a) = aD, is a group homomorphism with kernel
Ker(∂r) = D×. Its cokernel

Cr(D) = Fr(D)×/∂r(K×)

is called the r-class group of D, and it is usually written additively. It gives rise to an exact
sequence

1 → K×/D× → Fr(D)× → Cr(D) → 0 .

2. Let q : P(K) → P(K) be an ideal system of D such that r ≤ q. Then Fr(D)× ⊂ Fq(D)× by
Theorem 4.1.2.3, and thus also Cr(D) ⊂ Cq(D). In particular, it follows that Cr(D) ⊂ Cv(D),
and if r is finitary, then Cr(D) ⊂ Ct(D).

3. Let D be a domain and d = d(D). Then Pic(D) = Cd(D) is called the Picard group and
C(D) = Ct(D) is called the divisor class group of D.
By 2. we have Pic(D) ⊂ C(D). The factor group G(D) = C(D)/Pic(D) is called the local
class group of D. By definition, G(D) ∼= Ft(D)×/F(D)×.

Theorem 4.1.6. Let D be a domain.
1. If D is semilocal, then Pic(D) = 0 [ every invertible ideal is principal ].
2. Suppose that C(DM ) = 0 for all M ∈ max(D). Then G(D) = 0.

,

Proof. 1. Let max(D) = {M1, . . . ,Mr}, and for i ∈ [1, r], let

M∗
i =

r⋂
j=1
j 6=i

Mj , whence M∗
i C D and M∗

i 6⊂Mi .

If J ∈ F(D)× and i ∈ [1, r], then JM∗
i 6⊂ JMi, we fix an element ai ∈ JM∗

i \ JMi, and we set
a = a1 + . . .+ ar. Then a ∈ J \ JMi for all i ∈ [1, r], hence aJ−1 C D and aJ−1 6⊂ JMi for all i ∈ [1, r],
which implies aJ−1 = D and J = aD.

2. Let J ∈ Ft(D)×. If M ∈ max(D), then JM ∈ FtM
(DM )× ⊂ Ft(DM )(DM )× and thus JM is

principal. Since J ∈ Ft,f(D), it follows that J ∈ F(D)× by Theorem 4.1.4.2. �

4.2. Cancellation

Throughout this section, let K be a monoid, and P∗f (K) = {X ∈ Pf(K) | X ∩K∗ 6= ∅ }.

Definition 4.2.1. Let r be a weak module system on K.
1. An r-module A ∈Mr(K) is called ( r-finitely ) r-cancellative if, for all ( r-finitely generated ) r-

modules M, N ∈Mr(K), A ·r M = A ·r N implies M = N .
In particular, A ∈ Mr(K) is r-cancellative if and only if A ∈ Mr(K)∗, and then A is r-finitely
r-cancellative. If A ∈Mr,f(K), then A is r-finitely r-cancellative if and only if A ∈Mr,f(K)∗.

2. r is called cancellative or arithmetisch brauchbar if every A ∈Mr(K)∩P∗f (K) is r-cancellative.
If Mr(K) is a cancellative monoid, then r is cancellative, and the converse is true if K itself is
cancellative.

3. r is called finitely cancellative or endlich arithmetisch brauchbar if every A ∈Mr,f(K)∩P∗f (K)
is r-finitely r-cancellative.
If Mr,f(K) is a cancellative monoid, then r is finitely cancellative, and the converse is true if K
itself is cancellative.
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Theorem 4.2.2. Let r be a weak module system on K and A ∈Mr(K).
1. The following assertions are equivalent :

(a) A is ( r-finitely ) r-cancellative.
(b) For all ( r-finitely generated ) r-modules M, N ∈Mr(K), A·rM ⊂ A·rN implies M ⊂ N .
(c) For all (finite ) subsets M, N ⊂ K, AM ⊂ (AN)r implies M ⊂ Nr.
(d) For all ( r-finitely generated ) r-modules N ∈Mr(K) and all c ∈ K, cA ⊂ A ·r N implies

c ∈ N .
(e) For all ( r-finitely generated ) r-modules N ∈Mr(K) we have (A ·r N :A) ⊂ N .

2. Let r be finitary, and let A be r-finitely generated and r-finitely cancellative.
(a) A is r-cancellative.
(b) If T ⊂ K is a multiplicatively closed subset, then T−1A is T−1r-cancellative.

3. If A is r-finitely r-cancellative, then (A :A) ⊂ {1}r.
4. r is finitely cancellative if and only if ((EF )r :E) ⊂ Fr for all E ∈ P∗f (K) and F ∈ Pf(K).

Proof. 1. We prove the equivalence under the additional specification of r-finiteness.

(a) ⇒ (b) If M, N ∈Mr,f(K) andA·rM ⊂ A·rN , thenA·r(M∪N)r = [(A·rM)∪(A·rN)]r = A·rN ,
and as (M ∪N)r ∈Mr,f(DK), it follows that M ⊂ (M ∪N)r = N .

(b) ⇒ (c) If M, N ∈ Pf(K) and AM ⊂ (AN)r, then A ·r Mr = (AM)r ⊂ (AN)r = A ·r Nr and
Mr, Nr ∈Mr,f(K). Hence it follows that M ⊂Mr ⊂ Nr.

(c) ⇒ (d) Obvious, setting M = {c}.
(d) ⇒ (e) Obvious.
(e) ⇒ (a) Let M, N ∈Mr,f(K) be such that A·rM = A·rN . If x ∈M , then Ax ⊂ A·rM = A·rN

and therefore x ∈ (A ·N :A) ⊂ N . Hence M ⊂ N , and by symmetry equality follows.
2. Suppose that A = Er, where E ∈ Pf(K).
(a) By 1. we must prove that, for all subsets N ⊂ K and c ∈ K, cE ⊂ (EN)r implies c ∈ Nr.

Thus let N ⊂ K, c ∈ K and cE ⊂ (EN)r. If e ∈ E, then ce ∈ (EN)r, and as r is finitary, there exists
some F ∈ Pf(N) such that ce ∈ (EFe)r. If

F =
⋃
e∈E

Fe , then Fe ∈ Pf(N) and cE ∈
⋃
e∈E

(EFe)r ⊂ (EF )r ,

and therefore c ∈ Fr ⊂ Nr, since A = Er is r-finitely r-cancellative.
(b) By 1. we must prove that (T−1A ·T−1r N : T−1A) ⊂ N for every N ∈ MT−1r,f(T−1K). If

N ∈MT−1r,f(T−1K), then N = T−1N for some N ∈Mr,f(K), and

(T−1A ·T−1r T
−1N : T−1A) = (T−1(A ·r N) : T−1E) = T−1(A ·r N :E) = T−1(A ·r N :A) ⊂ T−1N .

3. If A is r-finitely r-cancellative, then A ⊂ A·r{1}r implies (A :A) ⊂ (A·r{1}r :A) ⊂ {1}r by 1.(d).
4. Let r be finitely cancellative, E ∈ P∗f (K) and F ∈ Pf(K). Then Er is r-finitely r-cancellative, and

as Fr ∈Mr,f(K), it follows that ((EF )r :E) = (Er ·r Fr :Er) ⊂ Fr.
Conversely, assume that ((EF )r :E) ⊂ Fr for all E ∈ P∗f (K) and F ∈ Pf(K). If A ∈Mr,f(K)∩P∗f (K),

then A = Er for some E ∈ P∗f (K), and (A ·r N :A) ⊂ N for all N ∈ Mr,f(K). Indeed, if N ∈ Mr,f(K),
then N = Fr for some F ∈ Pf(K), and (A ·r N :A) = ((EF )r :Er) = ((EF )r :E) ⊂ Fr = N . �

Theorem 4.2.3. Let D be a cancellative monoid, K = q(D), r : P(K) → P(K) an ideal system of
D and J ∈ Fr(D).

1. If J is r-finitely r-cancellative, then (J :J) = D.
2. If J is r-invertible, then J is r-cancellative.
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Proof. 1. If J is r-finitely r-cancellative, then D ⊂ (J : J) ⊂ {1}r = D by Theorem 4.2.2.3, and
therefore (J :J) = D.

2. Let J be r-invertible and M, N ∈Mr(K) such that J ·rM = J ·rN . Then M = J−1 ·r J ·rM =
J−1 ·r J ·r N = N . �

Theorem 4.2.4. Let D be a ring and I C D.
1. Then the following assertions are equivalent :

(a) I is (d-)cancellative.
(b) For every M ∈ max(D) there exists some aM ∈ D∗

M such that IM = aMDM .
If I is finitely generated, then there is also equivalent :
(a′) I is (d-)finitely (d-)cancellative.

2. Let D be a domain, and let I be finitely generated. Then I is cancellative if and only if I is
invertible.

Proof. 1. (a) ⇒ (a′) Obvious.
(a′) ⇒ (a) By Theorem 4.2.2.2 (a).
(b) ⇒ (a) Let B, C C D be such that IB = IC. For M ∈ max(D), this implies IMBM = IMCM ,

hence aMBM = aMCM and therefore AM = BM , since aM ∈ D∗
M . Now B = C follows by Theorem

3.2.2.
(a) ⇒ (b) We prove first : If I = (a, b, A), where a, b ∈ D, A C D, M ∈ max(D) and MI ⊂ A,

then I = (a,A) or I = (b, A).
We consider the ideal J = (A2, a2 + b2, ab) C D and calculate

I2J = (a2, b2, ab, aA, bA, A2)(A2, a2 + b2, ab)

= (a2A2, b2A2, abA2, aA3, bA3, A4, a4 + a2b2, a2b2 + b4, a3b+ ab3,

(a3 + ab2)A, (a2b+ b3)A, (a2 + b2)A2, a3b, ab3, a2b2, a2bA, ab2A)

= (a2A2, b2A2, abA2, aA3, bA3, A4, a4, b4, a3A, b3A, a3b, ab3, a2b2, a2bA, ab2A) = I4 .

Hence it follows that I2 = J and therefore a2 ∈ J , say a2 = λ(a2+b2)+z, where λ ∈ D and z ∈ (A2, ab).
If λ ∈M , then λa ∈MI ⊂ A, and a2 = (λa)a+ λb2 + z ∈ (A2, b2, ab, aA), and therefore

I(b, A) = (b2, ab, aA, bA, A2) = (a2, b2, ab, aA, bA, A2) = I2 , which implies I = (b, A) .

If λ /∈M , thenD = (M,λ), say 1 = m+λu for somem ∈M and u ∈ D. Since mb2 = (mb)b ∈MIb ⊂ bA
and λb2 = (1− λ)a2 − z ∈ (a2, ab, A2), we obtain b2 = mb2 + λb2u ∈ (a2, ab, bA, A2), and therefore

I(a,A) = (a2, ab, aA, bA, A2) = (a2, b2, ab, aA, bA, A2) = I2 , which implies I = (a,A) .

Now we can do the actual proof.
Let M ∈ max(D) and π : I → I/MI the canonical epimorphism. Let B ⊂ I be a subset such that

π |B is injective and π(B) is a D/M -basis of M/IM . Then I = (B) + MI, and I ) (B′) + MI for
every subset B′ ( B. We assert that |B| = 1. Indeed, suppose the contrary. Then B = {a, b} ∪ B′,
where a 6= b and {a, b} ∩ B′ = ∅, and if A = (B′) + MI C D, then I = (a, b, A). By A we obtain
I = (a,A) or I = (b, A), a contradiction. Hence |B| = 1 and I = bD +MI for some b ∈ D.

We assert that IM = (bD)M = b
1DM , and for this we must prove that c

1 ∈ (bD)M for all c ∈ I. If
c ∈ I, then cI = bcD+ cMI ⊂ I(bD+ cM), which implies c ∈ bD+ cM , say c = bu+ cm for some u ∈ D
and m ∈M . Hence c(1−m) = bu and

c

1
=

bu

1 +m
∈ (bD)M .
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It remains to prove that b
1 is not a zero divisor in DM . Let c ∈ D and s ∈ D \ M be such that

c
s

b
1 = 0

1 ∈ DM . Then tcb = 0 for some t ∈ D \M , and we obtain (tcI)M = tcb
1 DM = {0}M = (tcMI)M .

For N ∈ max(D) \ {M} we have MN = DN and therefore (tcMI)N = (tcI)N . By Theorem 3.2.2 we
obtain tcI = tcMI, which implies tc ∈ tcM , say tc = tcm for some m ∈M . Consequently,

c

s
=
tc(1−m)
st(1−m)

=
0
1
∈ DM .

2. By Theorem 4.1.4. �

Theorem und Definition 4.2.5. Let r be a finitary weak module system on K. Then there exists
a unique finitary weak module system ra on K such that

Xra =
⋃

B∈P∗f (K)

((XB)r :B) for all finite subsets X ⊂ K . (∗)

If K is cancellative and r is a module system, then ra is a module system.
ra is called the completion of r. It has the following properties :

1. r ≤ ra, and (∗) holds for all subsets X ⊂ K.
2. ra is finitely cancellative, and if q is any finitely cancellative finitary weak module system on K

such that r ≤ q, then ra ≤ q. In particular, (ra)a = ra, and r is finitely cancellative if and only
if r = ra.

3. Let D ⊂ K be a submonoid. Then r[D]a = ra[D]. In particular, if r is a weak D-module system,
then so is ra.

4. If T ⊂ K• is a multiplicatively closed subset, then T−1ra = (T−1r)a.
5. Let D be a GCD-monoid, L = q(D) and t = t(D) : P(L)→ P(L). Then t is finitely cancellative,

and Hom(r,t)(K,L) = Hom(ra,t)(K,L).
In particular, if K is divisible, then every r-valuation monoid of K is an ra-valuation monoid.

Proof. Note that for every subset X ⊂ K, the system {((XB)r : B) | B ∈ P∗f (K) } is directed.
Indeed, if B, B′ ∈ P∗f (K), then ((XB)r :B) ⊂ ((XBB′)r :BB′).

By Theorem 2.2.2 we must check the conditions M1 f , M2 f and M3 f . Suppose that X, Y ∈ Pf(K)
and c ∈ K.

M1 f If B ∈ P∗f (K), then XB ∪ {0} ⊂ (XB)r implies X ∪ {0} ⊂ ((XB)r :B) ⊂ Xra .
M2 f Suppose that X ⊂ Yra and z ∈ Xra . Then there is some F ∈ P∗f (K) such that z ∈ ((XF )r :F ).

As {((Y B)r :B) | B ∈ P∗f (K) } is directed, there exists some B ∈ P∗f (K) such that X ⊂ ((Y B)r :B).
Then zFB ⊂ (XF )rB ⊂ (XBF )r ⊂ [(Y B)rF ]r = (Y FB)r and thus z ∈ ((Y FB)r :FB) ⊂ Yra , since
FB ∈ P∗f (K).

M3 f We have

cXra =
⋃

B∈P∗f (K)

c
(
(XB)r :B

)
⊂

⋃
B∈P∗f (K)

(
c(XB)r :B

)
⊂

⋃
B∈P∗f (K)

(
(cXB)r :B

)
= (cX)ra .

Here the first inclusion becomes an equality if K is cancellative, and the second one becomes an equality
if r is a module system. Consequently, ra is a module system if K is cancellative and r is a module
system.

1. If X ∈ Pf(K) and B ∈ P∗f (K), then XrB ⊂ (XB)r, hence Xr ⊂ ((XB)r :B) ⊂ Xra and therefore
r ≤ ra. For every subset X ⊂ K, we have

Xra =
⋃

B∈P∗f (K)

(( ⋃
E∈Pf(X)

EB
)
r
:B

)
=

⋃
B∈P∗f (K)

⋃
E∈Pf(X)

((EB)r :B) =
⋃

E∈Pf(X)

Era .

If r is a module system, then M3 f holds for ra, and thus ra is also a module system.
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2. By Theorem 4.2.2.4 we must prove that ((EF )ra :E) ⊂ Fra for all E ∈ P∗f (K) and F ∈ Pf(K).
Thus let E ∈ P∗f (K), F ∈ Pf(K) and z ∈ ((EF )ra :E). Since zE ⊂ (EF )ra , there exists some B ∈ P∗f (K)
such that zE ⊂ ((EFB)r :B). Hence it follows that zEB ⊂ (EFB)r and z ∈ ((EFB)r :EB) ⊂ Fra ,
since EB ∈ P∗f (K).

Let now q be any finitely cancellative finitary weak module system onK such that r ≤ q. IfX ∈ Pf(K)
and B ∈ P∗f (K), Theorem 4.2.2 implies ((XB)r :B) ⊂ ((XB)q :B) ⊂ Xq, and thus ra ≤ q by Theorem
2.3.2.1.

3. For X ⊂ K, we obtain

Xra[D] = (XD)ra =
⋃

B∈P∗f (K)

((XDB)r :B) =
⋃

B∈P∗f (K)

((XB)r[D] :B) = Xr[D]a .

4. By Theorem 2.4.1 we must prove that jT (E)(T−1r)a
= T−1Era for all E ∈ Pf(K). Thus assume

that E = {a1, . . . , an}, where n ∈ N0 and a1, . . . , an ∈ K. Then

jT (E)(T−1r)a
=

⋃
B∈P∗f (T−1K)

(
(jT (E)B)T−1r :B

)
.

Suppose that

B =
{b1
t1
, . . . ,

bm
tm

}
∈ P∗f (T−1K) ,

where m ∈ N, b1, . . . , bm ∈ K and t1, . . . , tm ∈ T . Then B = {b1, . . . , bm} ∈ P∗f (K),(
jT (E)B

)
T−1r

=
{aibj
tj

∣∣∣ i ∈ [1, n] , j ∈ [1,m]
}

T−1r
= (T−1EB)T−1r = T−1(EB)r ,

and
(
(jT (E)B)T−1r :B

)
=

(
T−1(EB)r :T−1B

)
= T−1

(
(EB)r :B

)
. Hence it follows that

jT (E)(T−1r)a
= T−1

( ⋃
B∈Pf(K)
B∩K∗ 6=∅

((EB)r :B)
)

= T−1Era .

5. By Theorem 1.5.3, every t-finitely generated t-ideal of D is principal. Hence it follows that
Mt,f(L)• = {a−1J | J ∈ It,f(D)•, a ∈ D•} = {zD | z ∈ L×} is cancellative, and thus t is finitely
cancellative.

Since r ≤ ra, every (ra, t)-homomorphism is an (r, t)-homomorphism. If ϕ : K → L is an (r, t)-
homomorphism, then by Proposition 2.3.6.2 we must prove that ϕ(Xra) ⊂ ϕ(X)t for all X ∈ Pf(K). If
X ∈ Pf(K), z ∈ Xra and B ∈ P∗f (K) are such that zB ⊂ (XB)r, then

ϕ(z)ϕ(B) ⊂ ϕ((XB)r) ⊂ ϕ(XB)t = [ϕ(X)ϕ(B)]t
and therefore ϕ(z) ∈

(
[ϕ(X)ϕ(B)]t :ϕ(B)

)
⊂ ϕ(X)t by Theorem 4.2.2.

Let K be divisible, V ⊂ K is a valuation monoid and t = t(V ). It follows by Theorem 3.4.9 that V
is an r- (resp. ra-)valuation monoid if and only if idK is an (r, t)- [ resp. (ra, t) ]-homomorphism. Hence
every r-valuation monoid is an ra-valuation monoid. �

Theorem 4.2.6. Let D ⊂ K be a submonoid and s = s(D) : P(K)→ P(K). If X ⊂ K, X∩K∗ 6= ∅
and z ∈ K, then z ∈ Xsa if and only if there exist some k ∈ N0 and l ∈ N such that zk+l ∈ zkX lD.

Proof. Note that z ∈ Xsa holds if and only if zB ⊂ (XB)s = XBD for some B ∈ P∗f (K).
Suppose that k ∈ N0 and l ∈ N are such that zk+l ∈ zkX lD, and let X0 ⊂ X be a finite subset such

that X0 ∩K∗ 6= ∅ and zk+l ∈ zkX l
0D. Then

B =
k+l−1⋃
ν=0

Xν
0 z

k+l−ν−1 ∈ Pf(K) , Xk+l−1
0 ⊂ B , and therefore B ∈ P∗f (K) ,
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zB =
k+l−1⋃
ν=1

Xν
0 z

k+l−ν ∪ {zk+l} ⊂ X0

(k+l−2⋃
ν=0

Xν
0 z

k+l−ν−1 ∪ zkX l−1
0 D

)
⊂ X0BD ⊂ XBD ,

and therefore it follows that z ∈ Xsa .
Assume now that z ∈ Xsa , and let B = {b1, . . . , bn} ∈ Pf(K) be such that n ≥ 1, b1 ∈ K∗ and

zB ⊂ XBD. Then there exist x1, . . . , xn ∈ X and a map σ : [1, n] → [1, n] such that zbi ∈ bσ(i)xiD

for all i ∈ [1, n]. Let k ∈ N0 and l ∈ N be such that σk+l(1) = σk(1). Then

zk+lb1 ∈ bσk+l(1)

k+l−1∏
µ=0

xσµ(1)D = bσk(1)

k−1∏
µ=0

xσµ(1)

k+l−1∏
µ=k

xσµ(1)D ⊂ zkb1X
lD

and therefore zk+l ∈ zkX lD. �

Theorem 4.2.7. Let R be a ring, D ⊂ R a subring, d = d(D) : P(R)→ P(R), X ⊂ R, X ∩R∗ 6= ∅
and z ∈ R. Then z ∈ Xda if and only if z satisfies an equation zn + a1z

n−1 + . . .+ an−1z + an = 0,
where n ∈ N and ai ∈ (Xi)d for all i ∈ [1, n].

Proof. Note that z ∈ Xda holds if and only if zB ⊂ (XB)d for some B ∈ P∗f (R).
Suppose that z ∈ R satisfies an equation zn + a1z

n−1 + . . . + an−1z + an = 0, where n ∈ N and
ai ∈ (Xi)d for all i ∈ [1, n]. Let X0 ⊂ X be a finite subset such that X0 ∩R∗ 6= ∅ and ai ∈ (Xi

0)d for all
i ∈ [1, n]. If

B =
n−1⋃
ν=0

Xν
0 z

n−ν−1 ∈ Pf(R) , then Xn−1
0 ⊂ B , hence B ∈ P∗f (R) , and

zB = {zn} ∪
n−2⋃
ν=0

Xν+1
0 zn−ν−1 ⊂ {zn} ∪X0B.

Since

zn = −
n−1∑
ν=0

aν+1z
n−ν−1 ∈

(n−1⋃
ν=0

Xν+1
0 zn−ν−1

)
d
⊂ (X0B)d ⊂ (XB)d ,

it follows that zB ⊂ (XB)d and thus z ∈ Xda .
Assume now that z ∈ Xda , and let B = {b1, . . . , bn} ∈ Pf(R) be such that n ≥ 1, b1 ∈ R∗ and

zB ⊂ (XB)d. Then there exist elements xi,j ∈ Xd such that

zbi =
n∑

j=1

xi,jbj and therefore
n∑

j=1

(δi,jz − xi,j)bj = 0 for all i ∈ [1, n].

Hence it follows that det(δi,jz− xi,j)i, j∈[1,n]b1 = 0 and consequently det(δi,jz− xi,j)i, j∈[1,n] = 0, which
gives the desired equation for z. �

4.3. Integrality

Throughout this section, let K be a monoid, and P∗f (K) = {X ∈ Pf(K) | X ∩K∗ 6= ∅ }.

Remarks and Definition 4.3.1. Let r be a finitary weak module system on K.

1. Let X ⊂ K. An element x ∈ K is called r-integral over X if

x ∈ Xra =
⋃

B∈P∗f (K)

((XB)r :B)

[ equivalently : There exists some B ∈ P∗f (K) such that xB ⊂ (XB)r ].
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2. Let D ⊂ K be a submonoid and r a weak D-module system on K. Then

Dra =
⋃

J∈Mr,f(K)
J∩K∗ 6=∅

(J :J)

[ an element x ∈ K is r-integral over D if and only if there is some J ∈ Mr,f(K) such that
J ∩K∗ 6= ∅ and x ∈ (J :J) ].

Proof. By definition, x ∈ Dra if and only if xB ⊂ (DB)r = Br and thus xBr ⊂ Br for some
B ∈ P∗f (K), and this holds if and only if xJ ⊂ J for some J ∈Mr,f(K) such that J ∩K∗ 6= ∅. �

3. Let D ⊂ B ⊂ K be submonoids.

• clBr (D) = Dra ∩B is called the r-(integral ) closure of D in B.

• B is called r-integral over D if clBr (D) = B.

• D is called r-(integrally ) closed in B if clBr (D) = D.

By definition, B is r-integral over D if and only if B ⊂ Dra , and D is r-integrally closed in B if
and only if Dra ∩B = D.

4. If K is a ring, D ⊂ B ⊂ K are subrings and r = d = d(K), then ( by Theorem 4.2.7 ) the above
definitions coincide with the usual ones in ring theory as follows.

• z ∈ K is called integral over D if z is d-integral over D [ equivalently, z ∈ Dda ].

• clB(D) = Dda ∩B is called the integral closure of D in B.

• B is called integral over D if clB(D) = B.

• D is called integrally closed in B if clB(D) = D.

By definition, B is integral over D if and only if B ⊂ Dda , and D is integrally closed in B if and
only if Dda ∩B = D.

5. Let D be cancellative, K = q(D) and r : P(K) → P(K) a finitary ideal system of D. Then
clr(D) = clKr (D) = Dra is called the r-(integral ) closure of D, and D is called r-(integrally )
closed if clr(D) = D. By 2. we have

clr(D) =
⋃

J∈Ir,f(D)•

(J :J) ,

and consequently D is r-closed if and only if (J :J) = D for all J ∈ Ir,f(D)•.

[ Indeed, {J ∈Mr,f(D) | J ∩K∗ 6= ∅} = Fr,f(D)• = {c−1J | c ∈ D•, J ∈ Ir,f(D)•}, and if c ∈ D•

and J ∈ Ir,f(D)•, then (c−1J :c−1J) = (J :J) ].

In particular :

(a) If s = s(D) : P(K) → P(K), then cls(D) = {z ∈ K | zn ∈ D for some n ∈ N } by
Theorem 4.2.6. cls(D) is called the root closure of D, and if D = cls(D), then D is called
root-closed.

(b) If D is a domain, and d = d(D) : P(K) → P(K), then D is called integrally closed if it is
d-integrally closed.

Theorem 4.3.2. Let D be a cancellative monoid, K = q(D), and let r, q : P(K)→ P(K) be finitary
ideal systems of D such that r ≤ q.

1. If r is finitely cancellative, then D is r-closed.

2. clr(D) ⊂ clq(D), and if D is q-closed, then D is r-closed and, in particular, D is root-closed.
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Proof. 1. By Theorem 4.2.3 we have (J : J) = D for all J ∈ Ir,f(D). Hence D is r-closed by
Remark 4.3.1.4.

2. If x ∈ clr(D), then there exists some J ∈ Ir,f(D)• such that x ∈ (J :J). Then Jq ∈ Iq,f(D)• and
zJq = (zJ)q ⊂ Jq implies z ∈ (Jq :Jq) ⊂ clq(D). If D is q-closed, then D = clq(D) ⊃ clr(D) ⊃ D. Hence
D is r-closed, and since s(D) ≤ r, it is also root-closed by Remark 4.3.1.5. �

Theorem 4.3.3. Let D be an integrally closed domain, K = q(D) and d = d(D) : P(K) → P(K).
Then da is a finitary ideal system of D, da-max(D) = d-max(D), and if X ⊂ D, then Xda = D if and
only if Xd = D.

Proof. da is a finitary D-module system on K, and as Dda = D, it is even an ideal system of D.
If X ⊂ D, then Xd ⊂ Xda ⊂ D, and therefore Xd = D implies Xda = D. Conversely, if Xda = D,

then 1 ∈ Xda , and thus there is an equation 1 + a1 + . . . + an = 0, where n ∈ N and ai ∈ (Xi)d for all
i ∈ [1, n]. Since Xd C D and (Xi)d = (Xd)i ⊂ Xd for all i ∈ [1, n], it follows that 1 ∈ Xd and therefore
Xd = D.

If M ∈ d-max(D), then M ⊂ Mda ( D, and there is some M∗ ∈ da-max(D) such that Mda ⊂ M∗.
But M∗ ∈ Id(D), and therefore M = M∗ ∈ da-max(D). Conversely, if M ∈ da-max(D), then M ∈ Id(D),
and there exists some M ∈ d-max(D) such that M ⊂ M . Since Mda ( D, we obtain M = Mda and
therefore M = M ∈ d-max(D). �

Theorem 4.3.4. Let D ⊂ B ⊂ K be submonoids and r a finitary weak module system on K.

1. Let B be an r-monoid and B′ = clBr (D) ⊂ B. Then B′ is an r-monoid which is r-closed in B.
2. Let B be r-integral over D. If z ∈ K is r-integral over B, then z is r-integral over D.

3. If T ⊂ D• is a multiplicatively closed subset, then clT
−1K

T−1r (T−1D) = T−1clKr (D).
4. For P ∈ rD-max(D) let jP : K → KP be the natural embedding. Then

clKr (D) =
⋂

P∈rD-max(D)

j−1
P

(
clKP

rP
(DP ) .

In particular :
(a) An element z ∈ K is r-integral over D if and only if, for all P ∈ rD-max(D), the element

z
1 ∈ KP is rP -integral over DP .

(b) If D• ⊂ K×, then DP ⊂ KP = K for all P ∈ rD-max(D), and

clKr (D) =
⋂

P∈rD-max(D)

clKrP
(DP ) .

(c) If D is cancellative and K = q(D), then D is r-closed if and only if, for all P ∈ r-max(D),
DP is rP -closed.

Proof. 1. Since r ≤ ra, it follows that Dra is an r-monoid. Hence B′ = clBr (D) = Dra ∩ B is an
r-monoid, and clBr (B′) = B′ra

∩B = (Dra ∩B)ra ∩B = Dra ∩B.
2. If B is r-integral over D, then B ⊂ Dra , and therefore Bra = Dra .
3. If T ⊂ D• is multiplicatively closed, then (T−1D)(T−1r)a

= (T−1D)T−1ra
= T−1Dra by the

Theorems 4.2.5.4 and 2.4.1.
4. Since Dra is a D-module, Theorem 3.2.2 implies

clKr (D) = Dra =
⋂

P∈rD- max(D)

j−1
P

(
(Dra)P

)
.

If P ∈ rD-max(D), then (Dra)P = (DP )(ra)P
= (DP )(rP )a

= clKP
rP

(DP ).
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If D• ⊂ K×, then DP ⊂ KP = K, jP = idK , and (DP )(ra)P
= clKr (DP ) by Theorem 2.5.4. �

We reformulate Theorem 4.3.4 for the classical case of integral ring extensions.

Theorem 4.3.5. Let D ⊂ B ⊂ K be rings.

1. B′ = clB(D) is a subring of B which is integrally closed in B.
2. If B is integral over D and z ∈ K is integral over B, then z is integral over D.

3. If T ⊂ D• is a multiplicatively closed subset, then clT
−1K(T−1D) = T−1clK(D).

4. For P ∈ max(D) let jP : K → KP be the natural embedding. Then

clK(D) =
⋂

P∈max(D)

j−1
P

(
clKP (DP ) .

In particular :
(a) An element z ∈ K is integral over D if and only if, for all P ∈ max(D), the element z

1 ∈ KP

is integral over DP .
(b) If D• ⊂ K×, then DP ⊂ KP = K for all P ∈ max(D), and

clK(D) =
⋂

P∈max(D)

clK(DP ) .

(c) If D is a domain and K = q(D), then D is integrally closed if and only if DP is integrally
closed for all P ∈ max(D).

Proof. By Theorem 4.3.4, observing that T−1d = d(T−1D) for every multiplively closed subset
T ⊂ D•, and that dD = d |P(D). �

4.4. Lorenzen monoids

Remarks and Definition 4.4.1. Let D be a cancellative monoid, K = q(D), r a finitary module
system on K and D ⊂ {1}ra ( then Dra = {1}ra ).
By Theorem 4.2.5.2, the monoid Mra,f(K) is cancellative, and Mra,f(K)• = {C ∈Mra,f(D) | C• 6= ∅ }.
We define

Λr(K) = q(Mra,f(K)) , and we call Λr(K)× = Λr(K)• the Lorenzen r-group of K.

For an element X ∈ Λr(K)•, we denote by X [−1] its inverse in Λr(K). Then we obtain

Λr(K) = {C [−1]A | A, C ∈Mra,f(K) , C• 6= ∅ } .

If A,A′ ∈ Mra,f(K) and C,C ′ ∈ Mra,f(K)•, then C [−1]A = C ′[−1]A′ if and only if (AC ′)ra = (A′C)ra ,
and multiplication in Λr(K) is given by the formula (C [−1]A) · (C ′[−1]A′) = (CC ′)ra

[−1](AA′)ra . In
particular, Dra = {1}ra is the unit element and {0} is the zero element of Λr(K). The submonoid

Λ+
r (K) = {C [−1]A | A, C ∈Mra,f(K) , C• 6= ∅ , A ⊂ C } ⊂ Λr(K)

is called the Lorenzen r-monoid of K.
The map τr :K → Λr(K) is defined by τr(a) = {a}ra = aDra ∈ Mra,f(K) ⊂ Λr(K) for all a ∈ K, is a
monoid homomorphism, called the Lorenzen r-homomorphism.
By definition, τr(D) ⊂ τr(Dra) ⊂ Λ+

r (K), and τr |K× : K× → Λr(K)× is a group homomorphism
satisfying Ker(τr |K×) = D×

ra
.
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Theorem 4.4.2. Let D be a cancellative monoid, K = q(D), r a finitary module system on K,
D ⊂ {1}ra and t = t(Λ+

r (K)) : P(Λr(K))→ P(Λr(K)).

1. Λr(K) = q(Λ+
r (K)).

2. If A, C ∈ Mra,f(K) and C• 6= ∅, then C [−1]A ∈ Λ+
r (K) if and only if A ⊂ C. In particular,

A ∈ Λ+
r (K) holds if and only if A ⊂ Dra .

3. Λ+
r (K) is a reduced GCD-monoid. If X, Y ∈ Λ+

r (K), then there exist A, B, C ∈Mra,f(K) such
that C• 6= ∅, A ∪ B ⊂ C, X = C [−1]A and Y = C [−1]B. In this case, we have X |Y if and
only if B ⊂ A, and gcd(X,Y ) = C [−1](A ∪B)ra .

4. If E ∈ Pf(Dra), then Era = gcd(τr(E)) ∈ Λ+
r (K). In particular, for every X ∈ Λr(K) there

exist E, E′ ∈ Pf(D) such that E′• 6= ∅, X = E
′[−1]
ra Era = gcd(τr(E′))[−1] gcd(τr(E)), and then

we have X ∈ Λ+
r (K) if and only if E ⊂ E′ra

.
5. ra = τ∗r t. In particular, τr is an (ra, t)-homomorphism and thus also an (r, t)-homomorphism,
Xra = τ−1

r [ τr(X)t] for all X ⊂ K, and Dra = τ−1
r (Λ+

r (K)).

Proof. We will thorough use the fact that ra is finitely cancellative and apply Theorem 4.2.2.

1. If X = C [−1]A ∈ Λr(K), where A, C ∈ Mra,f(D) and C• 6= ∅, then (C ∪ A)[−1]
ra C ∈ Λ+

r (K),
(C ∪A)[−1]

ra A ∈ Λ+
r (K), and X = [ (C ∪A)[−1]

ra C ][−1][ (C ∪A)[−1]
ra A ].

2. Let A, C ∈ Mr,f(K) and C• 6= ∅. If A ⊂ C, then C [−1]A ∈ Λ+
r (K) by definition. Thus suppose

that C [−1]A ∈ Λ+
r (K), say C [−1]A = C

[−1]
1 A1 for some A1, C1 ∈Mr,f(K) such that C•1 6= ∅ and A1 ⊂ C1.

Then (C1A)ra = (CA1)ra ⊂ (CC1)ra , and thus A ⊂ C.

3. We prove first that Λ+
r (K) is reduced. Let X ∈ Λ+

r (K)×, say X = C [−1]A and X [−1] = C
[−1]
1 A1,

where A, A1, C, C1 ∈Mra,f(K), C• 6= ∅, C•1 6= ∅, A ⊂ C and A1 ⊂ C1. Then (CC1)−1
ra

(AA1)ra = Dra ,
hence A•1 6= ∅ and (AA1)ra = (CC1)ra ⊃ (CA1)ra . Now it follows again that A ⊃ C, hence A = C and
X = Dra .

Now let X, Y ∈ Λ+
r (K). As Λ+

r (K) ⊂ q(Mra,f(K), there exist A, B, C ∈Mra,f(K) such that C• 6= ∅,
X = C [−1]A and Y = C [−1]B, and by 2. we obtain A ∪B ⊂ C.

Assume that X |Y , say Y = X ·Z, where Z = W [−1]U ∈ Λ+
r (K) for some U, W ∈ Mra,f(K) such

that W • 6= ∅ and U ⊂ W . Therefore we obtain C [−1]B = C [−1]A·W [−1]U = (CW )[−1]
ra (AU)ra , which

implies (BCW )ra = (CAU)ra , hence (BW )ra = (AU)ra ⊂ (AW )ra and B ⊂ A by cancelation.
Assume now that B ⊂ A. If B• = ∅, then B = (BA)ra ∈ Λ+

r (K), Y = C [−1]B = (C [−1]A)·B = X ·B
and therefore X |Y . If B• 6= ∅, then A• 6= ∅, hence U = A[−1]B ∈ Λ+

r (K) and Y = X · U , which again
implies X |Y .

To prove the assertion concerning the gcd, set Z = C [−1](A∪B)ra . Then Z |X and Z |Y . We assume
that Z1 ∈ Λ+

r (K) is another element such that Z1 |X and Z1 |Y . We must prove that Z1 |Z. By 1.,
there exist A1, B1, C1, U, W ∈ Mra,f(K) such that C•1 6= ∅, A1 ∪ B1 ∪ U ∪W ⊂ C1, X = C

[−1]
1 A1,

Y = C
[−1]
1 B1, Z = C

[−1]
1 U and Z1 = C

[−1]
1 W . Then it follows that A1 ∪ B1 ⊂ W , (CA1)ra = (C1A)ra ,

(CB1)ra = (C1B)ra and (CU)ra = (C1(A ∪B))ra . Moreover, we obtain

(C(A1 ∪B1))ra = ((CA1)ra ∪ (CB1)ra)ra = ((C1A)ra ∪ (C1B)ra)ra = (C1(A ∪B))ra = (CU)ra ,

and therefore U = (A1 ∪B1)ra ⊂W , which implies Z1 |Z.
4. If E ∈ Pf(Dra), then Era ∈ Λ+

r (K), τr(E) ⊂ Λ+
r (K), and 2. implies

Era =
( ⋃

e∈E

{e}ra

)
ra

=
( ⋃

e∈E

τr(e)
)

ra

= gcd
(
{τr(e) | e ∈ E}

)
= gcd(τr(E)) .

If X ∈ Λr(K), then X = C [−1]A, where A, C ∈ Mra,f(K), A ⊂ C and C• 6= ∅. Then there exist
E, E′ ∈ Pf(D) and c ∈ D• such that C = (c−1E′)ra and A = (c−1E)ra , and it follows that E′• 6= ∅ and
X = (c−1E′)[−1]

ra Era = gcd(τr(E′))[−1] gcd(τr(E))
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5. Since t is finitary, it suffices to prove that Zra = Zτ∗r t = τ−1
r (τr(Z)t) for all Z ∈ Pf(K). Let

Z ∈ Pf(K) and a ∈ D• such that E = aZ ⊂ D. Then Era = gcd(τr(E)) by 4., and therefore it follows
that τr(E)t = EraΛ

+
r (K). For c ∈ K, we obtain (observing that ra is a module system)

c ∈ Zra ⇐⇒ ac ∈ aZra = Era ⇐⇒ τr(ac) = {ac}ra ⊂ Era ⇐⇒ E[−1]
ra

τr(ac) ∈ Λ+
r (K)

⇐⇒ τr(a)τr(c) = τr(ac) ∈ EraΛ
+
r (K) = τr(E)t = τr(aZ)t = τr(a)τr(Z)t

⇐⇒ τr(c) ∈ τr(Z)t ⇐⇒ c ∈ τ−1
r (τr(Z)t) .

The remaining assertions are obvious. �

Theorem 4.4.3 (Universal property of the Lorenzen monoid). Let D be a cancellative monoid,
K = q(D), r a finitary module system on K, D ⊂ {1}ra and t = t(Λ+

r (K)) : P(Λr(K))→ P(Λr(K)).

1. Let G be a reduced GCD-monoid, L = q(G) and t′ = t(G) : P(L) → P(L). Then there is a
bijective map

Hom(t,t′)(Λr(K), L) → Hom(r,t′)(K,L) , given by Φ 7→ Φ◦τr .

2. Let V be the set of all r-valuation monoids of K and W the set of all t-valuation monoids of
Λr(K).

(a) Suppose that W ∈ W, and let w : Λr(K)× → Γ be a valuation morphism of W . Then
V = τ−1

r (W ) ∈ V, and w◦τr |K× : K× → Γ is a valuation morphism of V . If E ∈ P∗f (K),
then w(Era) = min{w◦τr(E•)}.

(b) The assignment W → τ−1
r (W ) defines a bijective map τ̃r : W → V.

Proof. 1. If Φ: Λr(K) → L is a (t, t′)-homomorphism, then Φ◦τr : K → L is an (r, t′)-homo-
morphism, since τr is an (r, t)-homomorphism. We prove that for every (r, t′)-homomorphism ϕ : K → L
there is a unique (t, t′)-homomorphism Φ: Λr(K)→ L such that Φ◦τr = ϕ.

Thus let ϕ ∈ Hom(r,t′)(K,L) = Hom(ra,t′)(K,L) (see Theorem 4.2.5.5 ). By Theorem 2.6.5, the map
Hom(t,t′)(Λr(K), L)→ HomGCD(Λ+

r (K), G), Φ 7→ Φ |Λ+
r (K), is bijective, and if Φ ∈ Hom(t,t′)(Λr(K), L),

then ϕ = Φ◦τr if and only if ϕ |D = (Φ |Λ+
r (K))◦τr |D. Hence it suffices to prove that there exists a

unique ψ ∈ HomGCD(Λ+
r (K), G) such that ψ ◦ τr(a) = ϕ(a) for all a ∈ D•.

Uniqueness : Let ψ ∈ HomGCD(Λ+
r (K), G) be such that ψ◦τr(a) = ϕ(a) for all a ∈ D•, and assume

that X ∈ Λ+
r (K), say X = gcd(τr(E′))[−1] gcd(τr(E)), where E, E′ ∈ P•f (D), E′• 6= ∅ and Era ⊂ E′ra

.
Then it follows that ψ(X) = gcd[ψ(τr(E′)) ]−1 gcd[ψ(τr(E)) ] = gcd[ϕ(E′) ]−1 gcd[ϕ(E) ], and thus ψ is
uniquely determined by ϕ.

Existence : Define ψ provisionally by

ψ(X) = gcd(ϕ(E′))−1 gcd(ϕ(E)) ∈ L if X = gcd(τr(E′))[−1] gcd(τr(E)) = E′[−1]
ra

Era ∈ Λ+
r (K) ,

where E, E′ ∈ Pf(D), E′• 6= ∅, and E ⊂ E′ra
. We must prove : 1) ψ(X) ∈ G ; 2) the definition is

independent of the choice of E and E′ ; 3) ψ is a GCD-homomorphism.

If this is done and a ∈ D, then ( putting E′ = {1} and E = {a} ) we obtain ψ◦τr(a) = ψ({a}ra) = ϕ(a).

1) Since ϕ is an (ra, t′)-homomorphism, we obtain ϕ(E) ⊂ ϕ(E′ra
) ⊂ ϕ(E′)t′ , and therefore

gcd(ϕ(E))G = ϕ(E)t′ ⊂ ϕ(E′)t′ = gcd(ϕ(E′)G. Hence ψ(X) = gcd(ϕ(E′))−1 gcd(ϕ(E)) ∈ G.

2) Suppose that X = E
′[−1]
ra Era = F

′[−1]
ra Fra , where E, E′, F, F ′ ∈ Pf(D), E′• 6= ∅, F ′• 6= ∅,

E ⊂ E′ra
and F ⊂ F ′ra

. Then (EF ′)ra = (E′F )ra , and since ϕ is an (ra, t′)-homomorphism, we obtain

ϕ(EF ′) ⊂ ϕ((EF ′)ra) = ϕ((E′F )ra ⊂ ϕ(E′F )t′ and ϕ(EF ′)t′ ⊂ ϕ(E′F )t′ .
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Similarly, ϕ(E′F )t′ ⊂ ϕ(EF ′)t′ , and thus equality holds. Therefore it follows that

gcd(ϕ(E)) gcd(ϕ(F ′))G = gcd(ϕ(EF ′))G = ϕ(EF ′)t′

= ϕ(E′F )t′ = gcd(ϕ(E′F ))G = gcd(ϕ(E′)) gcd(ϕ(F ))G ,

hence gcd(ϕ(E)) gcd(ϕ(F ′)) = gcd(ϕ(E′)) gcd(ϕ(F )) (since G is reduced), which finally implies that
gcd(E′)−1 gcd(E) = gcd(F ′)−1 gcd(F ).

3) Let X1, X2 ∈ Λ+
r (K) and E, E1, E2 ∈ Pf(D) be such that E• 6= ∅, E1 ∪ E2 ⊂ Era and

Xi = E
[−1]
ra (Ei)ra for i ∈ {1, 2}. Then gcd(X1, X2) = E

[−1]
ra (E1 ∪ E2)ra ,

ψ(X1 ·X2) = ψ
(
(E2)[−1]

ra
(E1E2)ra

)
= gcd(ϕ(E2))−1 gcd(ϕ(E1E2))

= [ gcd(ϕ(E))−1 gcd(ϕ(E1)) ] [ gcd(ϕ(E))−1 gcd(ϕ(E2)) ] = ψ(X1)ψ(X2)

and

ψ
(
gcd(X)

)
= gcd(ϕ(E))−1 gcd(ϕ(E1 ∪ E2)) = gcd(ϕ(E))−1 gcd

[
gcd(ϕ(E1)), gcd(ϕ(E2))

]
= gcd

[
gcd(ϕ(E))−1 gcd(ϕ(E1)), gcd(ϕ(E))−1 gcd(ϕ(E2))

]
= gcd

(
ψ(X1), ψ(X2)

)
.

2. (a) If W ∈ W, then τ−1
r (W ) is an ra-valuation monoid (and hence also an r-valuation monoid) by

Theorem 3.4.10, and therefore τ−1
r (W ) ∈ V.

If E ∈ P∗f (D), then Era = gcd(τr(E)). Hence it follows that EraΛ
+
r (K) = τr(E)t, EraW = τr(E)W

and w(Era) = min{w(τr(E)} ∈ w◦τr(K×) by Theorem 3.4.2.2, and w(Mra,f(K)•) = w◦τr(K×) ⊂ Γ
is a subgroup. Since Λr(K)× = q(Mra,f(K)•), we obtain Γ = q(w◦τr(K×)) = w◦τr(K×). By definition,
V = τ−1

r (W ) = (w◦τr)−1(Γ+), and since w◦τr |K× : K× → Γ is surjective, it is a valuation morphism
of V .

(b) By (a) we must prove that τ̃r is bijective.
τ̃r is injective : For i ∈ {1, 2}, let Wi ∈ W be such that τ−1

r (Wi) = V ∈ V, and let wi : Λr(K)× → Γi

be a valuation morphism of Wi. Then wi◦τr |K× : K× → Γi is a valuation morphism of V , and by
Theorem 3.4.2.2 there exists an order isomorphism ϕ : Γ1 → Γ2 such that ϕ◦w1◦τr |K× = w2◦τr |K×.
If X ∈ Λr(K)×, then X = E

′[−1]
ra Era for some E, E′ ∈ P∗f (D). Hence we obtain

w2(X) = w2(Era)− w2(E′ra
) = min{w2◦τr(E•)} −min{w2◦τr(E′•)}

= min{ϕ◦w1◦τr(E•)} −min{ϕ◦w1◦τr(E′•)} = ϕ
(
min{w1◦τr(E•)} −min{w1◦τr(E′•)}

)
= ϕ

(
w1(Era)− w1(E′ra

)
)

= ϕ◦w1(X) .

Therefore w2(X) ≥ 0 holds if and only if w1(X) ≥ 0, and consequently W1 = W2.
τ̃r is surjective : Let V ∈ V, and let ε : K → K/V × be the natural epimorphism. By the Theorems

2.3.7 and 3.4.10, V/V ∗ is an ε(r)-monoid of K/V ×, and if t∗ = t(V/V ×), then ε(r) = t∗, since ε(r) is
finitary, and ε is an (r, t∗)-homomorphism.

By 1. the map Hom(t,t∗)(Λr(K),K/V ×)→ Hom(r,t∗)(K,K/V ×), given by Φ 7→ Φ◦τr, is bijective.
Hence there exists a unique (t, t∗)-homomorphism Φ: Λr(K) → K/V × such that Φ◦τr = ε, and we
set W = Φ−1(V/V ×) ⊂ Λr(K). Then τ−1

r (W ) = (Φ◦τr)−1(V/V ×) = ε−1(V/V ×) = V , and since Φ is a
(t, t∗)-homomorphism, Theorem 3.4.10 implies W ∈ W. �

Theorem 4.4.4. Let D be a cancellative monoid, K = q(D), r a finitary module system on K,
D ⊂ {1}ra and Vr the set of all r-valuation monoids of K. Then Vr = Vra , and for all X ⊂ K we have

Xra =
⋂

V ∈Vr(D)

XV .

In particular, clr(D) = Dra is the intersection of all r-valuation monoids of K.
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Proof. By Theorem 4.2.5.5 we have Vr = Vra . Let τr : K → Λr(K) be the Lorenzen r-homo-
morphism, t = t(Λ+

r (K)) and W the set of all t-valuation monoids of Λr(K). Then τ∗r t = ra and
Vr = {τ−1

r (W ) |W ∈ W}. If X ⊂ K, then τ−1
r (τr(X)) = XD×

ra
, and therefore, using Theorem 3.4.9.3,

Xra = τ−1
r (τr(X)t) = τ−1

r

( ⋂
W∈W

τr(X)W
)

=
⋂

W∈W
τ−1
r (τr(X))τ−1

r (W ) =
⋂

V ∈Vr(D)

XD×
ra
V =

⋂
V ∈Vr(D)

XV . �

Corollary 4.4.5. Let D be a domain, K = q(D) and d = d(D) : P(K)→ P(K). Let r be a finitary
module system on K such that d ≤ r.

1. Let V ⊂ K be a subset.
(a) V is an r-valuation monoid of K if and only if V is a valuation domain satisfying Vr = V .

If this is the case, then D ⊂ Dr ⊂ V .
(b) V is a d-valuation monoid of K if and only if V is a valuation domain satisfying D ⊂ V .

2. The r-closure clr(D) of D is the intersection of all valuation domains V of K satisfying Vr = V .
In particular, the integral closure cld(D) of D is the intersection of all valuation domains V of
K containing D.

Proof. Obvious by the Theorems 4.4.3 and 4.4.4. �





CHAPTER 5

Complete integral closures

Throughout this Chapter, let D be a cancellative monoid, K = q(D) 6= D, v = v(D) and t = t(D).

5.1. Strong ideals

Theorem und Definition 5.1.1.
1. For an ideal I ⊂ D, the following assertions are equivalent :

(a) I−1 ⊂ (I :I).
(b) I−1 = (I :I).
(c) I−1 is an overmonoid of D.
(d) There exists an overmonoid T ⊃ D such that I = T−1 = (D :T ).
(e) Iv = (II−1)v.

A non-zero ideal I ⊂ D satisfying these conditions is called strong ( in D ).
2. Let D be a Mori domain and {0} 6= P ∈ v-spec(D).

(a) P is not strong if and only if DP is a dv-monoid ( and then P ∈ X(D) ).
(b) If P ∈ v-max(D), then P is not strong if and only if P is v-invertible.
(c) If T ⊂ D• is a multiplicatively closed subset, then P is strong if and only if T−1P is strong

in T−1D.

Proof. 1. (a) ⇒ (b) (I :I) ⊂ (D :I) = I−1.
(b) ⇒ (c) (I :I) ⊃ D is an overmonoid.
(c) ⇒ (d) Obvious.
(d) ⇒ (e) Let T ⊃ D be an overmonoid such that I = T−1. Then I−1 = Tv ⊃ T is a monoid, and

by Theorem 2.6.2.2 we obtain (II−1)−1 = (I−1 :I−1) = (Tv :Tv) = Tv = I−1. Hence (II−1)v = Iv.
(e) ⇒ (a) (I :I) = (II−1)−1 = (II−1)−1

v = I−1
v = I−1 ( by Theorem 2.6.2.2, applied with X = I−1 ).

2. (a) If P is not strong and a ∈ P−1 \ (P : P ), then aP ⊂ D and aP 6⊂ P , which implies that
aPP = DP . Since DP is a Mori monoid, it satisfies the ascending chain condition on principal ideals.
Hence it is atomic by Theorem 1.5.5, and by Theorem 3.4.8, it is a dv-monoid.

If P is strong, then (D : P ) = (P : P ) implies (DP : PP ) = (PP : PP ), and therefore DP is not a
dv-monoid.

(b) Assume that P ∈ v-max(D). If P is strong, then (PP−1)v = P by 1., and therefore P is
not v-invertible. If P is not strong, then DP is a dv-monoid and PP is a principal ideal of DP . If
M ∈ v-max(D)\{P}, then PM = DM . Hence P is t-invertible (and thus v-invertible) by Theorem 4.1.4.

(c) By Theorem 1.3.8 we have DP = (T−1D)T−1P , and thus the assertion follows by (a). �

Theorem 5.1.2. Let I ⊂ D be a strong ideal, C = (D : I) = (I : I) and Q ⊂ C a prime ideal such
that I = C

√
I ⊂ Q. Then (Q :Q) = C.

83
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Proof. It suffices to prove that (Q :Q) ⊂ (I : I). Indeed, then C ⊂ (Q :Q) ⊂ (I : I) = C, hence
(Q :Q) = C, and if Q is strong, then (C :Q) = C and Qv(C) = C 6= Q.

Thus assume that x ∈ (Q :Q) and y ∈ I. We must prove that xy ∈ I, and since

I = C

√
I =

⋂
P∈PC(D)

P ,

it suffices to prove that xy ∈ P for all P ∈ PC(I). If Q ∈ PC(I), then xy ∈ (Q :Q)I ⊂ (Q :Q)Q ⊂ Q. If
P ∈ PC(I) and P 6= Q, then Q 6⊂ P and xyQ ⊂ I(Q :Q)Q ⊂ IQ ⊂ I ⊂ P , which implies xy ∈ P . �

Theorem 5.1.3. Let I ⊂ D be a strong ideal, C = (D :I) = (I :I) and v∗ = v(C).
1. If D is a Mori monoid, then C is also a Mori monoid, and Fv∗(C) ⊂ Fv(D).
2. The assignment P 7→ (P :I) defines a bijective map

Φ: {P ⊂ D | P is a prime ideal, I 6⊂ P } → {Q ⊂ C | Q is a prime ideal, I 6⊂ Q } ,
whose inverse is given by Q 7→ Q ∩D.

3. Let P ⊂ D be a prime ideal such that I 6⊂ P and Q = (P :I).
(a) DP = CQ.
(b) If J ⊂ D and J∗ ⊂ C are ideals such that J∗ ∩D = J ⊂ P , then J∗ ⊂ Q.
(c) If P ∈ v-spec(D), then Q ∈ v∗-spec(C).
(d) If D is a Mori monoid and P ∈ v-max(D), then Q ∈ v∗-max(C).

Proof. 1. Since (D : I) ∈ Fv(D) ⊂ Ft(D), Theorem 2.6.6.3 implies that C is a Mori monoid, and
Fv∗(C) = Ft(C)(C) ⊂ Ft(D) = Fv(D).

2. Let P ⊂ D be a prime ideal, I 6⊂ P and Q = (P :I).
Clearly, Q ⊂ (D : I) = C, and CQI ⊂ QI ⊂ P implies CQ ⊂ (P : I) = Q. Hence Q ⊂ C is an

ideal, and we prove that it is a prime ideal of C. Suppose that x, y ∈ C, xy ∈ Q and x /∈ Q. Then
xyI2 ⊂ (P :I)I2 ⊂ PI ⊂ P , and since xI 6⊂ P , we obtain yI ⊂ P and y ∈ (P :I) = Q.

Next we prove that Q ∩D = P . Clearly, PI ⊂ P implies P ⊂ (P : I) ∩D = Q ∩D. Conversely, if
z ∈ Q ∩D, then zI ⊂ P and I 6⊂ P implies z ∈ P .

It remains to prove that Φ is surjective. Thus let R ⊂ C be a prime ideal ideal such that I 6⊂ R.
Then R ∩ D ⊂ D is a prime ideal, I 6⊂ R ∩ D, and we assert that R = (R ∩ D : I). If x ∈ R, then
R ⊂ C = (D :I) implies xI ⊂ R ∩D and x ∈ (R ∩D :I). Conversely, if x ∈ (R ∩D :I, then xI ⊂ R and
I 6⊂ R implies x ∈ R.

3. (a) Since D \ P ⊂ C \ Q, we obtain DP ⊂ CQ. Thus let z = s−1c ∈ CQ, where c ∈ C and
s ∈ C \ Q. If y ∈ I \ P , then cy ∈ CI = I ⊂ D, and sI 6⊂ P implies sy ∈ CI \ P ⊂ D \ P . Hence it
follows that z = (sy)−1cy ∈ DP .

(b) Let J ⊂ D and J∗ ⊂ C be ideals such that J ⊂ P and J∗ ∩ D = J . Then it follows that
J∗I ⊂ J∗ ∩ CI ⊂ J∗ ∩D = J ⊂ P , and therefore J∗ ⊂ (P :I) = Q.

(c) Suppose that P ∈ v-spec(D). We must prove that (P :I)v∗ ⊂ (P :I). We have

I(P :I)v∗ = I
(
C : (C : (P :I))

)
= I

(
I−1 : ((I :I) : (P :I))

)
⊂

(
II−1 : (I :I(P :I))

)
⊂

(
D : (I :I(P :I))

)
,

and we shall prove that P−1 ⊂ (I :I(P :I)). If this is done, then I(P :I)v∗ ⊂ (I :I(P :I))−1 ⊂ Pv = P ,
and therefore (P :I)v∗ ⊂ (P :I). If z ∈ P−1, then zI(P :I) ⊂ I(zP :I) ⊂ II−1 ⊂ I(I :I) ⊂ I.

(d) Suppose that D is a Mori monoid and P ∈ v-max(D). Then Q ∈ v∗-spec(C), and since C is a
Mori monoid, there exists some M ∈ v∗-max(C) such that M ⊃ Q. Then M ∩ D ∈ Fv(D) is a prime
ideal of D, hence M ∩D ∈ v-spec(D), and P ⊂M ∩D. Hence P = M ∩D, I 6⊂M , and by 1. it follows
that Q = M ∈ v∗-max(D). �
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5.2. Complete integral closures and Krull monoids

Definition 5.2.1.
1. An element a ∈ K is called almost integral over D if there exists some c ∈ D• such that can ∈ D

for all n ∈ N.
2. The set D̂ = {a ∈ K | a is almost integral over D } is called the complete integral closure of D,

and FD = (D :D̂) is called the conductor of D.

3. D is called completely integrally closed if D = D̂.
4. D is called a Krull monoid if D is a completely integrally closed Mori monoid.

Theorem 5.2.2. Let r be an ideal system on D.

1. D̂ is a submonoid of K,

D̂ =
⋃

I∈Iv(D)
I strong

I−1 =
⋃

J∈Fv(D)•

(J :J) =
⋃

J∈Fr(D)•

(J :J) =
⋃

J∈Ir(D)•

(J :J)

and if r is finitary, then D̂r = D̂.

In particular, if D is a domain, then D̂ is also a domain.

2. D̂/D× = D̂/D×. In particular, D is completely integrally closed if and only if D/D× is com-
pletely integrally closed.

3. clr(D) ⊂ D̂, and if D is r-noetherian, then D̂ = clr(D). In particular, if D is completely
integrally closed, then D is r-closed, and the converse holds if D is r-noetherian.

4. FD is the intersection of all strong v-ideals of D.
5. F •D 6= ∅ if and only if D contains a smallest strong v-ideal F . If F is the smallest strong v-ideal

of D, then FD = F , D̂ = F−1 ∈ Fv(D), and D̂ is completely integrally closed.

Proof. 1. We show that

D̂ ⊂
⋃

I∈Iv(D)
I strong

I−1 ⊂
⋃

J∈Fv(D)•

(J :J) ⊂
⋃

J∈Fr(D)•

(J :J) =
⋃

J∈Ir(D)•

(J :J) ⊂ D̂ .

If x ∈ D̂, then there is some c ∈ D• such that X = {cxn | n ∈ N} ⊂ D. By Theorem 5.1.1.1 (b),
I = (Xv :Xv)−1 ∈ Iv(D) is strong, and since xX ⊂ X, it follows that xXv ⊂ Xv and thus x ∈ I−1.

The two following inclusions are obvious. If J ∈ Fr(D)• and c ∈ D• is such that cJ ⊂ D, then
(J :J) = (cJ : cJ). If J ∈ Ir(D)•, c ∈ J• and x ∈ (J :J), then xn ∈ (J :J) and therefore cxn ∈ J ⊂ D

for all n ∈ N, which implies x ∈ D̂.
If J, J ′ ∈ Ir(D)•, then ((JJ ′)r : (JJ ′)r) ⊃ (J :J). Therefore {(J :J) | J ∈ Ir(D)•} is a directed set

of r-monoids. Hence D̂ is a monoid, and if r is finitary, then D̂r = D.
If D is a domain, then D̂d(D) = D̂. Hence D̂ is a D-module and therefore itself a domain.

2. By definition, q(D/D×) = K/D×, and if x ∈ K, then x ∈ D̂ if and only if xD× ∈ D̂/D×. Hence
D̂/D× = D̂/D×, and D = D̂ if and only if D/D× = D̂/D×.

3. By Theorem 4.3.3 we have
clr(D) =

⋃
J∈Ir,f(D)

(J :J) .

Hence clr(D) ⊂ D̂. If D is r-noetherian, then Ir(D) = Ir,f(D), and therefore equality holds.



86 5. COMPLETE INTEGRAL CLOSURES

4. By 1., we obtain

FD = D̂−1 =
( ⋃

I∈Iv(D)
I strong

I−1
)−1

=
⋂

I∈Iv(D)
I strong

I .

5. If F •D 6= ∅, then FD is a strong v-ideal by Theorem 5.1.1, and by 4. it is the smallest strong v-ideal
of D. Conversely, if F is the smallest strong v-ideal of D, then F = FD by 4. Hence D̂v = F−1 ⊂ D̂,
and therefore F−1 = D̂ ∈ Fv(D). In particular, if F(D) resp. F(D̂) denotes the set of all fractional
semigroup ideals of D resp. D̂, then F(D̂) ⊂ F(D), hencê̂

D =
⋃

J∈F(D̂)

(J :J) ⊂
⋃

J∈F(D)

(J :J) ⊂ D̂ ,

and therefore equality follows. �

Theorem 5.2.3. The following assertions are equivalent :
(a) D is completely integrally closed.
(b) Fv(D)• = Fv(D)× [ equivalently : every non-zero ( fractional ) v-ideal of D is v-invertible ].
(c) D is the only strong v-ideal of D.

Proof. (a) ⇒ (b) If J ∈ Fv(D)•, then (J : J) ⊂ D̂ = D, hence (J : J) = D, and therefore
J ∈ Fv(D)× by Theorem 4.1.2.

(b) ⇒ (c) If J ∈ Fv(D)• is strong and invertible, then J = J ·v J−1 = D.
(c) ⇒ (a) By Theorem 5.2.2.1. �

Theorem 5.2.4. Let D be a Mori monoid.

1. If F •D 6= ∅, then D̂ is a Krull monoid.

2. Let T ⊂ D• be a multiplicatively closed subset. Then T̂−1D = T−1D̂. In particular, if D is a
Krull monoid, then T−1D is a Krull monoid.

3. D̂× ∩D = D×.

Proof. 1. If F •D 6= ∅, then D̂ is completely integrally closed by Theorem 5.2.2.5, and D̂ is a Mori
monoid by Theorem 5.1.1.2.

2. Observe that T−1t = t(T−1D), and T̂−1D = clT−1tT
−1D) = T−1clt(D) = T−1D̂ by the

Theorems 2.6.6.2 and 4.3.4.3.
3. Obviously, D× ⊂ D̂× ∩D. If a ∈ D̂× ∩D, then there is some c ∈ D• such that ca−n ∈ D for all

n ∈ N. Hence it follows that c ∈ anD for all n ∈ N, and therefore the set {anD | n ∈ N} ⊂ Iv(D) has
a smallest element. Consequently, there is some n ∈ N such that anD = an+1D, which implies D = aD
and a ∈ D×. �

Theorem 5.2.5.
1. The following assertions are equivalent :

(a) D is a Krull monoid.
(b) Ft(D)• = Ft(D)× [ equivalently : every non-zero ( fractional ) t-ideal of D is t-invertible ].
(c) D is a Mori monoid, and for every M ∈ t-max(D), DM is a dv-monoid.

In particular, if D is a Krull monoid, then t-max(D) = X(D), and therefore DP is a discrete
valuation monoid for every non-zero prime t-ideal.
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2. D is factorial if and only if D is a Krull monoid and Cv(D) = 0.
3. D is a dv-monoid if and only if D is a t-local Krull monoid.

Proof. 1. (a) ⇒ (b) v = t, and by Theorem 5.2.3 we have Fv(D)• = Fv(D)×.
(b) ⇒ (c) Since every non-zero t-ideal is t-invertible and hence t-finitely generated, it follows that

D is a Mori monoid. If M ∈ t-max(D), then DM is t-noetherian, hence atomic, and MM is a principal
ideal. By Theorem 3.4.8, DP is a dv-monoid.

(c) ⇒ (a) If J ∈ Fv(D)• = Ft(D)•, then JM is principal for all M ∈ t-max(D). Hence J is
t-invertible, and as t = v, D is completely integrally closed by Theorem 5.2.3.

In particular, if D is a Krull monoid and P ∈ t-max(D), then P is t-invertible and thus P ∈ X(D)
by Theorem 5.1.1.4.

2. By Theorem 2.6.3.2, D is factorial if and only if every non-zero t-ideal is principal. However, this
holds if and only if ever J ∈ It(D)• is t-invertible and principal. By 1., the assertion follows.

3. Obvious by 1.(c). �

Theorem 5.2.6. Let D be a Krull monoid. Then Λt(K) = Ft,f(D), and Λ+
t (K) = It,f(D) is free

with basis t-max(D).

Proof. Since Mt,f(K) = Ft,f(D) and Ft,f(D)• is a group, it follows that t is finitely cancellative,
hence t = ta, Λt(K) = q(Mt,f(K)) = Ft,f(D), and Λ+

t (K) = {C ∈ Ft,f(D) | C ⊂ Dta = D} = It,f(D) is
a reduced GCD-monoid by Theorem 4.4.2. Moreover, for all I, J ∈ It,f(D) we have I | J in It,f(D) if and
only if J ⊂ I. Hence Λ+

t (D) satisfies the ACC for principal ideals, and as it is a reduced GCD-monoid,
it is factorial and therefore free with the set of prime elements as a basis. An element P ∈ It,f(D) \ {D}
is a prime element if and only if it is maximal with respect to inclusion, that is, if and only if it is a
t-maximal t-ideal. �

Definition 5.2.7. A domain D is called a
• Krull domain if it is a Krull monoid;
• Dedekind domain if it is a Krull domain, and d(D) = t [ equivalently, every ideal is divisorial ].

Theorem 5.2.8. For a domain D, the following assertions are equivalent :

(a) D is a Dedekind domain.
(b) D is a Krull domain and dim(D) = 1 [ equivalently, every non-zero prime ideal of D is maximal ].
(c) Every non-zero ideal of D is invertible.
(d) D is noetherian, and for every non-zero prime ideal P , DP is a discrete valuation domain.
(e) D is noetherian, integrally closed, and dim(D) = 1 [ equivalently, every non-zero prime ideal of

D is maximal ].

Proof. Set d = d(D).
(a) ⇒ (b) If P ∈ spec(D) = t-spec(D) and P • 6= ∅, then P is not strong by Theorem 5.2.3, and

thus P ∈ X(D) by Theorem 5.1.1.4.
(b) ⇒ (c) Let J ∈ I(D)• be a non-zero ideal. Then Jt ∈ It,f(D), and by Theorem 4.1.4 we must

prove that JP is principal for all P ∈ max(D). If P ∈ t-max(D), then DP is a discrete valuation domain
and therefore JP is principal. However, max(D) = X(D) by assumption, and by the Theorems 3.1.6.4
and 5.2.5 it follows that max(D) = t-max(D).

(c) ⇒ (a) Every non-zero ideal of D is invertible, hence a t-ideal by Theorem 4.1.2. Therefore
t = d, and D is a Krull domain by Theorem 5.2.5.
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(a) ⇒ (d) Obvious by Theorem 5.2.5.
(d) ⇒ (e) If P ∈ spec(D) and P • 6= ∅, then DP is a discrete valuation domain, hence primary, and

therefore P ∈ X(D) by Theorem 3.4.6.3. Hence dim(D) = 1. Moreover, for all non-zero P ∈ spec(D),
DP is a Krull domain and thus (completely) integrally closed. Hence D is integrally closed by Theorem
4.3.4.4.

(e) ⇒ (a) It suffices to prove that I(D) ⊂ It(D). Since dim(D) = 1, we have max(D) = t-max(D),
and we assert that, for every P ∈ max(D), DP is a discrete valuation domain. If P ∈ max(D), then DP

is noetherian and integrally closed, hence v-noetherian and completely integrally closed and therefore a
Krull domain. Being t-local, DP is a discrete valuation domain, and tP = s(DP ). Thus, if J ∈ I(D),
then (Jt)P = (JP )tP

= JP , and therefore (using Theorem 3.2.2),

Jt =
⋂

P∈t- max(D)

(Jt)P =
⋂

P∈max(D)

JP = J ∈ It(D) . �

The following example shows that the complete integral closure need not be completely integrally
closed.

Example 5.2.9. Let K be a field,

R = K[ {X2n+1Y n(2n+1) | n ∈ N0 } ] and S = K[ {XY n | n ∈ N0 } ] .

Then R ⊂ S ⊂ K[X,Y ] = q(R), S = R̂ and K[X,Y ] = Ŝ.
Proof. By definition, R ⊂ S ⊂ K[X,Y ], and for all n ∈ N0, (XY n)2n+1 ∈ R. Hence S is integral over

R, and therefore S ⊂ R̂. Since {X, X3Y 3, X5Y 10} ⊂ R, we obtain Y = X4(X3Y 3)−3(X5Y 10) ∈ q(R)
and therefore q(R) = K[X,Y ]. Since XY n ∈ S for all n ∈ N0, it follows that K[X,Y ] ⊂ Ŝ. On the
other hand, K[X,Y ] is factorial, hence a Krull domain and therefore completely integrally closed. Thus
we obtain Ŝ ⊂ K̂[X,Y ] = K[X,Y ], and it remains to prove that R̂ ⊂ S. We show the following two
assertions :

A. K[X,Y ] = S +K[Y ].

B. K[Y ] ∩ R̂ = K.

Suppose that A and B hold, and let f ∈ R̂ ⊂ K[X,Y ]. By A we have f = g + h, where g ∈ S and
h ∈ K[Y ]. Since S ⊂ R̂, it follows that h = f − g ∈ K[Y ] ∩ R̂ = K and therefore f = g + h ∈ S.

Proof of A. It suffices to prove that XiY j ∈ S +K[Y ] for all i, j ∈ N0. This is obvious for i = 0,
and if i ≥ 1, then XiY j = Xi−1(XY j) ∈ S, since X ∈ S. �[A.]

Proof of B. Assume to the contrary, that there is some f ∈ K[Y ] ∩ R̂ such that deg(f) = n ≥ 1,
and let a ∈ K× be the leading coefficient of f . Then there exists some g ∈ R• such that gfk ∈ R for
all k ∈ N. Suppose that g = (bX l + h1)Y r + g0, where l, r ∈ N0, b ∈ K×, h1 ∈ K[X], deg(h1) < l,
g0 ∈ K[X,Y ] and degY (g0) < r. Let k ∈ N be such that

r + nk > l
l∑

i=0

i(2i+ 1) .

Then gfk = bakX lY r+nk + gk, where gk ∈ K[X,Y ] and degY (gk) < r+nk. A K-basis of R is given by
the set of all products of the form

N∏
ν=0

X2sν+1Y sν(2sν+1) , where N ∈ N0 and s0, . . . , sN ∈ N0 .
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Hence there exist some N ∈ N and s0, . . . , sN ∈ N0 such that

X lY r+nk =
N∏

ν=0

X2sν+1Y sν(2sν+1) .

For i ∈ N0, we define ri = |{ν ∈ [0, N ] | sν = i }|, and then we obtain

l =
N∑

ν=0

(2sν + 1) =
∑
i≥0

ri(2i+ 1) and r + nk =
N∑

ν=0

sν(2sν + 1) =
∑
i≥0

rii(2i+ 1) .

Hence it follows that ri ≤ l for all i ≥ 0, and

r + nk ≤ l
∑
i≥0

i(2i+ 1) < r + nl , a contradiction. �

5.3. Overmonoids of Mori monoids

Theorem 5.3.1. Let (Dλ)λ∈Λ be a family of monoids such that D ⊂ Dλ ⊂ K for all λ ∈ Λ,

D′ =
⋂
λ∈Λ

Dλ ,

and assume that, for every a ∈ D•, the set {λ ∈ Λ | a /∈ D×
λ } is finite.

1. If T ⊂ D• is a multiplicatively closed subset, then

T−1D′ =
⋂
λ∈Λ

T−1Dλ .

2. If (Dλ)λ∈Λ is a family of Mori monoids, then D′ is a Mori monoid.

Proof. 1. Obviously, T−1D′ ⊂ T−1Dλ for all λ ∈ Λ. Thus suppose that

x ∈
⋂
λ∈Λ

T−1Dλ , say x = a−1b , where a ∈ D• and b ∈ D .

The set ∆ = {λ ∈ Λ | a /∈ D×
λ } is finite, and if λ ∈ Λ \∆, then x ∈ Dλ. For each λ ∈ ∆, there exist

aλ ∈ Dλ and tλ ∈ T such that x = t−1
λ aλ, and we set

t =
∏
λ∈∆

tλ .

Then it follows that t ∈ T , tx ∈ D′ and x = t−1(tx) ∈ T−1D′.
2. For every subset X ⊂ D′, we set

X ′ =
⋂
λ∈Λ

Xv(Dλ) , and we assert that X ⊂ X ′ ⊂ Xv(D′).

Obviously, X ⊂ X ′, and if c ∈ K is such that X ⊂ D′c, then Xv(Dλ) ⊂ D′
v(Dλ)c ⊂ Dλc for all λ ∈ Λ,

and therefore X ′ ⊂ D′c. Hence it follows that

X ′ ⊂
⋂

c∈K
X⊂D′c

D′c = Xv(D′) .

We prove that for every subset X ⊂ D′ there exists some E ∈ Pf(X) such that X ⊂ Ev(D′). Thus let
X ⊂ D′. We may assume that X• 6= ∅, and we fix some a ∈ X•. Then the set ∆ = {λ ∈ Λ | a /∈ D×

λ } is
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finite, and for every λ ∈ ∆, there is some Eλ ∈ Pf(X) such that a ∈ Eλ and Xv(Dλ) = (Eλ)v(Dλ). Now
we consider the set

E =
⋃

λ∈∆

Eλ ∈ Pf(X) .

If λ ∈ ∆, then Ev(Dλ) ⊃ (Eλ)v(Dλ) = Xv(Dλ), and if λ ∈ Λ \ ∆, then Ev(Dλ) = Dλ = Xv(Dλ) = Dλ.
Hence we obtain

Ev(D′) ⊃ E′ =
⋂
λ∈Λ

Ev(Dλ) ⊃
⋂
λ∈Λ

Xv(Dλ) = X ′ ⊃ X . �

Definition 5.3.2. Let D be a Mori monoid. We define

S(D) = {P ∈ v- max(D) | P strong } and R(D) = {P ∈ v- max(D) | P not strong } ,

D̃ =
⋂

P∈R(D)

DP ∩
⋂

P∈S(D)

(DP :PP ) , ṽ = v(D̃) and t̃ = t(D̃) .

If P ∈ v-max(D), then Theorem 5.1.1.2 implies that P ∈ R(D) if and only if DP is a dv-monoid, and
P ∈ S(D) if and only if DP is not a dv-monoid. In particular, Theorem 5.2.5 implies that D is a Krull
monoid if and only if S(D) = ∅.

Theorem 5.3.3. Let D be a Mori monoid.
1. D̃ ∈Mt(K) is a Mori monoid, and D̃ ⊂ clt(D) ⊂ D̂.

2. If Q ∈ S(D), then D̃Q = (DQ :QQ) = (QQ :QQ).

3. If R ∈ ṽ-spec(D̃), then R ∩D ∈ v-spec(D), and if R is strong, then R ∩D is strong, too.

Proof. 1. If P ∈ S(D), then (DP :PP ) = (D :P )P = (P :P )P ⊂ D is an overmonoid, and therefore
D̃ ⊃ D is an overmonoid. If P ∈ v-max(D), then (DP )t = DP ∈ Mt(K) by Theorem 2.5.4, hence
(DP :PP ) ∈ Mt(K), and therefore it follows that D̃ ∈ Mt(K). By Theorem 2.6.6 it follows that DP

is a Mori monoid for all P ∈ R(D), and that (DP :PP ) = (P :P )P is a Mori monoid for all P ∈ S(D). If
a ∈ D•, then the set {P ∈ v-spec(D) | a ∈ P} is finite by Theorem 3.2.7.2. If P ∈ R(D) and a /∈ P ,
then a ∈ D×

P . If P ∈ S(D) and a /∈ P ; then a−1 ∈ (P :P )P = (DP :PP ), and therefore a ∈ (DP :PP )×.
By Theorem 5.3.1.2 it follows that D̃ is a Mori monoid.

If P ∈ S(D), then (DP :PP ) = (D :P )P = (P :P )P ⊂ clt(D)P , and therefore

D̃ ⊂
⋂

P∈v- max(D)

clt(D)P = clt(D) ⊂ D̂ .

2. Assume that Q ∈ S(D). If P ∈ v-max(D) and P 6= Q, then (D :Q) ⊂ DP by Theorem 1.3.9.1,
and therefore (DQ :QQ) = (D :Q)Q ⊂ (DP )Q ⊂ (DP :PP )Q. If P ∈ R(D), then DP is a dv-monoid, and
since P 6⊂ Q, Theorem 1.3.9.2 implies that DP ( (DP )Q. By Theorem 3.4.8, DP is primary, and by
Theorem 3.4.6 we obtain (DP )Q = K. Collecting these arguments, we obtain, using Theorem 5.3.1.1,

D̃Q =
⋂

P∈R(D)

(DP )Q ∩
⋂

P∈S(D)

(DP :PP )Q =
⋂

P∈S(D)
P 6=Q

(DP :PP )Q ∩ (DQ :QQ) = (DQ :QQ) .

Finally, (DQ :QQ) = (QQ :QQ), since QQ is strong in DQ.

3. By Theorem 2.5.2.4, t[D̃] is an ideal system of D̃, and therefore t ≤ t[D̃] ≤ t̃. If R ∈ ṽ-spec(D̃),
then (R∩D)v = (R∩D)t ⊂ (R∩D)t̃ ⊂ Rt̃ = R, hence (R∩D)v ⊂ R∩D and therefore R∩D ∈ v-spec(D).

If R ∩ D is not strong, then DR∩D is a dv-monoid, and since DR∩D ⊂ D̃R ( K, it follows that
D̃R = DR∩D. Hence R is not strong. �
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Theorem 5.3.4. Let D be a Mori monoid and P ∈ v-spec(D) \ S(D). Then there exists a unique
P̃ ∈ ṽ-spec(D̃) such that P̃ ∩D = P , and the following assertions hold :

• DP = D̃P̃ .

• P is strong if and only if P̃ is strong.

• If P ∈ R(D), then P̃ ∈ R(D̃).

• If I ∈ Iv(D), Ĩ ∈ Iṽ(D̃) and Ĩ ∩D = I ⊂ P , then Ĩ ⊂ P̃ , and ĨP̃ = IP .

Proof. We assume first that all statements of the Theorem except the equality ĨP̃ = IP in in the
last assertion hold, and we show how this equality follows. Since DP = D̃P̃ , we obtain P̃P̃ = PP ⊂ P̃P ,
and since D \ P ⊂ D̃ \ P̃ , it follows that P̃P ⊂ P̃P̃ and therefore P̃P = PP . Let now I ∈ Iv(D) and
Ĩ ∈ Iṽ(D̃) be such that Ĩ ∩D = I ⊂ P and Ĩ ⊂ P̃ . Then P ∩ Ĩ = I, and ĨP̃ = ĨD̃P̃ = ĨDP = ĨP =
P̃P ∩ ĨP = PP ∩ ĨP = (P ∩ Ĩ)P = IP .

For the main part of the proof we distinguish two cases. Since P ∈ v-spec(D) \ S(D), it follows that
either P ∈ R(D), or that P is not v-maximal. In this second case, there is some M ∈ v-max(D) such
that P ( M , and then necessarily M ∈ S(D).

CASE 1 : P ∈ R(D).
In this case, DP is a dv-monoid, D̃ ⊂ DP , and we set P̃ = PP ∩ D̃. Then P̃ ⊂ D̃ is a prime ideal,

and P̃ ∩ D = PP ∩ D = P . Suppose now that P ′ ⊂ D̃ is another prime ideal satisfying P ′ ∩ D = P .
Then DP ⊂ D̃P ′ ( K, hence DP = D̃P ′ , and PP = P ′P ′ is a principal ideal. Therefore it follows that
P̃ = PP ∩ D̃ = P ′P ′ ∩ D̃ = P ′ ∈ ṽ-spec(D̃) by Theorem 2.6.6.2 (c). Since D̃P̃ = DP is a dv-monoid, P̃
is not strong, and we assert that P̃ ∈ ṽ-max(D̃). Indeed, if P ∈ ṽ-spec(D̃) is such that P̃ ⊂ P , then
P = P̃ ∩D ⊂ P ∩D, and since P ∩D ∈ v-spec(D) by Theorem 5.3.3.3, it follows that P ∩D = P and
therefore P̃ = P ∈ ṽ-max(D̃) by the uniqueness of P̃ .

Assume finally that I ∈ Iv(D), Ĩ ∈ Iṽ(D̃) and Ĩ ∩D = I ⊂ P . We must prove that Ĩ ⊂ P̃ , and we
may assume that Ĩ• 6= ∅. Then Theorem 3.2.7.2 implies that {P ′ ∈ ṽ-max(D̃) | Ĩ ⊂ P ′ } = {P ′1, . . . , P ′n}
for some n ∈ N. For i ∈ [1, n], we set Pi = P ′i ∩D, and then we obtain

P ⊃ I = Ĩ ∩D = Ĩ =
⋂

P ′∈ṽ- max(D̃)

ĨP ′ ∩D = ĨP ′1 ∩ . . . ∩ ĨP ′n ∩D ⊃ IP1 ∩ . . . ∩ IPn ∩D .

Hence there exists some i ∈ [1, n] such that IPi
∩D ⊂ P , and therefore

P ⊃
√
IPi ∩D ⊃

√
IPi ∩D =

√
IPi ∩D =

⋂
Q∈P(IPi

)

Q ∩D .

Hence it follows that Q ∩ D ⊂ P for some Q ∈ P(IPi) ⊂ vPi-spec(DPi), and since Q ∩ D ∈ v-spec(D)
and P ∈ X(D), we obtain P = Q ∩D ⊂ (Pi)Pi

∩D = Pi. As P ∈ v-max(D), we get P = Pi and (by the
uniqueness of P̃ ) P̃ = P ′i ⊃ Ĩ.

CASE 2 : There is some M ∈ S(D) is such that P ( M .
In this case, D̃M = (DM :MM ) = (MM :MM ) by Theorem 5.3.3, and PM ∈ vM -spec(DM ). By

Theorem 5.1.3, applies to the extension DM ⊂ D̃M , there exists a unique P ∗ ∈ ṽM -spec(D̃M ) such that
P ∗ ∩DM = PM , and the following assertions hold :

• (D̃M )P∗ = (DM )PM
.

• If PM ∈ vM -max(DM ), then P ∗ ∈ ṽM -max(D̃M ).

• If J ⊂ DM and J∗ ⊂ D̃M are ideals such that J∗ ∩DM = J ⊂ PM , then J∗ ⊂ P ∗.
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Now we set P̃ = P ∗ ∩ D̃. Then P̃ ∩D = P ∗ ∩DM ∩D = PM ∩D = P , and by the Theorems 2.6.6.2(c)
and 1.3.6.2. it follows that P̃ ∈ ṽ-spec(D̃) and P ∗ = P̃M .

To prove the uniqueness of P̃ , suppose that P ′ ∈ ṽ-spec(D̃) is such that P ′ ∩ D = P . Then
P ′M ∈ ṽM -spec(D̃M )) and P ′M ∩ DM = (P ′ ∩ D)M = PM , hence P ′M = P ∗ (by the uniqueness of P ∗ ),
and P ′ = P ′M ∩ D̃ = P ∗ ∩ D̃ = P̃ .

It remains to prove that P̃ has the asserted properties. By Theorem 1.3.8 we obtain

DP = (DM )PM
= (D̃M )P∗ = (D̃M )P̃M

= D̃P̃ .

Hence DP is a dv-monoid if and only if D̃P̃ is a dv-monoid, and therefore P is strong if and only if P̃
is strong. If P ∈ R(D) ⊂ v-max(D), then PM ∈ vM -max(DM ), hence P ∗ = P̃M ∈ ṽM -max(D̃M ), and
therefore P̃ ∈ ṽ-max(D̃). Since P is not strong, it follows that P̃ ∈ R(D̃). Assume finally that I ∈ Iv(D),
Ĩ ∈ Iṽ(D̃) and Ĩ ∩ D = I ⊂ P . Then IM ∈ DM , ĨM ⊂ D̃M and ĨM ∩ D̃M = (Ĩ ∩ D)M = IM ⊂ PM .
Hence it follows that ĨM ⊂ P ∗ = P̃M , and Ĩ ⊂ ĨM ∩ D̃ ⊂ P̃M ∩ D̃ = P̃ . �

Theorem 5.3.5. Let D be a Mori monoid, I ∈ Iv(D)•, and suppose that there is no P ∈ S(D) such
that I ⊂ P . Then there exists a unique Ĩ ∈ Iṽ(D̃) such that Ĩ ∩D = I, and there is no P ∗ ∈ S(D̃) such
that P ∗ ⊃ Ĩ.

Proof. By Theorem 3.2.7.2, {P ∈ v-max(D) | I ⊂ P } = {P1, . . . , Pn} for some n ∈ N. For
i ∈ [1, n] we have Pi ∈ R(D), and by Theorem 5.3.4 there exists some P̃i ∈ R(D̃) such that P̃i∩D = Pi,
DPi = D̃P̃i

and, if I ′ ∈ Iṽ(D̃) is such that I ′ ∩D = I, then I ′ ⊂ P̃i and I ′
P̃i

= IPi .

We set Ĩ = IP1 ∩ . . .∩ IPn ∩ D̃. For i ∈ [1, n], DPi = D̃P̃i
is a dv-monoid, hence IPi = IDPi = ID̃P̃i

is a principal ideal, and therefore IPi
∩ D̃ ∈ ṽ-spec(D̃). Hence it follows that Ĩ ∈ Iṽ(D̃) and Ĩ ∩D = I,

since
I =

⋂
P∈v- max(D)

IP = IP1 ∩ . . . ∩ IPn
∩D

If P ∗ ∈ ṽ-max(D̃) is such that P ∗ ⊃ Ĩ, then P ∗ ∩ D ∈ v-spec(D) and P ∗ ∩ D ⊃ I. Hence there
exists some i ∈ [1, n] such that P ∗ ∩D ⊂ Pi, and as Pi ∈ X(D), we obtain P ∗ ∩D = Pi and therefore
P ∗ = P̃i ∈ R(D̃).

It remains to prove the uniqueness of Ĩ. Let I ′ ∈ Iṽ(D̃) be such that I ′∩D = I. Then I ′
P̃i

= IPi
= ĨP̃i

for all i ∈ [1, n], and it suffices to prove that {P̃1, . . . , P̃n} = {P ′ ∈ ṽ-max(D̃) | P ′ ⊃ I ′ }. Indeed, once
this is done, we obtain

I ′ =
⋂

P ′∈ṽ- max(D̃)

I ′P ′ = I ′
P̃1
∩ . . . ∩ I ′

P̃n
∩ D̃ = IP1 ∩ . . . ∩ IPn

∩ D̃ = Ĩ .

For i ∈ [1, n], we have P̃i = (P̃i)P̃i
∩ D̃ ⊃ I ′

P̃i
∩ D̃ ⊃ I ′. Conversely, assume that P ′ ∈ ṽ-max(D̃) is such

that P ′ ⊃ I ′. Then P ′ ∩D ∈ v-spec(D), P ′ ∩D ⊃ I ′ ∩D = I, and therefore there exists some i ∈ [1, n]
such that P ′ ∩D ⊂ Pi. Since Pi ∈ X(D), we obtain P ′ ∩D = Pi and P ′ = P̃i. �

5.4. Seminormal Mori monoids

Theorem und Definition 5.4.1.
1. The following assertions are equivalent :

(a) If x ∈ K and {x2, x3} ⊂ D, then x ∈ D.
(b) If x ∈ K and xn ∈ D for all sufficiently large n ∈ N, then x ∈ D.
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If D satisfies these conditions, then it is called seminormal.
If D is root-closed, then D is seminormal.

2. Let D be seminormal and T ⊂ D• a multiplicatively closed subset. T hen T−1D is seminormal.
3. Let (Dλ)λ∈Λ be a family of seminormal monoids such that Dλ ⊂ K for all λ ∈ Λ and

D =
⋂
λ∈Λ

Dλ .

Then D is seminormal.
4. Let D be seminormal, x, y ∈ D• and k ∈ N such that xk(xy−1)n ∈ D for all n ∈ N. Then it

follows that already x(xy−1)n ∈ D for all n ∈ N.

Proof. 1. (a) ⇒ (b) Let x ∈ K, and let m ∈ N0 be minimal such that xn ∈ D for all n > m.
We must prove that m = 0, and we assume to the contrary that m ≥ 1. Then xm /∈ D, and since
3m > 2m > m, we obtain {(xm)2, (xm)3} ⊂ D, a contradiction.

(b) ⇒ (a) If x ∈ K is such that {x2, x3} ⊂ D, then xk ∈ D for all k ≥ 2, and thus also x ∈ D.
2. Let x ∈ K be such that {x2, x3} ⊂ T−1D. Then there exist a, b ∈ D and t ∈ T such that

x2 = t−1a and x3 = t−1b, and therefore (tx)2 = ta ∈ D and (tx)3 = t2a ∈ D. Since D is seminormal, it
follows that tx ∈ D and x = t−1(tx) ∈ T−1D.

3. Let x ∈ K be such that {x2, x3} ⊂ D. For all λ ∈ Λ, this implies {x2, x3} ⊂ Dλ, hence x ∈ Dλ,
and therefore we obtain x ∈ D.

4. If n ∈ N, then it follows that [x(xy−1)n ]j = xk(xy−1)nj xj−k ∈ D for all j ≥ k, which implies
x(xy−1)n ∈ D. �

Theorem 5.4.2. Let D be a seminormal Mori monoid.
1. If x, y ∈ D•, then xy−1 ∈ D̂ if and only if x(xy−1)n ∈ D for all n ∈ N.

2. D̂ is completely integrally closed.

Proof. 1. By definition, if x, y ∈ D• and x(xy−1)n ∈ D for all n ∈ N, then xy−1 ∈ D̂.
Thus assume that x, y ∈ D•, xy−1 ∈ D̂, and let c ∈ D• be such that c(xy−1)n ∈ D for all n ∈ N.

For n ∈ N, we consider the ideal

In =
n⋂

i=0

(
(x−1y)iD ∩D

)
.

By definition, In ∈ Iv(D), In ⊃ In+1 and c ∈ In for all n ∈ N. As D is a Mori monoid, there exists
some k ∈ N such that Ik = Ik+n for all n ∈ N, and since yk = (x−1y)kxk ∈ Ik, we obtain yk ∈ Ik+n for
all n ∈ N. Hence for every n ∈ N there exists some bn ∈ D such that yk = (x−1y)k+nbn and therefore
xk(xy−1)n = xkbn ∈ D. Consequently, x(xy−1)n ∈ D for all n ∈ N holds by Theorem 5.4.1.4.

2. Suppose that u = y−1x ∈ ̂̂
D, where x, y ∈ D•, and let d ∈ D̂• be such that dun = dxn(yn)−1 ∈ D̂

for all n ∈ N. We may assume that d ∈ D•. By 1. it follows that dxn [ dxny−n ]m ∈ D for all m, n ∈ N.
For m ∈ N and n ≥ m + 1, this implies that [ dx(y−1x)m ]n = dxn(dxny−n)mdn−m−1 ∈ D, hence
dx(y−1x)m ∈ D, since D is seminormal and therefore u = y−1x ∈ D̂. Hence D̂ is completely integrally
closed. �

Theorem 5.4.3. Let D be a seminormal Mori domain.
1. Let I ⊂ D be a strong ideal and C = (D : I) = (I : I). If I is a radical ideal of C, then C is

seminormal.
2. D̃ is seminormal, and if P ∈ S(D), then PD̃P = PP is a radical ideal of D̃P .
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3. If Q ∈ S(D̃), then Q ∩ D /∈ v-max(D). In particular, the assignment Q 7→ Q ∩ D defines a
bijective map

{Q ∈ ṽ-spec(D̃) | Q strong } → {P ∈ v-spec(D) , P strong, P /∈ S(D) } .

Proof. 1. By Theorem 5.1.3.1 C is a Mori monoid. If v∗ = v(C), then

C =
⋂

P∈v∗- max(C)

CP ,

and therefore it suffices to prove that CP is seminormal for all P ∈ v∗-max(C). Suppose that P ∈ v∗-
max(C), and consider the following two cases.

CASE 1 : I 6⊂ P . Theorem 5.1.3 implies that CP = DD∩P , and the latter monoid is seminormal by
Theorem 5.4.1.2.

CASE 2 : I ⊂ P . By Theorem 5.1.2 we obtain (P :P ) = C, and since P ∈ v∗-max(C), it follows
that (C : P ) ) C. Hence P is not strong, and by Theorem 5.1.1.2 CP is a dv-monoid. Hence CP is
root-closed and therefore seminormal.

2. If P ∈ R(D), then DP is a dv-monoid, hence it is root-closed and therefore seminormal.
Assume now that P ∈ S(D). Then D̃P = (PP : PP ) by Theorem 5.3.3, and therefore we get

PD̃P = PP D̃P = PP (PP : PP ) = PP . We show that PP is a radical ideal of (PP : PP ). Thus let
x ∈ (PP :PP ) be in the radical of PP . Then xn ∈ PP ⊂ DP for all sufficiently large n ∈ N, and as DP

is seminormal, it follows that x ∈ DP . Hence x ∈ PP , since PP ⊂ DP is a prime ideal. By 1. it follows
that D̃P is seminormal.

Now D̃ is seminormal, since

D̃ =
⋂

P∈R(D)

DP ∩
⋂

P∈S(D)

(DP :PP ) =
⋂

P∈R(D)

DP ∩
⋂

P∈S(D)

D̃P .

3. Suppose to the contrary that Q ∈ S(D̃) and P = Q∩D ∈ v-max(D). Then Theorem 5.3.3 yields
P ∈ S(D) and D̃P = (DP :PP ) = (PP :PP ). By 2., PP is a radical ideal of D̃P , and since PP ⊂ QP ,
Theorem 5.1.2 implies (QP :QP ) = D̃P . On the other hand, QP is strong, hence (DP :QP ) = (QP :
DP ) = D̃P and QP = (QP )ṽP

= D̃P , a contradiction.
In particular, if Q ∈ ṽ-spec(D̃) is strong, then the arguments above together with Theorem 5.3.3

show that Q∩P ∈ v-spec(D) \ S(D) is strong. Conversely, if P ∈ v-spec(D) \ S(D), then Theorem 5.3.4
shows that there is a unique strong Q ∈ ṽ-spec(D̃) such that Q ∩D = P . �

Theorem 5.4.4. Let D be a seminormal Mori monoid, and let the sequence (Di)i≥0 of Mori monoids
be recursively defined by D0 = D and Di+1 = D̃i for all i ≥ 0.

If k ∈ N and Q ∈ S(Dk), then there exist strong prime ideals P0, . . . , Pk ∈ v-spec(D) such that
P0 = Q ∩D ( P1 ( . . . ( Pk.

Proof. 1. We use induction on k.
k = 1 : If Q ∈ S(D̃), then P0 = Q ∩D ∈ v-spec(D) is strong and P0 /∈ S(D) by Theorem 5.4.3.3.

Hence there exists some P1 ∈ v-spec(D) such that P0 ( P1, and P1 is strong, since P1 /∈ X(D).

k ≥ 2 , k − 1 → k : Note that D1 = D̃. By the induction hypothesis, there exist strong prime
ideals P ′0, . . . , P

′
k−1 ∈ ṽ-spec(D̃) such that P ′0 = Q ∩ D̃ ( P ′1 ( . . . ( P ′k−1, and we set Pi = P ′i ∩ D

for all i ∈ [0, k − 1]. By Theorem 5.4.3.3 it follows that P0 = Q ∩ D ( P1 ( . . . ( Pk−1, and
Pi ∈ v-spec(D) \ S(D) is strong for all i ∈ [0, k − 1]. Hence there exists some Pk ∈ v-max(D) such that
Pk−1 ( Pk, and clearly Pk is strong. �
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Theorem 5.4.5. Let D be a seminormal Mori monoids, let the sequence (Di)i≥0 of Mori monoids
be recursively defined by D0 = D and Di+1 = D̃i for all i ≥ 0. Then

D̂ =
⋃
i≥0

Di is a Krull monoid.

Proof. (Di)i≥0 is an ascending sequence of Mori monoids. Hence

D∗ =
⋃
i≥0

Di ⊂ K

is a monoid. We set v∗ = v(D∗), t∗ = t(D∗) and vi = v(Di), ti = t(Di), and we obtain t ≤ ti ≤ ti+1 ≤ t∗
for all i ≥ 0. In particular, if J ∈ Iv∗(D∗) or if J ∈ Ivi+1(Di+1), then J ∩ Di ∈ Ivi(Di). It is now
sufficient to prove the following three assertions.

I. D∗ ⊂ D̂.
II. D∗ is a Mori monoid.

III. S(D∗) = ∅.
Indeed, by II and III it follows that D∗ is a Mori monoid satisfying v∗-max(D∗) = R(D∗). Hence
D∗

P is a dv-monoid for all P ∈ v∗-max(D∗), and therefore D∗ is a Krull monoid by Theorem 5.2.5. In
particular, D∗ is completely integrally closed, hence D̂ ⊂ D̂∗ = D∗, and therefore D∗ = D̂ by I.

I. It clearly suffices to prove that Di ⊂ D̂ for all i ≥ 0, and we proceed by induction on i. For i = 0,
there is nothing to do. Thus suppose that i ≥ 0 and Di ⊂ D̂. Since D̂ is completely integrally closed by
Theorem 5.4.2, Theorem 5.3.3 implies that Di+1 ⊂ D̂i ⊂ D̂.

II. Let (In)n≥0 be an ascending chain in Iv∗(D∗). For i, n ≥ 0, we set In,i = In ∩ Dj . For every
i ≥ 0, (In,i)n≥0 is an ascending sequence in Ivi

(Di), and it terminates since Di is a Mori domain. Let
ni ≥ 0 be minimal such that In,i = In+1,i for all n ≥ ni. Then the sequence (ni)i≥0 is monotonically
increasing, and since

In =
⋃
i≥0

In,i for all n ≥ 0 ,

it suffices to prove that there exists some k ≥ 0 such that ni+1 = ni for all i ≥ k. Indeed, then it follows
that In = In+1 for all n ≥ nk. Replacing the sequence (In)n≥0 by a suitable end piece, we may assume
that I = I0,0 6= {0} and n0 = 0. Then it follows that In,i ∩D = I for all n, i ≥ 0.

Let k ∈ N be such that there is no chain I ⊂ P0 ( P1 ( . . . ( Pk, where P0, . . . , Pk ∈ v-spec(D),
and suppose that there is some i ≥ k such that ni+1 > ni. Then there exists some n ≥ ni such that
In,i+1 ( In+1,i+1, and since In,i+1∩Di = In+1,i+1∩Di = In,i, Theorem 5.3.5 implies that there is some
P ∈ S(Di) such that In,i ⊂ P . By Theorem 5.4.4 there exists a chain P ∩D = P0 ( P1 ( . . . ( Pi in
v-spec(D), and since I = In,i ∩D ⊂ P0 and i ≥ k, this contradicts our choice of k.

III. Assume to the contrary that there is some P ∗ ∈ S(D∗). For i ≥ 0, set Pi = P ∗∩Di ∈ vi-spec(Di).
Then (Di)Pi ⊂ D∗

P ( K, P •i 6= ∅, and D∗
P is not a dv-monoid. Hence (Di)Pi is not a dv-monoid, and

therefore Pi is strong. If Qi ∈ vi-max(Di) is such that Pi ⊂ Qi, then Qi ∈ S(Di), P0 ⊂ Qi ∩D, and
Theorem 5.4.4 implies that there is a chain P0 ⊂ P1 ( . . . ( Pi in v-spec(D). As i ≥ 0 is arbitrary, this
contradicts Theorem 3.2.7.2. �





CHAPTER 6

Ideal theory of polynomial rings

6.1. The content and the Dedekind-Mertens Lemma

Throughout this Section, let D be a ring, D[X] a polynomial ring, d = d(D) and v = v(D).

Definition 6.1.1. Let R ⊃ D be an overring. For D-submodules M, N ⊂ R we write (as usual in
ring theory) MN instead of D(MN).

For a polynomial g = b0 + b1X + . . .+ bmX
m ∈ R[X], the D-module

cD(g) = D(b0, . . . , bm) =
m∑

j=0

Dbj ⊂ R

is called the D-content of g. If J ⊂ R is a D-submodule, then g ∈ J [X] if and only if cD(g) ⊂ J .
Obviously, cD(af) = acD(f) and cD(fg) ⊂ cD(f)cD(g) for all a ∈ R and f, g ∈ R[X], but equality
need not hold [ indeed, if D = R = Z[2i] and f = 2i + 2X, then f2 = −4 + 8iX + 4X2, hence
c(f) = (2i, 2), c(f2) = (4), and c(f)2 = (4, 4i) 6= c(f2) ].
The Dedekind-Mertens number of a non-zero polynomial g ∈ R[X] with respect to D is defined by

µD(g) = inf
{
k ∈ N | cD(f)kcD(g) = cD(f)k−1cD(fg) for all f ∈ R[X]

}
∈ N ∪ {∞} .

If f, g ∈ R[X], then cD(fg) ≤ cD(f) cD(g) implies cD(f)k−1cD(fg) ≤ cD(f)kcD(g) for all k ∈ N, and
therefore

µD(g) = inf
{
k ∈ N | cD(f)kcD(g) ≤ cD(f)k−1cD(fg) for all f ∈ R[X]

}
∈ N ∪ {∞} .

We shall see in Theorem 6.1.2 that µD(g) only depends on theD-module cD(g) and not on the embedding
ring R.
The classical Dedekind-Mertens Lemma asserts that µD(g) ≤ degD(g) + 1 for all g ∈ D[X]•. We shall
prove a more general statement in Theorem 6.1.2.

Theorem 6.1.2. Let R ⊃ D be an overring, g ∈ R[X] and δ(g) the number of non-zero coefficients
of g. For M ∈ max(D), we denote by ρM (g) the minimal number of generators of the DM -module
cD(g)M , that is, ρM (g) = dimD/M (cD(g)M/McD(g)M ). Then

µD(g) ≤ max{ρM (g) |M ∈ max(D)} ≤ δ(g) ≤ deg(g) + 1 .

For the proof we need the following variant of Nakayama’s Lemma.

Lemma 6.1.3. Let D be local with maximal ideal M .
1. Let A, B be D-modules such that A ⊂ B and B/A is finitely generated. If B = A+MB, then
B = A.

2. Let L be a D-module and A, B ⊂ L submodules. If A is finitely generated and A ⊂ B +MA,
then A ⊂ B.

97
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Proof. 1. This is the classical form of Nakayama’s Lemma.
2. If A ⊂ B+MA, then A+B ⊂ B+MA ⊂ B+M(A+B) ⊂ A+B implies A+B = B+M(A+B),

and by 1. we obtain B = A+B ⊃ A. �

Proof of Theorem 6.1.2. For f ∈ R[X], we set Cf = cD(f). If f, g ∈ R[X], then we obviously
have CfCg ⊂ Cfg and therefore Ck

fCg ⊂ Ck−1
f Cfg for all k ∈ N.

It suffices to prove the result ifD is local with maximal idealM . Indeed, suppose that this is done. Let
g ∈ R[X] and k ∈ N be such that k ≥ ρM (g) for all M ∈ max(D). We must prove that Ck

fCg = Ck−1
f Cfg

for all f ∈ R[X]. For f ∈ R[X] and M ∈ max(D), let fM ∈ RM [X] be the image of f in RM [X]. Then
cDM

(fM ) = (Cf )M , and the local result implies cDM
(fM )kcDM

(gM ) = cDM
(fM )k−1cDM

(fMgM ), that is,
(Ck

fCg)M = Ck
fM
CgM

= Ck−1
fM

CfM gM
= (Ck−1

f Cfg)M . Since this holds for all M ∈ max(D), the assertion
follows.

Assume now that D is local, M = D \ D×, R ⊃ D is an overring, and for g ∈ R[X], we set
ρ(g) = ρM (g). We prove first :

A. If g, g1 ∈ R[X] and Cg−g1 ⊂MCg, then Cg = Cg1 and µD(g) = µD(g1).

Proof of A. Since g = g1 + (g − g1), we obtain Cg ⊂ Cg1 + Cg−g1 ⊂ Cg1 + MCg and therefore
Cg ⊂ Cg1 by Lemma 6.1.3. But Cg1−g = Cg−g1 ⊂ MCg ⊂ MCg1 , hence we obtain also Cg1 ⊂ Cg and
therefore Cg = Cg1 .

By symmetry, it is now sufficient to prove that µD(g) ≤ µD(g1), and for this we may assume that
k = µD(g1) <∞. If f ∈ R[X], then

Ck
fCg = Ck

fCg1 = Ck−1
f Cfg1 = Ck−1

f Cfg+f(g1−g) ⊂ Ck−1
f (Cfg + Cf(g1−g))

⊂ Ck−1
f (Cfg + CfCg1−g) = Ck−1

f Cfg +MCk
fCg .

By Lemma 6.1.3 we obtain Ck
fCg ⊂ Ck−1

f Cfg. �[A.]

We prove Theorem 6.1.2 by induction on ρ(g). If g = 0, then µD(g) = 0. Thus we may assume that

g =
m∑

j=0

bjX
j , where m ∈ N0 , b0, . . . , bm ∈ R and bm 6= 0 .

ρ(g) = 1 : Then Cg = Db for some b ∈ R. For j ∈ [0,m], there exists some dj ∈ D such that
bj = djb, and we assert that there is some l ∈ [0,m] such that dj /∈ M (indeed, otherwise we have
Cg ⊂ MCg and consequently Cg = 0 by Lemma 6.1.3). Let l ∈ [0,m] be such that dl /∈ M and dj ∈ M
for all j ∈ [0, l − 1]. We must prove that CfCg ⊂ Cfg for all f ∈ R[X]. Thus suppose that

f =
n∑

i=0

aiX
i , where n ∈ N0 , a0, . . . , an ∈ R and ck =

k∑
i=0

ak−idib .

Then CfCg = Cfb = D(a0b, . . . , anb). If ai = 0 for all i > n and bj = 0 for all j > m, then

fg =
m+n∑
k=0

ckX
k , where ck =

k∑
i=0

ak−idib for all k ∈ [0,m+ n] .

It suffices to prove that aib ∈ Cfg +MCfCg for all i ∈ [0, n]. Indeed, once this is done, it follows that
CfCg ⊂ Cfg +MCfCg and therefore CfCg ⊂ Cfg by Lemma 6.1.3.
We proceed by induction on i. Let i ∈ [0, n] and suppose that aνb ∈ Cfg +MCfCg for all ν ∈ [0, i− 1].
Then

ci+l = aidlb +
l−1∑
ν=0

ai+l−νdνb +
l+i∑

ν=l+1

ai+l−νdνb ∈ Cfg .



6.1. THE CONTENT AND THE DEDEKIND-MERTENS LEMMA 99

If ν ∈ [0, l − 1], then dν ∈ M and ai+l−νdνb ∈ MCfCg. If ν ∈ [l + 1, l + i], then i + l − ν ∈ [0, i − 1]
and ai+l−νdνb ∈ D(Cfg +MCfCg) = Cfg +MCfCg by the induction hypothesis. Hence it follows that
aidlb ∈ Cfg +MCfCg, and since dl ∈ D \M = D×, we obtain aib ∈ Cfg +MCfCg.

ρ(g) = k ≥ 2 , k − 1 → k : If

g1 =
m∑

j=0
bj /∈MCg

bjX
j , then Cg−g1 ⊂MCg , hence Cg = Cg1 and µD(g) = µD(g1) .

Therefore we may assume that g = g1. Since bm /∈ MCg, there exists a subset L ⊂ [0,m − 1] such that
|L| = k − 1 and {bm} ∪ {bµ | µ ∈ L} is a minimal generating set of Cg. Then Cg = Db + E, where
E = D({bµ | µ ∈ L}), and for every j ∈ [0,m], there is a representation

bj = λjbm + b′j , where b′j =
∑
µ∈L

λj,µbµ ∈ E ,

such that λj , λj,µ ∈ D for all j ∈ [0,m] and µ ∈ L, λm = 1 and λm,µ = 0 for all µ ∈ L, and if j ∈ L,
then λj,j = 1 and λj = λj,ν = 0 for all ν ∈ L \ {j}. We set

g0 =
m∑

j=0

djbX
j = bmX

m + . . . and g1 =
m−1∑
j=0

b′jX
j .

Then g = g0 + g1, Cg0 = bmD, Cg1 = E, ρ(g0) = 1, and ρ(g1) = k − 1. By the induction hypothesis
and since ρ(g0) = 1, we have Ck−1

f Cg1 = Ck−2
f Cfg1 and Cfg0 = CfCg0 = bmCf for all f ∈ R[X], and

we must prove that Ck
fCg ⊂ Ck−1

f Cfg for all f ∈ R[X]. We proceed by induction on deg(f). We may
assume that f 6= 0,

f =
n∑

i=0

aiX
i = anX

n + f1 , where n ∈ N0 , a0, . . . , an ∈ R , an 6= 0 and Ck
f1
Cg ⊂ Ck−1

f1
Cf1g .

Then it follows that anbm ∈ Cfg. We use the induction hypothesis to prove the following assertion.

B. Cfg1 ⊂ Cfg + bmCf1 and Cf1g ⊂ Cfg + anCg1

Proof of B. Since Cfg0 = CanXng0+f1g0 ⊂ CanXng0 + Cf1g0 ⊂ anbmD + Cf1bm ⊂ Cfg + Cf1bm, we
obtain Cfg1 = Cf(g−g0) ⊂ Cfg + Cfg0 ⊂ Cfg + bmCf1 .

In the same way, CanXng = CXn(ang0+ang1) ⊂ Cang0 + Cang1 = anbmD + anCg1 ⊂ Cfg + anCg1 , and
therefore Cf1g = C(f−anXn)g ⊂ Cfg + CanXng ⊂ Cfg + anCg1 . �[B.]

Ck
fCg is the D-module generated by the set A of all elements α = av0

0 · . . . · a
vn−1
n−1 a

vbj ∈ R, where
v0, . . . , vn−1, v ∈ N0, v0 + . . .+ vn−1 + v = k and j ∈ [0,m].

• If v 6= 0 and j ∈ J , then α = av0
0 · . . . · a

vn−1
n−1 a

v−1abdj ∈ Ck−1
f Cfg.

• If v 6= 0 and j /∈ J , then α = av0
0 · . . . · a

vn−1
n−1 a

v−1abj ∈ Ck−1
f aCg1 .

• If v = 0, then α = av0
0 · . . . · a

vn−1
n−1 bj ∈ Ck

f1
Cg ⊂ Ck−1

f1
Cf1g ⊂ Ck−1

f Cf1g ⊂ Ck−1
f (Cfg + anCg1)

(by the induction hypothesis, B, and since Cf1 ⊂ Cf ).

Putting the three cases together, we get

Ck
fCfg ⊂ Ck−1

f Cfg + Ck−1
f anCg1 + Ck−1

f (Cfg + anCg1) = Ck−1
f Cfg + Ck−1

f anCg1 .

Using B and the induction hypothesis, it follows that

Ck−1
f anCg1 ⊂ anC

k−2
f Cfg1 ⊂ anC

k−2
f (Cfg + bmCf ) ⊂ anC

k−2
f Cfg + Ck−1

f anbm ⊂ Ck−1
f Cfg ,

which completes the proof. �
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Corollary 6.1.4. Let R ⊃ D be an overring.
1. For every g ∈ R[X] there exists some m ∈ N such that cD(f)mcD(g) = cD(f)m−1cD(fg) for all
f ∈ R[X].

2. Let f, g ∈ R[X], and suppose that cD(f) is a finitely cancellative D-submodule of R ( that means,
cD(f)M = cD(f)N implies M = N for all finitely generated D-submodules M, N ⊂ R ). Then
cD(fg) = cD(f)cD(g).

3. Let D be a domain, K = q(D) and r a module system on K such that r ≥ d. If f ∈ K[X] and
cD(f)r is r-finitely r-cancellative, then cD(fg)r = [ cD(f)cD(g) ]r for all g ∈ K[X].

Proof. Obvious by Theorem 6.1.2. �

Theorem 6.1.5. Let D be a domain and K = q(D). Then the following assertions are equivalent :
(a) D is integrally closed.
(b) For all f, g ∈ K[X] we have cD(fg)v = [ cD(f)cD(g) ]v.
(c) For all f, g ∈ K[X] we have cD(f)cD(g) ⊂ cD(fg)v.
(d) For all f ∈ K[X] we have fK[X] ∩D[X] = fcD(f)−1[X].

Proof. (a) ⇒ (b) Since D is integrally closed, we have Dda = D, and therefore da is a finitely
cancellative ideal system on D. Hence cD(fg)da = [ cD(f)cD(g) ]da , and since da ≤ v, the assertion follows.

(b) ⇒ (c) Obvious.
(c) ⇒ (d) Let f ∈ K[X]. We must prove that, for all g ∈ K[X], we have fg ∈ D[X] if and only if

g ∈ cD(f)−1[X]. If g ∈ K[X] and fg ∈ D[X], then cD(f)cD(g) ⊂ cD(fg)v ⊂ D, hence cD(g) ⊂ cD(f)−1

and therefore g ∈ cD(f)−1[X]. Conversely, if g ∈ cD(f)−1[X], then cD(g) ⊂ cD(f)−1 and therefore
cD(fg) ⊂ cD(f)cD(g) ⊂ D, which implies fg ∈ D[X].

(d) ⇒ (a) Let u ∈ K be integral overD, and let g ∈ D[X] be a monic polynomials such that g(u) = 0.
Then g = (X − u)h, where h ∈ K[X], and therefore g ∈ (X − u)K[X] ∩ D[X] = (X − u){1, u}−1[X].
Hence h ∈ {1, u}−1[X], which implies that uh ∈ D[X] and thus u ∈ D, since h is monic. �

Theorem 6.1.6. Let D be a domain and K = q(D). Then the following assertions are equivalent :
(a) D is local and integrally closed.
(b) If f ∈ D[X], u ∈ K×, f(u) = 0 and cD(f) is invertible, then u ∈ D or u−1 ∈ D.
(c) If f ∈ D[X] be such that some coefficient of f lies in D× and u ∈ K× is such that f(u) = 0,

then u ∈ D or u−1 ∈ D.

Proof. (a) ⇒ (b) Let f ∈ D[X] and u = b−1a ∈ K×, where a, b ∈ D•, be such that f(u) = 0 and
cD(f) is invertible. Then f = (bX − a)h for some h ∈ K[X], and

cD(f) = cD(f)v ⊃ cD(bX − a)cD(h) = (a, b) cD(h) ⊃ cD(f) .

Hence cD(f) = (a, b) cD(h), and therefore (a, b) is invertible. Since D is local, Theorem 4.1.4 implies
(a, b) = (b) or (a, b) = (a), and therefore u ∈ D or u−1 ∈ D.

(b) ⇒ (c) Let f ∈ D[X] and some coefficient of f lies in D×, then cD(f) = D.
(c) ⇒ (a) Let u ∈ K× be integral over D, and let f = Xn + an−1X

n−1 + . . . + a1X + a0 ∈ D[X]
be a monic polynomial of minimal degree such that f(u) = 0. If u /∈ D, then n ≥ 2, u−1 ∈ D and
un−1 + an−1u

n−2 + . . .+ (a1 + a0u
−1) = 0, which contradicts the minimality of n. Hence D is integrally

closed.
In order to prove that D is local, we take some M ∈ max(D) and prove that D \ M ⊂ D×. If

u ∈ D \M , then M + Du = D, and there exist elements a ∈ M and b ∈ D• such that a + bu = 1. If
a = 0, then u ∈ D× and we are done. Thus suppose that a 6= 0. Then u−1a is a zero of the polynomial
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f = (uX −a)(X − b) = uX2−X +ab ∈ D[X], and therefore either u−1a ∈ D or a−1u ∈ D. If a−1u ∈ D,
then u ∈ aD ⊂ M , a contradiction. If u−1a ∈ D, then a = ud for some d ∈ D, hence 1 = u(d + b) and
u ∈ D×. �

6.2. Nagata rings

Remarks and Definition 6.2.1. Let D be a ring and K = q(D) its total quotient ring.
1. We denote by F(D) = {c−1J | c ∈ D∗ , J C D } the set of all fractional ideals of D. If
I, J ∈ F(D) and a ∈ D, then aI, I + J, IJ ∈ F(D). For I ∈ F(D), we define

I[X] =
{ n∑

i=0

aiX
i
∣∣∣ n ∈ N0 , a0, . . . , an ∈ I

}
⊂ K[X] .

2. Let R ⊃ D be an overring such that R∗ ⊂ D∗, and assume that q(D) ⊂ q(R) . For I ∈ F(D),
we denote by

IR = RI = {x1a1 + . . .+ xnan | n ∈ N , x1, . . . , xn ∈ I, a1, . . . , an ∈ R } ∈ F(R)

the the R-submodule of q(R) generated by I. If I, J ∈ F(D), then (IJ)R = (IR)(JR), and if
I = D(a1, . . . , an) = Da1 + . . .+Dan, then IR = R(a1, . . . , an) = Ra1 + . . .+Ran.

3. For a D[X]-submodule J ⊂ K[X], we call

cD(J) =
∑
f∈J

cD(f) ⊂ K

the content of J . By definition, cD(J) ⊂ K is a D-submodule.
4. Let I C D be an ideal. We identify the rings D[X]/I[X] and (D/I)[X] by means of the

canonical isomorphism. Explicitly, we set∑
i≥0

aiX
i + I[X] =

∑
i≥0

(ai + I)Xi for every polynomial f =
∑
i≥0

aiX
i ∈ D[X] .

For a multiplicatively closed subset T ⊂ D•, we identify the rings (T−1D)[X] and T−1D[X] by
means of the canonical isomorphism. Explicitly, we set∑

i≥0

ai

t
Xi =

∑
i≥0

aiX
i
/
t for every polynomial f =

∑
i≥0

aiX
i ∈ D[X] and t ∈ T .

Theorem 6.2.2. Let D be a ring, K = q(D) and I, J ∈ F(D).
1. ID[X] = I[X] = {f ∈ K[X] | cD(f) ⊂ I} ∈ F(D[X]), cD(I[X]) = I, I[X] ∩ K = I, and

(IJ)[X] = I[X]J [X].
2. I is finitely generated [ principal ] if and only if I[X] is finitely generated [ principal ]. More

precisely, if I = D(a1, . . . , an) for some a1, . . . , an ∈ K, then I[X] = D[X](a1, . . . , an), and if
I[X] = D[X](f1, . . . , fn) for some f1, . . . , fn ∈ K[X], then I = D(f1(0), . . . , fn(0) ).

3. Let D be a domain and J• 6= ∅. Then (I : J)[X] = (I[X] : J [X]). In particular ( for I = D ),
J−1[X] = J [X]−1.

Proof. 1. By definition, I[X] = {f ∈ K[X] | cD(f) ⊂ I} ⊂ ID[X], cD(I[X]) ⊂ I, and I ⊂ I[X]
implies I = cD(I) ⊂ cD(I[X]. Therefore I[X] ∩K = {a ∈ K | cD(a) = aD ⊂ I} = I.

If f ∈ ID[X], then f = a1f1 + . . . + anfn, where n ∈ N, a1, . . . , an ∈ I and f1, . . . , fn ∈ D[X].
For i ∈ [1, n], we have cD(aifi) = aicD(fi) ⊂ aiD ⊂ I, hence aifi ∈ I[X] and f ∈ I[X]. Consequently,
(IJ)[X] = (IJ)D[X] = (ID[X])(JD[X]) = I[X]J [X].
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2. Obviously, I = D(a1, . . . , an) implies I[X] = D[X](a1, . . . , an). Thus let f1, . . . , fn ∈ K[X]
be such that I[X] = D[X](f1, . . . , fn). For all i ∈ [1, n], fi ∈ I[X] implies fi(0) ∈ I, and therefore
D(f1(0), . . . , fn(0) ) ⊂ I. If a ∈ I ⊂ I[x], then a = f1g1 + . . . + fngn, for some g1, . . . , gn ∈ D[X], and
therefore a = (f1g1 + . . .+ fngn)(0) = f1(0)g1(0) + . . .+ fn(0)gn(0) ∈ D(f1(0), . . . fn(0) ).

3. Since (I :J)[X] J [X] = ((I :J)J)[X] ⊂ I[X], we obtain (I :J)[X] ⊂ (I[X] :J [X]). Suppose now
that c ∈ I• and F ∈ (I[X] :J [X]) ⊂ K(X). Then Fc ∈ I[X] ⊂ K[X] and therefore F ⊂ K[X]. If b ∈ J ,
then bF ∈ I[X] implies I ⊃ cD(bF ) = bcD(F ), hence JcD(F ) ⊂ I, cD(F ) ⊂ (I :J) and consequently
F ∈ (I :J)[X]. �

Theorem und Definition 6.2.3. Let D be a ring, K = q(D[X]) the total quotient ring of the
polynomial ring D[X] and N = {f ∈ D[X] | cD(f) = D}.

1. N ⊂ D[X]∗ is a multiplicatively closed subset.
The ring D(X) = N−1D[X] ⊂ K is called the Nagata ring of D. If D is a field, then
N = D[X]•, and D(X) is just the field of rational functions (thus the terminology is consistent).

2. Let J ( D be an ideal, and let π : D[X] → D/J [X] be the canonical epimorphism. Then
JD(X) = N−1J [X] C D(X), JD(X) ∩D = J [X] ∩D = J , and there is an isomorphism

Φ: D(X)/JD(X) → (D/J)(X) , given by Φ
(f
g

+ JD(X)
)

=
π(f)
π(g)

.

3. If P ∈ spec(D), then P [X] ∈ specD[X], PD(X) ∈ specD(X), and the natural embedding
jP : D[X]→ DP [X] = (D \ P )−1D[X] induces an isomorphism ιP : D[X]P [X]

∼→ DP (X).
4. max D(X) = {PD(X) | P ∈ max(D)}.

Proof. 1. If f ∈ N and g ∈ D[X]•, then cD(fg) = cD(f)cD(g) = cD(g) 6= {0} by Corollary 6.1.4.
Hence fg 6= 0, which implies f ∈ D[X]∗. If f, g ∈ N , then cD(fg) = cD(f)cD(g) = D, hence fg ∈ N ,
and N is multiplicatively closed.

2. Clearly, JD(X) = JN−1D[X] = N−1JD[X] = N−1J [X] C D(X). If a ∈ JD(X) ∩D, then there
is some f ∈ N such that af ∈ J [X], and therefore cD(af) = acC(f) = aD ⊂ J , which implies a ∈ J .
Hence JD(X) ∩D ⊂ J ⊂ J [X] ∩D ⊂ JD(X) ∩D, and thus equality holds.
There is an isomorphism

Φ: D(X)/JD(X) = N−1D[X]/N−1J [X] ∼→ N−1(D[X]/J [X]) = N−1(D/J)[X] = π(N)−1(D/J)[X] ,

given by

Φ
(f
g

+ JD(X)
)

=
π(f)
π(g)

for all f ∈ D[X] and g ∈ N .

Therefore it suffices to prove that π(N) = {π(f) | f ∈ D[X] , cD/J(π(f)) = D/J}. If f ∈ D[X], then
cD/J(π(f)) = cD(f) + J/J , and therefore f ∈ N implies cD/J(π(f)) = D/J . To prove the converse, let
f ∈ D[X] be such that cD/J(π(f)) = D/J . Then cD(f)+J = D, and there exists some u ∈ J such that
cD(f) + uD = D. If n ∈ N and n > deg(f), then cD(f + uXn) = cD(f) + uD = D, hence f + uXn ∈ N
and π(f) = π(f + uXn) ∈ π(N).

3. Let P ∈ spec(D). Then D[X]/P [X] = (D/P )[X] is a domain. Hence P [X] ∈ specD[X], and
since P [X] ∩N = ∅, it follows that PD(X) = N−1P [X] ∈ specD(X). By definition,

DP (X) = N−1
P DP [X] , where NP = {F ∈ DP [X] | cDP

(F ) = DP } .
If f ∈ D[X] \ P [X], then cD(f) 6⊂ P , hence cDP

(jP (f)) = cD(f)P = DP and therefore jP (f) ∈ NP .
Hence it follows that jP (D[X] \ P [X]) ⊂ NP , and therefore jP induces a ring homomorphism

ιP : D[X]P [X] → DP (X) , given by ιP

( g
f

)
=
g/1
f/1

for all g ∈ D[X] and f ∈ D[X] \ P [X] .
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ιP is surjective : If z ∈ DP (X), then there exist g ∈ D[X], f ∈ D[X] \ P [X] and s, t ∈ D \ P such that

z =
g/s

f/t
=
tg/1
sf/1

= ιP

( tg
sf

)
(note that sf ∈ D[X] \ P [X] ).

ιP is injective : If z ∈ Ker(ιP ) ⊂ D[X]P [X], then

z =
g

f
, where g ∈ D[X] , f ∈ D[X] \ P [X] and

g/1
f/1

= 0 ∈ DP (X) , hence
g

1
=

0
1
∈ DP [X] .

Therefore there exists some s ∈ D \ P such that sg = 0, and as s ∈ D[X] \ P [X], this implies z = 0.
4. If P ∈ max(D), then D(X)/PD(X) ' (P/D)(X) is a field, and therefore PD(X) ∈ max D(X).

Thus assume that M ∈ max D(X). Then M = N−1Q, where Q ∈ specD[X] is maximal such that
Q ∩N = ∅. It is now sufficient to prove that

J =
∑
f∈Q

cD(f) 6= D .

Indeed, then there exists some P ∈ max(D) such that J ⊂ P , hence Q ⊂ P [X], and it follows that
M = N−1Q ⊂ N−1P [X] = PD(X), and therefore M = PD(X).
Assume to the contrary that J = D. Then there exist f1, . . . , fm ∈ Q such that 1 ∈ c(f1) + . . .+ c(fm).
Let k2, . . . , km ∈ N be such that kj > deg(f1 +Xk2f2 + . . .+Xkj−1fj−1) for all j ∈ [2,m], and consider
the polynomial f = f1 +Xk2f2 + . . .+Xkmfm. Then cD(f) = cD(f1) + . . .+ cD(fm), hence 1 ∈ cD(f)
and f ∈ Q, a contradiction. �

Theorem 6.2.4. Let K be a field, v be valuation of K and v∗ the trivial extension of v to K(X).
Then Ov∗ = Ov(X).

Proof. By definition, Ov(X) = N−1Ov[X], where

N = {f ∈ Ov[X] | cOv
(f) = Ov} =

{∑
i≥0

aiX
i ∈ Ov[X]

∣∣∣ v(ai) = 0 for some i ≥ 0
}
,

and therefore N = {f ∈ Ov[X] | v∗(f) = 0}. If f ∈ Ov[X]•, then f = af0, where a ∈ O•v , f0 ∈ N and
v(a) = v∗(f0). Therefore we obtain

Ov∗ =
{af0
g0

∣∣∣ a ∈ K , v(a) ≥ 0 , f0, g0 ∈ N
}

=
{ f

g0

∣∣∣ f ∈ Ov[X] , g0 ∈ N
}

= Ov(X) . �

Theorem und Definition 6.2.5. Let D be a domain, K = q(D) and r be a finitary module system
on K such that r ≥ d = d(D) ( then {1}d = D implies {1}r = Dr ⊃ D ).

1. Nr = {f ∈ D[X] | cD(f)r = Dr} ⊂ D[X] is a multiplicatively closed subset.
The domain Nr(D) = N−1

r D[X] ⊂ K[X] is called the r-Nagata domain of D. Note that
D(X) = Nd(D).

2. Let J ∈ F(D) be a fractional ideal of D. Then JNr(D) = N−1
r J [X] is a fractional ideal of

Nr(D), and J ⊂ JNr(D) ∩K ⊂ Jr.
3. If I, J ∈ F(D), J• 6= ∅ and Ir = I, then (I : J)Nr(D) = (INr(D) : JNr(D)). In particular,

(JNr(D))−1 = J−1Nr(D).
4. max Nr(D) = {PNr(D) | P ∈ rD-max(D)}. If P ∈ rD-max(D) and M = PNr(D), then

Nr(D)M = D[X]P [X] = DP (X).
5. If J ∈ F(D), then

JNr(D) ∩K =
⋂

P∈rD-max(D)

JP .
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6. If J ∈ F(D), then (JJ−1)r = Dr if and only if JNr(D) is an invertible fractional ideal of
Nr(D). In particular, if r is an ideal system on D and J ∈ Fr(D), then J is r-invertible if and
only if JNr(D) is an invertible fractional ideal of Nr(D).

7. Pic Nr(D) = 0. Every invertible fractional ideal of Nr(D) is principal.

Proof. 1. Since Dr = {1}r is r-cancellative, we may apply Corollary 6.1.4. If f, g ∈ Nr, then
cD(fg)r = [ cD(f)cD(g) ]r = cD(f)r ·r cD(g)r = Dr and thus fg ∈ Nr.

2. Clearly, N−1
r J [X] is an Nr(D)-submodule of K(X) = q(Nr(D)), and if a ∈ D• and aJ ⊂ D, then

aN−1
r J [X] ⊂ Nr(D). Hence N−1

r J [X] is a fractional ideal of Nr(D), and J ⊂ J [X] ⊂ N−1
r J [X] ∩ K.

If a ∈ N−1
r J [X] ∩ K, then there exists some g ∈ Nr such that ag ∈ J [X], hence cD(ag) ⊂ J and

cD(ag)r = acD(g)r = aDr ⊂ Jr, and therefore a ∈ Jr.
3. N−1

r (IJ)[X] = N−1
r (I[X] J [X]) = (N−1

r I[X])(N−1
r J [X]). Hence it follows that(

N−1
r (I :J)[X]

)
(N−1

r J [X]) = N−1
r

(
(I :J)J

)
[X] ⊂ N−1

r I[X] ,

and therefore N−1
r (I :J)[X] ⊂ (N−1

r I[X] :N−1
r J [X]). If J = {0}, then equality holds.

Assume now that I = Ir, b ∈ J• and F ∈ (N−1
r I[X] :N−1

r J [X]). Since J ⊂ N−1
r J [X], we obtain

bF ∈ N−1
r I[X], and therefore there exist some f ∈ b−1I[X] ⊂ K[X] and g ∈ Nr such that gF = f . If

a ∈ J , then af = aFg ∈ N−1
r I[X], and there exists some h ∈ Nr such that afh ∈ I[X]. Hence it follows

that cD(afh) ⊂ I, and acD(f) = cD(af) ⊂ cD(af)r = cD(af)r ·r cD(h)r = cD(afh)r ⊂ Ir = I. Since
a ∈ J was arbitrary, we obtain JcD(f) ⊂ I, hence cD(f) ⊂ (I :J), and F ∈ N−1

r (I :J)[X].
4. For the proof of max Nr(D) = {PNr(D) | P ∈ rD-max(D)} we proceed in three steps :
• If P ∈ rD-spec(D), then N−1

r P [X] ∈ spec Nr(D).

If P ∈ rD-spec(D) and f ∈ P [X], then cD(f) ⊂ P = Pr ∩D. Hence it follows that cD(f)r ⊂ Pr ( Dr,
P [X] ∩Nr = ∅, and N−1

r P [X] ∈ spec Nr(D).

• If M ∈ max Nr(D), then there exists some P ∈ rD-max(D) such that M = PNr(D).

Suppose that M ∈ max Nr(D), say M = N−1
r Q for some Q ∈ specD[X] such that Q ∩Nr = ∅. We set

J =
∑
f∈Q

cD(f) ⊂ D , and we assert that Jr =
( ⋃

f∈Q

cD(f)
)

r
6= Dr .

Assume the contrary. Since r is finitary, there exist f1, . . . , fm ∈ Q such that 1 ∈ [ cD(f1)∪. . .∪cD(fm) ]r.
Let k2, . . . , km ∈ N be such that kj > deg(f1+Xk2f2+. . .+Xkj−1fj−1) for all j ∈ [2,m]. Then we obtain
f = f1 +Xk2f2 + . . .+Xkmfm ∈ Q, and cD(f)r = [ cD(f1) + . . .+ cD(fm) ]r = [ cD(f1)∪ . . .∪ cD(fm) ]r,
hence cD(f)r = Dr and f ∈ Nr, a contradiction.

As Jr 6= Dr, we obtain J ⊂ JrD
= Jr ∩ D ( D, and there exists some P ∈ rD-max(D) such that

J ⊂ P . If f ∈ Q, then cD(f) ⊂ J ⊂ P , hence f ∈ P [X], and therefore Q ⊂ P [X]. Hence it follows that
M = N−1

r Q ⊂ N−1
r P [X] = PNr(D), and therefore M = PNr(D).

• If P ∈ rD-max(D), then PNr(D) ∈ max Nr(D).

If P ∈ rD-max(D), then PNr(D) ∈ spec Nr(D), and there exists some M ∈ max Nr(D) such that
PNr(D) ⊂ M . As we have just proved, M = P ′Nr(D) for some P ′ ∈ rD-max(D), and we obtain
P ⊂ PNr(D) ∩D ⊂ P ′Nr(D) ∩D ⊂ P ′r = P ′, hence P = P ′ and PNr(D) = M .

If P ∈ rD-max(D), then Nr(D)N−1
r P [X] = N−1

r D[X]N−1
r P [X] = D[X]P [X] = DP (X) by Theorem

6.2.3.3 (note that in our case all rings are subrings of K(X) the isomorphism ιP given there is the identity
map).

5. If J ∈ F(D), then Theorem 3.2.2 implies

JNr(D) ∩K =
⋂

M∈max Nr(D)

JNr(D)M ∩K =
⋂

P∈rD- max(D)

JDP (X) ∩K .
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Hence it suffices to prove that JDP (X)∩K = JP for all P ∈ rD-max(D). If P ∈ rD-max(D), then clearly
JP ⊂ JDP (X)∩K. Thus suppose that a ∈ JDP (X)∩K. Since JDP (X) = JN−1

P DP [X] = N−1
P JP [X],

where NP = {g ∈ DP [X] | cDP
(g) = DP }, there exists some g ∈ NP such that ag ∈ JP [X]. Hence

cDP
(ag) = acDP

(g) ⊂ JP , and if s ∈ cDP
(g) \ PP = D×

P , then as ∈ JP and therefore a ∈ JP .
6. Suppose that (JJ−1)r 6= Dr. Then (JJ−1)rD

= (JJ−1)r∩D 6= D, and therefore there exists some
P ∈ rD-max(D) such that JJ−1 ⊂ P . Hence JNr(D)(JNr(D))−1 = (JJ−1)Nr(D) ⊂ PNr(D) ( Nr(D)
by 3., and therefore JNr(D) is not invertible.

Conversely, assume that JNr(D) is not invertible. Then there exists some M ∈ max Nr(D) such
that JNr(D)(JNr(D))−1 ⊂ M . By 4. there exists some P ∈ rD-max(D) such that M = PNr(D), and
then JJ−1 ⊂ (JJ−1)Nr(D) ∩ D = JNr(D)(JNr(D))−1 ∩ D ⊂ PNr(D) ∩ D ⊂ Pr, which implies that
(JJ−1)r ⊂ Pr ( Dr.

6. Let J ⊂ Nr(D) = N−1
r D[X] be an invertible ideal. Then J = (f1, . . . , fm) for some m ∈ N and

f1, . . . , fm ∈ D[X]•. Let k2, . . . , km ∈ N be such that kj > deg(f1 +Xk2f2 + . . . +Xkj−1fj−1) for all
j ∈ [2,m]. If f = f1 +Xk2f2 + . . .+Xkmfm ∈ J , then cD(f) = cD(f1) + . . .+ cD(fm), and we assert
that J = fNr(D). By Theorem 3.2.2 it suffices to prove that JM = fNr(D)M for all M ∈ max Nr(D).
Let M ∈ max Nr(D) and P ∈ rD-max(D) such that M = PNr(D). Then Nr(D)M = D[X]P [X], and by
Theorem 4.1.4 there exists some j ∈ [1,m] such that JM = fjNr(D)M = fjD[X]P [X]. Since f ∈ JM ,
there exists some h ∈ D[X] \ P [X] and some g ∈ D[X] such that fh = fjg, and it suffice to prove that
g /∈ P [X], for then g, h ∈ (D[X]P [X])× = Nr(D)M

× and JM = fjNr(D)M = fNr(D)M .
Assume to the contrary that g ∈ P [X]. Then cD(fh) = cD(fjg) ⊂ cD(fj)cD(g) ⊂ cD(fj)P , and

since h /∈ P [X], it follows that cD(h) 6⊂ P and cDP
(h) = cD(h)P = DP . Hence we obtain

cD(fj)P ⊂ cD(f)P = cDP
(f) = cDP

(fh) = cD(fh)P ⊂ cD(fj)P PP

and therefore cD(fj)M = {0} by Lemma 6.1.3. But this implies that fj = 0, a contradiction. �

6.3. Kronecker domains

Definition 6.3.1. Let K be a field. A subring R ⊂ K(X) is called a Kronecker domain if X ∈ R×
and f(0) ∈ fR for all f ∈ K[X].

Theorem 6.3.2. Let K be a field and R ⊂ K(X) a Kronecker domain.
1. If f = a0 + a1X + . . .+ anX

n ∈ K[X], then fR = Ra0 + . . .+Ran.
2. R is a Bezout domain, and K(X) = q(R). In particular, R is a GCD-domain, t(R) = d(R),

Pic(R) = C(R) = 0, and a domain Y such that R ⊂ Y ⊂ K(X) is a valuation domain if and
only if Y is a t(R)-valuation monoid.

3. Let R ⊂ Y ⊂ K(X) be a valuation domain. Then V = Y ∩K is a valuation domain of K, and
Y = V (X).

Proof. 1. Clearly, X ∈ R implies fR ⊂ a0R + . . . + anR. For the reverse inclusion we prove that
ai ∈ fR for all i ∈ [0, n] by induction on i.

i = 0 : a0 = f(0) ∈ fR.
i ∈ [1, n] , i− 1→ i : If a0, . . . , ai−1 ∈ fR, then f ′ = X−i[f − (a0 + a1X + . . .+ ai−1X

i−1)] ∈ fR,
and therefore ai = f ′(0) ∈ f ′R ⊂ fR.

2. We prove that every ideal of R generated by two elements is a principal ideal. Thus let α, β ∈ R and
f, g, h ∈ K[X]• such that α = f

h and β = g
h . If n > deg(f), then fR+ gR = fR+XngR = (f +Xng)R

by 1., and therefore αR+ βR = (α+Xnβ)R.
In order to prove that K(X) = q(R), it suffices to prove that K[X] ⊂ q(R). If f ∈ K[X], then

h = (1 +Xf)−1 ∈ R, and therefore f = X−1(h−1 − 1) ∈ q(R).
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3. If x ∈ K \ V , then x ∈ K(X) \ Y , hence x−1 ∈ K ∩ Y = V , and therefore V is a valuation
domain of K. Let y : K(X) → Γ ∪ {∞} be a valuation such that Oy = Y . Then y(X) = 0, and if
f = a0 + a1X + . . .+ anX

n ∈ K[X], then ai ∈ fR ⊂ fY and therefore y(ai) ≥ y(f) for all i ∈ [0, n]. On
the other hand, y(f) ≥ min{y(aiX

i) | i ∈ [0, n] } = min{y(ai) | i ∈ [0, n] } ≥ y(f). Hence equality holds,
and we obtain y(K) = y(K[X]). Since Γ = y(K(X)×) = q(y(K[X]•)) = q(y(K×)) = y(K×), it follows
that v = y |K : K → Γ ∪ {∞} is a valuation such that Ov = V , and y = v∗, the trivial extension of v
to K(X). Hence Y = V (X) by Theorem 6.2.4. �

Definition 6.3.3. Let D be a domain, K = q(D) and r a finitary module system on K such that
r ≥ d(D). Then

Kr(D) =
{f
g

∣∣∣ f ∈ D[X] , g ∈ D[X]• , cD(f) ⊂ cD(g)ra

}
⊂ K(X)

is called the r-Kronecker function domain of D.

Theorem 6.3.4. Let D be a domain, K = q(D) and r a finitary module system on K such that
r ≥ d(D).

1. Kr(D) is a Kronecker domain of K(X), and if f ∈ K[X] and g ∈ K[X]•, then f
g ∈ Kr(D) if

and only if cD(f) ⊂ cD(g)ra .
2. There is a surjective monoid homomorphism

ε : K(X) → Λr(K) , given by ε
(f
g

)
= cD(g)[−1]

ra
cD(f)ra for all ∈ K[X] and g ∈ K[X]• .

ε−1(Λ+
r (K)) = Kr(D), ε−1(1) = Kr(D)×, and ε induces monoid isomorphisms

K(X)/Kr(D)× ∼→ Λr(K) and Kr(D)/Kr(D)× ∼→ Λ+
r (K) .

ε |K = τr : K → Λr(K) is the Lorenzen r-homomorphism.
3. Let t = t(Λ+

r (K)). Denote by W the set of all t-valuation monoids of Λr(K), by Y set of all
valuation domains Y such that Kr(D) ⊂ Y ⊂ K(X) and by V the set of all valuation domains
V ⊂ K such that Vr = V . Then there are bijective maps

τ̃r :

{
W → V
W 7→ τ−1

r (W ) ,
ε̃ :

{
Y → W
Y 7→ ε(Y ) ,

η̃ :

{
Y → V
Y 7→ Y ∩K ,

θ̃ :

{
V → Y
V 7→ V (X) ,

where η̃ = τ̃r◦ε̃ and θ̃ = η̃−1.

Proof. 1. Let f, g ∈ K[X], g 6= 0 and a ∈ D• such that af, ag ∈ D[X]. If cD(f) ⊂ cD(g)ra ,
then cD(af) = acD(f) ⊂ acD(g)ra = cD(af)ra and therefore f

g = af
ag ∈ Kr(D) by definition. Conversely,

assume that f
g ∈ Kr(D), and let f1, g1 ∈ D[X] be such that g1 6= 0, cD(f1) ⊂ cD(g1)ra and f

g = f1
g1

.
Then cD(f1)ra ⊂ cD(g1)ra , fg1 = f1g, and since ra is finitely cancellative, we obtain

[ cD(f) cD(g1) ]ra = cD(fg1)ra = cD(f1g)ra = [ cD(f1) cD(g) ]ra ⊂ [ cD(g1) cD(g) ]ra

and therefore cD(f) ⊂ cD(f)ra ⊂ cD(g)ra.
Next we prove that Kr(D) ⊂ K(X) is a subring. Suppose that α, β ∈ Kr(D), say α = f

h and
β = g

h , where f, g, h ∈ K[X], h 6= 0 and cD(f) ∪ cD(g) ⊂ cD(h)ra . Then α + β = f+g
h , αβ = fg

h2 ,
cD(f + g) ⊂ cD(f) + cD(g) ⊂ cD(h)ra and cD(fg) ⊂ cD(f)cD(g) ⊂ cD(h)2ra

= cD(h2)ra , which implies
α+ β ∈ Kr(D) and αβ ∈ Kr(D).

Clearly, X ∈ Kr(D), X−1 ∈ Kr(D), and if f ∈ K[X], then cD(f(0)) = Df(0) ⊂ cD(f) ⊂ cD(f)ra ,
hence f(0)

f ∈ Kr(D) and therefore f(0) ∈ fKr(D). Hence Kr(D) is a Kronecker domain.
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2. If f, f1 ∈ K[X] and g, g1 ∈ K[X]• are such that f
g = f1

g1
, then fg1 = f1g, and as ra is finitely

cancellative, we obtain [ cD(f) cD(g1) ]ra = cD(fg1)ra = cD(f1g)ra = [ cD(f1) cD(g) ]ra , and therefore
cD(g)[−1]

ra cD(f)ra = cD(g1)
[−1]
ra cD(f1)ra . Hence there is a map ε : K(X)→ Λr(K) as announced, and it

obviously is a homomorphism. If E = {a0, . . . , an} ∈ Pf(K), then Era = cD(a0 + a1X + . . .+ anX
n)ra ,

and since Λr(K) = {E′[−1]
ra Era | E, E′ ∈ Pf(K) , E′• 6= ∅ }, it follows that ε is surjective.

If f ∈ D[X] and g ∈ D[X]•, then ε
(

f
g

)
= cD(g)[−1]

ra cD(f)ra ∈ Λ+
r (K) if and only if cD(f)ra ⊂ cD(g)ra ,

which is equivalent to f
g ∈ Kr(D), and ε

(
f
g

)
= 1 if and only if f

g ∈ Kr(D)×. Hence ε−1(Λ+
r (K)) = Kr(D),

ε−1(1) = Kr(D)×, and ε induces an isomorphism ε∗ as asserted.
If a ∈ K, then ε(a) = cD(a)ra = {a}ra = τr(a), and therefore ε |K = τr.
3. By Theorem 4.4.3.2 (b) τ̃r is bijective. By 2., ε induces a commutative diagram

τr : K −−−−→ K(X) ε−−−−→ Λr(K)

V
x Y

x W
x

D −−−−→ Kr(D) ε−−−−→ Λ+
r (K) ,

where the upwards arrows are inclusions. If t∗ = t(Kr(D)), then t∗ = ε∗t by Theorem 2.6.2, and by
Theorem 6.3.2.2, Y is the set of all t-valuation monoids Y such that Kr(D) ⊂ Y ⊂ K(X), and by
Theorem 3.4.10 the assignment Y 7→ ε(Y ) defines a bijective map ε̃ : Y → W. Hence η̃ = τ̃r◦ε̃ : Y → V
is bijective. If Y ∈ Y, then Kr(D)× = ε−1(1) ⊂ Y , and η̃(Y ) = τ−1

r ◦ε(Y ) = (ε |K)−1◦ε(Y ) = Y ∩K. If
V ∈ V, then Y = η̃−1(V ) ∈ Y, V = Y ∩K, and therefore Y = V (X) = θ̃(V ) by Theorem 6.3.2.3. �

6.4. v-ideals and t-ideals in polynomial domains

Throughout this section, let D be a domain and K = q(D).
We use t and v for the corresponding operations both for D and D[X].

Definition 6.4.1.
1. An ideal J C D[X] is called almost principal if there exist f ∈ J \ D and r ∈ D• such that
J ⊂ r−1fD[X].

2. For a D[X]-submodule J ⊂ K[X], we call

cD(J) =
∑
f∈J

cD(f)

the content of J . By definition, cD(J) ⊂ K is a D-submodule, and J ⊂ cD(J)[X].

Theorem 6.4.2.
1. Let J C D[X] be an ideal. Then JK = JK[X] = fK[X] for some f ∈ J , and the following

assertions are equivalent :
(a) f ∈ D•.
(b) J ∩D• 6= ∅.
(c) JK = K[X].

In particular, if J is almost principal and f ∈ J \D and r ∈ D• are such that J ⊂ r−1fD[X],
then JK = fK[X] 6= K[X], and J ∩D• = ∅.

2. Let q be an ideal system on D[X] such that q ≥ d(D[X]), S ⊂ D[X]• a set of polynomials of
bounded degree and J = Sq C D[X]. If JK 6= K[X], then J is almost principal.
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3. If f ∈ D[X], then (fK[X] ∩D[X])K = fK[X].
4. If {0} 6= J ⊂ D[X], then J is a prime ideal such that J∩D• = ∅ if and only if J = fK[X]∩D[X]

for some irreducible polynomial f ∈ K[X].
5. The following assertions are equivalent :

(a) For every fractional ideal F ∈ F(D[X]) such that F ⊂ K[X] there exists some s ∈ D• such
that sF ⊂ D[X].

(b) Every fractional ideal F ∈ F(D[X]) is of the form F = hB, where h ∈ K(X) and B C D[X]
is an ideal satisfying B ∩D• 6= ∅.

(c) For every f ∈ D[X]• we have fK[X]∩D[X] = r−1fB, where r ∈ D• and B C D[X] is an
ideal satisfying B ∩D• 6= ∅.

(d) Every non-zero ideal J C D[X] such that JK 6= K[X] is almost principal.
6. The equivalent conditions in 5. are fulfilled in the following cases :

• D is noetherian or D[X] is q-noetherian for some ideal system q ≥ d(D[X]).
• If D denotes the integral closure of D, then there exists some c ∈ D• such that cD ⊂ D.

Proof. 1. Clearly, JK = {cg | c ∈ K , g ∈ J} = JKD[X] = JK[X] = f ′K[X] for some f ′ ∈ JK.
If f ′ = cf , where f ∈ J and c ∈ K×, then JK = f ′K[X] = fK[X].

(a) ⇒ (b) f ∈ J ∩D•.
(b) ⇒ (c) If c ∈ J ∩D•, then 1 = cc−1 ∈ JK, and therefore JK = K[x].
(c) ⇒ (a) If JK = K[X] = fK[X], then f ∈ K[X]× ∩ J ⊂ K× ∩D[X] = D•.

In particular, if f ∈ D \ J and r ∈ D• are such that J ⊂ r−1fD[X], then fD[X] ⊂ J ⊂ r−1fD[X]
implies JK = fK[X], and by the above we obtain JK 6= K[X] and J ∩D• = ∅.

2. Since JK 6= K[X], there exists some polynomial f ∈ J \ D such that JK = fK[X]. We set
f = Xt(anX

n + . . .+a1X+a0), where t, n ∈ N0, t+n = deg(f) > 0, a0, . . . , an ∈ D and a0an 6= 0. Let
m ∈ N0 be such that deg(h) ≤ m + deg(f) for all h ∈ S. It suffices to prove that am+1

0 h ⊂ fD[X] for
all h ∈ S. Indeed, if this is done, then it follows that am+1

0 S ⊂ fD[X] and J = Sq ⊂ (am+1
0 )−1fD[X].

Thus let h ∈ S ⊂ J ⊂ fK[X], say h = fg, where g ∈ K[X]. Then deg(g) = deg(h) − deg(f) ≤ m,
and we set g = bmX

m + bm−1X
m−1 + . . .+ b0, where b0, . . . , bm ∈ K. Then

h = fg = Xt
n+m∑
i=0

ciX
i ∈ D[X] , where cl =

l∑
i=0

al−ibi for all l ∈ [0,m] ( with ai = 0 for i > n) .

We use induction on l to prove that al+1
0 bl ∈ D for all l ∈ [0,m]. Clearly, a0b0 = c0 ∈ D. Thus let

l ∈ [1,m], and suppose that aj+1
0 bj ∈ D for all j ∈ [0, l − 1]. Then

al
0cl = al+1

0 bl +
l−1∑
i=0

al−ia
l−1−i
0 (ai+1

0 bi) ∈ D , and therefore al+1
0 bl ∈ D .

Hence it follows that am+1
0 g ∈ D[X] and am+1

0 h ∈ fD[X].
3. If f ∈ D[X], then fK[X] = fD[X]K ⊂ (fK[X] ∩D[X])K ⊂ fK[X].
4. Suppose that {0} 6= J ⊂ D[X]. If J = fK[X] ∩D[X] for some irreducible polynomial f ∈ K[X],

then J ∩D• = ∅ by 1., and J is a prime ideal of D[X], since fK[X] is a prime ideal of K[X].
To prove the converse, let J be a prime ideal such that J ∩ D• = ∅. Then JK = fK[X] for some

f ∈ J by 1., and since JK = D•−1J and J ∩D• = ∅, it follows that JK is a prime ideal of K[X], and
J = JK ∩D[X] = fK[X] ∩D[X].

5. (a) ⇒ (b) Let F ∈ F(D[X]) be a fractional ideal and v ∈ D[X]• such that C = vF ⊂ D[X]. If
C = {0}, then J = {0} and the assertion follows with h = 0 and B = D[X]. If C ∩ D• 6= ∅, then the
assertion follows with h = v−1 and B = C.
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We may now assume that C 6= {0} and C ∩D• = ∅. Then CK ( K[X] is a non-zero ideal, and thus
CK = fK[X] for some f ∈ D[X] \ D. Consequently, E = f−1C ⊂ K[X] is a fractional ideal, and by
(a) there exists some s ∈ D• such that B = sE C D[X]. Since fK[X] = CK = fs−1BK = fBK, we
obtain BK = K[X] and therefore B ∩ D• 6= ∅. As F = v−1C = v−1fs−1B, the assertion follows with
h = v−1fs−1 ∈ K(X).

(b) ⇒ (c) Let f ∈ D[X]•. By assumption, fK[X] ∩D[X] = hB′, where h ∈ K(X), B′ C D[X]
and B′ ∩ D• 6= ∅. Hence B′K = K[X], and fK[X] = (fK[X] ∩ D[X])K = hB′K = hK[X] ( by 3. ) .
Therefore we obtain h = r−1af for some a, r ∈ D•, and fK[X] ∩ D[X] = r−1afB′ = r−1fB, where
B = aB′ C D[X], and B ∩D• ⊃ a(B′ ∩D•) 6= ∅.

(c) ⇒ (d) Let {0} 6= J C D[X] be such that JK 6= K[X]. By 1. there exists some f ∈ J \D such
that JK = fK[X]. By (c) there exist r ∈ D• and B C D[X] such that fK[X] ∩D[X] ⊂ r−1fB, and
therefore J ⊂ fK[X] ∩D[X] ⊂ r−1fB ⊂ r−1fD[X].

(d) ⇒ (a) Let F ∈ F(D[X]) be a fractional ideal such that F ⊂ K[X], and let f ∈ D[X]• be such
that J = fF ⊂ D[X]. If f ∈ D, we are done. Thus suppose that f /∈ D. Then J ⊂ J ′ = fK[X]∩D[X],
and J ′K = fK[X] 6= K[X]. By (d) there exists some f ′ ∈ J ′ \ D and some r ∈ D• such that
J ′ ⊂ r−1f ′D[X], and therefore f ′K[X] = J ′K = fK[X] by 3. Hence f ′ = b−1af for some a, b ∈ D•,
and if s = br ∈ D•, then sF = brF = brf−1J ⊂ bf−1rJ ′ ⊂ bf−1f ′D[X] = aD[X] ⊂ D[X].

6. If D is noetherian, then D[X] is noetherian, and if D[X] is q-noetherian for some ideal system
q ≥ d(D[X]), then (d) follows by 2.

If D is integrally closed, we verify (c). Let f ∈ D[X]•. If f ∈ D, then fK[X] ∩D[X] = D[X] and
(c) holds with r = f and B = D[X]. If f /∈ D, then fK[X] ∩D[X] = fcD(f)−1[X] by Theorem 6.1.5.
If 0 6= r ∈ cD(f), then (c) holds with B = rcD(f)−1[X].

Assume finally that D is the integral closure of D and there is some c ∈ D• such that cD ⊂ D. Then
(d) holds for D, and we verify it for D. Let J C D[X] be a non-zero ideal such that JK 6= K[X]. Then
J = JD[X] is a non-zero ideal of D[X] and JK = JK[X] 6= K[X]. Hence there exist some f ∈ J \D
and r ∈ D• such that rJ ⊂ f D[X]. Then f = cf ∈ J \D, r = c2r ∈ D•, and rJ ⊂ c2rJ ⊂ (cf)cD[X] ⊂
fD[X]. �

Theorem 6.4.3.
1. The assignment I 7→ I[X] defines injective monoid homomorphisms j : F(D)→ F(D[X]),

jt = j | Ft(D) : Ft(D)→ Ft(D[X]) , jv = j | Fv(D) : Fv(D)→ Fv(D[X]) ,

and it induces group monomorphisms j′v = jv | Fv(D)× : Fv(D)× → Fv(D[X])×,

j′ = j′v | F(D)× : F(D)× → F(D[X])× and j′t = j′v | Ft(D)× : Ft(D)× → Ft(D[X])× .

2. Let I ∈ F(D)• be a non-zero fractional ideal.
(a) I is invertible [finitely generated, a principal ideal ] if and only if I[X] is invertible [finitely

generated, a principal ideal ] .
(b) I[X]v = Iv[X], and if I ∈ Fv(D), then I is v-invertible [ v-finitely generated ] if and only

if I[X] is v-invertible [ v-finitely generated ] .
(c) I[X]t = It[X], and if I ∈ Ft(D), then I is t-invertible [ t-finitely generated ] if and only if

I[X] is t-invertible [ t-finitely generated ] .
In particular, j′v induces a group monomorphism j∗ : Cv(D)→ Cv(D[X]), mapping Pic(D) into
Pic(D[X]) and C(D) into C(D[X]).

Proof. By Theorem 6.2.2, the assignment I 7→ I[X] defines an injective monoid homomorphism
j : F(D)→ F(D[X]). If I ∈ F(D), then I−1[X] = I[X]−1, and I is finitely generated [ a principal ideal ]
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if and only if I[X] is finitely generated [ a principal ideal ]. Hence j′ = j | F(D)× : F(D)× → F(D[X])×

is a group monomorphism.
If I ∈ F(D), then I[X]v = (I[X]−1)−1 = (I−1)−1[X] = Iv[X]. To prove the corresponding result

for the t-operation, let F(I) denote the set of all finitely generated fractional ideals J ∈ F(D) such that
J ⊂ I. If J ∈ F(I), then J [X] ∈ F(D[X]) is also finitely generated, hence Jt = Jv, J [X]t = J [X]v, and
we obtain

It[X] =
⋃

J∈F(I)

Jt[X] =
⋃

J∈F(I)

Jv[X] =
⋃

J∈F(I)

J [X]v =
⋃

J∈F(I)

J [X]t =
( ⋃

J∈F(I)

J [X]
)

t
= I[X]t

(note that the union is taken over a directed family).
Next we prove that a fractional t-ideal I ∈ Ft(D) is t-finitely generated if and only if I[X] is t-finitely

generated ( note that a fractional v-ideal is v-finitely generated if and only if it is t-finitely generated).
If I ∈ Ft,f(D), then I = Jt for some J ∈ F(I), and therefore I[X] = Jt[X] = J [X]t ∈ Ft,f(D[X]).
Conversely, assume that I[X] ∈ Ft,f(D[X]). Then I[X] = Et for some finite set E ⊂ I[X]. Since

I[X] =
⋃

J∈F(I)

Jt[X] (directed union),

there exists some J ∈ F(I) such that E ⊂ Jt[X], which implies I[X] = Et = Jt[X], and therefore
I = I[X] ∩K = Jt[X] ∩K = Jt ∈ Ft,f(D).

We have proved that j(Fv(D)) ⊂ Fv(D[X]) and j(Ft(D)) ⊂ Ft(D[X]), and we assert that the
injective maps jv = j | Fv(D) : Fv(D)→ Fv(D[X]) and jt = j | Ft(D) : Ft(D)→ Ft(D[X]) are monoid
homomorphisms. Indeed, if I1, I2 ∈ Fv(D), then (I1 ·v I2)[X] = (I1I2)v[X] = (I1I2)[X]v = I1[X]v ·v
I2[X]v, and the same argument holds for t instead of v. Hence jv and jt induce group monomorphisms
j′v : Fv(D)× → Fv(D[X])× and j′t : Ft(D)× → Ft(D[X])×. Since F(D)× ⊂ Ft(D)× ⊂ Fv(D)× are
subgroups, we obtain j′ = j′v | F(D)× and j′t = j′v | Ft(D)× by definition. In particular, if I ∈ F(D)•

is invertible [ Iv is v-invertible, It is t-invertible ], then I[X] is invertible [ I[X]v is v-invertible, I[X]t is
t-invertible ].

If I ∈ F(D)• and I[X] is invertible, then D[X] = I[X]I[X]−1 = I[X]I−1[X] = (II−1)[X], and
therefore D = (II−1)[X] ∩D = II−1. Hence I is invertible.

If Iv[X] is v-invertible, then D[X] = (Iv[X]Iv[X]−1)v = (IvI−1
v )[X]v = (IvI−1

v )v[X], and therefore
D = (IvI−1

v )v[X] ∩D = (IvI−1
v )v. Hence Iv is v-invertible. The same argument holds for t instead of v.

If I ∈ Fv(D)×, then I[X] is principal if and only if I[X] is principal. Hence j′v induces a group
monomorphism j∗ : Cv(D)→ Cv(D[X]). For I ∈ Fv(D)×, we denote by [I] ∈ Cv(D) the class of I, and for
J ∈ Fv(D[X])× we denote by [[J ]] ∈ Cv(D[X]) the class of J . If c = [I] ∈ Fv(D)×, then j∗(c) = [[I[X]]].
If c ∈ Pic(D), then I ∈ F(D)×, hence I[X] ∈ F(D[X])× and j∗(c) = [[I[X]]] ∈ Pic(D[X]). If c ∈ Ct(D),
then I ∈ Ft(D)×, hence I[X] ∈ Ft(D[X])× and j∗(c) = [[I[X]]] ∈ C(D[X]). �

Theorem 6.4.4. The following assertions are equivalent :
(a) D is integrally closed.
(b) If J C D[X] and J ∩D• 6= ∅, then Jv = cD(J)v[X].
(c) If J ∈ Iv(D[X]) and J ∩D• 6= ∅, then J ∩D ∈ Iv(D), and J = (J ∩D)[X].
(d) If J ∈ It(D[X]) and J ∩D• 6= ∅, then J ∩D ∈ It(D), and J = (J ∩D)[X].
(e) If J C D[X] and J ∩D• 6= ∅, then Jt = cD(J)t[X].
(f) If f, g ∈ D[X]• and a ∈ D• are such that cD(fg) ⊂ aD, then cD(f)cD(g) ⊂ aD.

Proof. (a) ⇒ (b) Suppose that J C D[X] and J ∩ D• 6= ∅. Then J ⊂ cD(J)[X] and therefore
Jv ⊂ cD(J)[X]v = cD(J)v[X]. For the proof of the reverse inclusion, observe that Jv is the intersection
of all fractional principal ideals containing J . Hence it suffices to prove :
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If h ∈ K(X)• and J ⊂ hD[X], then cD(J)[X]v ⊂ hD[X].
Let h = g−1b ∈ K(X), where g, b ∈ D[X]• are coprime in K[X], and suppose that J ⊂ hD[X]. Then it
clearly suffices to prove that cD(J)[X] ⊂ hD[X]. We have gJ ⊂ bD[X], and if c ∈ J ∩D•, then cg = bq
for some q ∈ D[X], and as b and g are coprime in K[X], we obtain b ∈ D•. For all q ∈ J , we obtain
cD(gq) ⊂ bD, and therefore, by Theorem 6.1.5, cD(g)cD(q) ⊂ [ cD(g)cD(q) ]v = cD(gq)v ⊂ bD, hence
gcD(q) ⊂ bD[X]. Consequently, we obtain gcD(J) ⊂ bD[X] and cD(J) ⊂ g−1bD[X] = hD[X].

(b) ⇒ (c) If J ∈ Iv(D[X]) and J ∩D• 6= ∅, then J = cD(J)v[X] by (b), and thus it follows that
cD(J)v = J ∩D ∈ Iv(D).

(c) ⇒ (d) Let J ∈ It(D[X]) be such that J ∩D• 6= ∅, and denote by F(J) the set of all finitely
generated ideals B ⊂ J such that Bv ∩D• 6= ∅. Then

J = Jt =
⋃

B∈F(J)

Bv implies J ∩D =
⋃

B∈F ′(J)

Bv ∩D and (J ∩D)[X] =
⋃

B∈F ′(J)

(Bv ∩D)[X] .

If B ∈ F(J), then Bv ∩D ∈ Iv(D), and Bv = (Bv ∩D)[X]. Since all unions are directed, it follows that
J ∩D ∈ It(D) and J = (J ∩D)[X].

(d) ⇒ (e) Suppose that J C D[X] and J ∩ D• 6= ∅. By (d) we have Jt = (Jt ∩ D)[X], and
cD(Jt) = Jt ∩D ∈ It(D). As cD(J) ⊂ cD(Jt), it follows that cD(J)t ⊂ cD(Jt), and therefore

Jt ⊂ cD(J)[X]t = cD(J)t[X] ⊂ cD(Jt)[X] = (Jt ∩D)[X] = Jt .

(e) ⇒ (f) Let f, g ∈ D[X]• and a ∈ D• be such that cD(fg) ⊂ aD, and set J = D[X](a, g) C D[X].
Then J ∩ D• 6= ∅, and therefore Jt = cD(J)t[X] by (e). Since fJ = D[X](fa, fg) ⊂ aD[X], we obtain
fcD(g)[X] ⊂ fcD(J)t[X] = fJt ⊂ aD[X], and therefore cD(f)cD(g) ⊂ aD.

(f) ⇒ (a) Let u ∈ K be integral over D and f ∈ D[X] a monic polynomial such that f(u) = 0. Then
f = (X − u)g for some monic polynomial g ∈ K[X]. Let t ∈ D• be such that tu ∈ D and tg ∈ D[X].
Then h = t2f = t(X − u)(tg) ∈ t2D[X], hence cD(h) ⊂ t2D, and therefore cD(t(X − u))cD(tg) ⊂ t2D.
Since tu ∈ cD(t(X − u)) and t ∈ cD(tg), we obtain t2u ∈ t2D and therefore u ∈ D. �

Theorem 6.4.5. Let D be integrally closed. Then the group monomorphism j∗ : Cv(D)→ Cv(D[X])
( see Theorem 6.4.3 ) is an isomorphism, j∗(Pic(D)) = Pic(D[X]) and j∗(C(D)) = C(D[X]).

Proof. By Theorem 6.4.3 it suffices to prove that Cv(D[X]) ⊂ j∗(Cv(D)), Pic(D[X]) ⊂ j∗(Pic(D))
and Ct(D[X]) ⊂ j∗(Ct(D)). For I ∈ Fv(D)× we denote by [I] ∈ Cv(D) the class of I, for J ∈ Fv(D[X])×

we denote by [[J ]] ∈ Cv(D[X]) the class of J .
Let c = [[F ]] ∈ Cv(D[X]), where F ∈ Fv(D[X])×. By Theorem 6.4.2 it follows that F = hB for

some ideal B C D[X] such that B ∩D• 6= ∅. Then B ∈ Cv(D[X])× and c = [[B]]. By the Theorems 6.4.4
and 6.4.3 it follows that B ∩D ∈ Fv(D)× and B = (B ∩D)[X]. Hence we obtain [B ∩D] ∈ Cv(D) and
c = j∗([B ∩D]).

If c ∈ C(D[X]), then F ∈ Ft(D[X])×, B = (B ∩ D)[X] ∈ Ft(D[X])×, hence B ∩ D ∈ Ft(D)×,
[B ∩D] ∈ C(D) and c = j∗([B ∩D]) ∈ j∗(C(D)).

If c ∈ Pic(D[X]), then F ∈ F(D[X])×, B = (B ∩ D)[X] ∈ F(D[X])×, hence B ∩ D ∈ F(D)×,
[B ∩D] ∈ Pic(D) and c = j∗([B ∩D]) ∈ j∗(Pic(D)). �

Theorem 6.4.6. Each of the following assertions hold for R = D if and only if it holds for R = D[X].
1. R is integrally closed.
2. R is completely integrally closed ( equivalently, every non-zero v-ideal is v-invertible ).
3. R is a v-domain ( equivalently, every v-finitely generated non-zero v-ideal is v-invertible ).
4. R is a Krull domain ( equivalently, every non-zero t-ideal is t-invertible ).
5. R is a PVMD ( equivalently, every t-finitely generated non-zero t-ideal is t-invertible ).



112 6. IDEAL THEORY OF POLYNOMIAL RINGS

6. R is factorial ( equivalently, R is a Krull domain and C(R) = 0 ).
7. R is a GCD-domain ( equivalently, R is a PVMD and C(R) = 0 ).

Proof. A. We prove first : If D[X] is integrally closed, then D is integrally closed.
Let D[X] be integrally closed and x ∈ K integral over D. Then x ∈ K(X) is integral over D[X],

hence x ∈ D[X] ∩K = D. �[A.]
B. Let r ∈ {v, t}. To prove 2. 3. 4. and 5., it suffices to show the equivalence of the following two

assertions :

(a) Every ( r-finitely generated ) non-zero r-ideal of D is r-invertible.
(b) Every ( r-finitely generated ) non-zero r-ideal of D[X] is r-invertible.
Proof. If every r-finitely generated r-ideal of D is r-invertible, then r is finitely cancellative, hence

D is r-closed and thus integrally closed by Theorem 4.3.2. In the same was, if every r-finitely generated
r-ideal of D[X] is r-invertible, then D[X] is integrally closed, and therefore D is integrally closed by A..
Hence for the proof of B we may assume that D is integrally closed.

(a) ⇒ (b) Let F ⊂ D[X] be an ( r-finitely generated ) non-zero r-ideal. By Theorem 6.4.2 F = hB
for some h ∈ K(X)× and B C D[X] such that B∩D• 6= ∅. Then B is an ( r-finitely generated ) non-zero
r-ideal. By Theorem 6.4.4 B ∩D is an r-ideal, and B = (B ∩D)[X]. If B is r-finitely generated, then
B ∩D is also r-finitely generated by Theorem 6.4.3. By assumption, B ∩D is r-invertible, hence B is
r-invertible by Theorem 6.4.3, and therefore F is r-invertible.

(b) ⇒ (a) Let I ⊂ D be an ( r-finitely generated ) non-zero r-ideal. By Theorem 6.4.3, I[X] is
an ( r-finitely generated ) non-zero r-ideal and as I[X] is r-invertible by assumption, it follows that I is
r-invertible.

C. The assertions 6. and 7. follow by B and Theorem 6.4.5.
D. Finally we prove : If D is integrally closed, then D[X] is integrally closed.
Proof. Let D be integrally closed. By Corollary 4.4.5

D =
⋂

V ∈V
V and therefore D[X] =

⋂
V ∈V

V [X] ,

where V is the set of all valuation domains V such that D ⊂ V ⊂ K. Therefore it suffices to prove that
V [X] is integrally closed for all V ∈ V.

If V ∈ V, then every t-ideal of V is principal, hence V is a PVMD, and by B , V [X] is a PVMD.
Hence V [X] is integrally closed. �

Theorem 6.4.7. Let D be a Mori domain, and suppose that either D integrally closed or D contains
an uncountable subfield. Then D[X] is a Mori domain.

Proof. CASE 1 : D is integrally closed.
We prove that every J ∈ It(D[X])• is t-finitely generated. If J ∈ It(D[X])•, then Theorem 6.4.2

implies that J = hB for some h ∈ K(X)× and B C J [X] such that B ∩D• 6= ∅. By Theorem 6.4.4 we
obtain B ∩D ∈ It(D) and B = (B ∩D)[X] ∈ It,f(D), since D is a Mori domain. By Theorem 6.4.3 it
follows that B and therefore also J is t-finitely generated.

CASE 2 : D contains an uncountable field ∆.
Assume to the contrary that D[X] is not t-noetherian. Then there exists a sequence (gn)n≥0 in

D[X] such that {g0, . . . , an−1}v ( {g0, . . . , an}v for all n ≥ 1, and therefore

(D[X] :{g0, . . . , an}) ( (D[X] :{g0, . . . , an−1}) .
For n ∈ N, let hn ∈ K(X) be such that hngi ∈ D[X] for all i ∈ [0, n− 1] and hngn /∈ D[X]. Since K[X]
is noetherian, there exists some m ∈ N such that, for all n ≥ m,

(K[X] :{g0, . . . , an}) = (K[X] :{g0, . . . , an−1}) .
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For n ≥ m we have hn ∈ (K[X] : {g0, . . . , an−1}), hence hngn ∈ K[X] \ D[X], and by the subsequent
Lemma 6.4.8 the set Cn = {c ∈ ∆ | (hngn)(c) ∈ D} is finite. Hence there exists some c ∈ ∆ such that
for all n > m we have hn(c)gn(c) /∈ D, and hn(c)gi(c) ∈ D for all i ∈ [m,n− 1]. Consequently,

(D :{g0(c), . . . , gn(c)}) ( (D :{g0(c), . . . , gn−1(c)})
and

(
{g0(c), . . . , gn(c)}v

)
n≥m

is a properly ascending sequence of v-ideals of D, a contradiction. �

Lemma 6.4.8. Let D be a domain, K = q(D), ∆ ⊂ D a subfield, g ∈ K[X] a polynomial such that
deg(g) = d ∈ N. If c0, . . . , cd ∈ ∆ are distinct such that g(ci) ∈ D for all i ∈ [0, d], then g ∈ D[X].

Proof. If g = a0 + a1X + . . .+ adX
d, then (a0, . . . , ad) is a solution of the system of equations

1 c0 c20 . . . cd0
1 c1 c21 . . . cd1
. . . . . . .
1 cd c2d . . . cdd



a0

a1

.
ad

 =


g(c0)
g(c1)
.

g(cd)

 ∈ Dd+1

with a determinant in ∆× ⊂ D×. Hence a0, . . . , ad ∈ D. �


