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Abstract. We combine ideal-theoretic and divisor-theoretic methods to characterize
various classes of Prüfer-like monoids and domains by the gcd-properties of certain semi-
groups of invertible ideals.

1. Introduction

One of the main themes of multiplicative ideal theory during the last decades was the
characterization and investigation of various classes of integral domains defined by the
invertibility properties of certain classes of ideals. In this field, Prüfer domains form the
classical antetype, and there is a wealth of generalizations and variations of this concept
in the literature.

In this paper, we combine ideal-theoretic and divisor-theoretic methods to arrange some
known characterizations of Prüfer-like domains in a new way and to present several new
ones. One of the basic ideas in our investigations is to address the gcd-properties of certain
semigroups of invertible (integral) ideals and to combine this viewpoint with the concept
of gcd-theories.

Although the theory of integral domains is our main concern, the paper is written
in the language of (commutative cancellative) monoids in order to point out the purely
multiplicative character of the theory. The main results are the Theorems 3.4 and 3.5
and the subsequent theorems and corollaries. In Section 2 we gather the necessary results
from the theory of monoid homomorphisms and ideal systems.

2. Monoids and homomorphisms

Throughout this paper, by a monoid D we mean (deviating from the usual termi-
nology) a commutative multiplicative semigroup with unit element 1 ∈ D and a zero
element 0 ∈ D (satisfying 1x = x and 0x = 0 for all x ∈ D), and we always assume
that D• = D \ {0} is cancellative (that is, for all a, b ∈ D and c ∈ D•, if ac = bc, then
a = b ). We set 0 = {0}, denote by D× the group of invertible elements of D, and we call
D reduced if D× = {1}. A subset J ⊂ D is called an ideal if DJ = J , and it is called
a principal ideal if J = aD for some a ∈ D.

For a monoid D, we denote by q(D) = D•−1D its total quotient monoid. If K = q(D),
then K• = K× is a quotient group of D•. The most important examples we have in mind
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are the multiplicative monoids of integral domains. If D is (the multiplicative monoid of)
an integral domain, then K is (the multiplicative monoid of) its quotient field.

Let D be a monoid and K = q(D) its total quotient monoid.

For subsets X, Y ⊂ K, we set (X : Y ) = {z ∈ K | zY ⊂ X}, X−1 = (D : X), we
call X D-fractional if X−1 ∩D• 6= ∅, and we denote by F(D) the set of all D-fractional
subsets of K.

Throughout, we use the language of ideal systems as developed in the monograph
”Ideal Systems” [10], and all undefined notions are as there. In particular, we view an
ideal system on D as a map r : F(D) → F(D) (see [10, Ch. 11]). For an ideal system r
on D, we denote by

• Fr(D) = {Xr | X ∈ F(D)} = {A ∈ F(D) | Ar = A} be the semigroup of all
fractional r-ideals, equipped with the r-multiplication defined by (A, B) 7→ (AB)r,

• Fr,f(D) = {Er | E ⊂ K finite } ⊂ Fr(D) the subsemigroup of all r-finite (that is,
r-finitely generated) fractional r-ideals of D,

• Ir(D) = {J ∈ Fr(D) | J ⊂ D} the subsemigroup of all (integral) r-ideals,

For an ideal system r on D, we denote the associated finitary ideal system by rf (it is
denoted by rs in [10] ). It is given by

Xrf
=

⋃
E⊂X finite

Er for every X ∈ F(D) ,

and it satisfies Fr,f(D) = Frf ,f(D). The ideal system r is called finitary if r = rf .

For any two ideal systems r and q on D we write r ≤ q if Fq(D) ⊂ Fr(D). Note
that r ≤ q holds if and only if Xr ⊂ Xq [ equivalently, Xq = (Xr)q ] for all X ∈ F(D). If
r ≤ q, then Fq(D)∩Fr,f(D) ⊂ Fq,f(D) [ indeed, if I ∈ Fq(D)∩Fr,f(D), then I = Er for
some finite subset E ⊂ I, and I = Iq = (Er)q = Eq ].

We denote by s = s(D) the system of semigroup ideals, given by Xs = DX for all
X ∈ F(D), by v = v(D) the ideal system of multiples (“Vielfachenideale”), given by
Xv = (X−1)−1 for all X ∈ F(D), and by t = t(D) = vf the associated finitary system of v.
The systems s and t are finitary, the system v usually not. For every ideal system r on D we
have s ≤ rf ≤ r ≤ v and rf ≤ t. We shall frequently use that Fv(D) = {A−1 | A ∈ F(D)}
(see [10, Theorem 11.8] ).

If D is an integral domain, then the (Dedekind) ideal system d = d(D) of usual ring
ideals is given by Xd = D〈X〉 for all X ∈ F(D) (that is, Xd is the fractional D-ideal
generated by X ). d is a finitary ideal system, and there is a one-to-one correspondence
between ideal systems r ≥ d and star operations on D, given as follows :

If ∗ : Fd(D)• → Fd(D)• is a star operation on D and r∗ : F(D) → F(D) is
defined by Xr∗ = D〈X〉∗ for X ∈ F(D)• and Xr∗ = {0} if X ⊂ {0}, then r∗ is
an ideal system satisfying r∗ ≥ d. Conversely, if r ≥ d is an ideal system, and if we
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define ∗r by J∗r = Jr for all J ∈ Fd(D)•, then ∗r is a star operation, and by the
very definition we have r∗r = r and ∗r∗ = ∗.

Let r be an ideal system on D. A fractional r-ideal A ∈ Fr(D) is called r-invertible
if (AA−1)r = D [ equivalently, (AB)r = D for some subset B ⊂ K ]. By definition, a
fractional r-ideal is r-invertible if and only if it is an invertible element of the semigroup
Fr(D). Thus we denote by Fr(D)× the group of all r-invertible fractional r-ideals. If q
is an ideal system such that r ≤ q, then Fr(D)× ⊂ Fq(D)× is a subgroup (consequently,
if A, B ∈ Fr(D)×, then (AB)r = (AB)q, and this holds in particular, if q = v). If
r is finitary, then Fr(D)× = Fr,f(D)× (that is, if A ∈ Fr(D) is r-invertible, then
both A and A−1 are r-finite). This may fail if r is not finitary; then it may occur that
Fr,f(D)× ( Fr(D)× ∩ Fr,f(D) (it is well known that not every v-domain is a PvMD).

For a non-empty subset X ⊂ D we denote by GCD(X) the set of all greatest common
divisors of X. If d ∈ GCD(X), then GCD(X) = dD×, and if D is reduced, we write
(as usual) d = gcd(X) instead of GCD(X) = {d}. If X = {a1, . . . , an} ⊂ D, we write
GCD(a1, . . . , an) resp. gcd(a1, . . . , an) instead of GCD(X) resp. gcd(X). Note that
GCD(∅) = {0}.

D is called a

• GCD-monoid if GCD(a, b) 6= ∅ for all a, b ∈ D [ equivalently, GCD(X) 6= ∅ for
every finite subset X ⊂ D ].

• complete GCD-monoid if GCD(X) 6= ∅ for every subset X ⊂ D.

Lemma 2.1. Let D be a monoid, X ⊂ D and d ∈ D.

1. If Xv = dD, then d ∈ GCD(X).

2. If d ∈ GCD(X) and GCD(bX) 6= ∅ for all b ∈ D, then Xv = dD.

3. D is a GCD-monoid if and only if every v-finite (fractional) v-ideal of D is principal
[ equivalently, D is a v-Bezout monoid ].

4. D is a complete GCD-monoid if and only if every v-ideal of D is principal.

5. If D is a GCD-monoid, then

Xv =
⋂
d∈D

X⊂dD

dD , and d ∈ GCD(X) if and only if Xv = dD .

Proof. [10, Theorem 11.5 and Exercise 11.9]. �

If D is a reduced GCD-monoid, then any two elements a, b ∈ D have a unique least
common multiple lcm(a, b). If a = 0 or b = 0, then lcm(a, b) = 0, and if a, b ∈ D•, then
lcm(a, b) = ab gcd(a, b)−1.

We recall the relations between GCD-monoids and lattice-ordered (abelian) groups.
A partially ordered group (Γ,≤) is called lattice-ordered if sup(X) exists for every
non-empty finite subset X ⊂ Γ [ equivalently, inf(X) exists for every non-empty finite
subset X ⊂ Γ ]. A lattice-ordered group (Γ,≤) is called completely lattice-ordered if every
non-empty subset of Γ which is bounded below possesses an infimum [ equivalently, every
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non-empty subset of Γ which is bounded above possesses a supremum ]. The following
simple Lemma 2.2 specifies the connection between GCD-monoids and lattice-ordered
groups.

Lemma 2.2. Let G be a reduced monoid and L = q(G). For x, y ∈ L•, we define x ≤ y
if x−1y ∈ G.

1. (L•,≤) is a partially ordered group, G = {z ∈ L• | 1 ≤ z}, and if a, b ∈ G, then
a |b holds if and only if b ≤ a.

2. G is a GCD-monoid if and only if (L•,≤) is a lattice-ordered group. If this is the
case, then G is complete if and only if (L•,≤) is completely lattice-ordered. For
every (finite) subset X ⊂ G, we have

inf(X) = gcd(X) and sup(X) = lcm(X) .

Proof. 1. Obvious.

2. Let G be a GCD-monoid, a, b ∈ L• and c ∈ G• such that ac, bc ∈ G. Then
c−1 gcd(ac, bc) ∈ L• is a common upper bound of a and b. Now the assertions follow by
[8, § 15] and [10, Exercises 10.1 and 10.2]. �

A (monoid) homomorphism ϕ : D → G is always assumed to satisfy ϕ(1) = 1,
ϕ(0) = 0 and ϕ(D•) ⊂ G•. For every homomorphism ϕ : D → G there exists a unique
homomorphism q(ϕ) : q(D) → q(G) satisfying q(ϕ) | D = ϕ, and we call q(ϕ) the
quotient homomorphism of ϕ.

A monoid homomorphism ϕ : D → G is called a divisor homomorphism if, for all
a, b ∈ D, ϕ(a) |ϕ(b) implies a |b.
If K = q(D), L = q(G), and φ = q(ϕ) : K → L is the quotient homomorphism of ϕ,
then ϕ is a divisor homomorphism if and only if φ−1(G) = D.

In the case of integral domains, the following Theorem goes back to F. Lucius [16]. A
preliminary version valid for monoids is in [10, Exercise 18.10], the subsequent proof is
new.

Theorem 2.3. Let ϕ : D → G be a cofinal divisor homomorphism and φ : K → L its
quotient homomorphism.

1. For every subset X ⊂ K we have X−1 = φ−1[φ(X)−1].

2. Let a ∈ L and X ⊂ K be such that aG = φ(X)v. Then aG = [aG ∩ φ(K)]v and
φ−1(aG) = Xv.

3. Let X, Y ⊂ K and a ∈ L be such that φ(X)v = aG and φ(Y )v = a−1G. Then
(XY )v = D.

4. The following assertions are equivalent :
(a) For every a ∈ G there exists a [ finite ] subset X ⊂ D such that aG = ϕ(X)v

( and thus a ∈ GCD(ϕ(X)) ).

(b) For every a ∈ L there exists a [ finite ] subset X ⊂ K such that aG = φ(X)v.
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Proof. 1. Let X ⊂ K. If a ∈ X−1, then aX ⊂ D implies φ(a)φ(X) = φ(aX) ⊂ G and
thus φ(a) ∈ φ(X)−1. Conversely, if a ∈ φ−1[φ(X)−1], then φ(aX) = φ(a)φ(X) ⊂ G and
therefore aX ⊂ D, whence a ∈ X−1.

2. We have φ(X)v = φ
[
φ−1

(
φ(X)

)]
v
⊂ φ[φ−1(aG)]v = [aG ∩ φ(K)]v ⊂ aG = φ(X)v

and therefore aG = [aG ∩ φ(K)]v. Using 1., we obtain, for every z ∈ L :

z ∈ φ−1(aG)−1 ⇐⇒ zφ−1(aG) ⊂ D ⇐⇒ φ(z)φ[φ−1(aG)] ⊂ G

⇐⇒ φ(z)[aG ∩ φ(K)]v ⊂ G ⇐⇒ φ(z)aG ⊂ G

⇐⇒ φ(z) ∈ a−1G = φ(X)−1 ⇐⇒ z ∈ φ−1[φ(X)−1] = X−1 .

3. Since φ(XY )v = [φ(X)vφ(Y )v]v = G, it follows by 2. that (XY )v = φ−1(G) = D.

4. (a) ⇒ (b) Let a ∈ L and c ∈ G• such that ca ∈ G. By (a), there exists some
u ∈ D• such that ϕ(u) ∈ cG and thus ϕ(u)a ∈ G. Then there exists some X0 ⊂ D such
that ϕ(u)aG = ϕ(X0)v, and therefore aG = ϕ(u)−1ϕ(X0)v = φ(u−1X0)v.

(b) ⇒ (a) If a ∈ G and X ⊂ K is such that aG = φ(X)v, then 2. implies that
X ⊂ φ−1(aG) ⊂ D. �

Definition 2.4. A divisor homomorphism ϕ : D → G is called a GCD-theory [ of finite
type ] if G is a GCD-monoid, and for every a ∈ G there exists a [ finite ] subset X ⊂ D
such that aG = ϕ(X)v. A GCD-theory of finite type is also called a quasi divisor theory.

3. Prüfer-like monoids and domains

Let D be a monoid and K = q(D) its total quotient monoid.

We recall the definition of several classes of monoids (and domains) which are defined
by invertibility properties of their ideals and which we are going to characterize by means
of GCD-theories and related concepts.

Definition 3.1. Let D be a monoid, and let r and q be ideal systems on D such that
r ≤ q.

1. D is called an (r, q)-Dedekind monoid if Fq(D)• ⊂ Fr(D)× [ that is, every
non-zero fractional q-ideal is r-invertible ].

D is called an r-Dedekind monoid it it is an (r, r)-Dedekind monoid.

2. D is called an (r, q)-Prüfer monoid if Fq,f(D)• ⊂ Fr(D)× [ that is, every non-zero
fractional q-finite q-ideal is r-invertible ].

D is called an r-Prüfer monoid if and only if it is an (r, r)-Prüfer monoid.

For any property P of monoids we say that an integral domain D is a P-domain if its
multiplicative monoid is a P-monoid.
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Let assumptions be as in Definition 3.1. Clearly, D is an (r, q)-Dedekind monoid if every
(integral) non-zero q-ideal is r-invertible, and it is an (r, q)-Prüfer monoid if every (inte-
gral) non-zero q-finite q-ideal is r-invertible. If D is an r-Dedekind [ r-Prüfer ] monoid,
then D is an (r, q)-Dedekind [ (r, q)-Prüfer ] monoid, and if D is an (r, q)-Dedekind [ (r, q)-
Prüfer ] monoid, then D is a q-Dedekind [ q-Prüfer ] monoid. If r is finitary, then D is
an (r, q)-Prüfer monoid if and only if it is an (r, qf)-Prüfer monoid. In particular, D is a
(t, v)-Prüfer monoid if and only if D is a t-Prüfer monoid.

For integral domains, the concepts of Definition 3.1 were introduced in [2], the monoid
case was investigated in [11]. The definitions of r-Prüfer and r-Dedekind monoids (resp.
domains) coincide with those given in [10, §17 and §23]. The definition of r-Dedekind
domains given in [2] coincides with ours only if r is finitary.

A v-Dedekind monoid is a completely integrally closed monoid [10, Theorem 14.1], a
t-Dedekind monoid is a Krull monoid [10, Theorem 23.4], and an (r, v)-Prüfer monoid is
an r-GCD-monoid [10, Def. 17.6]. Consequently, a v-Dedekind domain is a completely
integrally closed domain, a t-Dedekind domain is a Krull domain, and a d-Dedekind
domain is just a Dedekind domain. A v-Prüfer domain is a v-domain (that is, a regularly
integrally closed domain in the sense of [4, Ch. VII, §1, Ex. 30, 31] ), a t-Prüfer domain
is a PvMD (that is, a pseudo-Prüfer domain in the sense of [4, Ch. VII, §2, Ex. 19] ), and
a d-Prüfer domain is just a Prüfer domain. A (d, v)-Prüfer domain is a GGCD-domain
(generalized GCD-domain, see [10, Def. 17.6] ). A (d, v)-Dedekind domain is a pseudo-
Dedekind domain (introduced in [17] under the name “Generalized Dedekind domains”
and thorough investigated in [3] ), and a (t, v)-Dedekind domain is a pre-Krull domain
(introduced in [18]).

Definition 3.2. Let D be a monoid and r an ideal system on D. For A, B ∈ Fr(D)×,
we define A ≤ B if B ⊂ A, and we consider the following sets of r-ideals :

• I∗r (D) = Ir(D) ∩ Fr(D)×, I∗r (D)0 = I∗r (D) ∪ {0}, Fr(D)×0 = Fr(D)× ∪ {0} ,

• Λr(D) = {(C−1A)r | C, A ∈ Fv,f(D) ∩ Fr(D)×} ∪ {0} ⊂ Fr(D)×0 and

• Λ+
r (D) = {(C−1A)r | C, A ∈ Fv,f(D) ∩ Fr(D)× , A ⊂ C} ∪ {0} ⊂ I∗r (D)0.

By the very definition, we have Iv,f(D) ∩ Fr(D)×0 ⊂ Λ+
r (D) ⊂ Fr(D)×0 ⊂ Fv(D), and

Λ+
r (D) = {(C−1A)r | C, A ∈ Fv,f(D) ∩ Fr(D)× , C ⊂ A ⊂ D} ∪ {0}

(since for every B ∈ Fr(D) there is some b ∈ D• such that bB ⊂ D).

I∗r (D)0 is a reduced monoid with total quotient monoid q(I∗r (D)0) = Fr(D)×0 , and
Λ+

r (D) ⊂ I∗r (D)0 is a submonoid with quotient monoid q(Λ+
r (D)) = Λr(D) [ indeed, if

A, C ∈ Fv,f(D) ∩ Fr(D)×, let a ∈ D• be such that aA, aC ∈ Iv,f(D) ∩ F(D)×0 ⊂ Λ+
r (D),

and observe that (C−1A)r = ((aC)−1(aA))r ]. The group Λr(D)• and the monoid Λ+
r (D)

are modifications of the Lorenzen r-group and the Lorenzen r-monoid (see [10, §19]).

The canonical divisor homomorphism ∂ : D• → Ir(D) is defined by ∂(a) = aD. It is
easily checked that ∂ is indeed a divisor homomorphism, it satisfies ∂(D•) ⊂ I∗r (D), and
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its quotient homomorphisms induces the exact sequence

1 → D× → q(D)•
q(∂)→ Fr(D)× → Cr(D) → 0 ,

where Cr(D) denotes the r-class group.

(Fr(D)×,≤) resp. (Λr(D)•,≤) are partially ordered abelian groups which are lattice-
ordered [ completely lattice-ordered ] if and only if I∗r (D)0 resp. Λ+

r (D) are [ complete ]
GCD-monoids.

Lemma 3.3. Let D be a monoid, r an ideal system on D and X, Y ∈ Λ+
r (D). Then

there exist A, B, C ∈ Fv,f(D) ∩ Fr(D)× such that A ∪ B ⊂ C, X = (C−1A)r and
Y = (C−1B)r.

Proof. By definition, X = (C−1
1 A1)r and Y = (C−1

2 A2)r, where Ai, Ci ∈ Fv,f(D)∩Fr(D)×

and Ai ⊂ Ci for i ∈ {1, 2}. Therefore it follows that X = [(C1C2)
−1
r (C2A1)r]r and

Y = [(C1C2)
−1
r (C1A2)r]r, whereupon (C1C2)r, (C2A1)r, (C1A2)r ∈ Fv,f(D)∩Fr(D)× and

(C2A1)r ∪ (C1A2)r ⊂ (C1C2)r. �

Theorem 3.4. Let D be a monoid, r an ideal system on D and Γ ⊂ I∗r (D)0 a submonoid
containing all principal ideals such that, for all A, B ∈ Γ•, A ⊂ B implies (B−1A)r ∈ Γ
[ the main examples are Γ = I∗r (D)0 and Γ = Λ+

r (D) ] .

1. If Ω ⊂ Γ and C ∈ Γ, then C = gcd(Ω) if and only if C =
(⋃

J∈Ω J
)

v
. In

particular, Γ is a GCD-monoid if and only if (A∪B)v ∈ Γ holds for all A, B ∈ Γ•.

2. If X ⊂ D, I = Xv ∈ Γ and X# = {aD | a ∈ X} = ∂(X) ⊂ Γ, then I = gcd(X#).

3. Let Γ be a GCD-monoid. Then :

(a) If A, B ∈ Γ, then (A ∪B)v = gcd(A, B) and A ∩B = lcm(A, B).

(b) Iv,f(D) ⊂ Γ and D is an (r, v)-Prüfer monoid.

(c) Γ is complete if and only if Iv(D) ⊂ Γ.

(d) The canonical divisor homomorphism ∂ : D → Γ is a GCD-theory. Moreover,
for all I ∈ Γ and all subsets X ⊂ D we have gcd(∂(X)) = I if and only if
I = Xv.

Proof. Note that Γ is reduced, and Γ ⊂ I∗v (D)0 ⊂ Iv(D). For A, B ∈ Γ we have B |A
(that is, A ∈ BΓ ) if and only if A ⊂ B.

1. Let Ω ⊂ Γ and Z =
⋃

J∈Ω J . Suppose first that C = gcd(Ω). Then J ⊂ C for all
J ∈ Ω, hence Z ⊂ C and therefore Zv ⊂ C. On the other hand, if a ∈ D is such that
Z ⊂ aD, then J ⊂ aD for all J ∈ Ω, hence C ⊂ aD, and since Zv is the intersection of
all principal ideals of D containing Z, it follows that C = Zv.

For the converse, suppose that C = Zv. For all I ∈ Γ we have C ⊂ I if and only if
J ⊂ I for all J ∈ Ω, that is, I is a common divisor of Ω if and only if I divides C. Hence
C = gcd(Ω).

2. By 1., since I =
(⋃

a∈X aD
)

v
=

(⋃
J∈X# J

)
v
.
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3.(a) We may assume that A, B ∈ Γ•. We have (A ∪ B)v = gcd(A, B) by 1., and
[AB(A−1 ∪B−1)]v = (A ∪B)v. Hence it follows that

(AB)v = [(A−1 ∪B−1)−1(A ∪B)]v = [(A ∩B)(A ∪B)]v ,

and consequently A ∩B = (AB)v(A ∪B)−1
v = (AB)v gcd(A, B)−1 = lcm(A, B).

(b) If I ∈ Iv,f(D), then I = Ev for some finite subset E ⊂ D, and I = gcd(∂(E)) ∈ Γ.
Since Iv,f(D)• ⊂ Γ• ⊂ I∗r (D), if follows that every v-finite v-ideal is r-invertible, and thus
D is an (r, v)-Prüfer monoid.

(c) If Iv(D) ⊂ Γ, then Γ is complete by (a). If Γ is complete and I ∈ Iv(D), then
I = gcd(∂(I)) ∈ Γ.

(d) By 2., ∂ is a GCD-theory. Let X ⊂ D and I ∈ Γ be given. If I = Xv, then
I = gcd(∂(X)) by 2. Conversely, if I = gcd(∂(X)), then IΓ = ∂(X)v(Γ), and by Theorem
2.3.3 it follows that Xv = ∂−1(IΓ) = {a ∈ D | aD ∈ IΓ} = {a ∈ D | aD ⊂ I} = I. �

Theorem 3.5. Let r be an ideal system on a monoid D.

1. D is an (r, v)-Prüfer monoid if and only if Λ+
r (D) is a GCD-monoid [ equivalently,

Λr(D)• is a lattice-ordered group ].

2. D is an (r, v)-Dedekind monoid if and only if I∗r (D)0 is a complete GCD-monoid
[ equivalently, Fr(D)× is a complete lattice-ordered group ].

3. If D is an r-Prüfer monoid, then I∗r (D)0 and Λ+
r (D) are GCD-monoids.

Proof. The assertions concerning lattice-ordered groups follow by Lemma 2.2.

1. If Λ+
r (D) is a GCD-monoid, then D is an (r, v)-Prüfer monoid by Theorem 3.4.3(a).

Thus let D be an (r, v)-Prüfer monoid and A, B ∈ Λ+
r (D). By Theorem 3.4.1, we must

prove that (A ∪ B)v ∈ Λ+
r (D), and we may assume that A, B ∈ Λ+

r (D)•. By Lemma
3.3, there exist U, V, C ∈ Fv,f(D) ∩ Fr(D)× such that A = (C−1U)r, B = (C−1V )r and
U ∪ V ⊂ C. Then (A∪B)v = [C−1(U ∪ V )v]v, and since U, V ∈ Fv,f(D)•, it follows that
(U ∪ V )v ∈ Fv,f(D)• ⊂ Fr(D)×. Hence we obtain (A ∪B)v = [C−1(U ∪ V )v]r ∈ Λ+

r (D).

2. If D is an (r, v)-Dedekind monoid and Ω ⊂ I∗r (D)0, then

C =
(⋃

J∈Ω

J
)

v
∈ Iv(D) ⊂ I∗r (D)0 ,

and C = gcd(Ω) by Theorem 3.4.1. Hence I∗r (D)0 is a complete GCD-monoid. Con-
versely, if I∗v (D)0 is a complete GCD-monoid, then Iv(D) ⊂ I∗v (D) by Theorem 3.4.3(b),
and thus D is an (r, v)-Dedekind monoid.

3. Let D be an r-Prüfer monoid. Then D is an (r, v)-Prüfer monoid, and thus Λ+
r (D) is

a GCD-monoid by 1. If A, B ∈ I∗r (D), then (A ∪B)r ∈ I∗r (D) by [11, Theorem 5.1(h)],
hence (A ∪B)v = (A ∪B)r, and thus I∗r (D) is a GCD-monoid by Theorem 3.4.1. �

Corollary 3.6. For a monoid D, the following assertions are equivalent :

(a) D is a v-Prüfer monoid.
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(b) I∗v (D)0 is a GCD-monoid [ equivalently, Fv(D)× is a lattice-ordered group ].

(c) Λ+
v (D) is a GCD-monoid [ equivalently, Λv(D)• is a lattice-ordered group ].

Proof. (a) ⇒ (b) and (a) ⇒ (c) By Theorem 3.5.3.

(b) ⇒ (a) and (c) ⇒ (a) By Theorem 3.4.3(b). �

Corollary 3.7. Let D be a monoid and r an ideal system on D such that D is an
r-Prüfer monoid. Then Fr(D)× and Λr(D)• are lattice-ordered groups, the canonical
divisor homomorphisms ∂ : D → Λ+

r (D) and ∂ : D → I∗r (D)0 are GCD-theories, and
for all A, B ∈ Fr(D)× [ for all A, B ∈ Λr(D) ] we have sup(A, B) = A ∩ B and
inf(A, B) = (A ∪B)v.

Proof. By Theorem 3.5.3, Theorem 3.4.3(a) and Lemma 2.2. �

Theorem 3.8. Let D be a monoid and r a finitary ideal system on D. Then D is an
(r, v)-Prüfer monoid if and only if I∗r (D)0 is a GCD-monoid [ equivalently, Fr(D)× is
a lattice-ordered group ].

Proof. If I∗r (D)0 is a GCD-monoid, then D is an (r, v)-Prüfer monoid by Theorem
3.4.3(b). Thus let D be an (r, v)-Prüfer monoid and A, B ∈ I∗r (D). Since r is finitary, it
follows that A and B are r-finite, since they are r-invertible. Consequently, (A ∪ B)r is
r-finite, hence (A ∪ B)v is v-finite and thus r-invertible, whence (A ∪ B)v ∈ I∗r (D). By
Theorem 3.4.1, I∗r (D)0 is a GCD-monoid. �

Corollary 3.9. For a monoid D, the following assertions are equivalent :

(a) D is a t-Prüfer monoid.

(b) I∗t (D)0 is a GCD-monoid [ equivalently, Ft(D)× is a lattice-ordered group ].

(c) Λ+
t (D) is a GCD-monoid [ equivalently, Λt(D)• is a lattice-ordered group ].

Proof. (a) ⇒ (b) and (a) ⇒ (c) By Theorem 3.5.3.

(c) ⇒ (a) By Theorem 3.5.1.

(b) ⇒ (a) By Theorem 3.8, D is a (t, v)-Prüfer monoid, and thus it is a t-Prüfer
monoid. �

Remark 3.10. Several special cases of the preceding theorems and corollaries are well
known in the case of an integral domain D.

- D is a PvMD if and only if Ft(D)× is a lattice-ordered group [13], [9], [19].
- D is a G-GCD domain if and only if Fd(D)× is a lattice-ordered group [1].
- D is a v-domain if and only if Fv(D)× is a lattice-ordered group [2].
- D is an r-Prüfer domain if and only if I∗r (D) is a GCD-monoid and (A ∪ B)r =

(A ∪B)v for all A, B ∈ I∗r (D) [2].
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- D is a pseudo-Dedekind domain if and only if Fd(D)× is a lattice-ordered group
[3].

- If D is a pre-Krull domain, then Ft(D)× is a lattice-ordered group [2].

We close with a fresh proof of the characterization of v-Prüfer and t-Prüfer monoids
by means of GCD-theories. More details may be found in [10, Ch. 20] and (using the
language of valuation theory) in [7].

Theorem 3.11. Let D be a monoid.

1. D possesses a GCD-theory if and only if D is a v-Prüfer monoid.

2. D possesses a GCD-theory of finite type if and only if D is a t-Prüfer monoid.

Proof. 1. If D is a v-Prüfer monoid, then I∗v (D)0 and Λ+
v (D) are GCD-monoids by

Corollary 3.6, and thus the canonical divisor homomorphisms ∂ : D → I∗v (D)0 and
∂ : D → Λ+

v (D) are GCD-theories by Theorem 3.4.3(d).
Let now ϕ : D → G be a GCD-theory, K = q(D), L = q(G) and φ = q(ϕ) : K → L.

Let J ∈ Fv,f(D)•, say J = Ev for some finite set E ⊂ K. By Theorem 2.3, it follows that
φ(E)v = aG for some a ∈ L, there exists a subset X ⊂ K such that φ(X)v = a−1G, and
(JX)v = D, whence J is v-invertible.

2. If D is a t-Prüfer monoid, then I∗t (D)0 is a GCD-monoid by Corollary 3.9, and thus
the canonical divisor homomorphism ∂ : D → I∗t (D)0 is a GCD-theory by Theorem
3.4.3(d). If J ∈ I∗t (D), then J = Ev for some finite subset E ⊂ D and JI∗t (D)0 = φ(E)v.
Hence ∂ is a GCD-theory of finite type.

Let now ϕ : D → G be a GCD-theory of finite type, K = q(D), L = q(G) and
φ = q(ϕ) : K → L. Let J ∈ Ft,f(D)•, say J = Et for some finite set E ⊂ K. By Theorem
2.3, it follows that φ(E)v = aG for some a ∈ L, there exists a finite subset X ⊂ K such
that φ(X)v = a−1G, and D = (JX)v = (EX)v = (EX)t, whence J is t-invertible. �
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