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Abstract. We present the main results of the theory of non-unique factorizations as far as they deal

with algebraic integers. We specify the philosophy that the class group of an algebraic number field

measures to what extent its ring of integers fails to have unique factorization. On the other hand, if
the ring of integers fails to have unique factorization then (in a sense to be made precise) almost all

integers have many distinct factorizations, but also almost all integers have a clearly arranged set of

factorizations.

1. Introduction

Let K be an algebraic number field (of finite degree over Q) and OK its ring of integers. Every non-zero
non-unit of OK has a factorization into a product of (finitely many) irreducible elements of OK . However,
contrary to the ring Z of rational integers, there may be several essentially distinct such factorizations.
In detail these facts are explained in §176 of Dedekind’s Supplement XI to Dirichlet’s “Vorlesungen über
Zahlentheorie” (Chelsea Reprint 1968).

It was one of the important achievements of the mathematicians of the 19th century to overcome this
deficiency, both by means of Kummer’s theory of ideal numbers and by Dedekind’s ideal theory. Based
on these concepts, algebraic number theory grew into a powerful theory in the 20th century, culminating
in class field theory and the higher reciprocity laws.

Astonishingly, questions concerning the non-uniqueness of factorizations were almost neglected in the
course of this development. Since the very beginning of the theory, it was well known that OK has
unique factorization if and only if the class group is trivial, and it was traditional in algebraic number
theory to say that the class group is a measure for the lack of unique factorization. Only in 1960.
L. Carlitz [2] characterized algebraic number fields with class number 2 by arithmetical properties. In
1974, W. Narkiewicz posed the problem to characterize the class number of an algebraic number field by
arithmetical properties (see [14, Problem 32]), that is, by phenomena of non-unique factorizations. In
the sequel several such characterizations were given, and there is also a variety of characterizations of
algebraic number fields with special class groups. The reader is referred to [14] for a concise bibliography
concerning this development.

Already in 1964, W. Narkiewicz started a systematic study of phenomena of non-unique factorizations
in rings of integers of algebraic number fields. In a series of papers which appeared over a period of almost
20 years (see the papers [10] to [13]) he investigated the analytic and combinatorial theory of non-unique
factorizations. The most striking results of this period are presented in his book on algebraic number
theory ([14, Chapter 9]).

In the sequel, the investigation of non-unique factorizations attracted the interest of many mathemati-
cians, not only from algebraic number theory, but also from commutative ring theory, semigroup theory
and additive combinatorics. An impression concerning the more recent developments dealing with general
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integral domains and monoids may be obtained from the proceedings [1] and [3] of two Mini-Conferences
on Factorization Theory (held 1996 in Iowa City and 2004 in Chapel Hill) and the articles contained in
[4]. A survey on recent developments in zero-sum theory may be found in [5]. Only recently, the author
together with A. Geroldinger completed the monograph [7] which contains a thorough presentation of the
algebraic, combinatorial and analytic aspects of the theory of non-unique factorizations, together with
self-contained introductions into additive group theory, the theory of v-ideals and abstract analytical
number theory.

The above-mentioned monograph pursues a very broad and general point of view of the theory with
possible applications not only in number theory, but also in commutative ring theory, semigroup theory,
zero-sum theory and module theory. Maybe, somebody who is mainly interested in results on algebraic
numbers may got lost in this generality. For this reason, the present article focusses on the results
concerning algebraic integers and shows the progress of the theory since it was initiated by W. Narkiewicz.
Accordingly we will concentrate on the presentation of the concepts and results. For proofs and details
we refer to [8].

Besides standard notations, we denote by N the set of all positive integers, we set N0 = N ∪ {0}, and
for r, s ∈ Z, we set [r, s] = {x ∈ Z | r ≤ x ≤ s}.

2. Factorizations

If a = u1 · . . . ·ur = v1 · . . . ·vs are two distinct factorizations of an algebraic integer a into irreducibles,
then these two factorizations are considered as being not essentially different if r = s and there is some
permutation σ ∈ Sr such that ui and vσ(i) are associates for all i ∈ [1, r]. Thus the appropriate structure
for the investigation of non-unique factorizations in the ring of integers OK of an algebraic number field
K is the monoid H(OK) of its non-zero principal ideals. It was proved by L. Redei and O. Steinfeld
[15] that the structure of H(OK) is uniquely determined by the class group CK of K (see [8, Theorem
1.7.1]). Consequently, the structure of CK is responsible for all phenomena of non-unique factorizations
in H(OK) (and consequently in OK).

It turns out to be convenient to describe phenomena of non-unique factorizations in an abstract
cancellative reduced monoid and to investigate the monoid H(OK) of an algebraic number field K by
means of the block monoid B(CK) (to be desribed in Section 3 below). This was alredy noticed by W.
Narkiewicz and goes probably back to a remark of H. Davenport. In order to do it in a systematic way,
we have to introduce some terminology from semigroup theory.

By a monoid H we always mean a multiplicatively written commutative cancellative semigroup with
unit element 1 ∈ H. In H, we use the notion of divisibility: For a, b ∈ H, we write a | b (in H) if
b = ac for some c ∈ H. We denote by H× the set of invertible elements of H, and we call H reduced if
H× = {1}.

Let H be a reduced monoid. An element u ∈ H is called an atom if, for all a, b ∈ H, u = ab implies
that a = 1 or b = 1. By a factorization z of an element a ∈ H we mean an equation of the form

z : a = u1 · . . . · ur with r ∈ N0 and atoms u1, . . . , ur .

We call r = |z| the length of the factorization z. Two factorizations which differ only in the order of
their factors are considered as being equal. Let Z(a) be the set of all factorizations of a and L(a) the set
of all lengths of factorizations of a. The monoid H is called

• atomic if Z(a) 6= ∅ for all a ∈ H
• factorial if |Z(a)| = 1 for all a ∈ H
• half-factorial if |L(a)| = 1 for all a ∈ H.
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If H is not factorial, then there are elements a ∈ H for which |Z(a)| is arbitrarily large. Indeed, if
a ∈ H is an element with two distinct factorizations a = u1 · . . . · ur = v1 · . . . · vs, n ∈ N and i ∈ [0, n],
then an = (u1 · . . . · ur)i(v1 · . . . · vs)n−i, and thus |Z(an)| ≥ n+ 1. The same argument shows that if H
is not half-factorial, then there are elements a ∈ H for which |L(a)| becomes arbitrarily large.

The monoid H(D) of non-zero principal ideals of any noetherian domain D is an atomic monoid in
which all sets of length are finite.

A monoid F is called free with basis P ⊂ F if every a ∈ F is a product of elements of P in a unique
way. By definition, a monoid is free if and only if it is reduced and factorial.

From now on, we always assume that H is a reduced atomic monoid. Let a ∈ H, and let

z : a = u1 · . . . · unv1 · . . . · vr and z′ : u1 · . . . · unw1 · . . . · ws
be factorizations of a into atoms such that {v1, . . . , vr} ∩ {w1, . . . , ws} = ∅. Then we call

d(z, z′) = max{r, s}
the distance between z and z′. The distance is a metric on the set of all factorizations. Based on this
metric, we define the catenary degree c(a) for a ∈ H to be the smallest N ∈ N0 ∪ {∞} such that, for
any two factorizations z, z′ of a, there exists a finite sequence z = z0 , z1 , . . . , zk = z′ of factorizations
of a satisfying that d(zi−1, zi) ≤ N for all i ∈ [1, k].

The concept of distances and the catenary degree were introduced by A. Geroldinger [6] in order to
measure the complexity of the set Z(a). Clearly, c(a) = 0 holds if and only if |Z(a)| = 1 (that is, if a has
unique factorization). If c(a) 6= 0, then c(a) ≥ 2, if c(a) = 2, then |L(a)| = 1, and if c(a) = 3, then
L(a) is an arithmetical progression with difference 1. Globally, we define

c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞} ,
and we call c(H) the catenary degree of H. By definition, c(H) = 0 if and only if H is factorial, and
if c(H) ≤ 2, then H is half-factorial. The size of c(H) is a measure for the deviation of H from being
factorial: The larger c(H), the more complex phenomena of non-unique factorizations appear in H.

The catenary degree c(a) gives information about the structure of the sets of lengths L(a) for a ∈ H
as follows. For a non-empty subset L ⊂ Z, we define its set of distances ∆(L) to be the set of all
differences r − s, where r, s ∈ L, r < s, and L ∩ [r, s] = {r, s}. We define

L(H) = {L(a) | a ∈ H} and ∆(H) =
⋃

L∈L(H)

∆(L) .

If H is not half-factorial, then ∆(H) 6= ∅, and it is not difficult to prove that min ∆(H) = gcd∆(H)
and sup∆(H) ≤ c(H)− 2.

Sets of lengths are the best investigated objects in the theory of non-unique factorizations. A crude
measure for their structure is the elasticity. For a non-empty subset L ⊂ N we define

ρ(L) =
sup(L)
min(L)

, and we set ρ({0}) = 1 .

We call ρ(H) = sup{ρ(L(a)) | a ∈ H} the elasticity of H. By definition H is half-factorial if and only
if ρ(H) = 1.

Note that the elasticity gives information on the size, but not on the inner structure of the sets of
lengths. This inner structure is more precisely described by the following statement.

• We say that the Structure Theorem for Sets of Lengths holds for H if H is atomic and there
exist some M∗ ∈ N and a finite set ∆∗ ⊂ N with the following property: For every L ∈ L(H)
there exists some d ∈ ∆∗ and a “pattern” {0, d} ⊂ D ⊂ [0, d] such that L is of the form

L = y +
[
L′ ∪ L∗ ∪ (maxL∗ + L′′)

]
⊂ y +D + dZ

with y ∈ Z, L∗ = (D + dZ) ∩ [0,maxL∗], L′ ⊂ [−M,−1] and L′′ ⊂ [1,M ].
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In this definition, L∗ is the long periodic part of L consisting of the union of |D|−1 nested arithmetical
progressions. L′ and L′′ are the (universally bounded) initial and end pieces of L in which the pattern
D may have holes. Such a set L is called almost arithmetical multiprogression with distance d and
bound M .

A typical picture of such a set L (with M = 6, d = 9 and D = {0, 2, 5, 6, 7, 9}) looks as follows
(where ◦̂ denotes a hole in the pattern):

••◦̂◦︸ ︷︷ ︸
L′

•◦•◦◦•••◦︸ ︷︷ ︸
D

•◦•◦◦•••◦︸ ︷︷ ︸
D

•◦•◦◦•••◦︸ ︷︷ ︸
D

•◦•◦◦•••◦︸ ︷︷ ︸
D︸ ︷︷ ︸

L∗

◦̂◦◦̂◦◦•︸ ︷︷ ︸
L′′

The most important concept for the investigation of the structure of sets of lengths is that of local
tameness. For an atom u ∈ H, we denote by t(u) the smallest N ∈ N0 ∪ {∞} with the following
property:

For every a ∈ uH and z ∈ Z(a) there exists a factorization z′ ∈ Z(a) containing u as a factor and
satisfying d(z, z′) ≤ N .

H is called locally tame if t(u) <∞ for all atoms u of H. We call t(H) = sup{t(u) | u is an atom of H}
the tame degree of H. The tame degree is a very strong invariant. Indeed we always have c(H) ≤ t(H),
and if H is not factorial, then max{2, ρ(H)} ≤ t(H).

We are now in position to formulate the basic finiteness properties F of non-unique factorizations.
F. H is atomic and locally tame, c(H) < ∞, and the Structure Theorem for Sets of Lengths holds

for H.

Theorem 2.1. Let O be any order in an algebraic number field K with maximal order OK , and let
H = H(O) be the monoid of non-zero principal ideals of O.

Then H satisfies F , and the following assertions are equivalent :
(a) ρ(H) <∞.
(b) t(H) <∞.
(c) The canonical map spec(OK) → spec(O) is injective.
(d) For every a ∈ H, there are (up to associates) only finitely many atoms in H dividing some

power an of a.

In particular, these conditions are satisfied if O = OK .

3. Block monoids and block homomorphisms

In the theory of non-unique factorizations, block monoids were introduced in a non-formalized way by
W. Narkiewicz [12]. Later on, they proved to be not only a powerful tool in this theory, but they also
are responsible for the fruitful connections between factorization theory and additive group theory.

Let G be a finite additive abelian group and denote by F(G) the free monoid with basis G. The
elements of F(G) are finite sequences

S = g1 · . . . · gl with g1, . . . , gl ∈ G ,
disregarding the order. For S as above, we define its size by |S| = l, its sum by σ(S) = g1 + . . .+ gl
and its support by supp(S) = {g1, . . . , gl}. For A, B ∈ F(G), we write A |B if B = AC for some
C ∈ F(G).

The monoid
B(G) = {S ∈ F(G) | σ(S) = 0}
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of all zero-sum sequences is called the block monoid over G. It is a finitely generated monoid possessing
a divisor theory, it satisfies F and also t(H) <∞. In particular, B(G) is atomic with only finitely many
atoms, and we set

D(G) = sup
{
|U |

∣∣ U is an atom of B(G)
}
.

D(G) is called Davenport’s constant . It is one of the best investigated and not yet completely understood
constants of additive group theory. It is easily seen that D(G) ≤ |G| with equality if and only if G is
cyclic. For brevity, we set c(G) = c

(
B(G)

)
and t(G) = t

(
B(G)

)
in order to investigate the arithmetic

of the block monoid.
The significance of the block monoid for the arithmetic of algebraic number fields comes from the

following transfer result.

Theorem 3.1 (Transfer Theorem for block monoids). Let K be an algebraic number field, OK its ring
of integers, H = H(OK) the monoid of principal ideals of OK and CK the class group of OK (written
additively). For a non-zero ideal a of OK , we denote by [a] ∈ CK its class.

If c ∈ H and c = p1 · . . . · pl is its factorization into prime ideals, then we define

β(c) = [p1] · . . . · [pl] ∈ B(CK) .

The map β : H → B(CK) is a monoid homomorphism, and for all c ∈ H the following assertions hold :

1. L
(
β(c)

)
= L(c). In particular, c is an atom of H if and only if β(c) is an atom of B(CK).

2. c
(
β(c)

)
≤ β(c) ≤ max

{
c
(
β(c)

)
, 2

}
. In particular, c(G) ≤ c(H) ≤ max

{
c(G), 2}.

3. If c is an atom of H, then t
(
β(c)

)
≤ t(c) ≤ t

(
β(c)

)
+ D(CK) + 1.

Due to Theorem 3.1, a great part of the investigations of non-unique factorizations in H(OK) reduces
to that in B(CK). In particular, it has been proved in this way, that F holde for H(OK).

We continue with the investigation of factorizations in B(G) for a finite abelian group G. For n ∈ N,
we denote by Cn the (additive) cylic group with n elements.

Theorem 3.2 (Geroldinger).
1. Let G = Cn1 ⊕ . . .⊕ Cnr

with r = r(G), 1 < n1 | . . . |nr, and suppose that |G| ≥ 3. Then

max
{
nr, 1 +

r∑
i=1

⌊ni
2

⌋}
≤ c(G) ≤ D(G) . In particular, max

{
exp(G), 1 + r(G)

}
≤ c(G) ≤ |G| .

2. c(G) = D(G) if and only if G is cyclic or an elementary 2-group.
3. c(G) = r(G) + 1 if G is an elementary 2-group.
4. c(G) = 3 if and only if G ∈

{
C3, C3 ⊕ C3, C2 ⊕ C2}.

Theorem 3.2 asserts in particular that if a finite abelian group G becomes large, then there exist
elements with more and more complicated sets of factorizations in B(G). Together with Theorem 3.1,
this supports the philosophy of classical algebraic number theory that the class group is a measure for
the deviation from unique factorization.

Next we consider sequences with well-behaved factorizations in B(G). Two factorizations z and z′ of
a sequence A ∈ B(G) are called adjacent if they are of one of the following types:

A. z : A = (g1g2U ′1)︸ ︷︷ ︸
U1

(
(g1 + g2)U ′2

)︸ ︷︷ ︸
U2

U3 · . . . · Ul , and z′ : A =
(
(g1 + g2)U ′1

)︸ ︷︷ ︸
V1

(g1g2U ′2)︸ ︷︷ ︸
V2 or V2V3

U3 · . . . Ul

B. z : A = (g1U ′1)︸ ︷︷ ︸
U1

(g2U ′2)︸ ︷︷ ︸
U2

(
(g1 + g2)U ′3

)︸ ︷︷ ︸
U3

U4 · . . . · Ul and z′ : A =
(
(g1 + g2)U ′1U

′
2

)︸ ︷︷ ︸
V1

(g1g2U ′3)︸ ︷︷ ︸
V2 or V2V3

U4 · . . . Ul
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Note that if a sequence U1 = g1g2U
′
1 (with g1, g2 ∈ G and U ′1 ∈ F(G) ) is an atom of B(G), then the

sequence V1 = (g1 + g2)U ′1 is also an atom of B(G). If two sequences U1 = g1U
′
1 and U2 = g2U

′
2 (with

g1, g2 ∈ G and U ′1, U
′
2 ∈ F(G) ) are atoms of B(G), then the sequence V1 = (g1 + g2)U ′1U

′
2 is also an

atom of B(G). If a sequence U2 = (g1 + g2)U ′2 (with g1, g2 ∈ G and U ′2 ∈ F(G) ) is an atom of B(G),
then the sequence g1g2U ′2 ∈ B(G) is either an atom or a product of two atoms of B(G). By definition,
two adjacent factorizations z, z′ satisfy d(z, z′) ≤ 3.

Theorem 3.3 (Connection Theorem). Let G be a finite abelian group, A ∈ B(G) a sequence be such that
supp(A) ∪ {0} ⊂ G is a subgroup, and let z, z′ be factorizations of A. Then there exist factorizations
z = z0, z1, . . . , zk = z′ of A such that zi−1 and zi are adjacent for all i ∈ [1, k]. In particular, we
have c(A) ≤ 3.

The assertion of Theorem 3.3 can be rephrased by saying that “z and z′ can be concatenated by a
sequence of successively adjacent factorizations”. The proof of the Connecting Theorem is complicated
and takes up 30 pages in [8]. The main tool in its proof is the following theorem on the structure of
additively closed sequences, due to W. Gao and A. Geroldinger.

Proposition 3.4. Let G be a finite abelian group, B, C ∈ F(G), |B| ≥ |C|, S = BC, |S| ≥ 4,
0 /∈ supp(C), and suppose that, for all g1, g2 ∈ G ,

if g1g2 |B or g1g2 |C (in F(G) ), then g1 + g2 ∈ supp(S) .

Then S has a proper zero-sum subsequence, apart from the following exceptions :

1. |C| = 1, and we are in one of the following cases :

• B = gk and C = 2g for some k ≥ 3 and g ∈ G with ord(g) ≥ k + 2.

• B = gk(2g) and C = 3g for some k ≥ 2 and g ∈ G with ord(g) ≥ k + 5.

• B = g1g2(g1+g2) and C = g1+2g2 for some g1, g2 ∈ G with ord(g1) = 2 and ord(g2) ≥ 5.

2. {B, C} = { g(9g)(10g) , (11g)(3g)(14g) } for some g ∈ G with ord(g) = 16.

From Theorem 3.3 it is now not difficult to derive, that “almost all” zero-sum sequences B ∈ B(G)
have a clearly arranged set of factorizations and in particular satisfy c(B) ≤ 3. To be precise, we have
the following result.

Theorem 3.5 (Theorem on nice factorizations of zero-sum sequences). Let G be a finite abelian group.

1. If B ∈ B(G) and supp(B) = G \ {0}, then c(B) ≤ 3.

2. For every A ∈ F(G) we have∣∣{B ∈ B(G)
∣∣ B = AC for some C ∈ F(G) , |B| ≤ N

}∣∣∣∣{B ∈ B(G)
∣∣ |B| ≤ N

}∣∣ = 1 +O
( 1
N

)
.

In particular, ∣∣{B ∈ B(G)
∣∣ c(B) ≤ 3 , |B| ≤ N

}∣∣∣∣{B ∈ B(G)
∣∣ |B| ≤ N

}∣∣ = 1 +O
( 1
N

)
.
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4. Quantitative theory of factorizations

Let again K be an algebraic number field, OK its ring of integers, HK the monoid of non-zero principal
ideals of OK , CK the class group of OK and hK = |CK |. For a non-zero ideal a of OK we denote its
norm by |a| = (OK :a). We start with two results, first proved by W. Narkiewicz [11] and J. Śliwa [16].
Recall that for c ∈ HK we denote by Z(c) the set of all factorizations and by L(c) the set of all lengths
of factorizations of c.

Theorem 4.1. For x→∞, we have∣∣{c ∈ HK

∣∣ |Z(c)| ≤ k , |c| ≤ x
}∣∣ ∼ C1x(log x)−1+1/hK (log log x)Nk(CK)

and ∣∣{c ∈ HK

∣∣ |L(c)| ≤ k , |c| ≤ x
}∣∣ ∼ C2x(log x)−1+µ(CK)/hK (log log x)ψk(CK) ,

where C1, C2 are positive constants and µ(CK), Nk(CK) and ψk(CK) are positive integers only depending
on CK . In particular, it follows that∣∣{c ∈ HK

∣∣ |Z(c)| > k , |c| ≤ x
}∣∣∣∣{c ∈ HK

∣∣ |c| ≤ x
}∣∣ = 1 +O

(
(log log x)Nk(CK)

(log x)1−1/hK

)
and ∣∣{c ∈ HK

∣∣ |L(c)| > k , |c| ≤ x
}∣∣∣∣{c ∈ HK

∣∣ |c| ≤ x
}∣∣ = 1 +O

(
(log log x)ψk(CK)

(log x)1−µ(CK)/hK

)
By Theorem 4.1, “almost all” elements have many distinct factorizations and even many distinct

lengths. Nonetheless, also “almost all” elements have a clearly arranged set of factorizations as the
following theorem shows.

Theorem 4.2. For x→∞, we have∣∣{c ∈ HK

∣∣ c(a) ≤ 3 , |a| ≤ x
}∣∣∣∣{c ∈ HK

∣∣ |a| ≤ x
}∣∣ = 1 +O

(
1

(log x)1/hK

)
.

The proof of Theorem 4.2 is based on the Theorems 3.1 and 3.3, and the connection between them is
given by the following Counting Lemma (which also is basic for the proof of Theorem 4.1). For a sequence
S ∈ F(CK) and g ∈ CK , we denote by vg(S) the number of appearances of g in the sequence S.

Lemma 4.3 (Counting Lemma). Let G0 ⊂ CK , S ∈ F(CK \ G0) and l ∈ N0. Let Ω(G0, S, l) denote
the set of all sequences C ∈ B(CK) with vg(C) = vg(S) for all g ∈ CK \G0 and vg(C) ≥ l for all g ∈ G0,
and suppose that Ω(G0, S, 0) contains a non-trivial zero-sum sequence. Let β : HK → B(CK) be the
homomorphism defined in Theorem 3.1, and for x ∈ R≥1 let

Ω(G0, S, l)(x) =
∣∣{c ∈ HK | β(c) ∈ Ω(G0, S, l) , |c| ≤ x }

∣∣ .
Then we have, for x→∞,

Ωy(G0, S, l)(x) = Cx (log x)η (log log x)δ ,

where C is a positive real constant,

η = −1 +
|G0|
|G|

and δ =

{
|S| , if G0 6= ∅ ,

|S| − 1 , if G0 = ∅ .
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The proof of Lemma 4.3 is done by writing down the defining Dirichlet series and using an appropriate
Tauberian Theorem. A weaker form of Lemma 4.3 (and consequently of the Theorems 4.1 and 4.2) can be
proved in the context of abstract analytic number theory. Then it becomes applicable not only for rings
of integers of algebraic number fields, but also more generally for holomorphy rings in algebraic function
fields and for regular congruence monoids in such holomorphy rings (see Section 5 for their definition).
Moreover, Theorem 4.1 remains valid in non-principal orders of global fields and can be refined in order to
investigate factorizations in residue classes and factorizations of elements of subdomains (see [8, Section
8.10 and Chapter 9] and [9]).

In the case of algebraic number fields and algebraic function fields, it is possible to strengthen Lemma
4.3 and Theorem 4.1 and to give a more precise asymptotic formula using a series of decreasing powers of
log x and log log x . The necessary analytic tools for doing this may be found in [8, Chapter 8] (theory
of arithmetical and geometrical formations).

5. Generalizations and Refinements

The finiteness properties F and in particular the Structure Theorem for Sets of Lengths are central
in the theory of non-unique factorizations. Apart from algebraic integers, these finiteness results hold for
monoids and integral domains satisfying some natural finiteness conditions. To prove such more general
results, we have to generalize the notions of class groups and of block monoids as follows.

Let H ⊂ D be monoids. Two elements a, b ∈ D are called H-equivalent if, for all x ∈ D, we have
ax ∈ H if and only if bx ∈ H. The set of all H-equivalence classes of non-invertible elements of D is a
semigroup, called the reduced class semigroup C∗(H,D). A monoid H is called a C-monoid if H is a
submonoid of a factorial monoid F such that H× = H ∩ F× and C∗(H,F ) is finite.

Besides of their arithmetical significance, C-monoids have nice algebraic properties. Without giving
details, we mention the most important ones in the following theorem.

Theorem 5.1. Let H be a C-monoid. Then H satisfies the finiteness properties F of non-unique
factorizations. Moreover, H satisfies the ACC for divisorial ideals, and the complete integral closure of
H is a Krull monoid with finite divisor class group.

Every Krull monoid (that is, every monoid with divisor theory) with finite class group is a C-monoid,
and in this case the class group coincides with the reduced class semigroup (when adjoining a unit ele-
ment). The most important examples of C-monoids are the multiplicative monoids of noetherian integral
domains satisfying some natural finiteness conditions and congruence monoids in Dedekind domains.

Theorem 5.2. Let R be a noetherian integral domain whose integral closure R′ is a finitely generated
R-module. Let f = AnnR(R′/R) be its conductor, and suppose that the divisor class group of the Krull
domain R′ and the residue class ring R′/f are both finite. Then the multiplicative monoid H(R) of
non-zero principal ideals of R is a C-monoid.

Next we introduce congruence monoids. Let R be an integral domain and R• = R \ {0}. Let
w1, . . . , wm : R → R be distinct ring monomorphisms (possibly m = 0), and define σ : R• → {±1}m
by σ(x) =

(
sign w1(x), . . . , sign wm(x)

)
. Then we call σ a sign vector. For a, b ∈ R• and a non-zero

ideal f / R we define a ≡ b mod fσ if a ≡ b mod f and σ(a) = σ(b). This is a congruence relation, and for
a ∈ R•, we denote by [a]fσ the congruence class of a modulo fσ. The set of all congruence classes modulo
fσ is a multiplicative semigroup denoted by R•/fσ (if m = 0, then R•/fσ is the multiplicative semigroup
of the residue class ring R/f). If Γ ⊂ R•/fσ is a subsemigroup, then HΓ = {a ∈ R• | [a]fσ ∈ Γ} ∪ {1} is
a submonoid of R•, called a congruence monoid modulo fσ in R. A congruence monoid modulo fσ is
called regular if it consists only of elements relatively prime to f.
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If R ⊂ R′ are integral domains such that f = AnnR(R′/R) 6= {0}, then R• is a congruence monoid
modulo f in R. In particular, for every order R in an algebraic number field, its multiplicative monoid
R• is a congruence monoid modulo the conductor in its principal order.

Next let R = Z and σ : Z → {±1} is the ordinary sign. If f ≥ 2 is an integer and Γ ⊂ Z/fZ is a
multiplicative subsemigroup, then the monoid HΓ = {a ∈ N | a+ fZ ∈ Γ} ∪ {1} is a congruence monoid
modulo fZσ, usually called a Hilbert monoid. Hilbert monoids belong to the oldest examples in order
to demonstrate non-unique factorizations.

Theorem 5.3. Let R be a Dedekind domain with finite ideal class group, f an ideal of R such that R/f
is finite and σ a sign vector of R. Then every congruence monoid modulo fσ in R is a C-monoid.

From the Theorems 5.1, 5.2 and 5.3 we obtain a large class of monoids and integral domains for which
the finiteness results of non-unique factorizations hold. In all cases, the finiteness of the class group
or of a related invariant seems to be fundamental in order to obtain finiteness results for non-unique
factorizations as cited in this article.

It is an open problem whether Theorem 4.2 also holds for non-principal orders in algebraic number
fields. Local investigations support the conjecture that this is not true.
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