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IDEAL SEMIGROUPS OF NOETHERIAN DOMAINS AND PONIZOVSKI
DECOMPOSITIONS

FRANZ HALTER-KOCH

1. Introduction

While the Picard group and the divisor class group of an integral domain are classical objects of interest
in commutative algebra, the semigroup of all ideal classes has only recently attracted some interest. An
older paper by E.C. Dade, O. Taussky and H. Zassenhaus [4] seems to have fallen into oblivion. The
main interest in recent investigations was the question whether the class semigroup of an integral domain
is a Clifford semigroup (in this case we call the domain Clifford regular ).

In [13], it was reproved that orders in quadratic number fields are Clifford regular, while every algebraic
number field of higher degree contains orders which are not Clifford regular. It was also proved there
that a Clifford regular integrally closed domain is a Prüfer domain. In [2], it was proved that every
valuation domain is Clifford regular, and S. Bazzoni [1] succeeded in characterizing all Clifford regular
Prüfer domains. More generally, the Clifford regularity of Mori domains and t-class semigroup analogs
are investigated in [9].

In this note, we continue the investigations of [4] and put them into the context of the structure theory
of commutative semigroups as presented in [7] and [8]. Thereby we use the notion of lattices as in [12]
(also called complete modules in [10]). The (partial) Ponizovski factors turn out to be the appropriate
semigroup-theoretic notion to describe the multiplicative structure of lattices over one-dimensional (and
in particular over Dedekind) domains.

In Section 2 we refer and complement the basics from the structure theory of commutative semigroups
as far as this is needed for our purposes. In Section 3 we describe the multiplicative semigroup of lattices
over one-dimensional domains, and in Section 4 we apply these results to determine the structure of the
corresponding class semigroups. In Section 5 we use the concept of Dedekind’s complementary modules
to present some criteria for the existence of groups inside the lattice semigroup. In the context of orders
in algebraic number fields, these criteria were proved in [6].

We denote by N the set of positive integers, we set N0 = N ∪ {0}, and for a, b ∈ Z with a ≤ b, we set
[a, b] = {x ∈ Z | a ≤ x ≤ b}.

2. Ponizovski decompositions of commutative semigroups

Throughout this section, let S be a commutative semigroup.

Our main reference for the theory of commutative semigroups is [7] (undefined notions are used as
there). We use multiplicative notation. If S contains a unit element, we denote it by 1 and set S1 = S.
If S does not contain a unit element, we denote by S1 = S ∪{1} the semigroup built from S by adjoining
a unit element. If S contains a zero element, we denote it by 0 (it satisfies 0x = 0 for all x ∈ S1). For
subsets A, B ⊂ S and a ∈ S we set AB = {xy | x ∈ A, y ∈ B} and aB = {ay | y ∈ B}.

1This work was supported by the Austrian Science Fund FWF (Project-Nr. P18779-N13)
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A subset I ⊂ S is called an ideal if SI ⊂ I. For a ∈ S, the principal ideal S1a is the smallest ideal
containing a. If I ⊂ S is an ideal, we define the Rees quotient to be the semigroup S/I = (S \ I)∪ {0},
where the product xy is defined as in S if x, y and xy all belong to S \ I, and xy = 0 otherwise.

For a congruence relation C on S, we denote by S/C the quotient semigroup, and for a ∈ S we denote
by [a]C ∈ S/C the congruence class of a. For a, b ∈ S we define Green’s relation H and the archimedean
relation N by

aHb if aS1 = bS1 , and aN b if an ∈ bS1 and bm ∈ aS1 for some m, n ∈ N .

H and N are congruence relations on S. For a ∈ S, the congruence class [a]N is called the archimedean
component of a. The semigroup S is called archimedean if it consists of a single archimedean component.
If S is any semigroup and a ∈ S, then [a]N is the largest archimedean subsemigroup of S containing a.
Every archimedean component and every ideal of S is composed of H-classes.

Let E(S) denote the set of all idempotents of S, endowed with the Rees order ≤, defined by e ≤ f
if ef = e. Every archimedean component of S contains at most one idempotent. An H-class [a]H ∈ S/H
is a subgroup of S if and only if it contains an idempotent, and the set

{
[e]H

∣∣ e ∈ E(S)
}

is the set of
all maximal subgroups of S (see [7, Corollary I.4.5]). For a ∈ S, we define E(a) = {e ∈ E(S1) | ae = a},
whence E(a) = {e ∈ E(S1) | a ∈ Se}.

An element a ∈ S is called regular if a lies in a subgroup of S. It is easily checked that a is regular
if and only if there exist elements b ∈ S and e ∈ E(S) such that ab = e, ae = a and be = b. Indeed, e
is the unit element and b is the inverse of a in the subgroup containing a. In particular, e and b are
uniquely determined by a. We call b the inverse and e the idempotent of a.

Lemma 2.1. If a ∈ S is regular and e is the idempotent of a, then e = minE(a).

Proof. Let b ∈ S be such that ab = e and f ∈ E(a). Then e = ab = fab = fe ≤ f . �

The semigroup S is called regular or a Clifford semigroup if every element of S is regular. Thus S
is a Clifford semigroup if and only if S is the disjoint union of its maximal subgroups.

An element a ∈ S is called π-regular if there exists some n ∈ N such that an is regular. The
semigroup S is called π-regular if every element of S is π-regular.

It is well known that S is regular if and only if every H-class contains an idempotent, and S is π-regular
if and only if every archimedean component contains an idempotent (see [7, Corollaries I.4.5 and III.3.2]).
An element a ∈ S is [π-]regular if and only if its H-class [a]H ∈ S/H is [π-]regular. Consequently, S is
[π-]regular if and only if S/H is [π-]regular. Note that S/H is regular if and only if it is a semilattice.

The following lemma gives more information on the structure of π-regular semigroups.

Lemma 2.2. Let a ∈ S and n ∈ N be such that an lies in a maximal subgroup G of S. Then am ∈ G
for all m ≥ n. In particular, if an is regular, then am is regular for all m ≥ n.

Proof. We have G = [e]H for some e ∈ E(S), and it suffices to prove that an+1 ∈ G. Since a ∈ [e]N and
an ∈ [e]H, we obtain an = eu, em = e = av and e = ant for some m ∈ N and u, v, t ∈ S1. Hence it
follows that an+1 = eau ∈ eS1 and e = an+1vt ∈ an+1S1, whence an+1 ∈ [e]H. �

In the following we define the Ponizovski factors of a semigroup not only for complete semigroups as
in [7] but under more general assumptions. This enables us to characterize complete semigroups by the
structure of their Ponizovski factors.
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Definition 2.3. For an idempotent e ∈ E(S1), we define the Ponizovski factor Pe and the partial
Ponizovski factor P ∗

e by

Pe = Se
/( ⋃

f∈E(S)
f<e

Sf
)

and P ∗
e = Pe \ {0} = Se \

( ⋃
f∈E(S)

f<e

Sf
)

.

If a ∈ S is regular, then e = minE(a) by Lemma 2.1. In general however, E(a) need not have a minimum.
We call S almost complete if for every a ∈ S the set E(a) has a minimum. As usual, we call S complete
if it is π-regular and almost complete. Note that S is (almost) complete if and only if S/H is (almost)
complete. The (partial) Ponizovski factors are composed of H-classes, and if ρ : S → S/H denotes the
canonical homomorphism, then ρ(P ∗

e ) = P ∗
ρ(e) for all e ∈ E(S1).

If a ∈ S and e ∈ E(S1), then a ∈ P ∗
e if and only if e = minE(a). Consequently, S is almost complete if

and only if it is the union of its partial Ponizovsky factors {P ∗
e | e ∈ E(S1)}. If e, f ∈ E(S1) and e 6= f ,

then P ∗
e ∩ P ∗

f = ∅, and if e ∈ E(S), then [e]H ⊂ P ∗
e . In particular, P ∗

e 6= ∅ for all e ∈ E(S), and if 1 /∈ S,
then P ∗

1 = ∅ if and only if S = E(S)S.
By definition, the Ponizovski factors Pe are semigroups with zero. If S is almost complete, then it is a

subdirect product of its Ponizovski factors. Indeed, if for e ∈ E(S1) the canonical projections πe : S → Pe

are defined by
πe(x) = x if x ∈ P ∗

e , and πe(x) = 0 otherwise ,

then the family {πe | e ∈ E(S1)} separates the points of S, that is, if x, y ∈ S and πe(x) = πe(y) for all
e ∈ E(S1), then x = y.

It is now easy to characterize Clifford semigroups and complete semigroups by their partial Ponizovski
factors.

Theorem 2.4. S is a Clifford semigroup if and only if S is almost complete and all non-empty partial
Ponizovski factors are groups.

Proof. Observe that, for every e ∈ E(S), the partial Ponizovski factor P ∗
e is a group if and only if

P ∗
e = [e]H. �

The semigroup S is called elementary if there exists a nilsemigroup N ⊂ S such that either N = S
or S \N is a group. It is well known that the Ponizovski factors of a complete semigroup are elementary
(see [7, Proposition IV.4.5]). With a slight additional condition, the converse is also true.

Theorem 2.5. An almost complete semigroup S is complete if and only if all Ponizovski factors are
elementary semigroups and, for every a ∈ S, the set {minE(an) | n ∈ N} is finite.

Proof. Let first S be complete. If a ∈ S, then there exist some n ∈ N and e ∈ E(S) such that an ∈ [e]H.
By Lemma 2.2, it follows that am ∈ [e]H and thus e = minE(am) for all m ≥ n. Thus we must prove
that all Ponizovski factors are elementary.

Let e ∈ E(S1) and a ∈ P ∗
e . Let n ∈ N and f ∈ E(S) be such that an ∈ [f ]H ⊂ Pf . If e = 1 /∈ S,

then P1 = S/E(S)S and thus an = 0 in P1. If e ∈ S, then a = ae and f = anu for some u ∈ S1, whence
ef = eanu = anu = f ≤ e. If f = e, then a ∈ [e]H, and if f < e, then an = 0 in Pe.

Assume now that S is almost complete, all Ponizovski factors are elementary semigroups and all sets
{minE(an) | n ∈ N} for a ∈ S are finite. Let a ∈ S. Then there exist some n ∈ N and e ∈ E(S1) such
that e = minE(am) for all m ≥ n. Hence it follows that am ∈ P ∗

e for all m ≥ n. In particular, an is not
nilpotent in Pe and thus lies in a subgroup G 6= {0} of Pe. Hence G is a subgroup of S, and thus an is
regular. �
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3. Semigroups of ideals and lattices

Our standard references for the ideal theory of commutatitve rings are [3] and [11]. For an integral
domain A, we set A• = A \ {0}, we denote by A× the group of invertible elements of A, by F(A) the
multiplicative semigroup of all non-zero fractional ideals of A, by F(A)× the subgroup of all A-invertible
fractional ideals and by E(A) the set of all fractional ideals of A which are overrings of A.

Throughout this section, let R be a noetherian integral domain,
K its field of quotients and L ⊃ K a finite extension field.

By an R-lattice in L we mean a finitely generated R-submodule of L which contains a K-basis of L,
and we denote by FL(R) the set of all R-lattices in L. Since FK(A) = F(A), the concept of R-lattices
generalizes that of fractional ideals. A finitely generated R-module a ⊂ L lies in FL(R) if and only if for
every z ∈ L there exists some q ∈ R• such that qz ∈ a. By an R-order in L we mean a subring Λ ⊂ L
which is an R-lattice in L. We denote by EL(R) the set of all R-orders in L, whence E(R) = EK(R). If a
and b are R-lattices in L, then

a + b , a ∩ b , ab = R

(
{ab | a ∈ a, b ∈ b}

)
and (a :b) = {z ∈ L | zb ⊂ a}

are also R-lattices in L, and R(a) = (a :a) is an R-order in L (usually called the ring of endomorphism
or the ring of multipliers of a). If Λ ∈ EL(R), then F(Λ) ⊂ FL(R) is a subsemigroup. An R-lattice a is
called Λ-invertible if a ∈ F(Λ)×, that is, if Λa = a and a (Λ:a) = Λ.
FL(R) is a multiplicative semigroup, and if Λ ∈ EL(R), then F(Λ) ⊂ FL(R) is a subsemigroup. In the

sequel, we shall need the following variant of Nakayama’s lemma.

Lemma 3.1. Let A ⊂ B be commutative rings, let a, b ⊂ B be A-submodules such that b is finitely
generated, AnnA(b) = 0, ab = b and a2 ⊂ a. Then a ⊂ B is a subring.

Proof. Let b = A(b1, . . . , bm). Then ab = b implies

bj =
m∑

µ=1

aj,µbµ with aj,µ ∈ a , whence
m∑

µ=1

(δj,µ − aj,µ)bµ = 0 for all j ∈ [1,m] .

Thus det(δj,µ − aj,µ) annihilates b, which implies 0 = det(δj,µ − aj,µ) ≡ 1 mod a. Hence 1 ∈ a and
a ⊂ B is a subring. �

Now we are ready to interpret the semigroup-theoretical notions in the language of ideal theory. Note
that FL(R) contains a unit element if and only if either L = K or R = K (in the first case R and in the
second case L is a unit element).

Theorem 3.2. Let Λ ∈ EL(R) and a ∈ FL(R).
1. EL(R) = E

(
FL(R)

)
is the set of idempotents of FL(R), and for Λ1, Λ2 ∈ EL(R) we have Λ1 ≤ Λ2

if and only if Λ1 ⊃ Λ2.
2. F(Λ) = ΛFL(R).
3. E(a) = {Λ′ ∈ EL(R) | Λ′a = a}, and R(a) = minE(a). In particular, FL(R) is almost complete.
4. The partial Ponizovski factor P ∗

Λ consists of all c ∈ FL(R) with R(c) = Λ, and

FL(R) =
⋃

Λ′∈EL(R)

P ∗
Λ′ .

5. If a is Λ-invertible, then a is regular and Λ = R(a).
6. a is regular if and only if a is R(a)-invertible.
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Proof. 1. Clearly, every Λ′ ∈ EL(R) is idempotent, and if Λ1, Λ2 ∈ EL(R), then Λ1 ≤ Λ2 if and only if
Λ1 = Λ1Λ2 ⊃ Λ2. By Lemma 3.1, every idempotent of FL(R) lies in EL(R).

2., 3. and 4. follow from the definitions observing 1. Note that FL(R) = EL(R)FL(R), and thus
P ∗

1 = ∅ if L 6= K.
5. and 6. If a is Λ-invertible, then a lies in the subgroup FL(R)×. Hence a is regular, and by Lemma

2.1 it follows that Λ = minE(a) = R(a).
Conversely, if a is regular, then there exist some Λ′ ∈ EL(R) and b ∈ FL(R) such that Λ′a = a, Λ′b = b

and ab = Λ′. Hence a ∈ F(Λ′)×, and thus a is regular. �

The following Main Theorem and the preceding auxiliary lemma on local domains are essentially true
by [4]. We present them with shorter proofs.

Lemma 3.3. Let A be a local noetherian domain with quotient field Q, A′ ∈ E(A) and q ∈ F(A) such
that qA′ = A′. Then there exist some N ∈ N, µ ∈ Q× and A1 ∈ E(A) such that A ⊂ A1 ⊂ A′,
µ−1qA1 = A1 and, for all n ∈ N, (µq)n = A1 if and only if n ≥ N .

If p denotes the maximal ideal of A, f = AnnA(A′/A) and lA(A′/f) is the length of the A-module
A′/f, then

N ≤ max{1, dimA/p(A1/pA1)− 1} ≤ max{1, lA(A′/f)− 1} .

Proof. Being a finitely generated A-module, A′ is semilocal, say max(A′) = {P1, . . . ,Pr}. Then q 6⊂ Pi

for all i ∈ [1, r], hence q 6⊂ P1 ∪ . . . ∪Pr and thus q ∩ A′× 6= ∅. Let µ ∈ q ∩ A′× and q1 = µ−1q. Then
q1 ∈ F(A), q1 ⊂ A′ and 1 ∈ q1. Hence A ⊂ q1 ⊂ q2

1 ⊂ . . . ⊂ A′ is an ascending chain of submodules of
the noetherian A-module A′. Let

N = min{n ∈ N | qn
1 = qn+1

1 } and A1 = qN
1 .

Since qN
1 = q2N

1 , Lemma 3.1 implies that A1 ∈ E(A). By definition we have A ⊂ A1 ⊂ A′, qn
1 = A1 for

all n ≥ N and q1A1 = qN+1
1 = A1. If N ≥ 2, then qN−1

1 6= A1, and

A/p = A + pA1/pA1 ( q1 + pA1/pA1 ( . . . ( qN−1
1 + pA1/A1 ( A1/pA1

is and ascending chain of vector spaces over A/p showing that N + 1 ≤ dimA/p(A1/pA1) and giving the
first estimate for N .

It remains to prove the second estimate for N (which is independent of the intermediate domain A1).
If f = A, then A = A′ and there is nothing to do. Otherwise f ⊂ p and thus dimA/p(A1/pA1) =
lA(A1/pA1) ≤ lA(A′/f). �

Theorem 3.4. Let R be one-dimensional and a ∈ FL(R). Then there exists some N ∈ N such that an

is regular in FL(R) for all n ≥ N .
If R is a Dedekind domain, then N ≤ max{1, [L :K]− 1}.

Proof. Let Λ = R(a) and Λ the integral closure of Λ in L. By the Krull-Akizuki theorem, Λ is a Dedekind
domain, and thus aΛ is Λ-invertible. If a = Λ(a1, . . . , ar), then there exist b1, . . . , br ∈ (Λ:aΛ) such that
a1b1 + . . . + arbr = 1. We define

Λ′ = Λ
[
{aibj | i, j ∈ [1,m]}

]
∈ EL(R) and b = Λ′(b1, . . . , bm) .

Then (aΛ′)b′ = Λ′, and thus aΛ′ and b′ are inverse elements in F(Λ′). For every p ∈ max(Λ), the ring Λ′p
is a finitely generated Λp-module, hence semilocal, and thus b′p = bpΛ′p for some bp ∈ L×. Since Λ′p = b′p
for almost all p ∈ max(Λ), we may assume that bp = 1 for almost all p ∈ max(Λ). Then we obtain

b =
⋂

p∈max(Λ)

bpΛp ∈ F(Λ)× , (bΛ′)p = bpΛ′p = b′p and thus bΛ′ = b′ .
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We set q = ab ∈ F(Λ), and we obtain qΛ′ = Λ′. For every p ∈ max(Λ), we have qpΛ′p = Λ′p, and
we apply Lemma 3.3. There exist np ∈ N, µp ∈ L× and Λ1(p) ∈ E(Λp) such that Λp ⊂ Λ1(p) ⊂ Λ′p,
µ−1

p qpΛ1(p) = Λ1(p) and (µ−1
p qp)n = Λ1(p) for all n ≥ np. Moreover, we have the estimate

np ≤ max
{
1, dimΛp/pΛp

(
Λ1(p)/pΛ1(p)

)
− 1

}
.

For almost all p ∈ max(Λ) we have qp = Λp and Λp = Λ′p = Λ1(p), hence we may also assume that µp = 1
and np = 1 for all but finitely many p ∈ max(Λ). Thus we obtain

Λ1 =
⋂

p∈max(Λ)

Λ1(p) ∈ EL(R) , Λ ⊂ Λ1 ⊂ Λ′ and Λ1p = Λ1(p) for all p ∈ max(Λ) .

We define
d =

⋂
p∈max(Λ)

µ−1
p Λp ∈ FL(R) .

Then d ∈ F(Λ)×, and we set N = max{np | p ∈ max(Λ)}. If n ≥ N , then

(dq)n =
⋂

p∈max(Λ)

(µ−1
p qp)n =

⋂
p∈max(Λ)

A1(p) = A1 = (dab)n = an(db)n .

But db ∈ F(Λ)×, and therefore an = Λ1

(
Λ:(db)n

)
∈ F(Λ1)×.

Let finally R be a Dedekind domain. We must prove that

dimΛp/pΛp

(
Λ1p/pΛ1p

)
≤ [L :K] for all p ∈ max(Λ) .

Let p ∈ max(Λ) and ℘ = p ∩R. Then ℘Λ1p ⊂ pΛ1p and thus

dimΛp/pΛp

(
Λ1p/pΛ1p

)
≤ dimR℘/℘R℘

(
Λ1p/pΛ1p

)
≤ dimR℘/℘R℘

(
Λ1p/℘Λ1p

)
= k (say) .

Let u1, . . . , uk ∈ Λ1p be such that u1+℘Λ1p, . . . , uk+℘Λ1p are linearly independent over R℘/℘R℘. By
Nakayama’s lemma, u1, . . . , uk is a minimal system of generators for R℘

(u1, . . . , uk) over R℘. Since R℘ is
a discrete valuation domain, (u1, . . . , uk) are linearly independent over K and thus k ≤ [L :K]. �

Theorem 3.5. Let R be one-dimensional. Then FL(R) is complete. If R is a Dedekind domain and
L = K(α) for some α ∈ L, then FL(R) is a Clifford semigroup if and only if [L :K] ≤ 2.

Proof. By Theorem 3.2.5 and Theorem 3.4, FL(R) is complete, and if R is a Dedekind domain and
[L :K] ≤ 2, then FL(R) is a Clifford semigroup.

Let now R be a Dedekind domain, L = K(α) and d = [L :K] ≥ 3. We may assume that α is integral
over R, and we adopt the construction given in [13] and [4] to our situation. It suffices to construct an
R-lattice a ∈ FL(R) which is not regular. Let c ∈ R• \R× and a = R + αR + cα2R[α]. Then it is easily
checked that a ∈ FL(R), R(a) = R + cR[α] and ad−1 = R[α] ( R(a), whence a is not regular. �

4. Class semigroups

Throughout this section, let R be a noetherian integral domain,
K its field of quotients and L ⊃ K a finite extension field.

Two R-lattices a, b ∈ FL(R) are called arithmetically equivalent , a ∼ b, if a = λb for some λ ∈ L×.
Arithmetical equivalence is a congruence relation on the semigroup FL(R). Let SL(R) = FL(R)/∼
denote the semigroup of equivalence classes [a] = [a]∼ of R-lattices in L. By definition, S(R) = SK(R)
is the ideal class semigroup considered in [13], [1] or [9]. For K = L, the following proposition is proved
in [4, Corollary 1.3.11]
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Proposition 4.1. Let H∼ denote Green’s relation on SL(R). For any a, b ∈ FL(R) we have

aH b in FL(R) if and only if [a]H∼ [b] in SL(R) .

In particular, there is an isomorphism

Φ: FL(R)/H → SL(R)/H∼ , given by Φ
(
[a]H

)
=

[
[a]

]
H∼

,

and FL(R) is [π-]regular resp. (almost) complete if and only if SL(R) has this property.

Proof. Obviously, aH b implies [a]H∼ [b]. Thus assume that [a]H∼ [b]. Then there exist u, v ∈ FL(R)
such that [a] = [b][u] = [bu] and [b] = [a][v] = [av]. Hence a = b(uλ) and b = a(vµ) for some λ, µ ∈ L×,
whence aH b. �

In the following proposition, we make the connection between FL(R) and SL(R) even more explicit.

Proposition 4.2. Let Λ ∈ EL(R) and a ∈ FL(R).
1. E

(
SL(R)

)
=

{
[Λ′]

∣∣ Λ′ ∈ EL(R)
}
, and for Λ1, Λ2 ∈ EL(R) we have [Λ1] ≤ [Λ2] if and only if

Λ1 ⊃ Λ2..
2. [a] is regular in SL(R) if and only if a is regular in FL(R).
3. S(Λ) = [Λ]SL(R).
4. We have [Λ] ∈ E

(
[a]

)
if and only if Λ ∈ E(a), and

[
R(a)

]
= minE

(
[a]

)
.

5. The partial Ponizovski factor P ∗
[Λ] of [Λ] in SL(R) is given by

P ∗
[Λ] =

{
[c]

∣∣ c ∈ P ∗
Λ

}
,

and SL(R) is the union of its partial Ponizovski factors. In particular, P ∗
[Λ] is a group if and only

if P ∗
Λ is a group. If K is a global field, then P ∗

[Λ] is finite.

Proof. 1. Obviously, Λ′ ∈ EL(R) implies [Λ′] ∈ E
(
SL(R)

)
. Thus let a ∈ FL(R) be such that [a] ∈ SL(R)

is idempotent. Then [a2] = [a] implies a2 = λa for some λ ∈ L× and thus (λ−1a)2 = λ−1a. Hence
λ−1a ∈ EL(R), and [a] = [λ−1a].

If Λ1, Λ2 ∈ EL(R), then Λ1 ≤ Λ2 if and only if [Λ1]H ≤ [Λ2]H. Hence the assertion follows by Theorem
3.2.1 and Proposition 4.1.

2. By Proposition 4.1, since a is regular if and only if [a]H is regular.
3. Obvious.
4. Clearly, Λ ∈ E(a) implies [Λ] ∈ E

(
[a]

)
. Thus let [Λ] ∈ E

(
[a]

)
. Then [Λa] = [a], hence Λa = λa

for some λ ∈ L×, and therefore λ2a = Λ2a = Λa = λa, whence λa = a and Λ ∈ E(a). The equality[
R(a)

]
= minE

(
[a]

)
is now obvious.

5. The structure of the partial Ponizovski factor P ∗
[Λ] follows from 1. and 4., and its finiteness in the

case of global fields is a special case of the Jordan-Zassenhaus theorem (see [12, Theorem (26.4)]). �

5. Complementary lattices

Throughout this section, let R be a Dedekind domain,
K its field of quotients and L ⊃ K a finite separable extension field.

In this section we use Dedekind’s concept of complementary modules to investigate whether a single
partial Ponizovski factor P ∗

Λ of FL(R) is a group. Observe that P ∗
Λ is a group if and only if every ideal a

of Λ with Λ = R(a) is Λ-invertible. We have to assume that R is a Dedekind domain and L is separable
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over K. In this case, the integral closure R of R in L is the smallest idempotent of FL(R). Hence the
group F(R)× = RFL(R) is the kernel of FL(R) (see [7, Proposition IV.4.5]).

We denote by t : L → K the trace. Since L ⊃ K is separable, the induced bilinear form (x, y) 7→ t(x, y)
on L is non-degenerated, and we use the duality theory of R-lattices as derived in [5, Section 3]. For
a ∈ FL(R), the complementary lattice is defined by a′ = {x ∈ L | t(xa) ⊂ R}. Then a′ ∈ FL(R), and
for any a, b, c ∈ FL(R), we make use of the relations

a′′ = a , (ab)′ = (a′ :b) and
(
(a :b) :c

)
= (a :bc) .

For an R-order Λ ∈ EL(R), we call Λ′ the codifferent , its Λ-inverse DΛ = (Λ : Λ′) the different and
fΛ = (Λ:R) the conductor of Λ.

Lemma 5.1. Let Λ ∈ EL(R).
1. R(Λ′) = Λ.
2. R DΛ ⊂ fΛDR.
3. R′ = Λ′fΛ.

Proof. Note that Λ ⊂ R ⊂ R′ ⊂ Λ′, and that fΛ is the greatest R-module contained in Λ.
1. R(Λ′) = (Λ′ :Λ′) = (ΛΛ′)′ = Λ.
2. From R′ DΛ = R′(Λ:Λ′) ⊂ Λ we obtain R′ DΛ ⊂ fΛ and R DΛ = DR R′ DΛ ⊂ fΛ DR.
3. From R = (fΛ : fΛ) =

(
(Λ:R) : (Λ:R)

)
=

(
Λ:R(Λ:R)

)
= (Λ: fΛ) we infer R′ = Λ′fΛ. �

Theorem 5.2. For and R-order Λ ∈ EL(R), the following assertions are equivalent :
(a) The partial Ponizovski factor P ∗

Λ of FL(R) is a group (that is, every fractional ideal a ∈ F(Λ)
satisfying R(a) = Λ is Λ-invertible).

(b) Λ′ is Λ-invertible.
(c) R(DΛ) = Λ.
(d) R DΛ = fΛ DR.

Proof. (a) ⇒ (b) ⇒ (c) Obvious.
(c) ⇒ (b) By definition, a = Λ′(Λ : Λ′) ∈ FL(R) is an ideal of Λ and thus a2 ⊂ a. By assumption,

Λ = R(DΛ) = (DΛ :DΛ) =
(
(Λ:Λ′) : (Λ:Λ′)

)
= (Λ:a). Hence Λ′ = aΛ′, and by Lemma 3.1 it follows that

1 ∈ a, whence a = Λ and Λ′ is Λ-invertible.
(b) ⇒ (d) Since Λ′ is Λ-invertible, we have DΛΛ′ = Λ and thus, by Lemma 5.1.3, fΛ DR =

DΛΛ′fΛ DR = DΛR′ DR = DΛR.
(d) ⇒ (a) From R DΛ = fΛDR we obtain R′DΛ = fΛDRR′ = fΛ and, using Lemma 5.1.3, Λ′fΛ =

R′ = (Λ′DΛ)R′. Since Λ′DΛ is an ideal of Λ, we obtain (Λ′DΛ)2 ⊂ Λ′DΛ, and by Lemma 3.1 it follows
that Λ′DΛ = Λ. Let now a ∈ F(Λ) with Λ = R(a) = (a : a). Then Λ′ = aa′, hence aa′DΛ = Λ, and
therefore a is Λ-invertible. �
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