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1 Introduction

General ideal theory of commutative rings has its origin in R. Dedekind’s
multiplicative theory of algebraic numbers from the 19th century. It became
an autonomous theory by the work of W. Krull and E. Noether about 1930,
and it proved to be a most powerful tool in algebraic and arithmetic geometry
and complex analysis. Besides this mainstream movement towards algebraic
geometry, there is a modern development of multiplicative ideal theory based
on the works of W. Krull and H. Prüfer.

The main objective of multiplicative ideal theory is the investigation of
the multiplicative structure of integral domains by means of ideals or certain
systems of ideals of that domain. In doing so, Krull’s concept of ideal systems
proved to be fundamental. Its presentation in R. Gilmer’s book [23], using
the notion of star operations, influenced most of the research done in this
area during the last 40 years, yielding a highly developed theory of integral
domains characterized by ideal-theoretic or valuation-theoretic properties.

Fresh impetusses to the theory were given in the nineties by the concepts
of spectral star operations and semistar operations. Spectral star operations
were introduced by W. Fanggui and R.L. McCasland [11], [12] and shed new
light on the connection between local and global behavior of integral domains.
Semistar operations were introduce by A. Okabe and R. Matsuda [39] as a
generalization of the concept of star operations. This new concept proved to
be more flexible and made it possible to extend the theory obtained by star
operations to a larger class of integral domains.
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Already in the early history of the theory, it was observed that a great deal
of multiplicative ideal theory can be developed for commutative monoids dis-
regarding the additive structure of integral domains. In an axiomatic way,
this was first done by P. Lorenzen [34], and, in a more general setting, by
K.E. Aubert [7]. A systematic presentation of this purely multiplicative the-
ory was given in the volumes by P. Jaffard [32], J. Močkoř [37] and recently
by the author [25].

The present article is based on the monograph [25]. Its main purpose
is to outline the development of multiplicative ideal theory during the last
20 years (especially the concepts of spectral star operations and semistar
operations) in the context of commutative monoids. In doing so, instead of
being encyclopedically, we focus on the main results to outline the method,
and we often only sketch proofs instead of giving them in full detail.

2 Notations and Preliminaries

By a monoid we always mean (deviating from the usual terminology) a com-
mutative multiplicative semigroup K containing a unit element 1 ∈ K and a
zero element 0 ∈ K (satisfying 0x = 0 for all x ∈ K) such that every non-zero
element a ∈ K is cancellative (that is, ab = ac implies b = c for all b, c ∈ K).

For any setX, we denote byX• the set of non-zero elements ofX, by Pf(X)
the set of all finite subsets of X, and we set P•f (X) = {E ∈ Pf(X) | E• 6= ∅}.
A family (Xλ)λ∈Λ of subsets of X is called directed if, for any α, β ∈ Λ
there exists some λ ∈ Λ such that Xα ∪Xβ ⊂ Xλ.

For a monoid K, we denote by K× the group of invertible elements of
K. For subsets X, Y ⊂ K, we define XY = {xy | x ∈ X, y ∈ Y } and
(X :Y ) = (X :K Y ) = {z ∈ K | zY ⊂ X}, and for c ∈ K we set Xc = X{c}
and (X :c) = (X :{c}).

A submonoid D ⊂ K is always assumed to contain 1 and 0, and a monoid
homomorphism is assumed to respect 0 and 1.

In the sequel, let K be a monoid and D ⊂ K a submonoid.

A subset M ⊂ K is called a D-module if DM = M , and it is called an ideal
of D if it is a D-submodule of D. A subset T ⊂ K is called multiplicatively
closed if 1 ∈ T , 0 /∈ T and TT = T . For a multiplicatively closed subset
T ⊂ K× and X ⊂ K, we define

T−1X = {t−1x | t ∈ T, x ∈ X } =
⋃
t∈T

t−1X .

If TX = X, then the family (t−1X)t∈T is directed. If T ⊂ D is multiplica-
tively closed and X is a D-module, then T−1D ⊂ K is a submonoid, and
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T−1X = (T−1D)X is a T−1D-module. We call T−1D the quotient monoid
of D with respect to D.

We say that K a quotient of D and write K = q(D) if D• ⊂ K× and K =
D•−1D (then K• = K× is a quotient group of D•). Every monoid possesses
a quotient which is unique up to canonical isomorphisms. If K = q(D), then
a subset X ⊂ K is called D-fractional if cX ⊂ D for some c ∈ D•.

An ideal P ⊂ D is called a prime ideal of D if D \ P is multiplicatively
closed. If D \ P ⊂ K× and X ⊂ K, then we set XP = (D \ P )−1X.

In the following Lemma 2.1 we collect the elementary properties of quo-
tient monoids. Proofs are easy and left to the reader.

Lemma 2.1. Let T ⊂ D ∩K× be a multiplicatively closed subset.

1. If J ⊂ D is an ideal of D, then T−1J = (T−1D)J ⊂ T−1D is an ideal
of T−1D, J ⊂ T−1J ∩D, and T−1J = T−1D if and only if J ∩ T 6= ∅.

2. If J ⊂ T−1D is an ideal of T−1D, then J = T−1(J ∩D).
3. The assignment P 7→ T−1P defines a bijective map from the set of all

prime ideals P ⊂ D with P ∩ T = ∅ onto the set of all prime ideals of
T−1P .

4. If P ⊂ D is a prime ideal and T ∩ P = ∅, then P = T−1P ∩ D, and if
T = D \ P , then T−1P = PDP = DP \D×P is the greatest ideal of DP .

5. If X, Y ⊂ K, then T−1(X : Y ) ⊂ (T−1X : T−1Y ) = (T−1X : Y ), and
equality holds, if Y is finite.

3 Definition and first properties of weak module systems

Let K be a monoid and D ⊂ K a submonoid.

Definition 3.1. A weak module system on K is a map r : P(K) → P(K)
such that, for all c ∈ K and X, Y ∈ P(K) the following conditions are
fulfilled :

M1. X ∪ {0} ⊂ Xr.
M2. If X ⊂ Yr, then Xr ⊂ Yr.
M3. cXr ⊂ (cX)r.

A module system on K is a weak module system r on K such that, for all
X ⊂ K and c ∈ K,

M3′. cXr = (cX)r.

Let r be a weak module system on K. A subset A ⊂ K is called an r-module
if Ar = A, and D is called an r-monoid if it is an r-module. We denote by
Mr(K) the set of all r-modules in K. An r-module A ⊂ K is called r-finite
or r-finitely generated if A = Er for some E ∈ Pf(K). We denote by Mr,f(K)
the set of all r-finite r-modules.
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A (weak) module system r on K is called a (weak) D-module system if
every r-module is a D-module, and it is called a (weak) ideal system on
K if it is a (weak) K-module system. If r is a (weak) ideal system on K,
then the r-modules are called r-ideals, and in his case we shall often write
Ir(K) = Mr(K) (to be concordant with [25]).

The concept of a weak module system is a final step in a series of general-
izations of the concepts of star and semistar operations on integral domains
and that of Lorenzen’s r-systems and Aubert’s x-systems on commutative
monoids. This concept also applies for not necessarily cancellative monoids,
and in this setting it was presented in [27] (where a purely multiplicative
analog of the Marot property for commutative rings was established). In this
paper however, we shall restrict to cancellative monoids.

Examples will be discussed and presented later on in 5.6. In the meantime,
the interested reader is invited to consult [25, Sections 2.2 and 11.4] to see
examples of (weak) ideal systems and [30] to see examples of module systems.

In the following Proposition 3.2 we gather the elementary properties of
weak module systems. We shall use them freely throughout this article. Their
proofs are literally identical with those for weak ideal systems as presented
in [25, Propositions 2.1, 2.3 and 2.4], and thus they will be omitted.

Proposition 3.2. Let r be a weak module system on K and X, Y ⊂ K.

1. ∅r = {0}r and if r is a module system, then {0}r = {0}.
2. (Xr)r = Xr, and if X ⊂ Y , then Xr ⊂ Yr. In particular, Xr is the

smallest r-module containing X.
3. The intersection of any family of r-modules is again an r-module.
4. For every family (Xλ)λ∈Λ in P(K) we have⋃

λ∈Λ

(Xλ)r ⊂
( ⋃

λ∈Λ

Xλ

)
r

=
( ⋃

λ∈Λ

(Xλ)r

)
r
.

5. (XY )r = (XrY )r = (XYr)r = (XrYr)r, and for every family (Xλ)λ∈Λ in
P(K) we have( ⋃

λ∈Λ

XλY
)

r
=

( ⋃
λ∈Λ

(Xλ)rY
)

r
=

( ⋃
λ∈Λ

(XλY )r

)
r
.

Equipped with the r-multiplication, defined by (X,Y ) 7→ (XY )r, Mr(K)
is a commutative semigroup with unit element {1}r and zero element ∅r,
and Mr,f(K) ⊂Mr(K) is a subsemigroup.

6. (X : Y )r ⊂ (Xr : Y ) = (Xr : Yr) = (Xr : Y )r, and equality holds, if Y is
finite. In particular, if X is an r-module, then (X :Y ) is also an r-module.

Proposition 3.3. Let r be a weak module system on K.

1. Dr is an r-monoid, and if A ⊂ K is a D-module, then Ar is a Dr-module.
In particular, {1}r is the smallest r-monoid contained in K, r is a weak
{1}r-module system, and if D ⊂ {1}r, then {1}r = Dr.
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2. Let r be a weak D-module system. Then {1}r = Dr, and if X ⊂ K, then
Xr = DrXr = (DX)r.

3. r is a weak D-module system if and only if cD ⊂ {c}r for all c ∈ K, and
if r is a D-module system, then {c}r = cDr for all c ∈ K.

Proof. 1. We have DrDr ⊂ (DD)r = Dr ⊂ DrDr, and thus Dr = DrDr ⊂ K
is a submonoid. If A ⊂ K is aD-module, then DrAr ⊂ (DA)r = Ar ⊂ DrAr.
Hence Ar = DrAr is a Dr-module.

2. {1}r is a D-module containing 1, hence D ⊂ {1}r ⊂ Dr and thus
{1}r = Dr. If X ⊂ K, then Xr ⊂ DrXr ⊂ (DX)r = (DXr)r = (Xr)r = Xr,
and thus equality holds.

3. If r is a weak D-module system and c ∈ K, then {c}r is a D-module
containing c, which implies cD ⊂ {c}r. If r is a D-module system, then
{c}r = c{1}r = cDr. Assume now that cD ⊂ {c}r for all c ∈ K, and let
A ∈Mr(K). Then A ⊂ DA, and if c ∈ A, then Dc ⊂ {c}r ⊂ Ar = A, hence
DA = A, and thus r is a weak D-module system. ut

Definition 3.4. A weak module system r on K is called finitary or of finite
type if

Xr =
⋃

E∈Pf(X)

Er for all X ⊂ K .

Theorem 3.5. Let r be a weak module system on K. Then the following
assertions are equivalent :

(a) r is finitary.
(b) For all X ⊂ K and a ∈ Xr there exists a finite subset E ⊂ X such

that a ∈ Er.
(c) For every directed family (Xλ)λ∈Λ in P(K) we have( ⋃

λ∈Λ

Xλ

)
r

=
⋃
λ∈Λ

(Xλ)r .

(d) The union of every directed family of r-modules is again an r-module.
(e) If X ⊂ K, A ∈ Mr,f(K) and A ⊂ Xr, then there is a finite subset

E ⊂ X satisfying A ⊂ Er.

In particular, if r is finitary, X ⊂ K and Xr ∈ Mr,f(K), then there exists
a finite subset E ⊂ X such that Er = Xr.

Proof. The equivalence of (a) and (b) is obvious, and the equivalence of
(a), (c) and (d) is proved as the corresponding statements for weak ideal
systems in [25, Proposition 3.1].

(b) ⇒ (e) Suppose that X ⊂ K and A = Fr ⊂ Xr, where F ∈ Pf(K).
For every c ∈ F , there is some E(c) ∈ Pf(X) such that c ∈ E(c)r. Then

E =
⋃
c∈E

E(c) ∈ Pf(X) , F ⊂
⋃
c∈E

E(c)r ⊂ Er and thus A = Fr ⊂ Er .
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(e) ⇒ (b) If X ⊂ K and a ∈ Xr, then {a}r ∈Mr,f(K) and {a}r ⊂ Xr.
Hence there exists a finite subset E ⊂ X such that a ∈ {a}r ⊂ Er.

The final statement follows from (e) with A = Xr. ut

Theorem 3.6.

1. Let r : Pf(K) → P(K) be a map satisfying the conditions M1, M2 and
M3 in Definition 3.1 for all X, Y ∈ Pf(K) and c ∈ K. Then

r : P(K) → P(K) , defined by Xr =
⋃

E∈Pf(X)

Er for all X ⊂ K ,

is the unique finitary weak module system on K satisfying r |Pf(K) = r.
Moreover, if r has also the property M3 ′ for all X ∈ Pf(K) and c ∈ K,
then r is a module system, and if cD ⊂ {c}r for all c ∈ K, then r is a
weak D-module system.

2. Let r be a (weak) module system on K. Then there exists a unique finitary
(weak) module system rf on K such that Er = Erf

for all finite subsets of
K. It is given by

Xrf
=

⋃
E∈Pf(X)

Er for all X ⊂ K ,

it satisfies (rf)f = rf , Xrf
⊂ Xr for all X ∈ P(K), Mrf ,f(K) = Mr,f(K),

and if r is a (weak) D-module system, then so is rf .

Proof. 1. It is easily checked that r satisfies the conditions M1, M2 and
M3 resp. M3 ′ of Definition 3.1. Hence r is a weak module system resp. a
module system, and obviously Er = Er for all finite subsets E ⊂ K. Hence
Xr =

⋃
E∈Pf(X)Er for all X ⊂ K, and therefore r is finitary. If r̃ is any

finitary weak module system on K with r̃ |Pf(K) = r, then

Xr̃ =
⋃

E∈Pf(X)

Er̃ =
⋃

E∈Pf(X)

Er = Xr , which implies r̃ = r .

If cD ⊂ {c}r = {c}r for all c ∈ K, then r is a weak D-module system by
Proposition 3.3.3.

2. By 1., applied for r |Pf(X), there exists a unique (weak) module system
rf on K such that Erf

= Er for all E ∈ Pf(X). If X ⊂ K, then Xrf
is given as

asserted, and if r is a (weak) D-module system, then so is rf . By definition,
we have Mrf ,f(K) = Mr,f(K), and by the uniqueness of rf it follows that
rf = r if and only if r is finitary, and, in particular, (rf)f = rf . ut

Definition 3.7. 1. Let r : Pf(K) → P(K) be a map having the properties
M1, M2 and M3 in Definition 3.1 for all X, Y ∈ Pf(K) and c ∈ K.
Then the unique weak module system on K which coincides with r on
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Pf(K) (see Theorem 3.5.1) is called the total system associated with r
an is again denoted by r (instead of r ).

2. Let r be a (weak) module system on K. Then the unique finitary (weak)
module system rf on K defined in Theorem 3.5.2 is called the finitary
(weak) module system associated with r .

4 Comparison and mappings of weak module systems

Let K be a monoid.

Definition 4.1. Let r and q be weak module systems on K. We call q finer
than r and r coarser than q and write r ≤ q if Xr ⊂ Xq for all subsets
X ⊂ K.

Proposition 4.2. Let r and q be weak module systems on K. Then rf ≤ r,
and the following assertions are equivalent :

(a) r ≤ q.
(b) Xq = (Xr)q for all subsets X ⊂ K.
(c) Mq(K) ⊂Mr(K).

If r is finitary, then there are also equivalent :

(d) Eq ⊂ Er for all finite subsets E ⊂ K.
(e) Mqf

(K) ⊂Mr(K).
(f) Mq,f(K) ⊂Mr(K).
(g) r ≤ qf .

In particular, if r and q are both finitary, then r = q if and only if Er = Eq

for all finite subsets E ⊂ K.

Proof. Straightforward (see also [25, Proposition 5.1]). ut

Definition 4.3. Let ϕ : K → L a monoid homomorphism, r a weak module
system on K and q a weak module system on L.
ϕ is called an (r, q)-homomorphism if ϕ(Xr) ⊂ ϕ(X)q for all subsets

X ⊂ K. We denote by Hom(r,q)(K,L) the set of all (r, q)-homomorphisms
ϕ : K → L.

Proposition 4.4. Let ϕ : K → L a monoid homomorphism, r a weak mod-
ule system on K and q a weak module system on L.

1. ϕ is an (r, q)-homomorphism if and only if ϕ−1(A) ∈ Mr(K) for all
A ∈Mq(L).

2. Let r be finitary and ϕ(Er) ⊂ ϕ(E)q for all E ∈ Pf(K). Then ϕ is an
(r, q)-homomorphism.
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Proof. 1. If ϕ is an (r, q)-homomorphism and A ∈Mq(L), then it follows that
ϕ
(
ϕ−1(A)r

)
⊂ ϕ

(
ϕ−1(A)

)
q = ϕ

(
ϕ−1(A)

)
⊂ A. Hence ϕ−1(A)r ⊂ ϕ−1(A),

and thus ϕ−1(A) = ϕ−1(A)r ∈Mr(K).
Thus assume that ϕ−1(A) ∈Mr(K) for all A ∈Mq(L), and let X ⊂ K.

Then ϕ−1
(
ϕ(X)q

)
∈ Mr(K), and as X ⊂ ϕ−1

(
ϕ(X)

)
⊂ ϕ−1

(
ϕ(X)q

)
, it

follows that Xr ⊂ ϕ−1
(
ϕ(X)q

)
and therefore ϕ(Xr) ⊂ ϕ(X)q.

2. If X ⊂ K and a ∈ Xr, then there is some E ∈ Pf(X) such that a ∈ Er,
and thus we obtain ϕ(a) ∈ ϕ(Er) ⊂ ϕ(E)q ⊂ ϕ(X)q. ut

5 Extension and restriction of weak module systems

Let K be a monoid and D ⊂ K a submonoid.

Definition 5.1. Let r be a weak module system on K. Then we define

r[D] : P(K) → P(K) by Xr[D] = (XD)r for all X ⊂ K, and

rD : P(D) → P(D) by XrD
= Xr[D] ∩D = (XD)r ∩D for all X ⊂ D .

We call r[D] the extension of r by D and rD the weak ideal system
induced by r on D (see Proposition 5.2.4).

Proposition 5.2. Let r be a (weak) module system on K.

1. r[D] is a (weak) D-module system on K, Mr[D](K) consists of all r-mo-
dules which are equally D-modules, r ≤ r[D], and r = r[D] if and only if
r is a (weak) D-module system.

2. rf [D] is finitary, rf [D] ≤ r[D]f , and if r is finitary, then r[D] is also
finitary.

3. rD = r[D]D is a weak ideal system on D, and if r is finitary, then rD is
also finitary.

4. Suppose that r ist a weak D-module system and D is an r-monoid. Then
rD = r |P(D), and if r is a module system, then rD is an ideal system
on D.

5. If A ∈Mr(K) is a D-module, then A ∩D is an rD-ideal of D.
6. If q is another weak module system on K and r ≤ q, then r[D] ≤ q[D]

and rD ≤ qD.
7. If T ⊂ K is another submonoid, then r[D][T ] = r[TD].

Proof. 1. It is easily checked that r[D] satisfies the conditions of Definition
3.1, and thus it is a (weak) module system on K. If A ∈ Mr[D](K), then
A = Ar[D] = (AD)r is aDr-module (hence aD-module) by Proposition 3.3.1.
Conversely, if A ∈ Mr(K) is a D-module, then Ar[D] = (AD)r = Ar = A
and thus A ∈ Mr[D](K). Hence Mr[D](K) ⊂ Mr(K) and thus r ≤ r[D].
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Moreover, r = r[D] holds if and only if every r-module is a D-module, that
is, if and only if r is a weak D-module system.

2. If X ⊂ K and E ∈ Pf(XD), then there exists some F ∈ Pf(X) such
that E ⊂ FD. Hence

Xrf [D] = (XD)rf
=

⋃
E∈Pf(XD)

Er ⊂
⋃

F∈Pf(X)

(FD)r =
⋃

F∈Pf(X)

Fr[D] = Xr[D]f ,

and thus rf [D] ≤ r[D]f . Applying this reasoning for rf instead of r, we obtain
rf [D] = (rf)f [D] ≤ rf [D]f ≤ rf [D], and therefore rf [D] = rf [D]f is finitary.

3. It is easily checked that rD = r[D]D satisfies the conditions of Definition
3.1, and thus it is a (weak) module system on D.

If c ∈ D, then cD ⊂ {c}rD∩D = {c}rD
, and thus rD is a weak ideal system

on D by Proposition 3.3.3. If r is finitary, X ⊂ D and a ∈ XrD
= (XD)r∩D,

then there exists a finite subset E ⊂ XD such that a ∈ Er∩D. In particular,
there exists a finite subset E ⊂ X such that a ∈ (ED)r ∩ D = ErD

, and
thus rD is finitary.

4. If X ⊂ D, then Xr ⊂ D, and XrD
= (XD)r ∩ D = Xr ∩ D = Xr by

Proposition 3.3.2. If r is a module system, then rD = r | P(D) is an ideal
system on D.

5. If A ∈ Mr(K) is a D-module, then A = Ar = AD ∈ Mr(K), and
therefore A ∩D ⊂ (A ∩D)rD

= [(A ∩D)D]r ∩D ⊂ (AD)r ∩D = A ∩D.
6. and 7. are obvious by the definitions. ut

Proposition 5.3. Let T ⊂ D ∩ K× be multiplicatively closed, r a finitary
D-module system on K and X ⊂ K. Then T−1Xr = (T−1X)r = Xr[T−1D],
and if X ⊂ T−1D, then XrT−1D

= T−1XrD
.

Proof. Since TDX = DX and r is finitary, it follows that

(T−1DX)r =
(⋃

t∈T

t−1DX
)

r
=

⋃
t∈T

(t−1DX)r =
⋃
t∈T

t−1(DX)r = T−1(DX)r ,

hence T−1Xr = T−1(DX)r = (T−1DX)r = (T−1X)r (by Proposition 3.3.2),
and by definition we have (T−1DX)r = Xr[T−1D]. If X ⊂ T−1D, then
XrT−1D

= (XT−1D)r ∩ T−1D = T−1Xr ∩ T−1D = T−1XrD
. ut

Proposition 5.4. Assume that K = q(D), and let r : P(D) → P(D) be a
module system on D.

1. There exists a unique module system r∞ on K such that Xr∞ = K if
X ⊂ K is not D-fractional, and Xr∞ = c−1(cX)r if X ⊂ K and c ∈ D•
are such that cX ⊂ D.
In particular, r∞ |P(D) = r and Dr∞ = D. Moreover, r∞ is a D-module
system if and only if r is an ideal system on D, and then (r∞)D = r.
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2. The module system (r∞)f is the unique finitary module system on K sat-
isfying (r∞)f |P(D) = rf . Moreover, (r∞)f is a D-module system on K if
and only if rf is an ideal system on D, and then ((r∞)f)D = rf .

Proof. 1. Uniqueness is obvious. To prove existence, we define r∞ as in the
assertion, making sure that for D-fractional subsets X ⊂ K the definition of
Xr∞ does not depend on the element c ∈ D• with cX ⊂ D. Then it is easily
checked that r∞ has the properties of Definition 3.1.

We obviously have r∞ |P(D) = r. Hence, if r∞ is a D-module system on
K, then r is an ideal system on D. Conversely, let r be an ideal system on
D. If X ⊂ K is not D-fractional, then Xr∞ = K is a D-module. If X ⊂ K
is D-fractional and c ∈ D• is such that cX ⊂ D, then (cX)rD = (cX)r, and
Xr∞D = c−1(cX)rD = c−1(cX)r = Xr∞ . Hence r∞ is a D-module system,
and (r∞)D = r by definition.

2. (r∞)f is a finitary module system on K. If X ⊂ D, then

X(r∞)f
=

⋃
E∈Pf(X)

Er∞ =
⋃

E∈Pf(X)

Er = Xrf
, hence (r∞)f |P(D) = rf .

Consequently, if (r∞)f is a D-module system on K, then rf is an ideal system
on D. Conversely, let rf be an ideal system on D and X ⊂ K. If E ∈ Pf(X)
and c ∈ D• is such that cE ⊂ D, then

Er∞D = c−1(cE)rD = c−1(cE)rf
D = c−1(cE)rf

= c−1(cE)r = Er∞ .

Hence X(r∞)f
D =

⋃
E∈Pf(X)Er∞D =

⋃
E∈Pf(X)Er∞ = X(r∞)f

, thus (r∞)f is
a D-module system, and ((r∞)f)D = rf by definition.

It remains to prove uniqueness. Let x be any finitary module system on
K satisfying x | P(D) = rf . If E ∈ Pf(K) and c ∈ D• is such that cE ⊂ D,
then Ex = [c−1(cX)]x = c−1(cE)x = c−1(cE)rf

= Er∞ = E(r∞)f
, and thus

x = (r∞)f by Proposition 4.2. ut

Definition 5.5. Assume that K = q(D), and let r be a module system on D.
Then the module system r∞ on K constructed in Proposition 5.4 is called
the trivial extension of r to a module system on K.

If r is a finitary module system on D, then (r∞)f is called the natural
extension of r to a module system on K. In this case, we say that (r∞)f is
induced by r, and (as there will be no risk of confusion) we write again r
instead of (r∞)f .

With this identification, every finitary module system r on D is a finitary
module system on K, and r is even a finitary ideal system on D if and only
if r is a finitary D-module system on K satisfying Dr = {1}r = D.

Examples 5.6 (Examples of ideal systems and module systems)
1. The semigroup system s(D) : P(D) → P(D) is defined by Xs(D) = DX

for all X ⊂ D. It is a finitary ideal system on D, and Ms(D)(D) is the set
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of ordinary semigroup ideals of D. For every ideal system r on D, we have
s(D) ≤ r.

The identical system s : P(K) → P(K) is defined by Xs = X ∪ {0} for
all X ⊂ K. It is a finitary module system on K, for every subset X ⊂ K we
have Xs[D] = DX (the D-module generated by X), and sD = s(D).

2. Assume thatK = q(D). Then s(D) = s[D] is the finitary module system
on K induced by the semigroup system s(D) (according to Definition 5.5 ).

The module system v(D) on K is defined by Xv(D) = (D : (D :X)) for
all subsets X ⊂ K. If X ⊂ K is not D-fractional, then Xv(D) = K, and
thus v(D) is the trivial extension of the classical “Vielfachensystem” vD on
D (compare [25, Section 11.4] and [23, §34]). Note that vD (and thus also
v(D) ) is usually not finitary. If X ⊂ K is D-fractional, then

Xv(D) =
⋂

b∈K
X⊂bD

Db ,

and for every ideal system r on D we have r ≤ vD.
The associated finitary ideal system onD (which is identified with its natu-

ral extension to a finitary module system on K) is the classical “t-system” de-
noted by t(D) = v(D)f . If r is any finitary ideal system on D, then r ≤ t(D).
But note that for an overmonoid T ⊃ D in general t(D)[T ] 6= t(T ).

3. Let D be a ring. The Dedekind system d(D) : P(D) → P(D) is defined
by Xd(R) = R〈X〉 (the usual ring ideal generated by X).

4. Let D be an integral domain and K = q(D). The additive system
d : P(K) → P(K) is given by Xd = Z〈X〉 (the additive group generated
by X ) for all X ⊂ K. It is a finitary module system on K, and d[D] = d(D)
(Xd[D] is the D-submodule of K generated by X for every subset X ⊂ K).

Recall that a semistar operation ∗ on D is a map

Md[D](K) →Md[D](K) , X 7→ X∗

having the following properties for all X, Y ⊂ K and c ∈ K:

(∗1) (cX)∗ = cX∗ ; (∗2) X ⊂ X∗ = X∗∗ (∗3) X ⊂ Y =⇒ X∗ ⊂ Y ∗ .

A (semi)star operation on D is a semistar operation satisfying D∗ = D (then
∗|F(D) ∩Md[D](K) is a star operation in the classical sense, see [23, §32]).

If ∗ is a semistar operation on D, then the map r∗ : P(K) → P(K), de-
fined by Xr∗ = (Xd[D])∗, is a D-module system on K such that d[D] ≤ r∗

and r∗ |Md[D](K) = ∗. Moreover, ∗ is a (semi)star operation if and only if
D is an r∗-monoid (then ∗ |F(D) is a star operation and r∗ |P(D) is an
ideal system on D). r∗ is called the module system induced by ∗.

Conversely, let r be a module system on K such that d[D] ≤ r. Then
∗r = r |Md[D](K) is a semistar operation on D, and r = r∗r is the module
system induced by ∗r.
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6 Prime and maximal ideals, spectral module systems

Let K be a monoid and D ⊂ K a submonoid.

Proposition 6.1. Let (rλ)λ∈Λ be a family of (weak) D-module systems on
K, and let r : P(K) → P(K) be defined by

Xr =
⋂
λ∈Λ

Xrλ
for all X ⊂ K

(if Λ = ∅, then r is the trivial weak module system on K, defined by Xr = K
for all X ⊂ K ).

Then r is a (weak) D-module system on K, and r = inf{rλ | λ ∈ Λ}
is the Infimum of the family (rλ)λ∈Λ in the partially ordered set of all weak
D-module systems on K [ that is, for every weak module system x on K we
have x ≤ r if and only if x ≤ rλ for all λ ∈ Λ ].

Proof. Obvious. ut

Definition 6.2. Let r be a weak ideal system on D. We denote by r-spec(D)
the set of all prime r-ideals of D and by r-max(D) the set of all maximal
elements in Ir(D) \ {D} (called r-maximal r-ideals). We say that r has
enough primes if for every J ∈ Ir(D) \ {D} there is some P ∈ r-spec(D)
such that J ⊂ P .

Proposition 6.3. Let r be a finitary weak ideal system on D. Then r has
enough primes. More precisely, the following assertions hold :

1. If J ∈ Ir(D) and T ⊂ D• is a multiplicatively closed subset such that
J ∩ T = ∅, then the set Ω = {P ∈ Ir(D) | J ⊂ P and P ∩ T = ∅} has
maximal elements, and every maximal element in Ω is prime.

2. Every r-ideal J ∈ Ir(D) \ {D}, is contained in an r-maximal r-ideal of
D, and r-max(D) ⊂ r-spec(D)

Proof. [25, Theorems 6.3 and 6.4]. ut

Proposition 6.4. Assume that K = q(D), let r be a finitary module system
on K and A ∈Mr(K) a D-module. Then

A =
⋂

P∈rD-max(D)

AP . If D is an r-monoid, then D =
⋂

P∈rD-max(D)

DP .

Proof. Obviously, A ⊂ AP for all P ∈ rD-max(D). Thus assume that z ∈ A•P
for all P ∈ rD-max(D). Then I = z−1A ∩D is an rD-ideal of D. For each
P ∈ rD-max(D), there exists some s ∈ D \ P such that sz ∈ A, hence s ∈ I
and I 6⊂ P . Therefore we obtain 1 ∈ I and z ∈ A by Proposition 6.3. ut
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In the sequel we investigate two closely connected special classes of module
systems, spectral and stable ones (see Definition 6.10 for a formal definition).
In the case of semistar operations, they were introduced in [13] where its deep
connection with localizing systems was established. For the connection with
localizing systems in a purely multiplicative context we refer to [30]. In the
case of integral domains, spectral module systems describe the ideal theory
of generalized Nagata rings (see [19], [20]).

Theorem 6.5. Assume that K = q(D), let q be a finitary D-module system
on K, ∆ ⊂ qD-spec(D) and q∆ = inf{q[DP ] | P ∈ ∆} (see Proposition 6.1).

1. q∆ is a D-module system on K satisfying q ≤ q∆. If X ⊂ K, then

DPXq = DPXq∆
for all P ∈ ∆ , and Xq∆

=
⋂

P∈∆

DPXq .

2. For all A, B ∈Mq(K) we have (A ∩B)q∆
= Aq∆

∩Bq∆
.

3. For all P ∈ ∆ we have Pq∆
∩D = P (and thus ∆ ⊂ (q∆)D-spec(D) ).

4. If J ⊂ D is an ideal such that 1 /∈ Jq∆
, then there exists some P ∈ ∆

such that J ⊂ P . In particular, (q∆)D has enough primes.

Proof. 1. By Proposition 6.1, q∆ = inf{q[DP ] | P ∈ ∆} is aD-module system
on K. Since q ≤ q[DP ] for all P ∈ ∆, it follows that q ≤ q∆. If X ⊂ K, then
Xq[DP ] = DPXq by Proposition 5.3, and thus

Xq∆
=

⋂
P∈∆

Xq[DP ] =
⋂

P∈∆

DPXq .

Now Xq ⊂ Xq∆
⊂ DPXq implies DPXq ⊂ DPXq∆

⊂ DPDPXq = DPXq

and thus DPXq = DPXq∆
.

2. If A, B ∈Mq(K), then A ∩B ∈Mq(K), and

(A ∩B)q∆
=

⋂
P∈∆

DP (A ∩B) =
⋂

P∈∆

DPA ∩
⋂

P∈∆

DPB = Aq∆
∩Bq∆

.

3. Let P, Q ∈ ∆ . If P 6⊂ Q, then D ⊂ DQ = PDQ ⊂ PqDQ, and if
P ⊂ Q, then PqDQ ⊃ PqDP . Hence we obtain

Pq∆
∩D =

⋂
Q∈∆

PqDQ ∩D = PqDP ∩D ⊃ P ,

and it remains to prove that PqDP ∩D ⊂ P . If z ∈ PqDP ∩D, then there is
some s ∈ D \ P such that sz ∈ Pq ∩D = P and therefore z ∈ P .

4. If J ⊂ D is an ideal and 1 /∈ Jq∆
, then 1 /∈ JqDP and thus 1 /∈ JqDP∩DP

for some P ∈ ∆. Since JqDP ∩DP ⊂ DP is an ideal and PDP = DP \D×P ,
we obtain JqDP ∩DP ⊂ PDP and J ⊂ JqDP ∩D ⊂ PDP ∩D = P . ut
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Theorem 6.6. Let q be a finitary (weak) D-module system on K, r a weak
module system on K, and define r[q] : P(K) → P(K) by

Xr[q] =
⋃

B⊂D
1∈Br

(Xq :B) for all X ⊂ K .

1. r[q] is a finitary (weak) D-module system on K satisfying q ≤ r[q], and

Xr[q] = {x ∈ K | 1 ∈ [(Xq :x) ∩D]r } for all X ⊂ K.

2. For all X, Y ∈Mq(K) we have (X ∩ Y )r[q] = Xr[q] ∩ Yr[q].
3. If B ⊂ D and 1 ∈ Br, then 1 ∈ Br[q].
4. If q ≤ r, then r[q] ≤ r and (r[q])[q] = r[q]. In particular, q[q] = q.
5. If q ≤ r, then rD-max(D) ⊂ r[q]D-max(D), and equality holds if rD has

enough primes.

Proof. 1. Let X ⊂ K. Then (Xq :B) is a D-module for every B ⊂ D, and
thus Xr[q] is a D-module. If B′, B′′ ⊂ D are such that 1 ∈ B′r and 1 ∈ B′′r ,
then 1 ∈ B′rB′′r ⊂ (B′B′′)r and (Xq :B′)∪ (Xq :B′′) ⊂ (Xq :B′B′′) (since Xq

is a D-module). Hence {(Xq :B) | B ⊂ D, 1 ∈ Br} is directed, and since q
is finitary, it follows that

(Xr[q])q =
⋃

B⊂D
1∈Br

(Xq :B)q =
⋃

B⊂D
1∈Br

(Xq :B) = Xr[q] , and

Xr[q] =
⋃

B⊂D
1∈Br

([ ⋃
E∈Pf(X)

Eq

]
:B

)
=

⋃
B⊂D
1∈Br

⋃
E∈Pf(X)

(Eq :B) =
⋃

E∈Pf(X)

Er[q] .

We show now that r[q] satisfies the conditions of Definition 3.1. Once this
is done, then by the above considerations r[q] is a finitary D-module system
satisfying q ≤ r[q]. Thus let X, Y ⊂ K and c ∈ K.

M1. If B ⊂ D, then XB ⊂ XD ⊂ Xq and thus X ⊂ (Xq :B) ⊂ Xr[q].
M2. If X ⊂ Yr[q] and z ∈ Xr[q], then there is some B ⊂ D such that

zB ⊂ Xq ⊂ (Yr[q])q = Yr[q] and thus z ∈ (Yr[q] :B) ⊂ Yr[q], since Yr[q] is a
D-module.

M3. and M3 ′. If B ⊂ D, then ((cX)q :B) ⊇ (cXq :B) = c(Xq :B), and
thus we obtain (cX)r[q] ⊇ cXr[q].

It remains to prove that Xr[q] = {x ∈ K | 1 ∈ [(Xq :x) ∩D]r }.
If x ∈ Xr[q], then there is some B ⊂ D such that 1 ∈ Br and xB ⊂ Xq,

whence B ⊂ (Xq : x) ∩ D and 1 ∈ Br ⊂ [(Xq : x) ∩ D]r. Conversely, if
x ∈ K and 1 ∈ [(Xq : x) ∩ D]r, then B = (Xq : x) ∩ D ⊂ D, 1 ∈ Br and
x ∈ (Xq :B) ⊂ Xr[q].

2. If X, Y ∈Mq(K), then obviously (X ∩ Y )r[q] ⊂ Xr[q] ∩ Yr[q]. To prove
the reverse inclusion, let z ∈ Xr[q] ∩ Yr[q] and B′, B′′ ⊂ D such that 1 ∈ B′r,
1 ∈ B′′r , zB′ ⊂ Xq = X and zB′′ ⊂ Yq = Y . Then 1 ∈ B′rB

′′
r ⊂ (B′B′′)r,
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and since X and Y are D-modules, it follows that zB′B′′ ⊂ X ∩ Y , whence
z ∈ (X ∩ Y :B′B′′) ⊂ (X ∩ Y )r[q].

3. If B ⊂ D and 1 ∈ Br, then 1 ∈ (Bq :B) ⊂ Br[q].
4. Assume that q ≤ r, and let X ⊂ K. If x ∈ Xr[q], then it follows

that 1 ∈ [(Xq : x) ∩ D]r ⊂ (Xr : x)r = (Xr : x), which implies x ∈ Xr.
Hence we obtain Xr[q] ⊂ Xq and thus r[q] ≤ r. Applied with r[q] instead
of r, this argument shows that (r[q])[q] ≤ r[q]. To prove r[q] ≤ (r[q])[q], let
X ⊂ K and x ∈ Xr[q]. Then 1 ∈ [(Xq : x) ∩ D]r ⊂ [(Xr[q] : x) ∩ D]r, hence
1 ∈ [(Xr[q] :x) ∩D]r[q] by 3. and thus x ∈ X(r[q])[q].

5. Assume that q ≤ r, and let P ∈ rD-max(D). Then r[q] ≤ r by 4.,
hence r[q]D ≤ rD and thus P ∈ Ir[q]D (D). Since r[q] (and thus also r[q]D) is
finitary, there exists some P ′ ∈ r[q]D-max(D) such that P ⊂ P ′. If P ( P ′,
then 1 ∈ P ′rD

⊂ P ′r, and thus 1 ∈ P ′r[q] ∩D = P ′r[q]D , a contradiction. Hence
it follows that P = P ′ ∈ r[q]D-max(D).

Assume now that rD has enough primes, and let P ∈ r[q]D-max(D). Then
1 /∈ P = Pr[q] ∩D and thus 1 /∈ Pr ∩D = PrD

. Therefore there exists some
P ′ ∈ rD-spec(D) ⊂ Ir[q]D (D) such that PrD

⊂ P ′. Hence P ⊂ P ′ and thus
P = P ′ ∈ rD-spec(D). If P ′ ∈ rD-max(D), we are done. Otherwise, there
exists some P ′′ ∈ IrD

(D) ⊂ Ir[q]D (D) such that P ′ ( P ′′, and then P ( P ′′

yields a contradiction. ut

Definition 6.7. Let q be a finitary (weak) D-module system and r a weak
module system on K. The finitary (weak) D-module system r[q] defined in
Theorem 6.6 is called the q-stabilizer of r on D or the spectral extension of q
by r on D.

Theorem 6.8. Assume that K = q(D), let q be a finitary D-module system
and r a module system on K.

1. r[q][DP ] = q[DP ] for all P ∈ rD-spec(D), and if q ≤ r, this holds for
all P ∈ r[q]D-spec(D).

2. r[q] ≤ inf{ q[DP ] | P ∈ rD-spec(D)} (see Proposition 6.1). Equality holds
if rD has enough primes, and r[q] = inf{q[DP ] | P ∈ rD-max(D)} if r
is finitary.

3. If q ≤ r, then r[q] = inf{ q[DP ] | P ∈ qD-spec(D) , 1 /∈ Pr}.

Proof. 1. Let P ∈ rD-spec(D). Then q ≤ r[q] implies q[DP ] ≤ r[q][DP ]. To
prove the reverse inequality, we must show that Xr[q][DP ] ⊂ Xq[DP ] for all
X ⊂ K. If X ⊂ K and z ∈ Xr[q][DP ] = Xr[q]DP , let s ∈ D \ P be such that
sz ∈ Xr[q]. Then there is some B ⊂ D such that 1 ∈ Br and szB ⊂ Xq. Since
1 ∈ Br, it follows that B 6⊂ P = Pr ∩D, and if t ∈ B \ P , then stz ∈ Xq and
z ∈ XqDP = Xq[DP ].

Assume now that q ≤ r. Then (r[q])[q] = r[q], and we apply what we have
just proved for r[q] instead of r and obtain r[q][DP ] = (r[q])[q][DP ] = q[DP ]
for all P ∈ r[q]D-spec(D).
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2. We must prove that Xr[q] ⊂ Xq[DP ] = XqDP for all P ∈ rD-spec(D)
and X ⊂ K. Thus let P ∈ rD-spec(D), X ⊂ K, x ∈ Xr[q] and B ⊂ D such
that 1 ∈ Br and xB ⊂ Xq. Then it follows that B 6⊂ P = Pr ∩ D, and if
s ∈ B \ P , then xs ∈ Xq, which implies x ∈ XqDP .

Assume now that rD has enough primes and x ∈ Xq[DP ] = XqDP for
for all P ∈ rD-spec(D). For each P ∈ rD-spec(D), let sP ∈ D \ P be such
that sP z ∈ Xq. Then B = {sP | P ∈ rD-spec(D)} ⊂ D and B 6⊂ P
for all P ∈ rD-spec(D). Hence BrD

= Br ∩ D = D, whence 1 ∈ Br and
z ∈ (Xq :B) ⊂ Xr[q].

If r is finitary, then so is rD. In particular, rD has enough primes, and for
every P ∈ rD-spec(D) there exists some M ∈ rD-max(D) such that P ⊂M ,
hence DM ⊂ DP , and it follows that⋂

P∈rD-spec(D)

Xq[DP ] =
⋂

P∈rD-max(D)

Xq[DP ] for all X ⊂ K

and consequently r[q] = inf{ q[DP ] | P ∈ rD-max(D)}.
3. If q ≤ r, then qD ≤ rD, rD-spec(D) ⊂ {P ∈ qD-spec(D) | 1 /∈ Pr}

and thus inf{ q[DP ] | P ∈ qD-spec(D) , 1 /∈ Pr} ≤ r[q]. To prove the reverse
inequality, it suffices to show that r[q] ≤ q[DP ] for all P ∈ qD-spec(D) such
that 1 /∈ Pr. Thus let P ∈ qD-spec(D), 1 /∈ Pr, X ⊂ K, x ∈ Xr[q] and
B ⊂ D such that 1 ∈ Br and xB ⊂ Xq. Then we have B 6⊂ P , and if
x ∈ B \ P , then xs ∈ Xq, whence x ∈ XqDP = Xq[DP ]. ut

Remark 6.9. Let D be an integral domain with quotient field K, ∗ a semistar
operation on D and r = r∗ the D-module system on K induced by ∗ (see
Example 5.6.4). If ∗̃ is the spectral semistar operation associated with ∗ (see
[13]), then Theorem 6.6 implies r[d] = r∗̃, and in the case of star operations
we also obtain r[d] = r∗w (where ∗w is the star operation introduced in [3])
and t[d] = rw = rṽ (where w = ṽ is the star operation introduced in [11]).

Definition 6.10. Let q be a finitaryD-module system and r a module system
on K such that q ≤ r. Then r is called

• q-stable if Xr ∩ Yr = (X ∩ Y )r for all X, Y ∈Mq(K).
• q-spectral if r = q∆ for some subset ∆ ⊂ qD-spec(D) (see Theorem 6.5).

Theorem 6.11. Assume that K = q(D), let q be a finitary D-module system
on K such that D = Dq and r a module system on K such that q ≤ r.

1. The following assertions are equivalent :

(a) r = r[q].
(b) r is q-stable.
(c) [(X :E) ∩D]r = (Xr :E) ∩Dr for all E ∈ Pf(K) and X ∈Mq(K).

2. r is q-spectral if and only if r is q-stable and rD has enough primes.
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Proof. 1. (a) ⇒ (b) By Theorem 6.6.2.
(b) ⇒ (c) Let E ∈ Pf(K) and X ∈Mq(K). Then, as D = Dq,

[(X :E) ∩D]r =
( ⋂

x∈E•

x−1X ∩D
)

r
=

⋂
x∈E•

x−1Xr ∩Dr = (Xr :E) ∩Dr .

(c) ⇒ (a) By Theorem 6.6 we have q ≤ r[q] ≤ r, and thus it suffices
to prove that Xr ⊂ Xr[q] for all X ∈ Mq(K). Thus let X ∈ Mq(K) and
x ∈ Xr. Then 1 ∈ (Xr :x) ∩Dr = [(X :x) ∩D]r and therefore x ∈ Xr[q].

2. If r is q-spectral, then r is q-stable and rD has enough primes by
Theorem 6.5. If r is q-stable, then r = r[q] by 1., and if rD has enough
primes, then r[q] is q-stable by Theorem 6.8.3. ut

7 A survey on valuation monoids and GCD-monoids.

Let K be a monoid and D ⊂ K a submonoid such that K = q(D).

In this section we gather several facts concerning GCD-monoids, valuation
monoids and their homomorphisms. For a more concise presentation of this
topic we refer to [25, Chapers 10, 15 and 18].

Definition 7.1.

1. Let X ⊂ D. An element d ∈ D is called a greatest common divisor of X
if dD is the smallest principal ideal containing X [ equivalently, d |x for
all x ∈ E, and if e ∈ D and e | x for all x ∈ E, then e | d (where the
notion of divisibility in D is used in the common way) ]. If GCD(X) =
GCDD(X) denotes the set of all greatest common divisors of X, then
GCD(X) = dD× for every d ∈ X. If D is reduced, then X has at most one
greatest common divisor, and we write d = gcd(X) instead of GCD(X) =
{d}. If X = {a1, . . . , an}, we set GCD(a1, . . . , an) = GCD(X) resp.
gcd(a1, . . . , an) = gcd(X).

2. D is called a GCD-monoid if GCD(E) 6= ∅ for all E ∈ Pf(D) [ equivalently,
GCD(a, b) 6= ∅ for all a, b ∈ D• ].

3. D is called a valuation monoid if, for all a, b ∈ D, either a |b or b |a. If r is
a module system on K, then D is called an r-valuation monoid (of K )
if D is a valuation monoid satisfying Dr = D.

4. A homomorphism ϕ : G1 → G2 of GCD-monoids is called a GCD-
homomorphism if ϕ(GCD(E)) ⊂ GCD(ϕ(E)) for every E ∈ Pf(G1).
We denote by HomGCD(G1, G2) the set of all GCD-homomorphisms
ϕ : G1 → G2.

By definition, D is a valuation monoid if and only if for every z ∈ K× either
z ∈ D or z−1 ∈ D. If D is a valuation monoid, then every monoid T such that
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D ⊂ T ⊂ K is also a valuation monoid. Obviously, every valuation monoid
is a GCD-monoid.

If D is a valuation monoid and E ∈ P•f (K), then (after a suitable num-
bering) E = {a1, . . . , an} with a1D ⊂ a2D ⊂ . . . ⊂ anD, hence ED = anD,
and if E ⊂ D, then GCD(E) = anD

×. In particular, the s-system is the
only finitary ideal system on D. We identify it with its natural extension
to a D-module system on K, whence s(D) = t(D) and D = {1}t(D) (see
Example 5.6.2).

Lemma 7.2. Let D be a GCD-monoid.

1. If E, F ∈ Pf(D) and b ∈ D, then GCD(EF ) = GCD(E) GCD(F ) and
GCD(bE) = bGCD(E).

2. If a, b, c ∈ D, GCD(a, b) = D× and a |bc, then a |c.
3. Every z ∈ K has a representation in the form z = a−1b with a ∈ D• and
b ∈ D such that GCD(a, b) = D×. In this representation aD× and bD×

are uniquely determined by z.
4. If v = v(D), X ⊂ D and d ∈ D, then

Xv =
⋂

a∈D
X⊂aD

aD , and Xv = dD if and only if d ∈ GCD(X) .

In particular, if E ∈ P(D) and d ∈ GCD(E), then Et(D) = dD.
5. Mt(D),f(K) = {aD | a ∈ K}, and Mt(D),f(K)• ∼= K×/D• is cancellative.

Proof. 1., 2. and 3. are easy exercises in elementary number theory (see [25,
Ch. 10]).

4. If a ∈ D and X ⊂ aD, then Xv ⊂ aD, which implies ⊂ . To prove the
reverse inclusion, let z ∈ D be such that z ∈ aD for all a ∈ D satisfying
X ⊂ aD. We must prove that z ∈ Xv = (D : (D :X)), that is, zx ∈ D for all
x ∈ (D :X). Thus let x ∈ (D :X) ⊂ K, say x = c−1b, where c, b ∈ D and
GCD(b, c) = D×. Then c−1bX ⊂ D, hence X ⊂ cb−1D ∩D, and we assert
that cb−1D ∩ D ⊂ cD. Indeed, if v ∈ D and cb−1v ∈ D, then b | cv, hence
b |v and thus cb−1v ∈ cD. Now X ⊂ cD implies z ∈ cX and zx ∈ bD ⊂ D.

Hence it follows that Xv = dD if and only if dD is the smallest principal
ideal containing X, which by definition is equivalent to d ∈ GCD(X).

5. If E ∈ Pf(K), let c ∈ D• be such that cE ⊂ D and d ∈ GCD(cE).
Then cED = dD = (cE)t(D) and thus Et(D) = c−1dD. Hence the map
∂ : K× → Mt(D),f(K), defined by ∂(a) = aD, is a group epimorphism with
kernel D× and induces an isomorphism Mt(D),f(K)• ∼→ K×/D•. ut
Lemma 7.3. For i ∈ {1, 2}, let Gi be a GCD-monoid, Ki = q(Gi) and
ti = t(Gi). A monoid homomorphism ϕ : K1 → K2 is a (t1, t2)-homomor-
phism if and only if ϕ(G1) ⊂ G2 and ϕ |G1 : G1 → G2 is a GCD-homo-
morphism. In particular, there is a bijective map

Hom(t1,t2)(K1,K2) → HomGCD(G1, G2) , defined by ϕ 7→ ϕ |G1 .
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Proof. Let first ϕ be a (t1, t2)-homomorphism. Then

ϕ(G1) = ϕ({1}t1) ⊂ {ϕ(1)}t2 = {1}t2 = G2 .

Let E ⊂ G1 be finite, d1 ∈ GCD(E) and d2 ∈ GCD(ϕ(E)). Then Et1 = d1G1,
and ϕ(D)t2 = d2G2. Since d1 |x for all x ∈ E, it follows that ϕ(d1) |y for all
y ∈ ϕ(E), and thus ϕ(d1) |d2. But ϕ(d1) ∈ ϕ(Et1) ⊂ ϕ(E)t2 = d2G2 implies
d2 |ϕ(d1) and therefore ϕ(d1) ∈ d2G

×
2 = GCD(ϕ(E)).

Assume now that ϕ(G1) ⊂ G2, and let ϕ | G1 : G1 → G2 be a GCD-
homomorphism. It is obviously sufficient to prove ϕ(Et1) ⊂ ϕ(E)t2 for all
E ∈ Pf(G1). If E ∈ Pf(G1) and d ∈ GCD(E), then ϕ(d) ∈ GCD(ϕ(E)) and
therefore ϕ(Et1) = ϕ(dG1) ⊂ ϕ(d)G2 = ϕ(E)t2 . ut

Lemma 7.4. Let r be a finitary module system on K and V ⊂ K a valuation
monoid. Then V = Vr if and only if idK is an (r, t(V ))-homomorphism.

Proof. If idK is an (r, t(V ))-homomorphism, the V ⊂ Vr ⊂ Vt(V ) = V and
thus V = Vr. Conversely, assume that V = Vr. If E ∈ Pf(K), then Lemma
7.2.5 implies that Et(V ) = EV = aV for some a ∈ E, and therefore we obtain
Er ⊂ (aV )r = aV = Et(V ). Hence idK is an (r, t(V ))-homomorphism by
Proposition 4.4. ut

Proposition 7.5. Let G be a GCD-monoid, K = q(G), V ⊂ K a sub-
monoid and t = t(G).

1. Let V be a valuation monoid. Then V = Vt if and only if G ⊂ V and
G ↪→ V is a GCD-homomorphism.

2. V is a t-valuation monoid if and only if V = GP for some P ∈ t-spec(G).
In particular, G is the intersection of all t-valuation monoids of K.

Proof. 1. By Lemma 7.4 we have V = Vt if and only if idK is a (t, t(V ))-
homomorphism, and by Lemma 7.3 this holds if and only if G ⊂ V and
G ↪→ V is a GCD-homomorphism.

2. Let first V be a t-valuation monoid. By Lemma 7.4, j = (G ↪→ V ) is
a (t, t(V ))-homomorphism, and since t(V ) = s(V ), it follows by Proposition
4.4 that P = G \ V × = j−1(V \ V ×) ∈ t-spec(G). Since G \ P ⊂ V ×, we
obtain GP ⊂ V . To prove the reverse inclusion, let z = a−1b ∈ V , where
a, b ∈ G and GCDG(a, b) = G×. By 1., G ↪→ V is a GCD-homomorphism,
hence GCDV (a, b) = V ×, and thus either a ∈ V × or b ∈ V ×. If a ∈ V ×,
then a /∈ P and thus z ∈ GP . If b ∈ V ×, then z ∈ V implies b ∈ aV , hence
a ∈ V and again z ∈ GP .

Assume now that P ∈ t-spec(G) and z = a−1b ∈ K, where a, b ∈ D and
GCD(a, b) = D×. Then {a, b}t = D, hence {a, b}t 6⊂ P = Pt and thus either
a /∈ P or b /∈ P . If a /∈ P , then z ∈ GP , and if b /∈ P , then z−1 ∈ GP .
Therefore GP is a valuation monoid, and (GP )t = (Gt)P = GP .

By Proposition 6.4, this implies that G is the intersection of all t-valuation
monoids of K. ut
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8 Integral closures and cancellation properties

Let K be a monoid and D ⊂ K a submonoid.

Proposition 8.1. Let r be a weak module system on K and A ∈Mr,f(K).

1. The following assertions are equivalent :

(a) A is cancellative in Mr,f(K) (that is, for all finite subsets X, Y ⊂ K,
if (AX)r = (AY )r, then Xr = Yr ).

(b) For all finite subsets X, Y ⊂ K, if (AX)r ⊂ (AY )r, then Xr ⊂ Yr.
(c) For all finite subsets X ⊂ K and c ∈ K, if cA ⊂ (AX)r, then c ∈ Xr.
(d) For all finite subsets X ⊂ K we have ((AX)r :A) ⊂ Xr

In each of the above assertions, the statement “for all finite subsets” can
be replaced by the statement “for all r-finite r-modules”.

2. Mr,f(K)• is cancellative if and only if ((EF )r :E) ⊂ Fr for all E ∈ P•f (K)
and F ∈ Pf(K).

Proof. 1. (a) ⇒ (b) If (AX)r ⊂ (AY )r, then

(AY )r = [(AX)r ∪ (AY )r]r = (AX ∪AY )r = [A(X ∪ Y )]r ,

and therefore Xr ⊂ (X ∪ Y )r = Yr.
(b) ⇒ (c) If cA ⊂ (AX)r, then (A{c})r = (cA)r ⊂ (AX)r, and thus

c ∈ {c}r ⊂ Xr.
(c) ⇒ (d) If z ∈ ((AX)r :A), then zA ∈ (AX)r and therefore z ∈ Xr.
(d) ⇒ (a) If (AX)r = (AY )r, then AXr ⊂ (AY )r and AYr ⊂ (AX)r,

hence Xr ⊂ ((AY )r :A) ⊂ Yr and Yr ⊂ ((AX)r :A) ⊂ Xr, whence Xr = Yr.
If X ⊂ K, then (AX)r = (AXr)r, and thus the statement “for all finite

subsets” can always be replaced by the statement “for all r-finite r-modules”.
2. By 1.(d), since Mr,f(K)• is cancellative if and only if Er is cancellative

for all E ∈ P•f (K). ut

Theorem 8.2. Let r be a finitary weak module system on K, and let

ra : P(K) → P(K) be defined by Xra =
⋃

B∈P•f (K)

((XB)r :B) .

1. ra is a finitary weak module system on K, r ≤ ra, and if r is a module
system, then so is ra.

2. Mra,f(K)• is cancellative, and if q is any finitary weak module system
on K such that r ≤ q and Mq,f(K)• is cancellative, then ra ≤ q. In
particular, (ra)a = ra, and Mr,f(K)• is cancellative if and only if r = ra.

3. r[D]a = ra[D], and if r is a weak D-module system, then so is ra.
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4. If G is a reduced GCD-monoid and L = q(G), then

Hom(r,t(G))(K,L) = Hom(ra,t(G))(K,L) .

In particular, every r-valuation monoid of K is an ra-valuation monoid
of K.

Proof. 1. If X ⊂ K and B ∈ P•f (K), then XrB ⊂ (XB)r, hence Xr ⊂
((XB)r :B) ⊂ Xra and, since r is finitary,

Xra =
⋃

B∈P•f (K)

(( ⋃
E∈Pf(X)

EB
)
r
:B

)
=

⋃
B∈P•f (K)

⋃
E∈Pf(X)

((EB)r :B) =
⋃

E∈Pf(X)

Era .

Therefore it remains to prove that ra is a (weak) module system, and by
Theorem 3.6 we have to check the conditions of Definition 3.1 for all finite
subsets X, Y ⊂ K and c ∈ K. Thus let X, Y ∈ Pf(K) and c ∈ K. The
verification of M1., M3. and M3 ′. is straightforward.

M2. Let X ⊂ Yra and z ∈ Xra . Then there exists some F ∈ P•f (K) such
that z ∈ ((XF )r :F ), and since {((Y B)r :B) | B ∈ P•f (K)} is directed, there
exists some B ∈ P•f (K) such that X ⊂ ((Y B)r :B). Then

zFB ⊂ (XF )rB ⊂ (XBF )r ⊂ [(Y B)rF ]r = (Y FB)r

and thus z ∈ ((Y FB)r :FB) ⊂ Yra , since FB ∈ P•f (K).
2. By Proposition 8.1 we must prove that ((EF )ra : E) ⊂ Fra holds for

all E ∈ P•f (K) and F ∈ Pf(K). Thus let E ∈ P•f (K), F ∈ Pf(K) and
z ∈ ((EF )ra :E). Then zE ⊂ (EF )ra implies zE ⊂ ((EFB)r :B) for some
B ∈ P•f (K) (since {((EFB)r :B) | B ∈ P•f (K)} is directed). Hence it follows
that zEB ⊂ (EFB)r and z ∈ ((EFB)r :EB) ⊂ Fra , since EB ∈ P•f (K).

Let now q be any finitary weak module system on K such that r ≤ q and
Mq,f(K)• is cancellative. For any X ∈ Pf(K) and B ∈ P•f (K), Proposition
8.1 implies ((XB)r :B) ⊂ ((XB)q :B) ⊂ Xq, and thus ra ≤ q by Proposition
4.4.2.

3. For X ⊂ K, it is easily checked that Xra[D] = Xr[D]a .
4. Since r ≤ ra, every (ra, t)-homomorphism is an (r, t)-homomorphism. If

ϕ : K → L is an (r, t)-homomorphism, then by Proposition 4.4.2 we must
prove that ϕ(Xra) ⊂ ϕ(X)t(G) for all X ∈ Pf(K). If X ∈ Pf(K), z ∈ Xra and
B ∈ P•f (K) are such that zB ⊂ (XB)r, then

ϕ(z)ϕ(B) ⊂ ϕ((XB)r) ⊂ ϕ(XB)t = [ϕ(X)ϕ(B)]t

and therefore ϕ(z) ∈
(
[ϕ(X)ϕ(B)]t : ϕ(B)

)
⊂ ϕ(X)t by Proposition 8.1

and Lemma 7.2.4.
If V ⊂ K is a valuation monoid, then it follows by Lemma 7.4 that V

is an r- (resp. ra-)valuation monoid if and only if idK is an (r, t(V ))- (resp.



22 Franz Halter-Koch

(ra, t(V ))-homomorphism. Hence every r-valuation monoid is an ra-valuation
monoid. ut

Definition 8.3. Let r be a finitary weak module system on K. The finitary
weak module system ra is called the cancellative extension of r. An element
a ∈ K is called r-integral over D if a ∈ Dra . A subset X ⊂ K is called
r-integral over D if X ⊂ Dra . The monoid Dra is called the r-closure of D,
and D is called r-closed if D = Dra .

Remark 8.4. The notion of r-integrality generalizes the concept of integral el-
ements in commutative ring theory. If D is an integral domain and d = d(D)
is the module system induced by the Dedekind system on K, then Dda is
the integral closure of D. Most results of the classical theory of integral
elements (transitivity and localization properties) continue to hold for r-
integrality (see [25, Ch.14] for details, [27] for a version for not necessarily
cancellative monoids and [15, Example 2.1] for the history of the concept).
In Krull’s ancient terminology (which is still used in the theory of semistar
operations, see [23, §32]) ideal systems x for which Mx,f(K)• is cancellative,
are called “e.a.b.” (endlich arithmetisch brauchbar). In the case of ideal sys-
tems on monoids, the construction of ra goes back to P. Lorenzen [34] who
constructed a multiplicative substitute for the Kronecker function ring. A
readable overview of the development of the concepts and results related to
Kronecker function rings and semistar operations was given by M. Fontana
and K.A. Loper [20].

Definition 8.5. Let r be a finitary module system on K. We denote by
Λr(K) = q(Mra,f(K)) the quotient of the monoid Mra(K) (Mra(K)• is
cancellative, see Theorem 8.2.2). The group Λr(K)× is a quotient group of
Mra,f(K)• and is called the Lorenzen r-group. For X ∈ Λr(K)•, we denote by
X [−1] its inverse in the group Λr(K)×. Then we obtain, by the very definition,

Λr(K) = {C [−1]A | A ∈Mra,f(K) , C ∈Mra,f(K)• , } .

If A,A′ ∈ Mra,f(K) and C,C ′ ∈ Mra,f(K)•, then C [−1]A = C ′[−1]A′ if
and only if (AC ′)ra = (A′C)ra , and multiplication in Λr(K) is given by the
formula (C [−1]A)·(C ′[−1]A′) = (CC ′)r

[−1](AA′)r. In particular, Dra = {1}ra

is the unit element of Λr(K). The submonoid

Λ+
r (K) = {C [−1]A | A ∈Mra,f(K) , C ∈Mra,f(K)• , A ⊂ C } ⊂ Λr(K)

is called the Lorenzen r-monoid. It is easily checked that Λ+
r (K) ⊂ Λr(K) is

really a submonoid, and Mra,f(K) ⊂ Λr(K). The Lorenzen homomorphism
τr :K → Λr(K) is defined by τr(a) = {a}ra = aDra ∈ Mra,f(K) ⊂ Λr(K)
for all a ∈ K.

Theorem 8.6. Let r be a finitary module system on K, D ⊂ {1}ra and
K = q(D). Let t = t(Λ+

r (K)) be the t-system on Λr(K) induced from Λ+
r (K).
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1. If A ∈Mra,f(K) and C ∈Mra,f(K)•, then C [−1]A ∈ Λ+
r (K) if and only

if A ⊂ C.
2. Λ+

r (K) is a reduced GCD-monoid, and Λr(K) is a quotient of Λ+
r (K).

If X, Y ∈ Λ+
r (K), then there exist A, B ∈Mra,f(K) and C ∈Mra,f(K)•

such that A ∪ B ⊂ C, X = C [−1]A and Y = C [−1]B. In this case, we
have X |Y if and only if B ⊂ A, and gcd(X,Y ) = C [−1](A ∪B)ra .

3. For every X ∈ Λ+
r (D) there exist E ∈ Pf(D) and E′ ∈ P•f (D) such that

Era ⊂ E′ra
and X = E′ra

[−1]Era = gcd(τr(E′))[−1] gcd(τr(E).
4. The Lorenzen homomorphism τr : K → Λr(K) is an (ra, t)-homomor-

phism and τr |K× : K× → Λr(K)× is a group homomorphism satisfying
Ker(τr |K×) = D×ra

.
5. For every Z ⊂ K we have Zra = τ−1

r [τr(Z)t] = {c ∈ K | {c}ra ∈ τr(Z)t},
and in particular τ−1

r (Λ+
r (K)) = Dra .

Proof. The assertions 1. to 4. follow immediately from the definitions.
5. Let now first Z ⊂ K be finite, say Z = a−1A, where a ∈ D• and

A = {a1, . . . , an} ⊂ D ⊂ {1}ra . Then

Ara = ({a1}ra ∪ . . . ∪ {an}ra)ra = gcd({a1}ra , . . . , {an}ra)
= gcd(τr(a1), . . . , τr(an)) = gcd(τr(A))

and therefore τr(A)t = AraΛ
+
r (K) by Lemma 7.2.4. For c ∈ K, we have

c ∈ τ−1
r [τr(Z)t] if and only if

τr(ac) = τr(a)τr(c) ∈ τr(a)τr(Z)t = τr(aZ)t = τr(A)t = AraΛ
+
r (K) ,

and therefore we obtain

τr(A)t = AraΛ
+
r (K) ⇐⇒ Ara

[−1]acra ∈ Λ+
r (K) ⇐⇒ {ac}ra ⊂ Ara

⇐⇒ ac ∈ Ara = aZra ⇐⇒ c ∈ Zra .

Hence Zra = τ−1
r (τr(Z)t) and Dra = τ−1

r (τr({1}t) = τ−1
r (Λ+

r (K)). If finally
Z ⊂ K is arbitrary, then

Zra =
⋃

E∈Pf(Z)

Era =
⋃

E∈Pf(Z)

τ−1
r [τr(E)t] = τ−1

r

( ⋃
F∈Pf(τr(Z))

Ft

)
= τ−1

r (τr(Z)t) .

In particular, it follows that τr(Zra) ⊂ τr(Z)t, and thus τr is an (ra, t)-homo-
morphism. ut

Remark 8.7. Let D be an integral domain with quotient field K, ∗ a semistar
operation on D and r = r∗ the module system on K induced by ∗. Then
the Lorenzen r-monoid Λ+

r (K) is isomorphic to the monoid (Kr(D, ∗)) of
principal ideals of the semistar Kronecker function ring Kr(D, ∗) (see [19]).
We recall the definition : Kr(D, ∗) consists of all rational functions f/g with
f, g ∈ D[X] such that g 6= 0 and there exists some h ∈ D[X]• satisfying
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[c(f)c(h)]∗ ⊂ [c(g)c(h)]∗. An isomorphism (Kr(∗, D)) → Λ+
r (K) is given

by the assignment (f/g) 7→ c(g)[−1]
ra c(f)ra .

Theorem 8.8 (Universal property of the Lorenzen monoid). Let r be
a finitary module system on K, D ⊂ {1}ra , K = q(D) and t = t(Λ+

r (K))
the t-system on Λr(K) induced from Λ+

r (K). If G is a reduced GCD-monoid
and L = q(G), then there is a bijective map

Hom(t,t(G))(Λr(K), L) → Hom(r,t(G))(K,L) , defined by φ 7→ φ ◦ τr .

Proof. If Φ : Λr(K) → L is a (t, t(G))-homomorphism, then Φ ◦ τr : K → L
is an (r, t(G))-homomorphism, since τr is an (ra, t)-homomorphism and thus
also an (r, t)-homomorphism. We prove that for every ϕ ∈ Hom(r,t(G))(K,L)
there is a unique Φ ∈ Hom(t,t(G))(Λr(K), L) such that Φ ◦ τr = ϕ. Thus let
ϕ ∈ Hom(r,t(G))(K,L).

By Lemma 7.3, the map Hom(t,t(G))(Λr(K), L) → HomGCD(Λ+
r (K), G),

defined by Φ 7→ Φ |Λ+
r (K), is bijective, and for Φ ∈ Hom(t,t(G))(Λr(K), L) we

have Φ◦τr = ϕ if and only if [Φ |Λ+
r (K)]◦(τr |D) = ϕ |D (since K = q(D) ).

Hence it suffices to prove that there exists a unique ψ ∈ HomGCD(Λ+
r (K), G)

such that ψ ◦ τr(a) = ϕ(a) for all a ∈ D•.
Uniqueness : If ψ ∈ HomGCD(Λ+

r (K), G) be such that ψ ◦ τr(a) = ϕ(a) for all
a ∈ D• and X = gcd(τr(E′))[−1] gcd(τr(E)) ∈ Λ+

r (K) (where E ∈ Pf(D),
E′ ∈ P•f (D) and Era ⊂ E′ra

), then

ψ(X) = gcd[ψ(τr(E′))]−1 gcd[ψ(τr(E))] = gcd[ϕ(E′)]−1 gcd[ϕ(E)] ,

and thus ψ is uniquely determined by ϕ.
Existence : Define ψ provisionally by ψ(X) = gcd(ϕ(E′))−1 gcd(ϕ(E)) if
X = gcd(τr(E′))[−1] gcd(τr(E)) with E ∈ Pf(D), E′ ∈ P•f (D) and Era ⊂ E′ra

.
We must prove the following assertions : 1) ψ(X) ⊂ G ; 2) the definition
is independent of the choice of E and E′ ; 3) ψ is a GCD-homomorphism.
The proofs are lengthy but straightforward and are left to the reader. ut

Theorem 8.9. Let r be a finitary module system on K, D ⊂ {1}ra and
K = q(D). Let t = t(Λ+

r (K)) the t-system on Λr(K) induced from Λ+
r (K).

Let V be the set of all r-valuation monoids in K and W the set of all t-va-
luation monoids in Λr(K). Then V = {τ−1

r (W ) |W ∈ W}.

Proof. If W ∈ W and x ∈ K \ τ−1
r (W ), then τr(x)−1 = τr(x−1) ∈ W and

therefore x−1 ∈ τ−1
r (W ). Hence τ−1

r (W ) is a valuation monoid, and since τr
is an (r, t)-homomorphism, it is even an r-valuation monoid and lies in V.

Let now V ∈ V and π : K → K/V × the canonical epimorphism. Then
V/V × is a reduced valuation monoid, q(V/V ×) = K/V ×, and we denote by
t∗ = t(V/V ×) = s(V/V ×) the module system on K/V × which is induced by
the t-system on V/V ×. Since r ≤ rV = s(V ), it follows that π is an (r, t∗)-
homomorphism. By Theorem 8.8, the assignment Φ 7→ Φ ◦ τr defines a bi-
jective map Hom(t,t∗)(Λr(K),K/V ×) → Hom(r,t∗)(K,K/V ×). Hence there
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is a unique (t, t∗)-homomorphism Φ : Λr(K) → K/V × such that Φ ◦ τr = π,
and Φ is surjective, since π is surjective. Now W = Φ−1(V/V ×) ⊂ Λr(K) is a
valuation monoid, and τ−1

r (W ) = (Φ◦τr)−1(V/V ×) = π−1(V/V ×) = V . Thus
it remains to prove thatWt = W . Since Φ is a (t, t∗)-homomorphism, it follows
that Φ(Wt) ⊂ Φ(W )t∗ = (V/V ×)t∗ = V/V × and Wt ⊂ Φ−1(V/V ×) = W ,
whence Wt = W . ut

Theorem 8.10. Let r be a finitary module system on K, D ⊂ {1}ra and
K = q(D). If Vr(D) denotes the set of all r-valuation monoids of K con-
taining D, then Vr(D) = Vra(Dra) and

Dra = {1}ra =
⋂

V ∈Vr(D)

V .

Proof. By Theorem 8.2.4, a monoid V ⊂ K is an r-valuation monoid if and
only if it is an ra-valuation monoid. Hence Vr(D) = Vra(D) ⊃ Vra(Dra), and
if V ∈ Vr(D), then {1}ra = Dra ⊂ Vra = V and thus V ∈ Vra(Dra).

Let τr : K → Λr(K) be the Lorenzen homomorphism, t = t(Λ+
r (K)) and

W the set of all t-valuation monoids in Λr(K). By Theorem 8.9 we have
Vr(D) = {τ−1

r (W ) |W ∈ W} and, applying Proposition 7.5.2 and Theorem
8.6.3, we obtain

Dra = τ−1
r (Λ+

r (K)) = τ−1
r

( ⋂
W∈W

W
)

=
⋂

W∈W
τ−1
r (W ) =

⋂
V ∈Vr(D)

V . ut

Corollary 8.11. Let K = q(D) and r a finitary ideal system on D. Then
Dra is the intersection of all r-valuation monoids in K.

Remark 8.12. In the case of integral domains, Theorem 8.10 generalizes the
connection between semistar Kronecker function rings and valuation over-
rings as developed in [18]. In particular, Corollary 8.11 contains the classical
fact that the integral closure of an integral domain is the intersection of its
valuation overrings (see [23, (19.8)]).

9 Invertible modules and Prüfer-like conditions

Let K be a monoid and D ⊂ K a submonoid such that K = q(D).

This final section contains the basics of a purely multiplicative theory of
semistar invertibility and semistar Prüfer domains as it was developed only
recently by M. Fontana with several co-authors (see [9], [17], [18], [21], [22],
[15], [16], [6]). In particular, we refer to the examples presented in these
papers which show the semistar approach covers really new classes of integral
domains.
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Definition 9.1. Let r be a module system on K. A D-module A ⊂ K is
called (r-finitely) r-invertible (relative D) if there exists a (finite) subset
B ⊂ (D :A) such that (AB)r = Dr [ equivalently, 1 ∈ (AB)r ].

By definition, A is r-invertible if and only if A is r[D]-invertible. If A is
r-invertible, then A is q-invertible for every module system q on K satisfying
r ≤ q, and every D-module A′ with A ⊂ A′ ⊂ Ar is also r-invertible.

Lemma 9.2. Let A ⊂ K be a D-module and B ⊂ K such that D = AB.
Then A = aD for some a ∈ K.

Proof. Let P = D \D×. Then PA ⊂ A, and we assert that PA 6= A. Indeed,
if PA = A, then P = PD = PAB = AB = D, a contradiction. If a ∈ A\AP ,
then aD ⊂ A, hence aBD ⊂ AB = D. If aBD 6= D, then aBD ⊂ P , since
aBD is an ideal of D, and then a ∈ aD = aABD ⊂ AP , a contradiction.
Hence aBD = D, and consequently A = aABD = aD. ut

Proposition 9.3. Let r be a module system on K, c ∈ K×, and let A ⊂ K
be a D-module.

1. A is r-invertible if and only if [A(D :A)]r = Dr, and then (D :A) and
Av(D) are also r-invertible.

2. If A is r-invertible, then cA is also r-invertible, and Ar is cancellative in
Mr(K).

3. A is r-invertible (relative D ) if and only if Ar is r-invertible (relative
Dr ) and (Dr :A) = (D :A)r.

4. If A1, A2 ⊂ K are D-modules, then A1A2 is r-invertible if and only if
A1 and A2 are both r-invertible.

Proof. 1. If [A(D :A)]r = Dr, then A is r-invertible. If A is r-invertible, then
there is some B ⊂ (D :A) such that (AB)r = Dr, and since [A(D :A)]r ⊂ Dr,
it follows that [A(D : A)]r = Dr. Hence (D : A) is r-invertible, and (by an
iteration of the argument) Av = (D : (D :A)) is also r-invertible.

2. Let A be r-invertible and B ⊂ (D : A) such that (AB)r = Dr. Since
c−1B ⊂ (D : cA) and ((cA)(c−1B))r = Dr, it follows that cA is also r-
invertible. If X, Y ∈ Mr(D) and (ArX)r = (ArY )r, then it follows that
X = [(BA)rX]r = [B(ArX)r]r = [B(ArY )r]r = [(BA)rY ]r = Y , and thus
Ar is cancellative.

3. By Proposition 3.3.3, Ar is a Dr-module. If A is r-invertible, then
Dr = [A(D :A)]r⊂ [Ar(D :A)r]r ⊂ [Ar(Dr :A)]r = [Ar(Dr :Ar)]r⊂ Dr, hence
equality holds, Ar is r-invertible (relative Dr), and since Ar is cancellative
in Mr(D), it follows that (D :A)r = (Dr :A). To prove the converse, let Ar

be r-invertible (relative Dr) and (D : A)r = (Dr : A). Then it follows that
[A(D :A)]r = [Ar(D :A)r]r = [Ar(Dr :A)r]r = [Ar(Dr :Ar)]r = Dr, and thus
A is r-invertible relative D.
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4. If A1A2 is r-invertible, then there is some B ⊂ (D : A1A2) such that
(A1A2B)r = Dr. Since A1B ⊂ (D :A2) and A2B ⊂ (D :A1), it follows that
A1 and A2 are both r-invertible. If A1 and A2 are r-invertible, then there
exist B1 ⊂ (D :A1) and B2 ⊂ (D :A2) such that (A1B1)r = (A2B2)r = Dr.
Now (A1A2B1B2)r = [(A1B1)r(A2B2)r]r = Dr and B1B2 ⊂ (D :A1A2)
implies that A1A2 is r-invertible. ut

Proposition 9.4. Let r be a finitary module system on K and A ⊂ K a
D-module.

1. The following assertions are equivalent :

(a) A is r-invertible (relative D).
(b) There exists a finite subset F ⊂ (D :A) such that 1 ∈ (AF )r.
(c) For all P ∈ rD-max(D) we have A(D :A) 6⊂ P .

2. If A is r-invertible, then Ar is r[D]-finite and A is r-finitely r-invertible.
3. If T ⊂ D is multiplicatively closed and A is r-invertible, then T−1A is
r-invertible (relative T−1D ).

Proof. 1. (a) ⇒ (b) If B ⊂ (D :A) is such that 1 ∈ (AB)r, then (since r is
finitary) there exists a finite subset F ⊂ B such that 1 ∈ (AF )r.

(b) ⇒ (c) Assume that A(D : A) ⊂ P for some P ∈ rD-max(D),
and let F ⊂ (D : A) be finite such that 1 ∈ (AF )r. Then it follows that
1 ∈ (AF )r ∩D ⊂ [A(D :A)]r ∩D ⊂ Pr ∩D = P , a contradiction.

(c) ⇒ (a) Since A(D :A) ⊂ [A(D :A)]r ∩D, it follows that the rD-ideal
[A(D : A)]r ∩ D is contained in no P ∈ rD-max(D). Hence it follows that
[A(D :A)]r ∩D = D ⊂ [A(D :A)]r and therefore [A(D :A)]r = Dr.

2. Let B ⊂ (D :A) be such that 1 ∈ (AB)r, and let E ⊂ A and F ⊂ B
be finite subsets satisfying 1 ∈ (EF )r. Then Dr ⊂ (DEF )r ⊂ (AF )r ⊂ Dr,
which implies Dr = (AF )r, and thus A is r-finitely r-invertible relative D.
Moreover, it follows that Ar = DrAr = (DEFA)r = (DE)r = Er[D], and
therefore Ar is r[D]-finite.

3. If B ⊂ (D :A) is such that (AB)r = Dr, then B ⊂ (T−1D :T−1A) and
(T−1AB)r = (T−1D)r. Hence T−1A is r-invertible (relative T−1D). ut

Theorem 9.5. Let r be a finitary module system on K and A ⊂ K a D-mo-
dule.

1. If A is r-invertible and P ∈ rD-spec(D), then AP = aDP for some
a ∈ K×.

2. Suppose that for every P ∈ rD-max(D) there is some aP ∈ K× such that
AP = aPDP . If y is a finitary module system on K such that Dy = D
and A is y-finite, then A is r-invertible.

Proof. 1. Let A be r-invertible, B ⊂ (D : A) such that (AB)r = Dr and
P ∈ rD-spec(D). Then AB 6⊂ P , and since AB ⊂ D is an ideal, we obtain
DP = (AB)P = APBP . Now the assertion follows by Lemma 9.2.
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2. Suppose that A = Ey for some E ∈ Pf(K) and that A is not r-invertible.
By Proposition 9.4, there is some P ∈ rD-spec(D) such that A(D :A) ⊂ P
and thus aP (D :A)P ⊂ PDP . Since D = Dy, it follows that

(D :A)P = (D :E)P = (DP :E) = (DP :AP ) = a−1
P DP

and thus PDP ⊃ aP (D :A)P = DP , a contradiction. ut

Definition 9.6. Let r and y be finitary module systems on K such that
y ≤ r and Dy = D. Then D is called a y-basic r-Prüfer monoid if every
A ∈My,f(K) is r-invertible.

Remark 9.7. Let D be an integral domain, ∗ a semistar operation on D and
r = r∗ the D-module system on K induced by ∗. Then D is a P∗MD (as
defined in [15]) if and only if D is a basic d(D)-Prüfer monoid.

Theorem 9.8. Let r, q and y be finitary module systems on K such that q
is a D-module system, y ≤ q ≤ r and Dy = D.

1. If D is an y-basic r-Prüfer monoid, then DP is a valuation monoid for
every P ∈ rD-spec(D).

2. The the following assertions are equivalent :

(a) D is a y-basic r-Prüfer monoid.
(b) D is a y-basic r[q]-Prüfer monoid.
(c) DP is a valuation monoid for every P ∈ rD-max(D).

Proof. 1. Let P ∈ rD-spec(D). Since DP = D×PD, it suffices to prove that
for all a, b ∈ D• we have either a ∈ bDP or b ∈ aDP . If a, b ∈ D•, then
{a, b}y is r-invertible by the assumption: Let B ⊂ (D :{a, b}y) = (D :{a, b})
be such that 1 ∈ ({a, b}yB)r. We assert that even 1 ∈ {a, b}BDP . Indeed, if
not, then {a, b}BDP ⊂ PDP , which implies {a, b}B ⊂ PDP ∩D = P and
1 ∈ ({a, b}yB)r ∩D = ({a, b}B)r ∩D ⊂ Pr ∩D = P , a contradiction.

Now it follows that DP = ({a, b}DP )B and thus {a, b}DP = cDP for
some c ∈ DP by Lemma 9.2. Hence there exist u, v ∈ DP such that a = cu,
b = cv, and {u, v}DP = DP . Therefore we have either u ∈ D×P or v ∈ D×P
and thus either b ∈ aDP or a ∈ bDP .

2. (a) ⇒ (c) By 1.
(c) ⇒ (a) Let A = Ey ∈My,f(K), where E ∈ Pf(K), and assume that A

is not r-invertible. By Proposition 9.4 there exists some P ∈ rD-max(D) such
that A(D :A) ⊂ P . Since DP is a valuation monoid, we obtain EDP = aDP

for some a ∈ E, and thus also AP = EyDP = (EDP )y = aDP . Since
[A(D :A)]P = AP (D :E)P = AP (DP :EDP ) = aDP (DP : aDP ) = DP , we
obtain PDP ⊃ [A(D :A)]P = DP , a contradiction.

(a) ⇔ (b) By Theorem 6.6.5 we have rD-max(D) = r[q]D-max(D). We
apply the equivalence of (a) and (c) with r[q] instead of r and obtain the
equivalence of (a) and (b). ut
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Corollary 9.9. Let r and y be finitary module systems on K such that y ≤ r
and Dy = D. If D is an y-basic r-Prüfer monoid, then every y-monoid T
satisfying D ⊂ T ⊂ K is also an y-basic r-Prüfer monoid.

Proof. By Theorem 9.8 it suffices to prove that TP is a valuation monoid if
P ∈ rT -max(T ). If P ∈ rT -max(T ), then P ∩D = Pr∩T ∩D = Pr∩D. Hence
P ∩D ∈ rD-spec(D), DP∩D is a valuation monoid, and since DP∩D ⊂ TP ,
it follows that TP is also a valuation monoid.
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