
CHAPTER 1

Module theory

By a ring we always mean a ring with 1, and by a module we always mean an unitary left-module.

1.1. Homomorphisms; Projective and injective modules

Let R and S be rings.

For additive abelian groups A, B, we denote by Hom(A,B) the group of all homomorphisms A→ B,
equipped with pointwise addition and zero homomorphism 0: A→ B, and by End(A) = Hom(A,A) the
endomorphism ring of A, with multiplication (f, g) 7→ f◦g. 0 = {0} denotes the trivial additive abelian
group and also the zero ring.

Let M be an abelian group.
Let σ : R×M → M , (r,m) 7→ rm, be a (left) R-module structure on M . For r ∈ R, define

σ∗(r) : M → M by σ∗(r)(m) = rm. Then σ∗(r) ∈ End(M), and the map σ∗ : R → End(M) is a ring
homomorphism. Conversely, if θ : R→ End(M) is a ring homomorphism, then θ∗ : R×M →M , defined
by θ∗(r,m) = θ(r)(m), is a (left) R-module structure on M , and (θ∗)∗ = θ. If σ : R×M → M is any
(left) R-module structure on M , then (σ∗)∗ = σ.

Next, let σ : M×R → M , (m, r) 7→ mr, be a right R-module structure on M . Let Rop be the
opposite ring of R, having the same addition law as R and the multiplication law x ·op y = yx. For r ∈ R,
the map σ∗(r) : M →M , defined by σ∗(r)(m) = mr, is again an endomorphism of M , but for r, s ∈ R,
we have σ∗(rs) = σ∗(s)◦σ∗(r), and therefore σ∗ : Rop → End(M) is a ring homomorphism. Conversely,
if θ : Rop → End(M) is a ring homomorphism, then θ∗ : M×R→M , defined by θ∗(m, r) = θ(r)(m), is
a right R-module structure on M , and (θ∗)∗ = θ. If σ : M×R→M is any right R-module structure on
M , then (σ∗)∗ = σ.

A (left) R-module is an abelian group M , together with an R-module structure, defined either by
a scalar product R×M → M or by a homomorphism R → End(M). We write RM to indicate that
M is an R-module. For R-modules M, N , we denote by HomR(M,N) the set of all R-homomorphisms
M → N , and we denote by R-Mod the category of all R-modules.

A right R-module ist an abelian group M , together with a right R-module structure, defined either by
a scalar product M×R→M or by a homomorphism Rop → End(M). Consequently, a right R-module
is the same as an Rop-module. However, we shall usually avoid the notion Rop and write M = MR to
indicate that M is right R-module. For right R-modules M, N , we denote again by HomR(M,N) the
set of all R-homomorphisms M → N , and we denote by Mod-R = Rop-Mod the category of all right
R-modules.

In any case, HomR(M,N), equipped with pointwise addition, is a subgroup of Hom(M,N). Note
that in general HomR(M,N) does not have the structure of an R-module.

If R is commutative, then R = Rop, and R-Mod = Mod-R. In particular, Z-Mod = Ab is the
category of abelian groups. For A, B ∈ Ab, we have HomZ(A,B) = Hom(A,B). We denote by 0 the
zero group. It has a unique R-module structure.

Let M be an abelian group, let R1, R2 be rings, and for i ∈ {1, 2}, let θi : Ri → End(M) be an
Ri-module structure on M . Then M is called an (R1, R2)-bimodule if θ(r1)◦θ(r2) = θ(r2)◦θ(r1) for all
r1 ∈ R1 and r2 ∈ R2. More generally, if k ∈ N, R1, . . . , Rk are rings and M is an abelian group carrying
an Ri-module structure for each i ∈ [1, k], then M is called an (R1, . . . , Rk)-multimodule if M is an
(Ri, Rj)-bimodule for all i, j ∈ [1, k] such that i 6= j. If M, N are (R1, . . . , Rk)-multimodules, then a
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map M → N is called an (R1, . . . , Rk)-homomorphism if it is an Ri-homomorphism for each i ∈ [1, k],
and we denote by HomR1,...,Rk

(M,N) the abelian group of all (R1, . . . , Rl)-homomorphisms M → N .
If k, l ∈ N, R1, . . . , Rk, S1, . . . , Sl are rings, then an (R1, . . . , Rk)-left and (S1, . . . , Sl)-right multi-

module M is an (R1, . . . , Rk, S
op
1 , . . . , S

op
l )-multimodule, and we write M = R1,...,Rk

MS1,...,Sl
to indicate

that M carries this multimodue structure. We denote by (R1, . . . , Rk)-Mod-(S1, . . . , Sl) the category of
(R1, . . . , Rk)-left and (S1, . . . , Sl)-right multimodules.

Three types of bimodules will be of interest in the sequel : R,SM (called one-sided left (R,S)-
bimodules), RMS (called two-sided (R,S)-bimodules), MR,S (called one-sided right (R,S)-bimodules).

Examples.
1. Every R-module is a one-sided and a two-sided (R,Z)-bimodule : RM = R,ZM = RMZ and
MR = ZMR = MZ,R.

2. If R is commutative, then every R-module is a one-sided and a two-sided (R,R)-bimodule :
RM = R,RM = RMR.

3. Let M be an R-module. Then EndR(M) = HomR(M,M) ⊂ End(M) = EndZ(M) is a subring,
and M is an EndR(M)-module by means of ϕm = ϕ(m). Moreover, M = EndR(M),RM is a
one-sided EndR(M), R)-bimodule (indeed, ϕrm = rϕm for all ϕ ∈ EndR(M), r ∈ R and
m ∈M).

4. R is a two-sided (R,R)-bimodule, R = RRR. For any set I, component-wise scalar multiplication
makes both RI and on R(I) = {(xi)i∈I ∈ RI | xi = 0 for almost all i ∈ I } into two-sided
(R,R)-bimodules.

5. Let f : R → S be a ring homomorphism. Then every S-module N = SN is an R-module by
means of rn = f(r)n for all r ∈ R and n ∈ N, and (similarly) every right S-module N = NS
is a right R-module. In particular, SSR is a two-sided (S,R)-bimodule (and also a two-sided
(R,S)-bimodule). If N, N ′ are S-modules, then it follows that HomS(N,N ′) ⊂ HomR(N,N ′),
and equality holds if f is surjective.

6. Let R be commutative. By an R-algebra we mean a ring S, together with an R-module structure
R×S → S, (r, s) 7→ rs such that r(ss′) = (rs)s′ = s(rs′) for all r ∈ R and s, s′ ∈ S. Then the
map f : R → S, defined by f(r) = r1S , is a ring homomorphism satisfying f(R) ⊂ center(S)
[ indeed, if r, r′ ∈ R, then f(rr′) = (rr′)1S = r(r′1S) = r[1S(r′1S)] = (r1S)(r′1S) = f(r)f(r′),
and if s ∈ S, then f(r)s = (r1S)s = r(1Ss) = r(s1S) = s(r1S) = sf(r) ]. The homomorphism f
is called the structural homomorphism of the R-algebra S . Conversely, if f : R → S is a ring
homomorphism such that f(R) ⊂ center(S), then S is an R-module by means of rs = f(r)s for
all r ∈ R and s ∈ S, and with this R-module structure the ring S is an R-algebra with structural
homomorphism f . Therefore also the homomorphism f : R → S itself is called an R-algebra.
Every ring R is a Z-algebra in a unique way [ indeed, there is a unique homomorphism ε : Z → R,
given by ε(g) = g1R for all g ∈ Z ].
If f : R→ S is an R-algebra, then every S-module N is an (R,S)-bimodule, SN = R,SN .
Examples of algebras :
Every homomorphism f : R → S of commutative rings is an R-algebra. Let S be a ring and
R ⊂ center(S) a subring. then S is an R-algebra. If R is commutative and n ∈ N, then the
matrix ring Mn(R) is an R-algebra. If R is commutative and M is an R-module, then EndR(M)
is an R-algebra.

Theorem and Definition 1.1.1. Let M, N be R-modules.
1. Assume that M = RMS. For s ∈ S and f ∈ HomR(M,N) let sf : M → N be defined by

(sf)(m) = f(ms) for all s ∈ S and m ∈ M . Then sf is an R-homomorphism, and (s, f) 7→ sf
is an S-module structure on HomR(M,N) :

SHomR(RMS , RN) ; in the same way : HomR(R,SM, RN)S .
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2. Assume that N = R,SN . For s ∈ S and f ∈ HomR(M,N) let sf : M → N be defined by
(sf)(m) = sf(m). Then sf is an R-homomorphism, and (s, f) 7→ sf is an S-module structure
on HomR(M,N) :

SHomR(RM, R,SN) ; in the same way : HomR(RM, RNS)S .

3. Let R be commutative. Then HomR(M,N) is an R-module by means of (rf)(m) = f(rm) for
all f ∈ HomR(M,N), r ∈ R and m ∈M .

Proof. 1. We must prove :
• For all f ∈ HomR(M,N) and s ∈ S, the map sf : M → N is an R-homomorphism, that is

– (sf)(m+m′) = (sf)(m) + (sf)(m′) for all m, m′ ∈M ;
– (sf)(rm) = r[(sf)(m)] for all m ∈M and r ∈ R [ here we use the bimodule structure ].

• (s, f) 7→ sf is an S-module structure on HomR(M,N), that is, for all f, f ′ ∈ HomR(M,N) and
all s, s′ ∈ S, the following equalities hold pointwise for all m ∈M :

– (s(f + f ′) = sf + sf ′;
– (s+ s′)f = sf + s′f ;
– (ss′)f = s(s′f);
– 1Sf = f .

All this is easy.
2. The same things as in 1. must be checked.
3. By 2., since N = R,RN . �

For R-modules M, N, P , the compositon map

HomR(N,P )×HomR(M,N) → HomR(M,N) , (g, f) 7→ g◦f ,
is Z-bilinear [ that is, g◦(f + f ′) = g◦f + g◦f ′ and (g+ g′)◦f = g◦f + g′◦f for all g, g′ ∈ HomR(N,P )
and f, f ′ ∈ HomR(M,N) ].

Let f : M →M ′ be an R-homomorphism and N an R-module. We define

f∗ = HomR(N, f) : HomR(N,M) → HomR(N,M ′) by f∗(ϕ) = Hom(N, f)(ϕ) = f ◦ϕ
and

f∗ = HomR(f,N) : HomR(M ′, N) → HomR(M,N) by f∗(ϕ) = Hom(f,N)(ϕ) = ϕ◦f .

Then f∗ and f∗ are group homomorphisms satisfying (f + g)∗ = f∗ + g∗ and (f + g)∗ = f∗ + g∗

for all f, g ∈ HomR(M,M ′). If M
f→ M ′ f

′

→ M ′′ are R-homomorphisms, then (f ′◦f)∗ = f ′∗◦f∗ and
(f ′◦f)∗ = f ′∗◦f∗.

A (covariant or contravariant) functor T : R-Mod → Ab is called additive if, for allM, N ∈ R-Mod,
the map T : HomR(M,N) → Hom(TM,TN) is a group homomorphism [ expicitly, T (f + g) = Tf + Tg
for all R-homomorphisms f, g : M → N of R-modules.] If T is an additive functor, then T0 = 0 [indeed,
if M is an R-module, then M = 0 if and only if idM = 0, and then idTM = T idM = T0 = 0 ].

For N ∈ R-Mod, the map HomR(N,−) : R-Mod → Ab is a (covariant) additive functor, and the
map HomR(−, N) : R-Mod → Ab is a contravariant additive functor.

Theorem 1.1.2. Let M be an R-module. Then the map

Φ = ΦM : M → HomR(R,M) , defined by m 7→ (r 7→ rm) ,

is an R-isomorphism which is functorial in M , and Φ−1(f) = f(1) for all f ∈ HomR(R,M).

Proof. The R-module structure on HomR(R,M) = HomR(RRR, RM) is given by (λf)(r) = f(rλ)
for all f ∈ HomR(R,M) and λ, r ∈ R. We must prove :

1) For every m ∈M , the map Φ(m) = (r 7→ rm) is an R-homomorphism.
2) Φ: M → HomR(R,M) is an R-homomorphism.
3) If Ψ: HomR(R,M) →M is defined by Ψ(f) = f(1), then Ψ◦Φ = idM and Φ◦Ψ = idHomR(R,M).



4 1. MODULE THEORY

4) Every homomorphism ϕ : M →M ′ of R-modules induces a commutative diagram

M
ΦM−−−−→ HomR(R,M)

ϕ

y yHom(R,ϕ)

M ′ ΦM′−−−−→ HomR(R,M ′) .
All this is easy. �

A sequence M ′ f→M
g→M ′′ of R-(module)-homomorphisms is called exact if Ker(g) = Im(f), and

an (eventually long) sequence . . .→Mi+1 →Mi →Mi−1 → . . . of R-homomorphisms is called exact if
every 3-term subsequence is exact. Special cases :

• 0 →M ′ f→M is exact if and only if f is a monomorphism.

• M
g→M ′′ → 0 is exact if and only if g is an epimorphism.

• Every R-homomorphism f : M → N induces an exact sequence

0 → Ker(f) ↪→M
f→ N → Coker(f) = M/Im(f) → 0 .

• An exact sequence 0 → M ′ f→ M
g→ M ′′ → 0 is called a short exact sequence. By definition,

0 →M ′ f→M
g→M ′′ → 0 is a short exact sequence if and only if f is a monomorphism, g is an

epimorphism, g◦f = 0 and Ker(g) ⊂ Im(f). Then f : M ′ ∼→ Ker(g) = Bi(f) is an isomorphism,
g induces an isomorphism g∗ : M/Im(f) = M/Ker(g) ∼→ M ′′, and we obtain the commutative
diagram

0 −−−−→ M ′ f−−−−→ M
g−−−−→ M ′′ −−−−→ 0

f

y yidM

xg∗
0 −−−−→ Im(f) −−−−→ M

π−−−−→ M/Im(f) −−−−→ 0
where the vertical arrows are isomorphisms.

• Let 0 →M ′ →M →M ′′ → 0 be a short exact sequence of R-modules. If both M ′ and M ′′ are
finitely generated, then M is finitely generated. Conversely, if M is finitely generated, then M ′′

is finitely generated, and if R is left noetherian, then M ′ is also finitely generated.
• An R-module M is called finitely presented if there is an exact sequence F ′ → F → M → 0

with finitely generated free R-modules [ equivalently, there is an epimorphism π : F →M , where
F is a finitely generated free R-module and Ker(π) is finitely generated. Every finitely presented
R-module is finitely generated, and if R is left noetherian, then every finitely generated R-module
is finitely presented.

• Let M ′, M ′′ be R-modules and M ′ ⊕M ′′ the (outer) direct sum. Let ε′ : M ′ →M ′ ⊕M ′′ and
ε′′ : M ′′ →M ′ ⊕M ′′ be the canonical injections and p′ : M ′ ⊕M ′′ →M ′, p′′ : M ′⊕ →M ′′ the
canonical projections, defined by

ε′(m′) = (m′, 0) , ε′′(m′′) = (0,m′′) , p′(m′,m′′) = m′ and p′′(m′,m′′) = m′′ .

Then p′◦ε′ = idM ′ , p′′◦ε′′ = idM ′′ , p′◦ε′′ = 0, p′′◦ε′ = 0, ε′◦p′ + ε′′◦p′′ = idM ′⊕M ′′ , and there
are short exact sequences

0 →M ′ ε′→M ′ ⊕M ′′ p
′′

→M ′′ → 0 and 0 →M ′′ ε′′→M ′ ⊕M ′′ p
′

→M ′ → 0 .

If M ′, M ′′ ⊂M are submodules of an R-module M , the M is called (internal) direct sum of M ′

and M ′′ if one of the following equivalent conditions is satisfied :
– M = M ′ +M ′′ and M ′ ∩M ′′ = 0.
– The map M ′ ⊕M ′′ →M , (m′,m′′) 7→ m′ +m′′, is an isomorphism.
– Every m ∈M has a unique representation m = m′ +m′′, where m′ ∈M ′ and m′′ ∈M ′′.
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If these conditions are fulfilled, then we write M = M ′+̇M ′′ and denote by p′ : M → M ′ and
p′′ : M → M ′′ the maps defined by p′(m′ +m′′) = m′ and p′′(m′ +m′′) = m′′ for all m′ ∈ M ′

and m′′ ∈M ′′. Then p′ and p′′ are R-homomorphisms, p′ |M ′ = idM ′ and p′′ |M ′′ = idM ′′ . We
call p′ and p′′ the projections of M onto M ′ and M ′′.
An R-submodule N ⊂ M is called a direct summand if M = N+̇N ′ for some R-submodule
N ′ ⊂M . In this case, we write N ⊂+M .

Theorem and Definition 1.1.3.
1. An R-submodule M ′ ⊂M is a direct summand of M if and only if there exists an R-homomor-

phism p : M →M ′ such that p |M ′ = idM ′ .

2. Let 0 → M ′ f→ M
g→ M ′′ → 0 be a short exact sequence of R-modules. Then the following

assertions are equivalent :
(a) There exists an R-isomorphism Φ: M ′ ⊕ M ′′ → M such that the following diagram is

commutative :

0 −−−−→ M ′ ε′−−−−→ M ′ ⊕M ′′ p′′−−−−→ M ′′ −−−−→ 0

idM′

y yΦ

yidM′′

0 −−−−→ M ′ f−−−−→ M
g−−−−→ M ′′ −−−−→ 0

(b) Im(f) = Ker(g) is a direct summand of M .
(c) There exists some R-homomorphism ϕ : M →M ′ such that ϕ◦f = idM ′ .
(d) There exists some R-homomorphism ψ : M ′′ →M such that g◦ψ = idM ′′ .
Moreover, the following assertions hold :
(i) If ϕ : M →M ′ is any R-homomorphism such that ϕ◦f = idM ′ , then M = Bi(f)+̇Ker(ϕ).
(ii) If ψ : M ′′ →M is any R-homomorphisms such that g◦ψ = idM ′′ , then M = Ker(g)+̇Bi(ψ).
(iii) The homomorphisms ϕ and ψ in (c) and (d) above can be chosen so that f◦ϕ+ψ◦g = idM .

If these conditions are satisfied, we say that the short exact sequence 0 →M ′ f→M
g→M ′′ → 0

splits or is a split exact sequence. An R-monomorphism f : M ′ → M is said to split if there
exists some R-homomorphism ϕ : M → M ′ such that ϕ◦f = idM ′ [ equivalently, Im(f) ⊂+M ].
An R-epimorphism g : M →M ′′ is said to split if there exists an R-homomorphism ψ : M ′′ →M
such that g◦ψ = idM ′′ [ equivalently, Ker(g) ⊂+M ].

3. Suppose that M ′ f→ M
g→ M ′′ and M ′′ ψ→ M

ϕ→ M ′ are homomorphisms of R-modules such
that ϕ◦f = idM ′ , g◦ψ = idM ′′ and f ◦ϕ+ ψ◦g = idM . Then 0 → M ′ f→ M

g→ M ′′ → 0 and
0 →M ′′ ψ→M

ϕ→M ′ → 0 are split exact sequences.
4. Let T : R-Mod → Ab be an additive functor and 0 → M ′ → M → M ′′ → 0 a split exact

sequence. Then 0 → TM ′ → TM → TM ′′ → 0 is also a split exact sequence. In particular,
T (M ′ ⊗M ′′) ∼= TM ′ ⊕ TM ′′.

Proof. 1. If M ′ ⊂M is a direct summand and p : M →M ′ is the projection of M onto M ′, then
p |M ′ = idM ′ .

Conversely, let p ∈ HomR(M,M ′) be such that p |M ′ = idM ′ . We assert that M = M ′ +̇Ker(p).
If m ∈ M , then p(m − p(m)) = p(m) − p(m) = 0, and m = p(m) + (m − p(m)) ∈ M ′ + Ker(p). If
m ∈M ′ ∩Ker(p), then 0 = p(m) = m, and thus M = M ′ +̇Ker(p).

2. (a) ⇒ (b) Since M ′ ⊕M ′′ = ε′(M ′) +̇ ε′′(M ′′), it follows that ε′(M ′) is a direct summand of
M ′ ⊕M ′′, and therefore Im(f) = f(M ′) = Φ◦ε′(M ′) is a direct summand of Φ(M ′ ⊕M ′′) = M .

(b) ⇒ (c) By 1., there exists some p ∈ HomR(M, Im(f)) such that p | Im(f) = idIm(f). Since
f : M ′ ∼→ Im(f) is an isomorphism and p◦f = f , it follows that ϕ = f−1 ◦p ∈ HomR(M,M ′), and
ϕ◦f = f−1◦p◦f = f−1◦f = idM ′ .
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(i) Let ϕ ∈ HomR(M,M ′) be such that ϕ◦f = idM ′ . If m ∈M , then

ϕ(m− f ◦ϕ(m)) = ϕ(m)− ϕ◦f ◦ϕ(m) = 0 ,

and m = f◦ϕ(m) + [m− f◦ϕ(m)] ∈ Im(f) + Ker(ϕ). If m ∈ Im(f)∩Ker(ϕ), then m = f(m′) for some
m′ ∈M ′, and 0 = ϕ(m) = ϕ◦f(m′) = m′. Hence m = 0, and M = Im(f) +̇Ker(ϕ).

(c) ⇒ (d) and (iii) If m′′ ∈M ′′, let m ∈M be such that m′′ = g(m), and define

ψ(m′′) = m− f ◦ϕ(m) ∈M .

This definition is independent of the choice of m. Indeed, suppose that m, m1 ∈ M are such that
m′′ = g(m) = g(m1). Then m−m1 ∈ Ker(g) = Im(f), say m−m1 = f(m′) for some m′ ∈M ′. Then

[m− f ◦ϕ(m)]− [m1 − f ◦ϕ(m1)] = (m−m1)− (f ◦ϕ)(m−m1) = f(m′)− f ◦ϕ◦f(m′) = 0 .

Next we prove that ψ : M ′′ → M is an R-homomorphism. Thus let m′′, m′′
1 ∈ M ′′ and r ∈ R. Let

m, m1 ∈M be such that g(m) = m′′ and g(m1) = m′′
1 . Then g(m+m1) = m′′+m′′

1 and g(rm) = rm′′.
Hence ψ(m′′+m′′

1) = (m+m1)− (f◦ϕ)(m+m1) = [m− f◦ϕ(m)]+ [m1− f◦ϕ(m1)] = ψ(m′′)+ψ(m′′
1),

and ψ(rm) = rm− f ◦ϕ(rm) = r(m− f ◦ϕ(m)) = rψ(m′′).
If m′′ = g(m) for some m ∈ M , then g◦ψ(m′′) = g(m − f ◦ϕ(m)) = g(m) − g◦f ◦ϕ(m) = m′′, and

therefore g◦ψ = idM ′′ .
If m ∈M , then ψ◦g(m) = m− f ◦ϕ(m), and therefore f ◦ ϕ+ ψ◦g = idM , which proves (iii).
(ii) Let ψ ∈ HomR(M ′′,M) be such that g◦ψ = idM ′′ . If m ∈M , then

g(m− ψ◦g(m)) = g(m)− g◦ψ◦g(m) = 0 ,

and m = (m−ψ◦g(m)) +ψ◦g(m) ∈ Ker(g) + Im(ψ). If m ∈ Ker(g)∩ Im(ψ), then m = ψ(m′′) for some
m′′ ∈M ′′, and 0 = g(m) = g◦ψ(m′′) = m′′. Hence m = 0, and M = Ker(g) +̇ Im(ψ).

(d) ⇒ (d) As g◦ψ = idM ′′ , it follows that ψ is a monomorphism. Now we define Φ: M ′⊕M ′′ →M
by Φ(m′,m′′) = f(m′) + ψ(m′′) for all (m′,m′′) ∈ M ′×M ′′. Then Φ is an R-homomorphism, and it is
surjective since M = Ker(g) + Im(ψ) = Im(f) + Im(ψ). If (m′,m′′) ∈ Ker(Φ), then f(m′) +ψ(m′′) = 0,
hence 0 = g◦f(m′)+ g◦ψ(m′′) = m′′, f(m′) = 0 and therefore also m′ = 0. Hence Φ is an isomorphism.

If m′ ∈ M ′, then Φ◦ε′(m′) = Φ(m′, 0) = f(m′), and thus Φ◦ε′ = f . If (m′,m′′) ∈ M ′ ⊕M ′′, then
g◦Φ(m′,m′′) = g◦f(m′) + g◦ψ(m′′) = m′′, and therefore g◦Φ = p′′.

3. Since ϕ◦f = idM ′ and g◦ψ = idM ′′ , it follows that f and ψ are monomorphisms and g is an
epimorphism. Now we obtain f = (f◦ϕ+ψ◦g)◦f = f+ψ◦g◦f , hence ψ◦g◦f = 0, and therefore g◦f = 0. If

m ∈ Ker(g), then m = (f◦ϕ+ψ◦g)(m) = f◦ϕ(m) ∈ Im(f). Hence the sequence 0 →M ′ f→M
g→M ′′ → 0

is exact. The same arguments show that the sequence 0 → M ′′ ψ→ M
ϕ→ M ′ → 0 is exact, and by

definition both sequences split.

4. Let 0 → M ′ f→ M
g→ M ′′ → 0 be a split exact sequence. Then there exist R-homomorphisms

ϕ : M → M ′ and ψ : M ′′ → M such that ϕ◦f = idM ′ , g◦ψ = idM ′′ and f ◦ϕ + ψ◦g = idM . Then it
follows that Tϕ◦Tf = T (ϕ◦f) = idTM ′ , Tg◦Tψ = idTM ′′ , and idTM = T (f◦ϕ+ψ◦g) = Tf◦Tϕ+Tψ◦Tg.

By 3., 0 → TM ′ Tf→ TM
Tg

T M ′′ → 0 is a split exact sequence. �

Theorem 1.1.4 (Snake Lemma). Let

A′
i−−−−→ A

f−−−−→ A′′ −−−−→ 0

u′

y u

y u′′

y
0 −−−−→ B′

j−−−−→ B
g−−−−→ B′′

be a commutative diagram of R-module homomorphisms with exact rows. Then there exists an R-
homomorphism ω : Ker(u′′) → Coker(u′) such that there is a long exact sequenc

Ker(u′) i0→ Ker(u)
f0→ Ker(u′′) ω→ Coker(u′)

j∗→ Coker(u)
g∗→ Coker(u′′) ,



1.1. HOMOMORPHISMS; PROJECTIVE AND INJECTIVE MODULES 7

where i0 = i |Ker(u′), f0 = f |Ker(u), j∗ is induced by j, and g∗ is induced by g. If i is a monomor-
phism, then i0 is a monomorphism, and if g is an epimorphism, then g∗ is an epimorphism. Moreover,
ω and the long exact sequence are functorial in the original commutative diagram.

Proof. 1. Since j ◦u′ = u ◦ i, we get i(Ker(u′)) ⊂ Ker(u), and since g ◦u = u′′ ◦ f , we get
f(Ker(u)) ⊂ Ker(u′′). Hence we obtain R-homomorphisms i0 = i |Ker(u′) : Ker(u′) → Ker(u) and
f0 = f |Ker(u) : Ker(u) → Ker(u′′). If i is a monomorphism, then i0 is also a monomorphism, and
f0◦i0 = f ◦i |Ker(u′) = 0. If a ∈ Ker(f0) ⊂ Ker(u) ⊂ A, then f(a) = f0(a) = 0, and thus a = i(a′)
for some a′ ∈ A′. Since j ◦u′(a′) = u◦i(a′) = u(a) = 0 and j is a monomorphism, we get u′(a′) = 0,
hence a′ ∈ Ker(u′), and therefore a = i(a′) = i0(a′) ∈ Im(i0). Hence there is an exact sequence

Ker(u′) i0→ Ker(u)
f0→ Ker(u′′).

2. Since j◦u′ = u◦i and g◦u = u′′◦f and g(Im(u)) ⊂ Im(u′′). Thus j induces an R-homomorphism
j∗ : Coker(u′) = B′/Im(u′) → B/Im(u) = Coker(u), given by j∗(b′ + Im(u′)) = j(b′) + Im(u) for all
b′ ∈ B′, and g induces an R-homomorphism g∗ : Coker(u) = B/Im(u) → B′′/Im(u′′) = Coker(u′′),
given by g∗(b + Im(u)) = g(b) + Im(u′′) for all b ∈ B. If g is an epimorphism, then g∗ is also an
epimorphism, and if b′ ∈ B′, then g∗◦j∗(b′ + Im(u′)) = g◦j(b′) + Im(u′′) = 0 ∈ Coker(u′′). If b ∈ B
and b + Im(u) ∈ Ker(g∗), then g(b) ∈ Im(u′′), and therefore there exists some a ∈ A such that g(b) =
u′′◦f(a) = g◦u(a). Hence g(b − u(a)) = 0, and b − u(a) ∈ Ker(g) = Im(j). Let b′ ∈ B′ be such that
b − u(a) = j(b′). Then b + Im(u) = j(b′) + Im(u) = j∗(b′ + Im(u′)) ∈ Im(j∗). Hence there is an exact

sequence Coker(u′)
j∗→ Coker(u)

g∗→ Coker(u′′).

3. Now we are going to define ω. Let a′′ ∈ Ker(u′′) ⊂ A′′ and a ∈ A such that a′′ = f(a). Then
0 = u′′ ◦f(a) = g◦u(a), hence u(a) ∈ Ker(g) = Im(j), and thus u(a) = j(b′) for some b′ ∈ B′. We
set ω(a′′) = b′ + Im(u′) ∈ Coker(u′), and we show that this definition does not depend on the made
choices. Indeed, let a1 ∈ A be another element such that a′′ = f(a1), and let b′1 ∈ B′ be such that
u(a1) = j(b′1). Then a − a1 ∈ Ker(f) = Im(i), say a − a1 = i(a′), where a′ ∈ A′, and therefore
j(b′ − b′1) = u(a − a1) = u◦i(a′) = j◦u′(a′). As j is injective, we obtain b′ − b′1 = u′(a′) ∈ Im(u′), and
consequently b′ + Im(u′) = b′1 + Im(u′).

To prove that ω is an R-homomorphism, let a′′, a′′1 ∈ Ker(u′′) and r ∈ R. If a, a1 ∈ A are such
that f(a) = a′′ and f(a1) = a′′1 , then f(a + a1) = a′′ + a′′1 and f(ra) = ra′′. Let b′, b′1 ∈ B′ be
such that u(a) = j(b′) and u(a1) = j(b′1). Then u(a + a1) = j(b′ + b′1) and u(ra) = j(rb′). Hence
we obtain ω(a′′ + a′′1) = (b′ + b′1) + Im(u′) = (b′ + Im(u′)) + (b′1 + Im(u′)) = ω(a′′) + ω(a′′1), and
ω(ra′′) = rb′ + Im(u′) = r(b′ + Im(u′)).

Next we show that j∗◦ω = 0. If a′′ = f(a) ∈ A′′, where a ∈ A and u(a) = j(b′) with b′ ∈ B′, then
j∗◦ω(a′′) = j∗(b′ + Im(u′)) = j(b′) + Im(u) = 0 ∈ Coker(u).

Finally, we prove that Ker(ω) ⊂ Im(f0). Thus let a′′ ∈ Ker(ω), a′′ = f(a), where a ∈ A, and
u(a) = j(b′), where b′ ∈ B. Then b′ + Im(u′) = ω(a′′) = 0, hence b′ = u(a′) for some a′ ∈ A,
and therefore u(a) = j ◦u′(a′) = u◦ i(a′). Hence it follows that a − i(a′) ∈ Ker(u), and therefore
f0(a− i(a′)) = f(a)− f ◦i(a′) = f(a) = a′′ ∈ Im(f0).

4. It remains to prove that the whole construction is functorial in the initial data. This is tedious
but easy and is left as an exercise. �

Corollary. Let 0 → K
f→ F

g→M → 0 an exact sequence of R-modules. If M be a finitely presented
and F is finitely generated, then K is also finitely generated.

Proof. As M is finitely presented, there exists an exact sequence F2
f2→ F1

f1→ M → 0, where
F1, F1 are finitely generated free R-modules. Let (u1, . . . , un) be an R-basis of F1. Then there exist
x1, . . . , xn ∈ F such that g(xi) = f1(ui) for all i ∈ [1, n], and there exists a unique ϕ ∈ HomR(F1, F )
such that ϕ(ui) = xi for all i ∈ [1, n]. Hence it follows that f1(ui) = g◦ϕ(ui) for all i ∈ [1, n], and
consequently f1 = g ◦ϕ. Since g ◦ϕ◦f2 = f1 ◦f2 = 0, it follows that ϕ◦f2(F2) ⊂ Ker(g) = Imf ,
and therefore there exists some ψ ∈ HomR(F2,K) such that f ◦ψ = ϕ◦f2. We obtain the following
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commutative diagram with exact rows :

F2
f2−−−−→ F1

f1−−−−→ M −−−−→ 0

ψ

y ϕ

y idM

y
0 −−−−→ K

f−−−−→ F
g−−−−→ M

Lemma 1.1.4 yields an exact sequence 0 = Ker(idM ) → Coker(ψ) → Coker(ϕ) → Coker(idM ) = 0, and
therefore K/Im(ψ) = Coker(ψ) ∼= Coker(ϕ) = F/Im(ϕ) is finitely generated. Since Im(ψ) = ψ(F2) is
also finitely generated, it follows that K is finitely generated. �

Theorem 1.1.5.

1. A sequence 0 → M ′ f→ M
g→ M ′′ of R-homomomrphisms is exact if and only if, for every R-

module X, the sequence 0 → HomR(X,M ′)
f∗→ HomR(X,M)

g∗→ HomR(X,M ′′) is exact (where
f∗ = Hom(X, f) and g∗ = Hom(X, g) ).

2. A sequence M ′ f→ M
g→ M ′′ → 0 of R-homomomrphisms is exact if and only if, for every R-

module X, the sequence 0 → HomR(M ′′, X)
g∗→ HomR(M,X)

f∗→ HomR(M ′, X) is exact (where
g∗ = Hom(g,X) and f∗ = Hom(f,X) ).

Proof. 1. Assume first that 0 → M ′ f→ M
g→ M ′′ is exact, and let X be an R-module. If

(ϕ : X →M ′) ∈ Ker(f∗), then 0 = f∗(ϕ) = f ◦ϕ, and as f is a monomorphism, we obtain ϕ = 0. Hence
f∗ is a monomorphism. g∗◦f∗ = (g◦f)∗ = 0∗ = 0, and it remains to prove that Ker(g∗) ⊂ Im(f∗). If
(ϕ : X → M) ∈ Ker(g∗), then 0 = g∗(ϕ) = g◦ϕ, hence Im(ϕ) ⊂ Ker(g) = Im(f). Since f : M ′ → Im(f)
is an isomorphism, it follows that ϕ′ = f−1◦ϕ ∈ Hom(X,M ′), and ϕ = f ◦ϕ′ = f∗(ϕ′) ∈ Im(f∗).

To prove the converse, we consider the assumption with X = R and obtain the commutative diagram

0 −−−−→ HomR(R,M ′)
f∗−−−−→ HomR(R,M)

g∗−−−−→ HomR(R,M ′′)

∼=
y y∼= y∼=

0 −−−−→ M ′ f−−−−→ M
g−−−−→ M ′′

where the vertical arrows are the isomorphisms of Theorem1.1.2 and the buttom line is exact. Hence the
upper line is also exact.

2. Assume first that the sequence M ′ f→ M
g→ M ′′ → 0 is exact, and let X be an R-module. If

(ψ : M ′′ → X) ∈ Ker(g∗), then 0 = g∗(ψ) = ψ◦g, and as g is an epimorphism, we obtain ψ = 0. Hence
g∗ is a monomorphism. f∗ ◦g∗ = (g◦f)∗ = 0∗ = 0, and it remains to prove that Ker(f∗) ⊂ Im(g∗).
If (ϕ : M → X) ∈ Ker(f∗), then 0 = f∗(ϕ) = ϕ◦f , and therefore Ker(g) = Im(f) ⊂ Ker(ϕ). Hence
ϕ induces a homomorphism ϕ̃ : M/Ker(g) → X, and g induces an isomorphism g̃ : M/Ker(g) ∼→ M ′′.
Then ϕ′ = ϕ̃◦g̃−1 ∈ HomR(M ′′, X) and ϕ = ϕ′◦g = g∗(ϕ′) ∈ Im(g∗).

Assume now that the sequence 0 → HomR(M ′′, X)
g∗→ HomR(M,X)

f∗→ HomR(M ′, X) is exact for
every R-module X. If X = M ′′, then 0 = f∗◦g∗(idM ′′) = (g◦f)∗(idM ′′) = g◦f .

Next we prove that Ker(g) ⊂ Im(f). Let X = M/Im(f) and denote by π ∈ HomR(M,X) the
residue class homomorphism. Since f∗(π) = π ◦f = 0, we obtain π ∈ Ker(f∗) = Im(g∗). Let ϕ ∈
HomR(M ′′, X) be such that π = g∗(ϕ) = ϕ◦g. Now, if x ∈ Ker(g), then π(x) = 0, and thus x ∈ Im(f).

It remains to prove that g is an epimorphism. For this, we set X = M ′′/Im(g), and we denote by
π ∈ HomR(M ′′, X) the residue class homomorphism. Then g∗(π) = π◦g = 0, hence π = 0, since g∗ is a
monomorphism, and therefore M ′′ = Im(g). Hence g is an epimorphism. �

An additive functor T : R-Mod → Ab is called

• left-exact if, for every exact sequence 0 → M ′ f→ M
g→ M ′′ in R-Mod, the induced sequence

0 → TM ′ Tf→ TM
Tg→ TM ′′ in Ab is exact;
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• right-exact if, for every exact sequence M ′ f→ M
g→ M ′′ → 0 in R-Mod, the induced sequence

TM ′ Tf→ TM
Tg→ TM ′′ → 0 in Ab is exact;

• exact if, for every exact sequence M ′ f→ M
g→ M ′′ in R-Mod, the induced sequence TM ′ Tf→

TM
Tg→ TM ′′ in Ab is exact;

An additive contravariant functor T : R-Mod → Ab is called

• left-exact if, for every exact sequence M ′ f→ M
g→ M ′′ → 0 in R-Mod, the induced sequence

0 → TM ′′ Tg→ TM
Tf→ TM ′ in Ab is exact;

• right-exact if, for every exact sequence 0 → M ′ f→ M
g→ M ′′ in R-Mod, the induced sequence

TM ′′ Tg→ TM
Tf→ TM ′ → 0 in Ab is exact;

• exact if, for every exact sequence M ′ f→ M
g→ M ′′ in R-Mod, the induced sequence TM ′′ Tg→

TM
Tf→ TM ′ in Ab is exact.

For an R-module N , the functors HomR(N,−) : R-Mod → Ab and HomR(−, N) : R-Modop → Ab
are left-exact.

Definition. An R-module C is called
• projective if, for every diagram

C

ϕ

y
M

g−−−−→ M ′′ −−−−→ 0

of R-homomorphisms with exact row, there exists an R-homomorphism ψ : C → M such that
g◦ψ = ϕ [ equivalently : For every R-epimorphism g : M → M ′′, the induces homomorphism
g∗ : HomR(C,M) → HomR(C,M ′′) is surjective ];

• injective if, for every diagram

0 −−−−→ M ′ f−−−−→ M

ϕ

y
C

of R-homomorphisms with exact row, there exists an R-homomorphism ψ : M → C such that
ψ◦f = ϕ [ equivalently : For every R-monomorphism f : M ′ →M , the induces homomorphism
f∗ : HomR(M,C) → HomR(M ′, C) is surjective ].

Theorem 1.1.6.
1. For an R-module P , the following assertions are equivalent :

(a) P is projective.
(b) Every R-epimorphism M → P splits.
(c) There exists an R-module M such that M ⊕ P is free.
(d) HomR(P,−) : R-Mod → Ab is an exact functor.

2. Let (Pi)i∈I be a family of R-modules. Then
⊕

i∈I Pi is projective if and only if all Pi are
projective.

3. Every free R-module is projective. If R is a principal ideal domain, then every projective R-mo-
dule is free.

4. Every finitely generated projective R-module is finitely presented.



10 1. MODULE THEORY

Proof. 1. (a) ⇒ (b) If g : M → P is an R-epimorphism, then g∗ : HomR(P,M) → HomR(P, P )
is surjective, and thus there exists some ψ ∈ HomR(P,M) such that idP = g∗(ψ) = g◦ψ. Hence g splits.

(b) ⇒ (c) There exists a free R-module F and an R-epimorphism p : F → P . By assumption, p
splits, and by Theorem 1.1.3.2(a), there exists a commutative diagram

M ⊕ P
p′′−−−−→ P −−−−→ 0yΦ

yidP

F
p−−−−→ P −−−−→ 0

where M = Ker(p) and Φ is an isomorphism. Hence M ⊕ P is free.

(c) ⇒ (d) Let N be an R-module such that F = P ⊕N is free with basis (ui)i∈I , let ε : P → F be

the injection and p : F → P the projection of this direct sum. Let M ′ f→M
g→M ′′ be an exact sequence

of R-modules. We must prove that the sequence HomR(P,M ′)
f∗→ HomR(P,M)

g∗→ HomR(P,M ′′) is
exact. Clearly, g∗◦f∗ = (g◦f)∗ = 0∗ = 0, and it remains to prove that Ker(g∗) ⊂ Im(f∗). Suppose that
(ϕ : P → M) ∈ Ker(g∗). Then 0 = g∗(ϕ) = g◦ϕ, and therefore Im(ϕ) = ϕ◦p(F ) ⊂ Ker(g) = Im(f).
For each i ∈ I, let m′

i ∈ M ′ be such that f(m′
i) = ϕ◦p(ui), and let ψ1 ∈ HomR(F,M ′) be such

that ψ1(ui) = m′
i for all i ∈ I. Then f ◦ψ1(ui) = ϕ◦p(ui) for all i ∈ I, hence f ◦ψ1 = ϕ◦p, and

ψ = ψ1◦ε ∈ HomR(P,M ′). Then f∗(ψ) = f ◦ψ = f ◦ψ1◦ε = ϕ◦p◦ε = ϕ ∈ Im(f∗).

(d) ⇒ (a) If g : M → M ′′ is an R-epimorphism, then the exactness of M
g→ M ′′ → 0 implies the

exactness of HomR(P,M)
g∗→ HomR(P,M ′′) → 0, and thus g∗ is surjective.

2. Assume first that
⊕

i∈I Pi is projective, and let N be an R-module such that F = N ⊕
⊕

i∈I Pi
is free. If i ∈ I, then

F =
(
N ⊕

⊕
j∈I\{i}

Pj

)
⊕ Pi ,

and thus Pi is free.
Assume now that, for every i ∈ I, Pi is projective, and let Ni be an R-module such that Fi = Ni⊕Pi

is free. Then ⊕
i∈I

Fi =
(⊕
i∈I

Ni

)
⊕

(⊕
i∈I

Pi

)
is free, and thus

⊕
i∈I

Pi is projective.

3. If F is free, then F ∼= F ⊕ 0, and thus F is projective. Let R be a principal ideal domain and P
a projective R-module. Let M be an R-module such that F = M ⊕ P is free, and let ε : P → F be the
injection. Then ε(P ) ⊂ F is free, and P ∼= ε(P ) is also free.

4. Let P be a finitely generated projective R-module. Then there exists an R-epimorphism p : F → P

for some finitely generated free R-module, and the exact sequence 0 → Ker(p) ↪→ F
p→ P → 0 splits.

Hence there exists an R-epimorphism ϕ : F → Ker(p), which implies that Ker(p) is finitely generated,
and thus P is finitely presented. �

Let R be a domain and K = q(R). For R-submodules J, J ′ ⊂ K, we define J−1 = {a ∈ K | aJ ⊂ R}
and JJ ′ = R〈{aa′ | a ∈ J, a′ ∈ J ′}〉. Clearly, J−1 and JJ ′ are again R-submodules of K. An R-
submodule J ⊂ K is called a fractional ideal of R if J 6= 0 and J−1 6= 0 [ equivalently, there is some
c ∈ R• such that cJ ⊂ R is a non-zero ideal of R ]. A fractional ideal J is called invertible if JJ−1 = R
[ equivalently, 1 ∈ JJ−1 ].

Theorem 1.1.7. Let R be a domain, K = q(R) and J ⊂ K a fractional ideal of R. Then the map

Φ: J−1 → HomR(J,R) , defined by Φ(c)(x) = cx for all c ∈ J−1 and x ∈ J

is an R-isomorphism, and J is invertible if and only if it is a projective R-module.
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Proof. If c ∈ J−1, then cx ∈ R for all x ∈ J , and ϕ = (x 7→ cx) ∈ HomR(J,R). By definition, Φ
is an R-module homomorphism, and as J 6= 0, it is a monomorphism. Hence we must prove that Φ is
surjective. Thus suppose that ϕ ∈ HomR(J,R), 0 6= c ∈ J−1 and x, y ∈ J•. Then ϕ(cxy) = cxϕ(y) =
cyϕ(x), and therefore x−1ϕ(x) = y−1ϕ(y). Hence there exists some λ ∈ K such that ϕ(x) = λx for all
x ∈ J . Hence λJ ⊂ R, whence λ ∈ J−1 and ϕ = Φ(λ).

Assume now that J is invertible, and let a1, . . . , an ∈ J and c1, . . . , cn ∈ J−1 be such that a1c1 +
. . . + ancn = 1. If a ∈ J , then aci ∈ R for all i ∈ [1, n], and a = a1c1a + . . . + ancna ∈ R〈a1, . . . , an〉.
Define g : Rn → J by g(x1, . . . , xn) = a1x1 + . . .+ anxn for all (x1, . . . , xn) ∈ Rn, and ψ : J → Rn by
ψ(b) = (c1b, . . . , cnb) for all b ∈ J . Then g and ψ are R-module homomorphisms, and g◦ψ = idJ . Hence
ψ is a splitting monomorphism, and thus Im(ψ) ⊂+Rn. Since J ∼= Im(ψ), it follows that J is projective.

Let now J be projective. Then there exists an R-module epimorphism g : R(I) → J for some set I,
and we denote by (ei)i∈I the canonical basis of R(I), given by ei = (δi,j)j∈I for all i ∈ I. Since J is
projective, g splits, and there is some ψ ∈ HomR(J,R(I)) such that g◦ψ = idJ . We set ψ = (ψi)i∈I ,
where ψi ∈ HomR(J,R) for all i ∈ I, and if x ∈ J , then ψi(x) = 0 for almost all i ∈ I. Then there exist
elements ci ∈ J−1 such that ψi(x) = cix for all x ∈ J and i ∈ I. If x ∈ J•, then

x = g◦ψ(x) = g
(∑
i∈I

ψi(x)ei
)

=
∑
i∈I

cixg(ei) and therefore 1 =
∑
i∈I

cig(ei) ∈ J−1J = JJ−1 .

Hence J is invertible. �

An R-module M is called (R-)divisible if λM = M for every λ ∈ R \ z(R). Consequently, an abelian
group A is divisible if gA = A for all g ∈ N. If K is a field containing Q, then the additive groups K
and K/Z are divisible.

Theorem 1.1.8.
1. For an R-module Q, the following assertions are equivalent :

(a) Q is injective.
(b) For every left ideal a ⊂ R and every R-homomorphism f : a → Q there exists an R-homo-

morphism h : R→ Q such that h | a = f .
(c) Every R-monomorphism Q→M splits.
(d) HomR(−, Q) : R-Mod → Ab is an exact contravariant functor.

2. A direct product of a family of R-modules is injective if and only if every factor is injective.
3. Every injective R-module is divisible. If R is a principal ideal domain, then every R-divisible
R-module Q is injective. In particular, an abelian group is injective if and only if it is divisible.

Proof. 1. (a) ⇒ (b) Let a ⊂ R be a left ideal, f ∈ HomR(a, Q) and j = (a ↪→ R) the injection.
Then the map j∗ : HomR(R,Q) → HomR(a, Q) is surjective, and thus there exists some h ∈ HomR(R,Q)
such that f = j∗(h) = h◦j = h | a.

(b) ⇒ (c) (Reinhold Baer) Let f : Q→M be an R-monomorphism. We must prove that f splits,
and for this we may assume that Q ⊂ M and f = (Q ↪→ M) is the injection. Indeed, if f : Q → M

is any monomorphism, then there exists an R-overmodule M ⊃ Q and an R-isomorphism f : M ∼→ M .
If the injection Q ↪→ M splits, then there is some h ∈ HomR(M,Q) such that h |Q = idQ. Then
h◦f−1 ∈ HomR(M,Q), and (h◦f−1)◦f = idM . Hence f splits.

Thus assume that Q ⊂ M is a submodule. We must prove that there is some h ∈ HomR(M,Q)
such that h |Q = idQ. Let Ω be the set of all pairs (C,ϕ), where C is an R-module, Q ⊂ C ⊂ M ,
ϕ ∈ HomR(C,Q), and ϕ |Q = idQ. Then (Q, idQ) ∈ Ω, and we define a partial order on Ω by setting
(C,ϕ) ≤ (C ′, ϕ′) if C ⊂ C ′ and ϕ′ |C = ϕ. Then the union of every chain in Ω belongs again to Ω, and
by Zorn’s Lemma Ω contains a maximal element (C, h). We prove that C = M . Assume the contrary,
pick some element q ∈ M \ C, and set C = C + Rq ⊂ M . Then a = {λ ∈ R | λq ∈ C} ⊂ R is a
left ideal, and we define ϕ : a → Q by ϕ(λ) = h(λq). Then ϕ is an R-homomorphism, and there exists
some ψ ∈ HomR(R,Q) such that ψ | a = ϕ. Now we define h : C → Q by h(c+ λq) = h(c) + ψ(λ) for
all c ∈ C and λ ∈ R. We assert that this definition does not depend on the representatives. Indeed, if
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c+ λq = c′ + λ′q for some c, c′ ∈ C and λ, λ′ ∈ R, then (λ− λ′)q = c′ − c ∈ C, hence λ− λ′ ∈ a, and
h(c′)+ψ(λ′) = h(c+(λ−λ′)q)+ψ(λ′−λ) = ψ(λ) = h(c)+h((λ−λ′)q)+ϕ(λ′−λ)+ψ(λ) = h(c)+ψ(λ).
Then h ∈ HomR(C,Q), and h |Q = (h |C) |Q = h |Q = idQ, contradicting the maximality of (C, h).

(c) ⇒ (d) Let M ′ f→M
g→M ′′ be an exact sequence in R-Mod. We must prove that the sequence

HomR(M ′′, Q)
g∗→ HomR(M,Q)

f∗→ HomR(M ′, Q) is exact. Clearly, f∗◦g∗ = (g◦f)∗ = 0∗ = 0, and thus
we must prove that Ker(f∗) ⊂ Im(g∗). Suppose that (ϕ : M → Q) ∈ Ker(f∗). Then 0 = f∗(ϕ) = ϕ◦f ,
hence Ker(g) = Im(f) ⊂ Ker(ϕ), and we must prove that there is some ϕ′ ∈ HomR(M ′′, Q) such that
ϕ = g∗(ϕ′) = ϕ′◦g.

We consider the submodule N = {(ϕ(m),−g(m) | m ∈ M} ⊂ Q ⊕M ′′ and the R-homomorphism
ψ : Q→ Q⊕M ′′/N , defined by ψ(q) = (q, 0) +N . If q ∈ Ker(ψ), then (q, 0) = (ϕ(m),−g(m)) for some
m ∈ M , hence m ∈ Ker(g) ⊂ Ker(ϕ), and thus q = ϕ(m) = 0. Therefore q is a monomorphism and
splits by assumption. Let π : Q⊕M ′′/N → Q be an R-homomorphism such that π◦ψ = idQ, and define
ϕ′ : M ′′ → Q by ϕ′(m′′) = π((0,m′′) +N). Then we obtain, for all m ∈M ,

ϕ′◦g(m) = π
(
(0, g(m)+N

)
= π

(
(ϕ(m), 0)−(ϕ(m),−g(m))+N

)
= π

(
(ϕ(m), 0)+N

)
= π◦ψ◦ϕ(m) = ϕ(m),

and therefore ϕ = ϕ′◦g.

(d) ⇒ (a) Let f : M ′ → M be an R-monomorphism. Then the exact sequence 0 → M ′ f→ M

entails an exact sequence HomR(M,Q)
f∗→ HomR(M,Q′) → 0. Hence f∗ is surjective, and thus Q is an

injective module.
2. Exercise!
3. Let Q be an injective R-module, λ ∈ R \ z(R). We must prove that Q ⊂ λQ. Thus suppose that

m ∈ Q, and define ϕ : Rλ→ Q by ϕ(rλ) = rm. As λ /∈ z(R), it follows that rλ = r′λ implies r = r′ for
all r, r′ ∈ R, and therefore ϕ ∈ HomR(Rλ,Q). Since Q is injective, there exists some ψ ∈ HomR(R,Q)
such that ψ |Rλ = ϕ. Then λψ(1) = ψ(λ) = ϕ(λ) = m ∈ λQ.

Let now R be a principal ideal domain and Q an R-divisible R-module. We verify condition 1.(b).
Let a C R be an ideal. If a = 0, there is nothing to do. Thus suppose that a = Rλ, where λ ∈ R•,
and let ϕ ∈ HomR(a, Q). Since Q is R-divisible, there exists some x ∈ Q such that ϕ(λ) = λx. We
define ψ ∈ HomR(R,Q) by ψ(r) = rx for all r ∈ R. If s ∈ a = Rλ, say s = rλ, where r ∈ R, then
ψ(s) = rλx = rϕ(λ) = ϕ(rλ) = ϕ(s), and thus ψ | a = ϕ. �

Theorem 1.1.9. For an abelian group A, we call A∨ = Hom(A,Q/Z) the dual group of A.
1. Let F be a free abelian group. Then F∨ is divisible [ hence an injective Z-module ].
2. Let A be an abelian group.

(a) The map β : A → A∨∨, defined by β(a)(ϕ) = ϕ(a) for all a ∈ A and ϕ ∈ A∨, is a
monomorphism.

(b) There exists a monomorphism A→ D into a divisible abelian group D.
3. Let M be an R-module. Then there exists an R-monomorphism j : M → Q into an injective
R-module Q.

Proof. 1. We may assume that F = Z(I) for some set I. Then

F∨ = Hom(Z(I),Q/Z) ∼→ Hom(Z,Q/Z)I ∼→ (Q/Z)I ,

and thus F∨ is divisible.
2. (a) Obviously, β is a homomorphism, and therefore it suffices to prove : For every a ∈ A such

that a 6= 0, there exists some ϕ ∈ A∨ such that ϕ(a) 6= 0. Thus let 0 6= a ∈ A and m ∈ N0 such that

mZ = {g ∈ Z | ga = 0}. Then the exact sequence 0 → mZ j→ Z α→ Za → 0 ( where j is the injection,
and αg = ga for all g ∈ Z) induces an exact sequence

0 → Hom(Za,Q/Z) → Hom(Z,Q/Z)
j∗→ Hom(mZ,Q/Z) , and j∗ϕ = ϕ |mZ for ϕ ∈ Hom(Z,Q/Z) .
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We assert that j∗ is not injective. This is obvious if m = 0. If m 6= 0, let ϕ ∈ Hom(Z,Q/Z) be
defined by ϕ(g) = g

m + Z. Then ϕ 6= 0 and j∗(ϕ) = ϕ |mZ = 0. Since Ker(j∗) 6= 0, it follows that
Hom(Za,Q/Z) 6= 0, and since Q/Z is divisible, the map Hom(A,Q/Z) → Hom(Za,Q/Z), induced by the
injection Za ↪→ A and given by ϕ 7→ ϕ |Za, is surjective. If ϕ ∈ Hom(A,Q/Z) is such that ϕ |Za 6= 0,
then ϕ(a) 6= 0.

(b) Let F be a free abelian group such that there is an epimorphism F
p→ A∨ → 0. The induced

sequence 0 → A∨∨ = Hom(A∨,Q/Z)
p∗→ Hom(F,Q/Z) = F∨ is exact, and if β : A → A∨∨ is the

monomorphism defined in (a), then p∗◦βA→ F∨ is a monomorphism into a divisible abelian group.
3. By 2., there exists a group monomorphism ι : M → D into a divisible abelian group D, and

we consider the homomorphism j : M → Hom(R,D), defined by j(m)(r) = ι(rm). Then j is a group
homomorphism, and if m ∈ Ker(j), then 0 = j(m)(1) = ι(m) and thus m = 0. Hence j is a monomor-
phism. The group Hom(R,D) = HomZ(ZRR, ZD) is a R-module by means of (λϕ)(r) = ϕ(rλ) for all
ϕ ∈ Hom(R,D) and λ, r ∈ R, and it is easily checked that j is an R-homomorphism. Hence we are
done if we can prove that Hom(R,D) is an injective R-module.

Thus let 0 → N ′ f→ N be an exact sequence of R-modules and ϕ : N ′ → Hom(R,D) an R-module
homomorphism. We must show that there exists an R-homomorphism ψ : N → Hom(R,D) such that
ψ◦f = ϕ. Let µ : Hom(R,D) → D be defined by µ(h) = h(1). Then µ is a group homomorphism, hence
µ◦ϕ : N ′ → D is a group homomorphism, and as D is divisible, there exists a group homomorphism
ψ0 : N → D such that ψ0◦f = µ◦ϕ. Now we define ψ : N → Hom(R,D) by ψ(n)(c) = ψ0(cn) for all
n ∈ N and c ∈ R, and we assert that ψ fulfills our requirements. We must prove: 1) If n ∈ N , then
ψ(n) ∈ Hom(R,D); 2) ψ is an R-homomorphism; 3) ψ◦f = ϕ.

1) Let n ∈ N . If c, c′ ∈ R, then

ψ(n)(c+ c′) = ψ0((c+ c′)n) = ψ0(cn+ c′n) = ψ0(cn) + ψ0(c′n) = ψ(n)(c) + ψ(n)(c′) .

2) Let n, n′ ∈ N and λ ∈ R. Then we obtain, for all c ∈ R,

ψ(n+n′)(c) = ψ0(c(n+n′)) = ψ0(cn+cn′) = ψ0(cn)+ψ0(c′n) = ψ(n)(c) ,+ψ(n′)(c) = (ψ(n)+ψ(n′))(c) ,

hence ψ(n + n′) = ψ(n) + ψ(n′), and ψ(λn)(c) = ψ0(cλn) = ψ(n)(cλ) = [λψ(n)](c), and therefore
ψ(λn) = λψ(n).

3) If n′ ∈ N ′ and c ∈ R, then

ψ◦f(n′)(c) = ψ0(cf(n′) = ψ0◦f(cn′) = µ◦ϕ(cn′) = ϕ(cn′)(1) = [cϕ(n′)](1) = ϕ(n′)(c) . �
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1.2. Tensor products

Let R and S be rings.

Definition. Let M = MR be a right and N = RN a left R-module.
1. Let F be the free Z-module with basis M×N . The elements of ξ ∈ F have a unique representation

ξ =
∑

(m,n)∈M×N

λm,n(m,n) , where λm,n ∈ Z, λm,n = 0 for almost all (m,n) ∈M×N.

Let Q ⊂ F be the subgroup generated by all elements of the following types :

(m+m′, n)− (m,n)− (m′, n), (m,n+ n′)− (m,n)− (m,n′), (mλ, n)− (m,λn)

for any m, m′ ∈ M , n, n′ ∈ N and λ ∈ R. The quotient group M ⊗R N = F/Q is called the
tensor product of M and N over R. For (m,n) ∈M×N , we call m⊗n = (m,n) + T ∈M ⊗RN
the elementary tensor of m and n. Clearly, M ⊗N = Z〈{m⊗ n | (m,n) ∈M×N}〉, and for all
m, m′ ∈M , n, n′ ∈ N and λ ∈ R, we have

(m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) = m⊗ n+m⊗ n′ and mλ⊗ n = m⊗ λn .

In particular, gm ⊗ n = m ⊗ gn = g(m ⊗ n) for all g ∈ Z [ indeed, for g ∈ N this follows by
induction, 0⊗ n+ 0⊗ n = 0⊗ n and m⊗ 0 +m⊗ 0 = m⊗ 0 implies m⊗ 0 = 0⊗ n = 0, and if
g ∈ N, then (−gm) ⊗ n + gm ⊗ n = 0 ⊗ n = 0 implies (−gm) ⊗ n = −(gm ⊗ n) = −g(m ⊗ n),
and similarly m⊗ (−gn) = −m⊗ gn = −g(m⊗ n) ].

Every ξ ∈M ⊗R N has a (in general not unique) representation

ξ =
k∑
i=1

mi ⊗ ni , where k ∈ N , m1, . . . ,mk ∈M and n1, . . . , nk ∈ N .

Indeed, by definition

ξ =
k∑
i=1

λi(xi, yi) +Q =
k∑
i=1

(λixi, yi) +Q =
k∑
i=1

λixi ⊗ yi ,

where λi ∈ Z, xi ∈M and yi ∈ N .
2. Let L be an abelian group. A map β : M×N → L is called R-balanced if, for all m, m′ ∈ M ,
n, n′ ∈ N and λ ∈ R we have

β(m+m′, n) = β(m,n) + β(m′, n), β(m,n+ n′) = β(m,n) + β(m,n′)

and
β(mλ, n) = β(m,λn) .

By definition, the map M×N → M ⊗R N is R-balanced, and if β : M×N → L is any R-
balanced map, then there exists a unique group homomorphism f : M ⊗R N → L such that
f(m ⊗ n) = β(m,n) for all (m,n) ∈ M×N [ indeed, there exists a unique Z-homomorphism
β∗ : F → L such that β∗ |M×N = β, and, by definition, Q ⊂ Ker(β∗). Hence β∗ induces f as
asserted ].

Example. Let M = RM be an R-module and a ⊂ R a subset. Then

aM =
{ n∑
i=1

aimi

∣∣∣ n ∈ N , a1, . . . , an ∈ a , m1, . . . ,mn ∈M
}
⊂M

is a subgroup (even an R-submodule if a ⊂ R is a left ideal). Assume now that a ⊂ R is a right ideal.
Then the map a×M → M , defined by (a,m) 7→ am, is R-balanced and induces a homomorphism
µMa : a⊗RM →M such that µMa (a⊗m) = am for all a ∈ a and m ∈M . It is called the multiplication
homomorphism of a on M . By definition, Im(µMa ) = aM , and if µMa is a monomorphism, then it induces
an isomorphism µMa : a⊗RM

∼→ aM .
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Theorem 1.2.1. Let M = MR be a right and N = RN a left R-module.
1. If SMR is an (S,R)-bimodule, then there is a unique S-module structure on M ⊗R N such

that s(m ⊗ n) = sm ⊗ n for all s ∈ S, m ∈ M and n ∈ N . In the same way, if RNS
is an (R,S)-bimodule, then there is a unique right S-module structure on M ⊗R N such that
(m⊗ n)s = m⊗ ns for all s ∈ S, m ∈M and n ∈ N :

S(SMR ⊗R RN) and (MR ⊗R RNS)S .

2. Let R be commutative.
(a) There is a unique R-module structure on M ⊗R N such that r(m⊗ n) = rm⊗ n = m⊗ rn

for all m ∈M , n ∈ N and r ∈ R.
(b) Let L be an R-module and β : M×N → L an R-bilinear map. Then there exists a unique

R-homomorphism g : M ⊗R N → L such that g(m⊗ n) = β(m,n) for all (m,n) ∈M×N .

Proof. 1. Uniqueness. An S-module structure on M ⊗R N is given by a ring homomorphism
θ : S → End(M ⊗R N). If s ∈ S, then the group homomorphism θ(s) : M ⊗R N →M ⊗R N is uniquely
determined by the values θ(s)(m⊗n) ∈M ⊗RN for (m,n) ∈M×N , since M ⊗RN is the abelian group
generated by the elementary tensors.

Existence. For s ∈ S, we define τs : M×N →M⊗RN by τs(m,n) = sm⊗n. Then τs is R-balanced.
Indeed, if m, m′ ∈M , n, n′ ∈ N and λ ∈ R, then

τs(m+m′, n) = s(m+m′)⊗ n = (sm+ sm′)⊗ n = sm⊗ n+ sm′ ⊗ n = τs(m,n) + τs(m′, n) ,

τs(m,n+ n′) = sm⊗ (n+ n′) = sm⊗ n+ sm⊗ n′ = τs(m,n) + τs(m,n′) ,

and (now using the bimodule structure)

τs(mλ, n) = s(mλ)⊗ n = (sm)λ⊗ n = sm⊗ λn = τs(mλn) .

Hence τs induces a unique endomorphism θ(s) ∈ End(M ⊗R N) such that θ(s)(m ⊗ n) = sm ⊗ n for
all (m,n) ∈M×N . We must prove that θ : S → End(M ⊗N) is a ring homomorphism. We must prove
that θ(1) = idM⊗RN , θ(s + s′) = θ(s) + θ(s′) and θ(ss′) = θ(s)◦θ(s′) holds in End(M ⊗R N) for all
s, s′ ∈ S, and it suffices to prove these relations point-wise on the elementary tensors. But this is easy.
The right module structure is proved in the same way.

2. (a) Observe that M = RMR.
(b) If β : M×N → L is R-bilinear, then β(m,λn) = λβ(m,n) = β(λm, n) = β(mλ, n). In particular,

β is R-balanced. Let g : M ⊗N → L be the unique group homomorphism satisfying g(m⊗n) = β(m,n)
for all (m,n) ∈ M×N . If λ ∈ R, then g(λ(m ⊗ n)) = g(λm ⊗ n) = β(λm, n) = λβ(m,n) = λg(m ⊗ n)
for all (m,n) ∈M×N . If ξ ∈M ⊗R N is arbitrary, then

ξ =
n∑
i=1

mi ⊗ ni and g(λξ) = g
( n∑
i=1

λmi ⊗ ni

)
=

n∑
i=1

g(λmi ⊗ ni) =
n∑
i=1

λg(mi ⊗ ni) = λg(ξ) .

Hence g is an R-homomorphism. �

Definition. Let f : R → S be a ring homomorphism and M an R-module. As S = SSR is a
two-sided (S,R)-bimodule, S ⊗R M is an S-module, and s′(s ⊗ m) = ss′ ⊗ m for all s, s′ ∈ S and
m ∈M . The S-module S ⊗RM is called the base extension of M with S.

Theorem and Definition 1.2.2. Let f : M → M ′ be a homomorphism of right R-modules and
g : N → N ′ a homomorphism of (left) R-modules. Then there exists a unique group homomorphism

f ⊗ g : M ⊗R N →M ′ ⊗R N ′ such that (f ⊗ g)(m⊗ n) = f(m)⊗ g(n) for all m ∈M and n ∈ N .

It has the following properties :
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1. If f, f1 : M →M ′ and g, g1 : N → N ′ are R-homomorphisms, then

(f + f1)⊗ g = f ⊗ g + f1 ⊗ g and f ⊗ (g + g1) = f ⊗ g + f ⊗ g1 .

2. If M
f→M ′ f

′

→M ′′ and N
g→ N ′ g

′

→ N ′′ are R-homomorphisms, then

(f ′ ⊗ g′)◦(f ⊗ g) = (f ′◦f)⊗ (g′◦g) .

3. If R is commutative, then f ⊗ g is an R-homomorphism, and if λ ∈ R, then λf ⊗ g = f ⊗ λg.

We call f ⊗ g the tensor product of the homomorphisms f and g. We write f ⊗ N = f ⊗ idN and
M ⊗ g = idM ⊗ g. Obviously, idM ⊗ idN = idM⊗RN . Consequently M ⊗ − : R-Mod → Ab and
−⊗N : Mod-R→ Ab are additive (covariant) functors.
Caution ! The tensor product f ⊗ g : M ⊗R N → M ′ ⊗R N ′ is different from the elementary tensor
f ⊗ g ∈ HomR(M,M ′)⊗Z HomR(N,N ′).

Proof. It is easily checked that the map F : M×N →M ′⊗RN ′, defined by F (m,n) = f(m)⊗g(n)
is R-balanced, and thus it induces a group homomorphism f ⊗ g : M ⊗R N → M ′ ⊗R N ′ such that
(f ⊗ g)(m ⊗ n) = f(m) ⊗ g(n) for all (m,n) ∈ M ×N . The remaining assertions are easily checked
point-wise for elementary tensors, and by linearity they hold in general. �

Theorem 1.2.3. Let M = MR be a right and N = RN a left R-module.
1. The map Φ = ΦN : N → R⊗R N , defined by Φ(n) = 1⊗ n for all n ∈ N , is an R-isomorhism.

It is functorial in N , and Φ−1 = µNR : R ⊗R N → N is the multiplication homomorphism of R
on N , given by µNR (r ⊗ n) = rn for all r ∈ R and n ∈ N ( see Example 1.2 ).

2. There is a unique isomorphism Φ: M ⊗R N → N ⊗Rop M such that Φ(m ⊗ n) = n ⊗ m for
all (m, n) ∈ M×N . It is functorial in M and N . In particular, if R is commutative, then
Φ: M ⊗R N → N ⊗RM is an R-module isomorphism, and we identify M ⊗R N = N ⊗RM by
means of Φ.

3. Let P = SP an S-module.
(a) If N = RNS is an (R,S)-bimodule, then there is a unique isomorphism

Φ: (M ⊗R N)⊗S P →M ⊗R (N ⊗S P )

such that Φ((m⊗n)⊗ p) = m⊗ (n⊗ p) for all m ∈M , n ∈ N and p ∈ P . It is functorial
in M , N and P , and we identify by means of Φ : (M ⊗R N)⊗S P = M ⊗R (N ⊗S P ).

(b) If M = SMR is an (S,R)-bimodule, then the map

Φ: HomS(M ⊗R N,P ) → HomR(N,HomS(M,P ) ,

defined by Φ(f)(m)(n) = f(m⊗n) for all f ∈ HomS(M ⊗RN,P ), n ∈ N and m ∈M , is
a group isomorphism. It is functorial in M , N and P .

Proof. 1. R ⊗R N = RRR ⊗R RN is an R-module, and λ(r ⊗ n) = λr ⊗ n for all λ, r ∈ R and
n ∈ N .

If n, n′ ∈ N and λ ∈ R, then Φ(n + n′) = 1 ⊗ (n + n′) = 1 ⊗ n + 1 ⊗ n′ = Φ(n) + Φ(n′), and
Φ(λn) = 1 ⊗ λn = λ ⊗ n = λ(1 ⊗ n) = λΦ(n). Hence Φ is an R-homomorphism. If µ = µNR , then
µ◦Φ(n) = µ(1 ⊗ n) = n, and Φ◦µ(r ⊗ n) = Φ(rn) = 1 ⊗ rn = r ⊗ n. Hence µ◦Φ = idN , and since
Φ◦µ : R⊗R N → N is a homomorphism, it follows that Φ◦µ = idR⊗RN . Thus Φ is an isomorphism.

To prove that Φ is functorial, let f : N → N ′ be an R-homomorphism. Then the diagram

N
ΦN−−−−→ R⊗R N

f

y yR⊗f
N ′ ΦN′−−−−→ R⊗R N ′

commutes. Indeed, if n ∈ N , then (R⊗ f)◦ΦN (n) = (R⊗ f)(1⊗ n) = 1⊗ f(n) = ΦN ′ ◦f(n).
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2. Obvious.
3. (a) Exercise!
(b) We shall proceed in 4 steps : 1) For all n ∈ N and f ∈ HomS(M⊗RN,P ), the map g : M → P ,

defined by g(m) = f(m ⊗ n), is an S-homomorphism; 2) For all f ∈ HomS(M ⊗R N,P ), the map
Φ(f) : N → HomS(M,P ), defined by Φ(f)(n)(m) = f(m⊗ n), is an R-homomorphism; 3) Φ is a group
homomorphism, which is functorial in M, N and P ; 4) Φ is bijective.

1) Let n ∈ N , f ∈ HomS(M ⊗R N,P ), m, m′ ∈M and s ∈ S. Then

g(m+m′) = f((m+m′)⊗ n) = f(m⊗ n+m′ ⊗ n) = f(m⊗ n) + f(m′ ⊗ n) = g(m) + g(m′) ,

and g(sm) = f(sm⊗ n) = f(s(m⊗ n)) = sf(m⊗ n) = sg(m).
2) Let f ∈ HomS(M ⊗R N,P ), n, n′ ∈ N and r ∈ R. For all m ∈M we obtain

Φ(f)(n+ n′)(m) = f(m⊗ (n+ n′)) = f(m⊗ n+m⊗ n′) = f(m⊗ n) + f(m⊗ n′)

= Φ(f)(n)(m) + Φ(f)(n′)(m) = [ Φ(f)(n) + Φ(f)(n′)](m) ,

and Φ(f)(rn)(m) = f(m ⊗ rn) = f(mr ⊗ n) = Φ(f)(n)(mr) = [ rΦ(f)(n)](m). Hence it follows that
Φ(f)(n+ n′) = Φ(f)(n) + Φ(f)(n′) and Φ(f)(rn) = rΦ(f)(n).

3) If f, f ′ ∈ HomS(M ⊗R N,P ), then we obtain, for all n ∈ N and m ∈M ,

Φ(f + f ′)(n)(m) = (f + f ′)(m⊗ n) = f(m⊗ n) + f ′(m⊗ n) = Φ(f)(n)(m) + Φ(f ′)(n)(m)

= [Φ(f)(n) + Φ(f ′)(n) ](m) = [Φ(f) + Φ(f ′)](n)(m) .

Hence Φ(f+f ′) = Φ(f)+Φ(f ′). To prove that Φ is factorial, let M ′ = SM
′
R, N ′ = RN

′, P ′ = SP
′, and

µ ∈ HomR(M ′,M), ν ∈ HomR(N ′, N) and π ∈ HomS(P, P ′). Then we must prove that the following
diagram commutes :

HomS(M ⊗R N,P ) Φ−−−−→ HomR(N,HomS(M,P ))

(µ⊗ν)∗
y yν∗

HomS(M ′ ⊗R N ′, P ) HomR(N ′,HomS(M,P ))

π∗

y yψ∗
HomS(M ′ ⊗R N ′, P ′) Φ′−−−−→ HomR(N ′,HomS(M ′, P ′))

where ψ = µ∗◦π∗ : HomS(M,P ) π∗→ HomS(M,P ′)
µ∗→ HomS(M ′, P ′). If f ∈ HomS(M ⊗R N,P ), then

we obtain, for all n′ ∈ N ′ and m′ ∈M ′,

[ Φ′◦π∗◦(µ⊗ ν)∗(f) ](n′)(m′) = π∗◦(µ⊗ ν)∗(f)(m′ ⊗ n′) = π◦f(µ(m′)⊗ ν(n′))

and
[ψ∗◦ν∗◦Φ(f) ](n′)(m′) = [µ∗◦π∗◦ν∗◦Φ(f) ](n′)(m′) = [π∗◦ν∗◦Φ(f) ](n′)(µ(m′))

= π◦Φ(f)(ν(n′))(µ(m′)) = π◦f(µ(m′)⊗ ν(n′)) .

4) For g ∈ HomR(N,HomS(M,P )), we define Fg : M ×N → P by Fg(m,n) = g(n)(m), and
we assert that Fg is R-balanced. It is obviously bilinear, and if m ∈ M , n ∈ N and r ∈ R, then
Fg(mr, n) = g(n)(mr) = [ rg(n)](m) = g(rn)(m) = Fg(m, rn). Hence there exists a unique group
homomorphism ϕg : M ⊗R N → P such that ϕg(m ⊗ n) = g(n)(m) for all (m,n) ∈ M×N , and we
assert that ϕg is even an S-homomorphism. Indeed, if s ∈ S and (m,n) ∈ M ×N , then we obtain
ϕg(s(m ⊗ n)) = ϕg(sm ⊗ n) = g(n)(sm) = sg(n)(m) = sϕg(m ⊗ n), and by linearity it follows that
ϕg(sξ) = sϕg(ξ) for all ξ ∈M ⊗R N . Now we define

Ψ: HomR(N,HomS(M,P )) → HomS(M ⊗R N,P ) by Ψ(g) = ϕg .

Obviously, Ψ is a group homomorphism. If f ∈ HomS(M⊗RN,P ), then Ψ◦Φ(f)(m⊗n) = ϕΦ(f)(m⊗n) =
Φ(f)(n)(m) = f(m⊗n) for all (m,n) ∈M×N , and therefore Ψ◦Φ(f) = f . If g ∈ HomR(N,HomS(M,P )),
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then it follows that Φ◦Ψ(g)(n)(m) = Ψ(g)(m⊗ n) = ϕg(m⊗ n) = g(n)(m) for all (m,n) ∈M×N , and
therefore Φ◦Ψ(g) = g. �

Theorem 1.2.4. Let M ′ i→ M
f→ M ′′ → 0 be an exact sequence of right R-modules, and let

N ′ j→ N
g→ N ′′ → 0 be an exact sequence of left R-modules.

1. The sequences

M ′ ⊗R N
i⊗N→ M ⊗R N

f⊗N→ M ′′ ⊗R N → 0 and M ⊗R N ′ M⊗j→ M ⊗R N
M⊗g→ M ⊗R N ′′ → 0

are exact.
2. The map f ⊗ g : M ⊗R N →M ′′ ⊗R N ′′ is an epimorphism, and

Ker(f ⊗ g) = Im(i⊗N) + Im(M ⊗ j) .

is exact.

Proof. 1. We apply Theorem 1.1.5. We must prove that, for all abelian groups X, the sequence

0 → Hom(M ′′ ⊗R N,X)
(f⊗N)∗→ Hom(M ⊗R N,X)

(i⊗N)∗→ Hom(M ′ ⊗R N,X)

is exact. If X is an abelian group, then 0 → Hom(M ′′, X)
f∗→ Hom(M,X) i∗→ Hom(M ′, X) is an exact

sequence. By Theorem 1.2.3, we obtain a commutative diagram

0 −−−−→ Hom(M ′′ ⊗R N,X) −−−−→ Hom(M ⊗R N,X) −−−−→ Hom(M ′ ⊗R N,X)y∼= y∼= y∼=
0 −−−−→ HomR(N,Hom(M ′′, X)) −−−−→ HomR(N,Hom(M,X)) −−−−→ HomR(N,Hom(M ′, X))

where the bottom row is exact. Hence the upper row is also exact. The second assertion follows since
there is a functorial isomorphism M ⊗R N

∼→ N ⊗Rop M .
2. f ⊗ g = (M ′′⊗ g)◦(f ⊗N) : M ⊗RN →M ′′⊗RN →M ′′⊗RN ′′ is an epimorphism, since f ⊗N

and M ′′⊗g are epimorphisms. As (f ⊗g)◦(i⊗N) = (f◦i)⊗g = 0 and (f ⊗g)◦(M ⊗ j) = f ⊗ (g◦j) = 0,
it follows that Im(i⊗N) + Im(M ⊗ j) ⊂ Ker(f ⊗ g).

Assume that z ∈ Ker(f ⊗g). Since f ⊗g = (f ⊗N ′′)◦(M ⊗g) : M ⊗RN →M ⊗RN ′′ →M ′′⊗RN ′′,
it follows that (M ⊗ g)(z) ∈ Ker(f ⊗N ′′). By 1., there are exact sequences

M ′ ⊗R N ′′ i⊗N ′′

→ M ⊗R N ′′ f⊗N
′′

→ M ′′ ⊗R N ′′ → 0 and M ′ ⊗R N ′ M
′⊗j→ M ′ ⊗R N

M ′⊗g→ M ′ ⊗R N ′′ → 0 .

Hence it follows that

Ker(f ⊗N ′′) = Im(i⊗N ′′) = (i⊗N ′′)(M ′⊗RN ′′) = (i⊗N ′′)◦(M ′⊗ g)(M ′⊗RN) = (i⊗ g)(M ′⊗RN),

and there exists some u ∈M ′⊗RN such that (M⊗g)(z) = (i⊗g)(u). Then b = z−(i⊗N)(u) ∈M⊗RN ,
and (M ⊗ g)(b) = (M ⊗ g)(z)− (M ⊗ g)◦(i⊗N)(u) = (i⊗ g)(u)− (i⊗ g)(u) = 0. Hence we finally obtain
z = (i⊗N)(u) + b ∈ Im(i⊗N) + Im(M ⊗ j). �

Theorem 1.2.5.
1. Let (Mi)i∈I be a family of right R-modules and (Nj)j∈J a family of left R-modules. Then there

exists a unique isomorphism

Φ:
(⊕
i∈I

Mi

)
⊗R

(⊕
j∈J

Nj

)
→

⊕
(i,j)∈I×J

(Mi ⊗R Nj)

such that Φ((mi)i∈I ⊗ (nj)j∈J) = (mi ⊗ nj)(i,j)∈I×J for all families (mi)i∈I and (nj)j∈J ; it is
functorial in (Mi)i∈I and in (Nj)j∈J .
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2. Let N be a free left R-module with basis (vj)j∈J , M a right R-module and z ∈M ⊗R N . Then
z has a unique representation

z =
∑
j∈J

mj ⊗ vj , where mj ∈M for all and mj = 0 for almost all j ∈ J.

3. Let f : R→ S be a ring homomorphism and M an R-module.
(a) If M is a free R-module with basis (ui)i∈I , then S ⊗R M is a free S-module with basis

(1⊗ ui)i∈I .
(b) If M is a projective [finitely generated ] R-module, then S ⊗R M is a projective [finitely

generated ] S-module.
4. Let R be commutative, and let M, N be R-modules.

(a) Let M be free with basis (ui)i∈I and N free with basis (vj)j∈J . Then M ⊗R N is a free
R-module with basis (ui ⊗ vj)(i,j)∈I×J .

(b) Let M and N be both finitely generated [ projective ], then M ⊗R N is finitely generated
[ projective ].

Proof. 1. We define

F :
(⊕
i∈I

Mi

)
×

(⊕
j∈J

Nj

)
→

⊕
(i,j)∈I×J

(Mi ⊗R Nj) by F
(
(mi)i∈I , (nj)j∈J

)
= (mi ⊗ nj)(i,j)∈I×J .

Then F is R-balanced and induces a homomorphism

Φ:
(⊕
i∈I

Mi

)
⊗R

(⊕
j∈J

Nj

)
→

⊕
(i,j)∈I×J

(Mi ⊗R Nj)

such that Φ((mi)i∈I ⊗ (nj)j∈J) = (mi ⊗ nj)(i,j)∈I×J for all families (mi)i∈I and (nj)j∈J . Obviously, Φ
is functorial in (Mi)i∈I and in (Nj)j∈J . For λ ∈ I and µ ∈ J , the injections

ελ : Mλ →
⊕
i∈I

Mi and ηµ : Nµ →
⊕
j∈J

Nj induce ελ ⊗ ηλ : Mλ ⊗Nν →
(⊕
i∈I

Mi

)
⊗R

(⊕
j∈J

Nj

)
,

and
Ψ = (εi ⊗ ηj)(i,j)∈I×J :

⊕
(i,j)∈I×J

(Mi ⊗R Nj) →
(⊕
i∈I

Mi

)
⊗R

(⊕
j∈J

Nj

)
is a homomorphism satisfying Φ◦Ψ = id and Ψ◦Φ = id.

2. As (vj)j∈J is an R-basis of N , the map

θ :
⊕
j∈J

Rvj → N , defined by θ
(
(λjvj)j∈J

)
=

∑
j∈J

λjvj , is an isomorphism.

For every j ∈ J , the isomorphism R → Rvj induces an isomorphism µj : M
∼→ M ⊗ R

∼→ M ⊗ Rvj ,
given by µj(m) = m⊗ vj . Now we consider the sequence of isomorphisms

F : M (J) (µj)j∈J−→
⊕
j∈J

M ⊗R Rvj
Ψ−→M ⊗R

⊕
j∈J

Rvj
M⊗θ−→ M ⊗R N

where Ψ is the inverse of the isomorphism given in 1., and thus

Ψ
(
mj ⊗ vj)j∈J = Ψ

(∑
i∈I

(mi ⊗ δi,jvj)
)

=
∑
i∈I

mi ⊗ (δi,jvj)j∈J .

Hence
F

(
(mj)j∈J

)
= (M ⊗ θ)

(∑
i∈I

mi ⊗ (δi,jvj)j∈J
)

=
∑
i∈I

mi ⊗
∑
j∈J

δi,jvj =
∑
j∈J

mj ⊗ vj .

Hence every z ∈M ⊗R N has a unique representation

z =
∑
j∈J

mj ⊗ vj , where mj ∈M for all and mj = 0 for almost all j ∈ J.
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3.(a) Let (ui)i∈I be an R-basis of M . By 2., every z ∈ S ⊗RM has a unique representation

z =
∑
i∈I

ai ⊗ ui =
∑
i∈I

ai(1⊗ ui) , where ai ∈ S , ai = 0 for almost all i ∈ I .

Hence (1⊗ ui)i∈I is an S-basis of S ⊗RM .
(b) Let M be a projective R-module and M ′ an R-module such that F = M ⊕M ′ is free. Then

S ⊗R F is a free S-module, and there is an S-module isomorphism (S ⊗RM)⊕ (S ⊗RM ′) ∼→ S ⊗R F .
Hence S ⊗RM is a projective S-module.

Let M be a finitely generated R-module, n ∈ N and π : Rn → M an R-epimorphism. Then
S⊗π : S⊗RRn → S⊗RM is an S-epimorphism, and there is an S-isomorphism S⊗RRn

∼→ Sn. Hence
S ⊗RM is a finitely generated S-module.

4.(a) By 2., we obtain the following series of isomorphisms :

R(I×J) =
(
R(I)

)
(J) ∼→ M (J) ∼→ M ⊗R N ,

given by

(λi,j)(i,j)∈I×J =
(
λi,j)i∈I

)
j∈J 7→

(∑
i∈I

λi,jui

)
j∈J

7→
∑
j∈J

(∑
i∈I

λi,jui

)
⊗ vj =

∑
(i,j)∈I×J

λi,j(ui ⊗ vj) .

Hence every z ∈M ⊗R N has a unique representation

z =
∑

(i,j)∈I×J

λi,j(ui ⊗ vj) where λi,j ∈ R and λi,j = 0 for almost all (i, j) ∈ I×J .

Hence (ui ⊗ vj)(i,j)∈I×J is a basis of M ⊗R N .
(b) Let M and N be finitely generated. Then there exist m, n ∈ N and epimorphisms µ : Rm →M

and ν : Rn → N . Hence (µ⊗ ν) : Rm ⊗R Rn →M ⊗R N is an epimorphism. By 2., Rm ⊗R Rn ∼= Rmn

is finitely generated, and thus M ⊗R N is finitely generated.
If M and N are projective, then there exist R-modules M ′ and N ′ such that M ⊕M ′ and N ⊕N ′

are free. By (a), (M ⊕M ′)⊗R (N ⊕N ′) is free, and by 1., (M ⊕M ′)⊗R (N ⊕N ′) = (M ⊗R N)⊕ L,
where L = (M ′ ⊗N)⊕ (M ′ ⊗N ′)⊕ (M ⊗N ′). Hence M ⊗R N is projective. �

Definitions and Remarks. Let R be commutative and f : R→ A an R-algebra.
1. Multiplication in A is an R-bilinear map A×A→ A. Thus it induces a unique R-homomorphism

µA : A⊗R A→ A such that µA(a1 ⊗ a2) = a1a2 for all a1, a2 ∈ A .
For an ideal a ⊂ R, we denote by aA = A〈f(a)〉 the extension ideal of a in A. By definition,
aA = µAa (a ⊗R A) ⊂ A. In particular, µA |R = µAR : R ⊗R A

∼→ A is the isomorphism given in
Theorem 1.2.3.1.

2. For an R-module M , its base extension A⊗RM = M ⊗RA is a two-sided (A,A)-bimodule. For
elementary tensors, the bimodule structure is given by b(a ⊗m)c = bac ⊗m for all a, b, c ∈ A
and m ∈M .

3. Let g : R→ B be another R-algebra. Then the map

(A⊗R B)×(A⊗R B) → (A⊗R B)⊗R (A⊗R B) ∼→ (A⊗R A)⊗R (B ⊗R B)
µA⊗µB

→ A⊗R B
defines a multiplication on A⊗R B such that (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 for all a1, a2 ∈ A
and b1, b2 ∈ B. With this multiplication, A⊗RB is a ring with unit element 1A⊗1B . The map

θ : R ∼→ R⊗R R
f⊗g→ A⊗R B

makes A⊗R B into an R-algebra such that r(a⊗ b) = ra⊗ b = a⊗ rb for all r ∈ R, a ∈ A and
b ∈ B. The R-algebra θ : R→ A⊗RB is called the tensor product of the R-algebras f : R→ A
and g : R→ B. The maps εA : A→ A⊗RB, defined by εA(a) = a⊗ 1B and εB : B → A⊗RB,
defined by εB(b) = 1A ⊗ b, are R-algebra homomorphisms.
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Category-theoretic interpretion : (A ⊗ B, εA, εB) is a coproduct in A and B in the category or
R-algebras. Explicitly : Given R-algebra homomorphisms ϕ : A → C and ψ : B → C, there
exists a unique R-algebra homomorphism Θ: A⊗RB → C such that Θ◦εA = ϕ and Θ◦εB = ψ.
Explicitly, Θ(a⊗ b) = ϕ(a)ψ(b) for all a ∈ A and b ∈ B.

Theorem 1.2.6. Let f : R→ A be an R-algebra, and let M and N be R-modules. There is a unique
A-module homomorphism

Φ: A⊗R HomR(M,N) → HomA(A⊗RM,A⊗R N)

such that Φ(a ⊗ f)(b ⊗ m) = ba ⊗ f(m) for all f ∈ HomR(M,N), a, b ∈ A and m ∈ M . Φ is
functorial in A, M and N , and if either M or A is a finitely generated projective R-module, then Φ is
an isomorphism.

Proof. 2. For any a ∈ A and f ∈ HomR(M,N), the map F0(a, f) : A×M → A⊗RM , defined by
F0(a, f)(b,m) = ba⊗ f(m) for all b ∈ A and m ∈M , is R-balanced. It induces a group homomorphism
F (a, f) : A ⊗R M → A ⊗R M satisfying F (a, f)(b ⊗m) = ba ⊗ f(m) for all b ∈ A and m ∈ M , and if
c ∈ A, then F (a, f)(c(b ⊗m)) = F (a, f)(cb ⊗m) = cba ⊗ f(m) = cF (a, f)(b ⊗m). Hence F (a, f) is an
A-homomorphism, and the map F : A×HomR(M,N) → HomA(A⊗RM,A⊗R N), (a, f) 7→ F (a, f), is
R-balanced. Hence there is a unique homomorphism Φ: A⊗RHomR(M,N) → HomA(A⊗RM,A⊗RN)
satisfying Φ(a⊗ f)(b⊗m) = ba⊗ f(m) for all f ∈ HomR(M,N), a, b ∈ A and m ∈M . If c ∈ A, then(

cΦ(a⊗ f)
)
(b⊗m) = Φ(a⊗ f)

(
(b⊗m)c

)
= Φ(a⊗ f)(bc⊗m) = bca⊗ f(m) = Φ(ca⊗ f)(b⊗m)

= Φ
(
c(a⊗ f)

)
(b⊗m) , and therefore Φ

(
c(a⊗ f)

)
= cΦ(a⊗ f) .

Hence Φ is an A-homomorphism, and it is easily checked that it is functorial in M and N .
We prove now that, if M is a finitely generated projective R-module, then Φ is bijective [ the case,

when A is a finitely generated projective R-module is left as an exercise ]. For this, it suffices to prove :
A. Let M1, M2 be R-modules and M = M1 ⊕M2. Then

Φ: A⊗R HomR(M,N) → HomA(A⊗RM,A⊗R N)

is an isomorphism if and only if both homomorphisms

Φi : A⊗R HomR(Mi, N) → HomA(A⊗RMi, A⊗R N) for i ∈ {1, 2}
are isomorphisms.

Assume that A holds. If M is a finitely generated projective R-module, then Rn ∼= M ⊕M ′ for
some n ∈ N and some R-module M ′. Hence it suffice to prove that

Φn : A⊗R HomR(Rn, N) → HomA(A⊗R Rn, A⊗R N)

is an isomorphism, and, again using A, this follows by induction on n, once we have proved it for n = 1.
But in this there is a commutative diagram

A⊗R HomR(R,N) Φ1−−−−→ HomA(A⊗R R,A⊗R N)

α

y yγ
A⊗R N

β−−−−→ HomA(A,A⊗R N)

where α is the isomorphism induced HomR(R,N) ∼→ N , γ is the isomorphism induced by A⊗RR
∼→ A,

and β is also an isomorphism. Hence Φ1 is an isomorphism.
Proof of A. Since the additive functors HomR(−, N), A⊗R− and HomA(−, A⊗RN) interchange

with direct sums (up to isomorphisms), we obtain a commutative diagram

A⊗R HomR(M,N)
∼=−−−−→

(
A⊗R HomR(M1, N)

)
⊕

(
A⊗R HomR(M2, N)

)
Φ

y y(Φ1,Φ2)

HomA(A⊗RM,A⊗R N)
∼=−−−−→ HomA(A⊗RM1, A⊗R N)⊕HomA(A⊗RM2, A⊗R N)

.
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Hence Φ is an isomorphism if and only if Φ1 and Φ2 are both isomorphisms. �

Examples.

1. Let M be an R-module, a ⊂ R a right ideal and µMa : a⊗RM →M the multiplication homomor-

phism. The exact sequence 0 → a
i
↪→ R

π→ R/a → 0 of right R-modules induces a commutative
diagram with exact rows

a⊗RM
i⊗M−−−−→ R⊗RM

π⊗M−−−−→ R/a⊗RM −−−−→ 0

µM
a

y Φ

y∼=
0 −−−−→ aM −−−−→ M −−−−→ M/aM −−−−→ 0

,

where the second row is the canonical one, µMa is an epimorphism and Φ is an isomorphism. The
map (π⊗M)◦Φ−1 : M → R/a⊗RM is an epimorphism with kernel Im(Φ◦(i⊗M)) = aM , and
thus it induces an isomorphism ρ : M/aM → R/a⊗RM , given by ρ(m+ aM) = (1+ a)⊗m for
all m ∈M . In particular, if a C R, then ρ is an isomorphism of R-modules and of R/a-modules.
If M is R-free with basis (ui)i∈I , then R/a⊗RM is R/a-free with basis ((1 + a)⊗ ui)i∈I , and
therefore M/aM is R/a-free with basis (ui + aM)i∈I .

2. Let R → A be an R-algebra, n ∈ N. Then there is an isomorphism A ⊗R Mn(R) ∼→ Mn(A). In
particular, if m ∈ N, then there is an isomorphism Mm(R)⊗Mn(R) ∼→ Mmn(R).

3. Let R → A be a commutative R-algebra and H a monoid. Then there is an isomorphism A⊗
R[H] ∼→ A[H]. Suppose that H is a free abelian multiplicative monoid with basis X = (Xi)i∈I .
Then R[H] = R[X] is a polynomial ring, and A ⊗R R[X] ∼= A[X]. In particular, if A = R[T ]
is a polynomial ring in a family T = (Tj)j∈J of indeterminates, the R[T ]⊗R R[X] ∼= R[T ,X].

Theorem and Definition 1.2.7.

1. For an R-module E, the following conditions are equivalent :

(a) −⊗R E : Mod-R→ Ab is an exact functor.

(b) For every monomorphism of right R-modules i : M ′ → M , the induced homomorphism
i⊗ E : M ′ ⊗R E →M ⊗R E is again a monomorphism.

(c) For every finitely generated right ideal a ⊂ R, the multiplication homomorphism

µEa : a⊗R E → E

of a on E is a monomorphism ( and thus induces an isomorphism µEa : a ⊗R E → aE of
abelian groups ).

If these conditions are fulfilled, then E is called (R-)flat. An R-algebra R→ A is called flat if
A is a flat R-module.

2. Let (Ei)i∈I be a family of R-modules. Then

E =
⊕
i∈I

Ei is flat if and only if all Ei are flat.

3. Every projective R-module is flat.

Proof. (a) ⇒ (b) ⇒ (c) Obvious.

(c) ⇒ (a) It suffices to prove that for every right R-module M the following assertion holds :

A. For every R-submodule M1 ⊂M , the injection i : M1 ↪→M induces a monomorphism

i⊗ E : M1 ⊗R E →M ⊗R E .
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Suppose that A. holds for every right R-module M , and let M ′ f→M
g→M ′′ be an exact sequence

of right R-modules. Then g splits in the form g : M π→M/Ker(g) ∼→ Im(g) i→M ′′, where π denotes the
residue class homomorphism and i denotes the injection. Tensoring with E, we obtain

g ⊗ E : M ⊗R E
π⊗E→ M/Ker(g)⊗ E

∼→ Im(g)⊗R E
i⊗E→ M ′′ ⊗R E .

π ⊗ E is a monomorphism by A, and therefore Ker(g ⊗ E) = Ker(π ⊗ E). From the exact sequence

M ′ f→M
π→M/Ker(g) → 0 we get the exact sequence M ′⊗R E

f⊗E→ M ⊗R E
π⊗E→ M/Ker(g)⊗R E → 0,

which implies that Im(f ⊗E) = Ker(π⊗E) = Ker(g⊗E). Hence M ′⊗R E
f⊗E→ M ⊗R E

g⊗E→ M ′′⊗R E
is exact.

For the proof of A, we show first :
A0. If M is a right R-module, and A holds for every finitely generated R-submodule of M , then A

holds for every R-submodule of M .
Proof of A0. Let M be a right R-module, suppose that A holds for every finitely generated R-

submodule of M , and let M1 ⊂M be any R-submodule. Let i : M1 ↪→M be the injection, and suppose
that z ∈ Ker(i⊗ E : M1 ⊗R E →M ⊗R E), say

z =
n∑
ν=1

aν ⊗ eν ∈M1 ⊗R E , where n ∈ N, aν ∈M1 and eν ∈ E .

Then M ′ = a1R+ . . .+anR ⊂M1, and if j = (M ′ ↪→M1), then i′ = i◦j = (M ′ ↪→M), and thus i′⊗E
is a monomorphism by A0. If

z′ =
n∑
ν=1

aν ⊗ eν ∈M ′ ⊗R E , then (i′ ⊗ E)(z′) = (i⊗ E)◦(j ⊗ E)(z′) = (i⊗ E)(z) = 0 ,

hence z′ = 0, and thus also z = (j ⊗ E)(z′) = 0. Consequently, i⊗ E is a monomorphism. �[A0]
Proof of A. CASE 1: M is finitely generated and free. We use induction onn = rk(M). If n = 1,

we may assume that M = R, and then a finitely generate right R-submodule of R is a finitely generated
right ideal. Hence there is nothing to do.

Suppose that n > 1. Then M = M1+̇M2, where, for i ∈ {1, 2}, Mi ⊂ M is a free R-submodule of
rank rk(Mi) < n. Let M ′ ⊂M be a finitely generated R-submodule. It induces a commutative diagram
with exact rows

0 −−−−→ M ′
1

ε′−−−−→ M ′ p′−−−−→ M ′
2 −−−−→ 0

i1

y yi yi2
0 −−−−→ M1

ε−−−−→ M
p−−−−→ M2 −−−−→ 0

where ε is the injection and p the projection of the internal direct sum, M ′
1 = M1 ∩M ′, ε′ = ε |M ′

1,
p′ = p |M ′, M ′

2 = p(M ′), and i1, i, i2 are the injections. Since the bottom sequence splits, tensoring
with E induces a commutative diagram with exact rows

M ′
1 ⊗R E

ε′⊗E−−−−→ M ′ ⊗R E
p′⊗E−−−−→ M ′

2 ⊗R E −−−−→ 0

i1⊗E
y yi⊗E yi2⊗E

0 −−−−→ M1 ⊗R E
ε⊗E−−−−→ M ⊗R E

p⊗E−−−−→ M2 ⊗R E −−−−→ 0

,

and the Snake Lemma yields an exact sequence Ker(i1 ⊗ E) → Ker(i ⊗ E) → Ker(i2 ⊗ E). By the
induction hypothesis, i1 ⊗E and (i2 ⊗E) are monomorphisms, and therefore i⊗E is a monomorphism.

CASE 2: M is free with an arbitrary basis (uj)j∈J . Let M ′ ⊂M be a finitely generated submodule
and i : M ′ ↪→M the injection. Then there is a finite subset J0 ⊂ J such that

M ′ ⊂M0 =
∑
i∈J0

uiR ⊂+ M .
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Then we obtain i = i0 ◦ i′, where i′ = (M ′ ↪→ M0) and i0 = (M0 ↪→ M). As i0 splits, the induced
homomorphism i0 ⊗ E : M0 ⊗ E → M ⊗ E is a (split) monomorphism, and as M0 is finitely generated
and free, i′⊗E : M ′⊗RE →M0⊗RE is a monomorphism by CASE 1. Hence i⊗E = (i0⊗E)◦(i′⊗E)
is a monomorphism.

CASE 3: M is any right R-module. Let M ′ ⊂M be an R-submodule, i : M ′ ↪→M the injection, F
a free right R-module and p : F → M an R-epimorphism. Then K = Ker(p) = p−1(0) ⊂ p−1(M ′), and
we obtain the following commutative diagram with exact rows

0 −−−−→ K
j′−−−−→ p−1(M ′)

p′−−−−→ M ′ −−−−→ 0

idK

y yi1 yi
0 −−−−→ K

j−−−−→ F
p−−−−→ M −−−−→ 0

,

where p′ = p | p−1(M ′), j, j′, i1 and i are injections. By CASE 2, applied with F instead of M , j and i1
induce a monomorphism j ⊗E : K ⊗R E → F ⊗R E and i1 ⊗E : p−1(M ′)⊗R E → F ⊗R E. Tensoring
with E yields the following commutative diagram with exact rows.

K ⊗R E
j′⊗E−−−−→ p−1(M ′)⊗R E

(p | p−1(M ′))⊗E−−−−−−−−−−−→ M ′ ⊗R E −−−−→ 0

idK⊗RE

y yi1⊗E yi⊗E
0 −−−−→ K ⊗R E

j⊗E−−−−→ F ⊗R E
p⊗E−−−−→ M ⊗R E −−−−→ 0

,

The Snake Lemma yields an exact sequence 0 = Ker(i1 ⊗ E) → Ker(i⊗ E) → Coker(idK⊗RE) = 0, and
therefore i⊗ E is a monomorphism.

2. Let a ⊂ R be a right ideal. For i ∈ I, let µi = µEi
a : a ⊗R Ei → Ei the multiplication homomor-

phism, and define

µ : a⊗R E = a⊗
⊕
i∈I

Ei
∼→

⊕
i∈I

(a⊗R Ei)
(µi)i∈I→

⊕
i∈I

Ei = E

For a ∈ a and e = (ei)i∈I ∈ E, we obtain µ(a⊗ e) = (µi(a⊗ ei))i∈I = ae, and thus µ = µEa . Hence µEa
is a monomorphism if and only if all µEi

a are monomorphisms. Therefore E is flat if and only if all Ei
are flat.

3. Let a ⊂ R is a right ideal. Then µRa = (a⊗R R
∼→ a ↪→ R) is a monomorphism, and therefore R

is flat. By 2., every free R-module and thus also every projective R-module is flat. �

Theorem 1.2.8. Let R→ A be a flat R-algebra.
1. Let a, b ⊂ R be ideals. Then (a ∩ b)A = aA ∩ bA.
2. Let M, N be R-modules, and suppose that M is finitely presented. Then the A-homomorphism

Φ: A⊗RHomR(M,N) → HomA(A⊗RM,A⊗RN) introduced in Theorem 1.2.6 is an isomor-
phism.

Proof. 1. The exact sequence 0 → a ∩ b
i
↪→ R → R/a ⊕ R/b induces the following commutative

diagram, where the upper row is exact and the vertical arrows are isomorphisms, where all arrays are the
natural one.

0 −−−−→ (a ∩ b)⊗R A
i⊗A−−−−→ R⊗R A

ρ−−−−→ (R/a⊗R A)⊕ (R/b⊗R A)

µA
a∩b

y Φ

y∼= ∼=
yΦ0

0 −−−−→ (a ∩ b)A
j−−−−→ A

ρ0−−−−→ A/aA⊕A/bA

Note that, for all r ∈ R and a ∈ A, (ρ0◦Φ)(r ⊗ a) = (ra+ aA, ra+ bA), and

(Φ0◦ρ)(r ⊗ a) = Φ0((r + a)⊗ a, (r + b)⊗ a) = (ra+ aA, ra+ bA) = (ρ0◦Φ)(r ⊗ a) .

Hence the bottom row is exact, and (a ∩ b)A = Ker(ρ0) = aA ∩ bA.
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2. As M is finitely presented, there is an exact sequence F2
π′→ F1

π→ M → 0, where F1 and F2

are finitely generated free R-modules. Since A is flat and Hom is left-exact, we obtain the following
commutative diagram with exact rows.

0 −−−−→ A⊗R HomR(M,N) −−−−→ A⊗R HomR(F1, N) −−−−→ A⊗R HomR(F2, N)

Φ

y yΦ1

yΦ2

0 −−−−→ HomA(A⊗RM,A⊗RN) −−−−→ HomA(A⊗RF1, A⊗RN) −−−−→ HomA(A⊗RF2, A⊗RN)

By Theorem 1.2.6, Φ1 and Φ2 are isomorphisms, and by an easy diagram chasing it follows that also Φ
is an isomorphism. �

1.3. Basics of homological algebra

Let R be a ring.

Definitions and Remarks.
1. A (chain) complex (in R-Mod) is a sequence of (R-)homomorphisms (dn : Kn → Kn−1)n∈Z

such that dn◦dn+1 = 0 for all n ∈ Z. We write it in the form

K• = (K•, d•) : . . .→ Kn+1
dn+1→ Kn

dn→ Kn−1 → . . . .

Then Im(dn+1) ⊂ Ker(dn), and we call Hn(K•) = Ker(dn)/Im(dn+1) the n-th homology group
of K•. For every n ∈ Z, there is an exact sequence

0 → Hn(K•) = Ker(dn)/Im(dn+1) ↪→ Coker(dn+1) = Kn/Im(dn+1)

dn→ Ker(dn−1)
πn−1→ Ker(dn−1)/Im(dn) = Hn−1(K•) → 0 ,

where dn(x+ Im(dn+1)) = dn(x) for x ∈ Kn, and πn−1 is the residue class homomorphism. A
complex K• is called positive if Kn = 0 for all n < 0. A complex K• is an exact sequence if
and only if Hn(K•) = 0 for all n ∈ Z.

2. Let (K•, d•), (K ′
•, d

′
•) be complexes. A morphism f• : K• → K ′

• is a sequence of R-homomor-
phisms (fn : Kn → K ′

n)n∈Z such that fn−1 ◦dn = d′n ◦fn for all n ∈ Z. If f•, f ′• : K• → K ′
•

are morphisms, then f• + g• = (fn + gn)n≥0 is also a morphism. 0 = (0: Kn → K ′
n)n∈Z and

idK• = (idKn
)n∈Z are morphisms, and if f• : K• → K ′

• and g• : K ′
• → K ′′

• are morphisms, then
g•◦f• = (gn◦fn)n∈Z : K• → K ′′

• is again a morphism. Consequently, the class of complexes in
R-Mod together with its morphisms is an additive category, denoted by CR.

If f• : (K•, d•) → (K ′
•, d

′
•) is a morphism of complexes, then

fn(Ker(dn)) ⊂ Ker(d′n) and fn(Im(dn+1) ⊂ Im(d′n+1) for all n ∈ Z.

Indeed, if x ∈ Ker(dn), then d′n ◦fn(x) = fn−1 ◦dn(x) = 0, and if x = dn+1(y) ∈ Im(dn+1),
then fn(x) = fn ◦ dn+1(y) = d′n+1 ◦ fn(y) ∈ Im(d′n+1). Consequently, f• induces a family
of homomorphisms (Hn(f•) : Hn(K•) → Hn(K ′

•))n∈Z, and the following commutative diagram
connecting the exact sequences mentioned above.

0 −−−−→ Hn(K•) −−−−→ Coker(dn+1) −−−−→ Ker(dn−1) −−−−→ Hn−1(K•) −−−−→ 0

Hn(f•)

y yfn

yfn−1

yHn−1(f•)

0 −−−−→ Hn(K ′
•) −−−−→ Coker(d′n+1) −−−−→ Ker(d′n−1) −−−−→ Hn−1(K ′

•) −−−−→ 0

For n ∈ Z, Hn : CR → Ab is an additive functor. Indeed, Hn(f• + g•) = Hn(f•) +Hn(g•)
for morphisms f•, g• : K• → K ′

•, and Hn(g•◦f•) = Hn(g•)◦Hn(f•) for morphisms f• : K• → K ′
•

and g• : K ′
• → K ′′

• .
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3. A sequence 0 → K ′
•
f•→ K•

g•→ K ′′
• → 0 of morphisms in CR is called exact if, for all n ∈ Z, the

sequence 0 → K ′
n
fn→ Kn

gn→ K ′′
n → 0 is exact.

Theorem 1.3.1. For every exact sequence 0 → K ′
•
f•→ K•

g•→ K ′′
• → 0 in CR there exists a family

of homomorphisms (ωn : Hn(K ′′
• ) → Hn−1(K ′

•))n∈Z such that the long homology sequence

. . .
ωn+1→ Hn(K ′

•)
Hn(f•)→ Hn(K•)

Hn(g•)→ Hn(K ′′
• ) ωn→ Hn−1(K ′

•)
Hn−1(f•)→ Hn−1(K•) → . . .

is exact. It is functorial in the given short exact sequence. Explicitly, a commutative diagram of complexes
with exact rows

0 −−−−→ K ′
• −−−−→ K• −−−−→ K ′′

• −−−−→ 0y y y
0 −−−−→ L′• −−−−→ L• −−−−→ L′′• −−−−→ 0

induces the following commutative diagram connecting the long homology sequences.

. . .
ωn+1−−−−→ Hn(K ′

•) −−−−→ Hn(K•) −−−−→ Hn(K ′′
• ) ωn−−−−→ Hn−1(K ′

•) −−−−→ . . .y y y y
. . .

ωn+1−−−−→ Hn(L′•) −−−−→ Hn(L•) −−−−→ Hn(L′′•)
ωn−−−−→ Hn−1(L′•) −−−−→ . . .

Proof. Let 0 → K ′
•
f•→ K•

g•→ K ′′
• → 0 be an exact sequence of complexes (K ′

•, d
′
•), (K•, d•) and

(K ′′
• , d

′′
•). For every n ∈ Z, we have the commutative diagram

0 −−−−→ K ′
n−1

fn−1−−−−→ Kn−1
gn−1−−−−→ K ′′

n−1 −−−−→ 0

d′n−1

y ydn−1

yd′′n−1

0 −−−−→ K ′
n

fn−−−−→ Kn
gn−−−−→ K ′′

n −−−−→ 0

and the Snake Lemma induces exact sequences 0 → Ker(d′n−1)
fn−1→ Ker(dn−1)

gn−1→ Ker(d′′n−1) and

Coker(d′n+1)
fn+1→ Coker(dn+1)

gn+1→ Coker(d′′n+1) → 0. Hence we obtain the the following commutative
diagram with exact columns, in which the two middle rows are exact.

0 0 0y y y
Hn(K ′

•)
Hn(f•)−−−−−→ Hn(K ′

•)
Hn(g•)−−−−−→ Hn(K ′′

• )y y y
Coker(d′n+1)

fn+1−−−−→ Coker(dn+1)
gn+1−−−−→ Coker(d′′n+1) −−−−→ 0y y y

0 −−−−→ Ker(d′n−1)
fn−1−−−−→ Ker(dn−1)

gn−1−−−−→ Ker(d′′n−1)y y y
Hn−1(K ′

•)
Hn−1(f•)−−−−−−→ Hn−1(K ′

•)
Hn−1(g•)−−−−−−→ Hn−1(K ′′

• )y y y
0 0 0
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By the Snake Lemma, it induces an exact sequence

Hn(K ′
•)

Hn(f•)→ Hn(K ′
•)

Hn(g•)→ Hn(K ′′
• ) ω→ Hn−1(K ′

•)
Hn−1(f•)→ Hn−1(K ′

•)
Hn−1(g•)→ Hn−1(K ′′

• ) .

It is easily checked that the whole construction is functorial in the given short exact sequence. �

Definition. Let (K•, d•) and (K ′
•, d

′
•) be complexes.

1. Two morphisms f•, g• : K• → K ′
• are called homotopic, f ∼ g, if there exists a sequence of

homomorphisms (hn : Kn → K ′
n+1)n∈Z such that fn − gn = d′n+1◦hn + hn−1◦dn for all n ∈ Z.

2. A morphism f•, g• : K• → K ′
• is called a homotopy equivalence if there exists a morphism

g• : K ′
• → K• such that g•◦f• ∼ idK• and f•◦g• ∼ idK′

•
. The complexes K• and K ′

• are called
homotopy equivalent if there exists a homotopy equivalence f• : K• → K ′

•.

Theorem 1.3.2. Let (K•, d•) and (K ′
•, d

′
•) be complexes and f•, g• : K• → K ′

• morphisms such
that f• ∼ g•. Then Hn(f•) = Hn(g•) : Hn(K•) → Hn(K ′

•) for all n ∈ Z. In particular, if f• is a
homotopy equivalence, then Hn(f•) is an isomorphism for all n ∈ Z.

Proof. Let (hn : Kn → K ′
n+1)n∈Z be a sequence of homomorphisms such that

fn − gn = d′n+1◦hn + hn−1◦dn for all n ∈ Z,

and consider the maps Hn(f•)−Hn(g•) : Hn(K•) = Ker(dn)/Im(dn+1) → Ker(d′n)/Im(d′n+1) = Hn(K ′
•).

If x ∈ Ker(dn), then(
Hn(f•)−Hn(g•)

)
(x+Im(dn+1)) = fn(x)−gn(x)+Im(d′n+1) = d′n+1◦hn(x)+hn−1◦dn(x)+Im(d′n+1) = 0 ,

and thus Hn(f•) = Hn(g•).
Assume not that f• : K• → K ′

• is a homotopy equivalence, and let g• : K ′
• → K• be a morphism

such that g•◦f• = idK• and f•◦g• = idK′
•
. Then we obtain idHn(K•) = Hn(g•◦f•) = Hn(g•)◦Hn(f•),

and idHn(K′
•)

= Hn(f•◦b•) = Hn(f•)◦Hn(g•). �

Theorem and Definition 1.3.3. Let M be an R-module.
A projective resolution (P•, d•, ε) of M is a positive complex (P•, d•) of projective modules such

that Hn(P•) = 0 for all n 6= 0,, together with an epimorphism ε : P0 →M such that Ker(ε) = Im(d1).
Equivalently, a projective resolution of M is an exact sequence . . . → P2

d2→ P1
d1→ P0

ε→ M → 0, which
(due to d0 = 0) induces an isomorphism ε0 : H0(P•) = P0/Im(d1)

∼→M .

1. Let ϕ : M →M ′ be a homomorphism of R-modules, (P•, d•, ε) a projective resolution of M and
(P ′•, d

′
•, ε

′) a projective resolution of M ′. Then there exists up to homotopy a unique morpism
f• : P• → P ′• such that ε′◦f0 = ϕ◦ε : P0 →M ′.

2. M possesses a projective resolution. If (P•, d•, ε) and (P ′•, d
′
•, ε

′) are projective resolutions of
M , then there exists a homotopy equivalence f• : P• → P ′• such that ε′◦f0 = ε : P0 →M .

Proof. 1. Existence. We must establish the following commutative diagram with exact rows :

. . .
dn+1−−−−→ Pn

dn−−−−→ Pn−1
dn−1−−−−→ Pn−2

dn−2−−−−→ . . .
d1−−−−→ P0

ε−−−−→ M −−−−→ 0

fn

y fn−1

y fn−2

y f0

y ϕ

y
. . .

d′n+1−−−−→ P ′n
d′n−−−−→ P ′n−1

d′n−1−−−−→ P ′n−2

d′n−2−−−−→ . . .
d′1−−−−→ P ′0

ε′−−−−→ M ′ −−−−→ 0

We construct recursively a sequence of homomorphisms (fn : Pn → P ′n))n∈Z satisfying fn−1◦dn = d′n◦fn
for all n ∈ Z and ε′◦f0 = ε. For n < 0 we set f0 = 0. Since P0 is projective, the diagram

P0yϕ◦ε
P ′0

ε′−−−−→ M ′ −−−−→ 0
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induces a homomorphism f0 : P0 → P ′0 such that ϕ◦ε = ε′◦f0. Since ε′◦f0◦d1 = ϕ◦ε◦d1 = 0, we get
Im(f0◦d1) ⊂ ker(ε′) = Im(d′1), and since P1 is projective, the diagram

P1yf0◦d1
P ′1

d′1−−−−→ Im(d′1) −−−−→ 0

induces a homomorphism f1 : P1 → P ′1 such that d′1◦f1 = f0◦d1.
Assume now that n ≥ 2, and that we have already constructed homomorphisms fn−2, fn−1 such

that d′n−1◦fn−1 = fn−2◦dn−1. Then we get d′n−1◦fn−1◦dn = fn−2◦dn−1◦dn = 0, and consequently
Im(fn−1◦dn) ⊂ Ker(d′n−1) = Im(d′n), since Hn(P ′•) = 0. Since Pn is projective, the diagram

Pnyfn−1◦dn

P ′n
d′n−−−−→ Im(d′n) −−−−→ 0

induces a homomorphism fn : Pn → P ′n such that d′n◦fn = fn−1◦dn.
Uniqueness up to homotopy. Let f•, g• : P• → P ′• be morphisms such that ε′◦f0 = ε′◦g0 = ϕ◦ε. We

construct a sequence of homomorphisms (hn : Pn → P ′n+1)n∈Z such that fn − gn = d′n+1◦hn + hn−1◦dn
for all n ∈ Z. For n < 0 we have d′n+1 = dn = 0, and we set hn = 0. Since ε′◦(f0 − g0) = 0, we obtain
Im(f0 − g0) ⊂ Ker(ε′) = Im(d′1), and since P0 is projective, the diagram

P0yf0−g0
P ′1

d′1−−−−→ Im(d′1) −−−−→ 0

induces a homomorphism h0 : P0 → P ′1 such that f0 − g0 = d′1◦h0 = d′1◦h0 + h−1◦d0.
Thus assume that n ≥ 1 and that we have already constructed homomorphisms hn−2, hn−1. Then

d′n◦(fn − gn − hn−1◦dn) = (fn−1 − gn−1)◦dn − d′n◦hn−1◦dn
= (d′n◦hn−1 + hn−2◦dn−1)◦dn − d′n◦hn−1◦dn = 0 ,

hence Im(fn − gn − hn−1◦dn) ⊂ Ker(d′n) = Im(d′n+1). Since Pn is projective, the diagram

Pnyfn−gn−hn−1◦dn

P ′n+1

d′n+1−−−−→ Im(d′n+1) −−−−→ 0

induces a homomorphism hn : Pn → P ′n+1 such that fn − gn − hn−1◦dn = d′n+1◦hn.

2. We construct an exact sequence . . . → P2
d2→ P1

d1→ P0
ε→ M → 0 with free (hence projective)

modules Pn for all n ≥ 0. Again, we proceed recursively. Clearly, there exists an epimorphism ε : P0 →M
with a free R-module P0, and there exists an epimorphism d1 : P1 → Ker(ε) ⊂ P0 with a free R-module
P1. Then P1

d1→ P0
ε→M → 0 is exact. Assume now that n ≥ 1, and that we have already constructed

an exact sequence Pn−1
dn−1→ Pn−2 → . . .→ P0

ε→M → 0 with free R-modules P0, . . . , Pn−1. Then there
exists an epimorphism dn : Pn → Ker(dn−1) ⊂ Pn−1 with a free R-module Pn and we may append the
homomorphism dn : Pn → Pn−1 to extend our sequence.

Assume not that (P•, ε) and P ′•, ε
′) are projective resolutions of M . By 1., there exist morphisms

f• : P• → P ′• and g• : P ′• → P• such that ε′ ◦f0 = ε and ε◦g0 = ε′. Then g• ◦f• : P• → P• and
idP• : P• → P•, are morphisms satisfying ε◦(g0◦g0) = ε◦ idP0 = ε, and 1. implies that g•◦f• ∼ εP• .
Similarly, we obtain f•◦g• ∼ εP ′• , and therefore P• and P ′• are homotopy equivalent. �
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Definition. In the sequel we fix for every left and every right R-module a projective resolution. Let
N be an R-module and M a right R-module.

a. Let (Q•, d•, η) be a projective resolution of N . Then M⊗RQ• = (M⊗RQn
M⊗dn→ M⊗RQn−1)n∈Z

is a complex, and we define
′TorRn (M,N) = Hn(M ⊗R Q•) for all n ∈ Z.

If f : M → M ′ is a homomorphism of right R-modules, then f ⊗ Q• : M ⊗R Q• → M ′ ⊗R Q• is a
complex homomorphism, and we define

′TorRn (f,N) = Hn(f ⊗Q•) : ′TorRn (M,N) → ′TorRn (M ′, N) for all n ∈ Z .

These settings define a sequence of additive functors (′TorRn (−, N) : Mod-R → Ab)n∈Z, called the Tor
functors in the first variable. By definition, ′TorRn (−, N) = 0 for n < 0, and the exact sequence

M ⊗R Q1
M⊗d1→ M ⊗R Q0

M⊗η→ M ⊗R N → 0 ,

together with d0 = 0, induces an isomorphism
′TorR0 (M,N) = H0(M ⊗Q•) = M ⊗R Q0/Im(M ⊗ d1) = M ⊗R Q0/Ker(M ⊗ η) ∼→M ⊗R N ,

which is functorial in M , and we identify ′TorR0 (−, N) = −⊗R N by means of this isomorphism.

b. Let (P•, d•, ε) be a projective resolution of M . Then P•⊗RN = (Pn⊗RN
dn⊗N→ Pn−1⊗RN)n∈Z

is a complex, and we define
′′TorRn (M,N) = Hn(P• ⊗R N) for all n ∈ Z.

If f : N → N ′ is a homomorphism of R-modules, then P• ⊗ f : P• ⊗R N → P• ⊗R N ′ is a complex
homomorphism, and we define

′′TorRn (M,f) = Hn(P• ⊗ f) : ′′TorRn (M,N) → ′′TorRn (M,N ′) for all n ∈ Z .

These settings define a sequence of additive functors (′′TorRn (M,−) : R-Mod → Ab)n∈Z, called the Tor
functors in the second variable. By definition, ′′TorRn (M,−) = 0 for n < 0, and the exact sequence

P1 ⊗R N
d1⊗N→ P0 ⊗R N

ε⊗N→ M ⊗R N → 0 ,

together with d0 = 0, induces an isomorphism
′′TorR0 (M,N) = H0(P• ⊗R N) = P0 ⊗R N/Im(d1 ⊗N) = P0 ⊗R N/Ker(ε⊗N) ∼→M ⊗R N ,

which is functorial in N , and we identify ′′TorR0 (M,−) = M ⊗R − by means of this isomorphism.

Theorem and Definition 1.3.4. Let M be a right R-module and N an R-module. Up to functorial
isomorphisms, we have ′TorRn (M,N) = ′′TorRn (M,N) for all n ∈ Z.
We define Tor = Tor′ = Tor′′.

For the proof of Theorem 1.3.4 we introduce the notion of double complexes and a first simple
Spectral Theorem.

Definitions and Remarks. A double complex (K••, d
′
••, d

′′
••) consists of a double sequence of

R-homomorphisms
(Kp,q, d

′
p,q : Kp,q → Kp−1,q, d

′′
p,q : Kp,q → Kp,q−1)

satisfying d′p−1,q ◦ d′p,q = 0, d′′p,q−1◦d′′p,q = 0 and d′′p−1,q◦d′p,q = d′p,q−1◦d′′p,q for all p, q ∈ Z. If there is no
doubt, in which dimensions the morphisms act, we write the conditions in the form d′◦d′ = 0, d′′◦d′′ = 0
and d′′◦d′ = d′◦d′′. Associated with the double comples (K••, d

′
••, d

′′
••), we define the associated total

complex (K•, d•) by
Kn =

⊕
p+q=n

Kp,q,
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where (dn : Kn → Kn−1)n∈Z is defined as follows. If n ∈ Z and a = (an−i,i)i∈Z, where an−i,i ∈ Kn−i,i
for all i ∈ Z, then dna = ((dna)n−i−1,i)i∈Z, where

(dna)n−i−1,i = d′an−i,i + (−1)n−i−1d′′an−i−1,i+1 ∈ Kn−i−1,i for all i ∈ Z.
We must verify that dn+1◦dn = 0 for all n ∈ Z. Indeed, let n ∈ Z and a = (an+1−i,i)i∈Z ∈ Kn+1. If
i ∈ Z, then

(dn+1a)n−i,i = d′an+1−i,i + (−1)n−id′′an−i,i+1 ,

and, observing d′◦d′ = d′′◦d′′ = 0 and d′◦d′′ = d′′◦d′, we obtain

dn(dn+1a)n−i−1,i = d′(dn+1a)n−i,i + (−1)n−i−1d′′(dn+1a)n−i−i,i+1

= (−1)n−id′◦d′′an−i,i+1 + (−1)n−i−1d′′◦d′an−i,i+1 = 0 .

For p, q ∈ Z, we call (Kp,•, d
′′
p,•) the p-th row complex and (K•,q, d

′
•,q) the q-th column complex of

K••. Then d′p,• : Kp,• → Kp−1,• and d′′•,q : K•,q → K•,q−1 are complex morphisms.
Let (K••, d

′
••, d

′′
••) be a positive double complex (that means, Kp,q = 0 if p < 0 or q < 0). Then

the associated total complex and all row and column complexes of K•• are also positive complexes. We
define

X ′
p = H0(Kp,•) = Kp,0/Im(d′′p,1) and X ′′

q = H0(K•,q) = K0,q/Im(d′1,q) .
Then δ′p = H0(d′p,•) : X ′

p → X ′
p−1 and δ′′q = H0(d•,q′′) : X ′′

q → X ′′
q−1 are homomorphisms, given by

δ′p(ap,0 + Im(d′′p,1)) = d′p,0(ap,0) + Im(d′′p−1,1) and δ′′q (a0,q + Im(d′1,q)) = d′′0,q(a0,q) + Im(d′1,q−1) for all
ap,0 ∈ Kp,0 and a0,q ∈ K0,q. The (X ′

•, δ
′
•) and (X ′′

• , δ
′′
• ) are positive complexes, called the right and

lower edge complex of X••. The situation is coded in the following commutative diagram :y y y y
. . . −−−−→ K2,2

d′′2,2−−−−→ K2,1

d′′2,1−−−−→ K2,0 −−−−→ X ′
2 −−−−→ 0

d′2,2

y d′2,1

y d′2,0

y yδ′1
. . . −−−−→ K1,2

d′′1,2−−−−→ K1,1

d′′1,1−−−−→ K1,0 −−−−→ X ′
1 −−−−→ 0

d′1,2

y d′1,1

y d′1,0

y yδ′0
. . . −−−−→ K0,2

d′′0,2−−−−→ K0,1

d′′0,1−−−−→ K0,0 −−−−→ X ′
0 −−−−→ 0y y y

. . . −−−−→ X ′′
2

δ′′2−−−−→ X ′′
1

δ′′1−−−−→ X ′′
0y y

0 0
For n ∈ Z, we define Φ′n : Kn → X ′

n and Φ′′n : Kn → X ′′
n by

Φ′n(a) = an,0 + Im(d′′n,1) and Φ′′n(a) = a0,n + Im(d′1,n) if a = (an−i,i)i∈Z ∈ Kn =
⊕
i∈Z

Kn−i,i .

Then the following Spectral Theorem connects the homology of the total complex with the homology of
the edge complexes.

Spectral Theorem.
• Φ′• : K• → X ′

• is a complex morphism which is functorial in K••. If Hq(Kp,•) = 0 for all p ∈ Z
and q ∈ N, then Hn(Φ′•) : Hn(K•)

∼→ Hn(X•) is an isomorphism for all n ∈ Z.
• Φ′′• : K• → X ′′

• is a complex morphism which is functorial in K••. If Hp(K•,q) = 0 for all q ∈ Z
and p ∈ N, then Hn(Φ′′•) : Hn(K•)

∼→ Hn(X ′′
• ) , is an isomorphism for all n ∈ Z.
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Proof of the Spectral Theorem. It suffices to prove the first assertion (concerning the right
edge complex)

A. Φ′• is a complex morphism, that means, δ′n◦Φ′n = Φ′n−1◦dn : Kn → X ′
n for all n ∈ Z.

Let n ∈ Z and a = (an−i,i)i∈Z ∈ Kn. δ′n◦Φ′n(a) = δ′n(an,0 + Im(d′′n,1)) = d′an,0 + Im(d′′n−1,1), and
Φ′n−1◦dn(a) = dn(a)n−1,0 + Im(d′′n−1,1) = d′an,0 + (−1)n−1d′′an−1,1 + Im(d′′n−1,1) = d′an,0 + Im(d′′n−1,1).

�[A.]
Suppose now that Hq(Kp,•) = 0 for all q ∈ Z and p ∈ N.
B. Hn(Φ′•) : Hn(K•) → Hn(X ′

•) is a monomorphism for all n ∈ Z.
Let n ∈ Z, and suppose that x = a + Im(dn+1) ∈ Ker(Hn(Φ′•)) ⊂ Hn(K•) = Ker(dn)/Im(dn+1),

where a = (an−i,i)i∈Z ∈ Ker(dn) ⊂ Kn. Then 0 = dna = d′an−i,i+(−1)n−i−1d′′an−i−1,i+1, and therefore
d′an−i,i = (−1)n−id′′an−i−1,i+1 for all i ∈ Z. By assumption, Hn(Φ′•)(x) = Φ′n(a)+Im(δ′n+1) = 0, which
implies that Φ′n(a) = an,0 + Im(d′′n,1) ∈ Im(δ′n+1), say

an,0 + Im(d′′n,1) = δ′n+1(cn+1,0) + Im(d′′n+1,1)) = d′n+1,0(cn+1,0) + Im(d′′n,1) for some cn+1,0 ∈ Kn+1,0 .

Hence there exists some cn,1 ∈ Kn,1 such that an,0 = d′cn+1,0 + (−1)nd′′cn,1.
We shall prove that there exists some c = (cn+1−i,i)i∈Z ∈ Kn+1 such that a = dn+1c ∈ Im(dn+1),

that is, an−i,i = d′cn−i+1,i + (−1)n−id′′cn−i,i+1 for all i ∈ Z. Then it follows that x = 0. We proceed
recursively to construct the elements cn−i+1,i ∈ Kn−i+1,i. For i < 0, we set cn+1−i,i = 0, and the
elements cn+1,0 and cn,1 as constructed above satisfy the requirement. Thus suppose that i ≥ 0 and
there exist elements cn−i+1,i ∈ Kn−i+1,i and cn−i,i+1 ∈ Kn−i,i+1 such that

an−i,i = d′cn−i+1,i + (−1)n−id′′cn−i,i+1 .

Then d′an−i,i = (−1)n−id′d′′cn−i,i+1 = (−1)n−id′′d′cn−i,i+1, and since d′an−i,i = (−1)n−id′′an−i−1,i+1

(as above), it follows that an−i−1,i+1 − d′cn−i,i ∈ Ker(d′′n−i−i,i+1) = Im(d′′n−i−1,i+2), since (by assump-
tion) Hi+1(Kn−i−1,•) = Ker(d′′n−i−1,i+1)/(Im(d′′n−i−1,i+2) = 0. If cn−i−1,i+2 ∈ Kn−i−1,i+2 is such that
an−i−1,i+1 − d′cn−i,i = (−1)n−i−1d′′cn−i−1,i+2, then an−i−1,i+1 = d′cn−i,i + (−1)n−i−1d′′cn−i−1,i+2.

�[B.]
C. Hn(Φ′•) : Hn(K•) → Hn(X ′

•) is an epimorphism for all n ∈ Z.
Let n ∈ Z, and suppose that x ∈ Hn(X ′

•) = Ker(δ′n)/Im(δ′n+1), say x = b + Im(δ′n+1), where
b = an,0 + Im(d′′n,1) ∈ Ker(δ′n) ⊂ Xn = Kn,0/Im(d′′n,1). Then 0 = δ′n(b) = d′an,0 + Im(d′′n−1,1), hence
d′an,0 = (−1)nd′′an−1,1 for some an−1,1 ∈ Kn−1,1.

We shall prove that there exists some a = (an−i,i)i∈Z ∈ Kn such that d′an−i,i = (−1)n−id′′an−i−1,i+1

for all i ∈ Z. Then it follows that a ∈ Ker(dn), and

Hn(Φ′•)(a+ Im(dn+1)) = Φ′n(a) + Im(δ′n+1) = (an,0 + Im(d′′n,1)) + Im(δ′n+1)

= b+ Im(δ′n+1) = x ∈ Im(Hn(K•)) .

We proceed recursively to construct the elements an−i,i ∈ Kn−i,i. For i < 0, we set an−i,i = 0,
and the elements an,0 and an−1,1 constructed above satisfy our requirements. Thus suppose that
i ≥ 0 and there exist elements an−i,i ∈ Kn−i,i and an−i−1,i+1 ∈ Kn−i−1,i+1 such that d′an−i,i =
(−1)n−id′′an−i−1,i+1. Then we obtain d′′d′an−i−1,i+1 = d′d′′an−i−1,i+1 = (−1)n−id′d′an−i,i = 0,
and therefore it follows that d′an−i−1,i+1 ∈ Ker(d′′n−i−2,i+1) = Im(d′′n−i−2,i+2), since (by assump-
tion) Hi+1(Kn−i−2,•) = Ker(d′′n−i−2,i+1)/Im(d′′n−i−2,i+2) = 0. Hence there exists some an−i−2,i+2 ∈
Kn−i−2,i+2 such that d′an−i−1,i+1 = (−1)n−i−1d′′an−i−2,i+2. �

Proof of Theorem 1.3.4. Let (P•, d′•, ε) be a projective resolution of M , (Q•, d′′• , η) a projective
resolution of N , and consider the double complex

K•• = (Kp,q = Pp ⊗R Qq, d′p ⊗Qq, Pp ⊗ d′′q ) .

For p ∈ Z, the p-th row complex Kp,• = Pp ⊗R Q• induces an exact sequence

→ Pp ⊗R Q1
Pp⊗d′′1→ Pp ⊗Q0

Pp⊗η→ Pp ⊗N → 0
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which yields Hq(Kp,•) = 0 for all q ∈ N and p ∈ Z, X ′
p = H0(Kp,•) = Pp⊗RQ0/Im(Pp⊗d′′1) = Pp⊗N ,

and consequently Hn(X ′
•) = ′′TorRn (M,N) for all n ∈ Z. Similarly, we obtain Hn(X ′′

• ) = ′TorRn (M,N)
for all n ∈ Z, and the Spectral Theorem implies a family of isomorphisms ′′TorRn (M,N) ∼→ ′TorRn (M,N),
by means of which we identify these groups. �

Theorem 1.3.5.
1. For all n ∈ Z, TorRn : Mod-R×R-Mod → Ab is an additive functor in both variables,

TorRn (−,−) = 0 if n < 0, and ( up to functorial isomorphisms ) TorRn (M,N) = TorR
op

n (N,M)
for all n ∈ Z and TorR0 (M,N) = M ⊗R N for all right R-modules M and all R-modules N ,

2. If R is commutative and M, N are R-modules, then for all n ∈ Z (up to functorial isomorphisms)
TorRn (M,N) = TorRn (M,N) are R-modules. They are finitely generated provided that R is noe-
therian and both M and N are finitely generated.

3. For every short exact sequence 0 → M ′ → M → M ′′ → 0 of right R-modules and every
R-module N , there is a long exact sequence

. . .→ TorR2 (M,N) → TorR2 (M ′′, N) → TorR1 (M ′, N) → TorR1 (M,N) →

→ TorR1 (M ′′, N) →M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0

which is functorial both in N and the original short exact sequence.
4. For every short exact sequence 0 → N ′ → N → N ′′ → 0 of R-modules and every right R-module
M there is a long exact sequence

. . .→ TorR2 (M,N) → TorR2 (M,N ′′) → TorR1 (M,N ′) → TorR1 (M,N) →

→ TorR1 (M,N ′′) →M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0

which is functorial both in M and the original short exact sequence.

Proof. 1. and 2. follows by tracing through the definitions.
3. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of right R-modules and (Q•, η) a

projective resolution of N . Then 0 →M ′⊗RQ• →M ⊗RQ• →M ′′⊗RQ• → 0 is an exact sequence of
complexes (since the modules Qn are projective and thus flat for all n ∈ Z ). Now the assertion follows
by Theorem 1.3.1.

4. Apply 3. for Rop. �

Theorem 1.3.6. For an R-module E, the following assertions are equivalent :
(a) E is flat.
(b) TorRn (M,E) = 0 for every right R-module M and all n ∈ N.
(c) TorR1 (M,E) = 0 for every right R-module M .
(d) TorR1 (R/a, E) = 0 for every right ideal a ⊂ R.
(e) For every short exact sequence of R-modules 0 → N ′ → N → E → 0 and every right R-module

M , the sequence 0 →M ⊗R N ′ →M ⊗R N →M ⊗R E → 0 is exact.

Proof. (a) ⇒ (b) Let M be a right R-module and (P•, ε) be a projective resolution of M . Since
E is flat, it induces an exact sequence → Pn ⊗R E → Pn−1 ⊗R E → . . . → P0 ⊗R E → M ⊗R E → 0,
which shows that TorRn (M,E) = 0 for all n ∈ N.

(b) ⇒ (c) ⇒ (d) Obvious.
(d) ⇒ (a) By Theorem 1.2.7 we must prove : For every finitely generated right ideal, the multipli-

cation homomorphism µEa : a⊗RE → E is a monomorphism. If j = (a ↪→ R denotes the injection, then

µEa = (a⊗RE
j⊗E→ R⊗RE

∼→ E), and thus it suffices that j⊗E is a monomorphism. However, the exact

sequence 0 → a
j
↪→ R→ R/a → 0 induces the exact sequence 0 = TorR1 (R/a, E) → a⊗RE

j⊗E→ R⊗RE,
and thus j ⊗ E is a monomorphism.



1.3. BASICS OF HOMOLOGICAL ALGEBRA 33

(c) ⇒ (e) Let 0 → N ′ → N → E → 0 be an exact sequence of R-modules and M a right R-module.
Then we obtain the exact sequence 0 = TorR1 (M,E) →M ⊗R N ′ →M ⊗R N →M ⊗R E → 0.

(e) ⇒ (c) Since every free R-module is projective and thus flat, there exists an exact sequence of

R-modules 0 → N ′ j→ N → E → 0, where N is flat. If M is a right R-module, we obtain the exact
sequence TorR1 (M,N) → TorR1 (M,E) →M ⊗R N ′ M⊗f→ M ⊗R N →M ⊗R E → 0. The implication (a)
⇒ (c) shows that TorR1 (M,N) = 0, and by assumption M ⊗ f is a monomorphism. Hence the exact
sequence 0 → TorR1 (M,E) → Ker(M ⊗ f) = 0 implies TorR1 (M,E) = 0 �

Definitions and Remarks.
1. Let (K•, d•) be a complex in R-Mod. For n ∈ Z, we set

Kn = K−n and dn = d−n : Kn → Kn+1 .

The sequence K• = (K•, d•) = (dn : Kn → Kn+1)n∈Z is called a cochain complex or cocomplex
in R-Mod. The groups Hn(K•) = H−n(K•) = Ker(dn)/Im(dn−1) are called the cohomology
groups of K•. For a complex morphism f• : K• → K ′

•, we set f• = (fn : Kn → K ′n)n∈Z, where
fn = f−n, and Hn(f•) = H−n(f•) for all n ∈ Z. With these definitions, the cocomplexes in
R-Mod form a category CR, and (Hn : CR → Ab)n∈Z is a sequence of additive functors. A
cocomplex K• is called positive if Kn = 0 for all n < 0.

2. For every exact sequence 0 → K ′• f
•

→ K• g•→ K ′′• → 0 in CR there exists a family of homomor-
phisms (ωn : Hn(K ′′•) → Hn+1(K ′•))n∈Z such that the long cohomology sequence

. . .
ωn−1

→ Hn(K ′•)
Hn(f•)→ Hn(K•)

Hn(g•)→ Hn(K ′′•) ωn

→ Hn+1(K ′•) → . . .

is exact and functorial in the short exact sequence.
3. Let M be an R-module. An injective resolution (I•, d•, ν) of M is a positive cocomplex I• of

injective modules such that Hn(I•) = 0 for all n 6= 0, together with a monomorphism ν : M → I0

such that Im(ν) = Ker(d0). Equivalently, an injective resolution of M is an exact sequence

0 →M
ν→ I0 d0→ I1 d1→ I2 → . . . and induces an isomorphism ν0 : M ∼→ H0(I•) = Ker(d0).

4. Let ϕ : M → M ′ be an R-homomorphism, (I•, ν) an injective resolution of M and (I ′•, ν′) an
injective resolution of M ′. Then there exists up to homotopy a unique morpism f• : I• → I ′•

such that ν′◦ϕ = f0◦ν : M → I ′0.
5. Every R-module M has an injective resolution. If (I•, ν) and I ′•, ν′) are injective resolutions

of M , then there exists a homotopy equivalence f• : I• → I ′• such that f0◦ν = ν′ : M → I ′0.

Definition. We fix for every R-module a projective and an injective resolution. Let M and N be
R-modules.

a. Let (I•, d•, ν) be an injective resolution of N , say 0 → N
ν→ I0 d0→ I1 d1→ . . .. Then

(HomR(M, I•), d•∗) (where dn∗ : HomR(M, In) → HomR(M, In+1) is the homomorphism induced by dn )
is a cocomplex, and we define

′ExtnR(M,N) = Hn(HomR(M, I•) for all n ∈ Z.

If f : M → M ′ is a homomorphism of R-modules, then Hom(f, I•) : HomR(M ′, I•) → HomR(M, I•) is
a cocomplex homomorphism, and we define

′ExtnR(f,N) = Hn(Hom(f, I•)) : ′ExtnR(M ′, N) → ′ExtnR(M,N) for all n ∈ Z .

These settings define a sequence of (contravariant) additive functors (′ExtnR(−, N) : Mod-Rop → Ab)n∈Z,
called the Ext functors in the first variable. By definition, ′ExtRn (−, N) = 0 for n < 0, and the exact

sequence 0 → HomR(M,N) ν∗→ HomR(M, I0)
d0∗→ HomR(M, I1) induces an isomorphism

′Ext0R(M,N) = H0(HomR(M, I•) = Ker(d0
∗) = Im(ν∗)

∼→ HomR(M,N) ,
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which is functorial in M , and we identify ′Ext0R(−, N) = HomR(−, N) by means of this isomorphism.

b. Let (P•, d•, ε) be a projective resolution of M , say . . . → P1
d1→ P0

ε→ M → 0. For n ∈ Z,
we set HomR(P,N)n = HomR(Pn, N) and dn = (dn+1)∗ : HomR(Pn, N) → HomR(Pn+1, N). Then
(HomR(P,N)•, d•) is a cocomplex, and we define

′′ExtnR(M,N) = Hn(HomR(P,N)• .

If f : N → N ′ is a homomorphism of R-modules, then (Hom(Pq, f)q∈Z defines a cocomplex homomor-
phism Hom(P, f)• : : HomR(P,N)• → HomR(P,N ′)•, and we define

′′ExtnR(M,f) = Hn(Hom(P, f)•) : ′′ExtnR(M,N) → ′′ExtnR(M,N ′) for all n ∈ Z .
These settings define a sequence of additive functors (′′ExtnR(M,−) : Mod-R→ Ab)n∈Z, called the Ext
functors in the seccond variable. By definition, ′′ExtRn (M,−) = 0 for n < 0, and the exact sequence

0 → HomR(M,N) ε∗→ HomR(M,P0)
d∗1→ HomR(M,P 1) induces an isomorphism

′′Ext0R(M,N) = H0(HomR(P,N)• = Ker(d0) = Ker(d1
∗)

∼→ HomR(M,N) ,

which is functorial in N , and we identify ′′Ext0R(M,−) = HomR(M,−) by means of this isomorphism.

Theorem and Definition 1.3.7. Let M and N be a R-modules. Up to functorial isomorphisms,
we have ′ExtnR(M,N) = ′′ExtnR(M,N) for all n ∈ Z.
We define Ext = Ext′ = Ext′′.

Proof. (Sketch) Take a projective resolution (P•, ε) of M , an injective resolution (I•, ν) of N and
apply the Spectral Theorem to the double cocomplex built be the groups HomR(Pp, Iq). �

Theorem 1.3.8.
1. For all n ∈ Z, ExtnR : R-Modop×R-Mod → Ab is an additive functor in both variables,

ExtnR(−,−) = 0 if n < 0, and ( up to functorial isomorphisms ) Ext0R(M,N) = HomR(M,N)
for all R-modules M and N .

2. If R is commutative and M, N are R-modules, then the groups ExtnR(M,N) are R-modules, and
they are finitely generated provided that R is noetherian and both M and N are finitely generated.

3. For every short exact sequence 0 →M ′ →M →M ′′ → 0 of R-modules and every R-module N
there is a long exact sequence

0 → HomR(M ′′, N) → HomR(M,N) → HomR(M ′, N) → Ext1R(M ′′, N) → Ext1R(M,N) →
→ Ext1R(M ′, N) → Ext2R(M ′′, N) → Ext2R(M,N) → . . .

which is functorial both in N and the original short exact sequence.
4. For every short exact sequence 0 → N ′ → N → N ′′ → 0 of R-modules and every R-module M

there is a long exact sequence

0 → HomR(M,N ′) → HomR(M,N) → HomR(M,N ′′) → Ext1R(M,N ′) → Ext1R(M,N) →
→ Ext1R(M,N ′′) → Ext2R(M,N ′) → Ext2R(M,N) → . . .

which is functorial both in M and the original short exact sequence.

Proof. 1. and 2. follows by tracing through the definitions.
3. Let 0 →M ′ →M →M ′′ → 0 be a short exact sequence of R-modules and N an R-module. Let

(I•, ν) be an injective resolution ofN . Then 0 → HomR(M ′′, I•) → HomR(M, I•) → HomR(M ′, I•) → 0
is an exact sequence of cocomplexes, and the assertion follows from the long cohomology sequence.

4. Let 0 → N ′ → N → N ′′ → 0 be a short exact sequence of R-modules and M and R-module.
Let (P•, ε) be a projective resolution of M , and observe that HomR(P,−)• = HomR(P•,−). Then
0 → HomR(P,N ′)• → HomR(P,N)• → HomR(P,N ′′)• is an exact sequence of cocomplexes, and the
assertion follows from the long cohomology sequence. �
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Theorem 1.3.9.
1. For an R-module P , the following assertions are equivalent :

(a) P is projective.
(b) ExtnR(P,N) = 0 for all R-modules N and all n ∈ N.
(c) Ext1R(P,N) = 0 for all R-modules N .

2. For an R-module Q, the following assertions are equivalent :
(a) Q is injective.
(b) ExtnR(M,Q) = 0 for all R-modules M and all n ∈ N.
(c) Ext1R(M,Q) = 0 for all R-modules M .

Proof. 1. (a) ⇒ (b) . . . → 0 → 0 d1→ P
idP→ P → 0 is a projective resolution of P . If N is an

R-module, then the exact sequence → 0 = HomR(0, N)
d∗1→ HomR(P,N)

id∗P→ HomR(P,N) → 0 shows
that ExtnR(P,N) = 0 for all n ∈ N.

(b) ⇒ (c) Obvious.
(c) ⇒ (a) We must prove that every R-epimorphism M → P splits. Thus let g : M → P be an R-

epimorphism and M ′ = Ker(g). The exact sequence 0 →M ′ ↪→M
g→ P → 0 yields the exact sequence

. . . → HomR(P,M)
g∗→ HomR(P, P ) → Ext1R(P,M ′) = 0. Hence there exists some ψ ∈ HomR(P,M)

such that g∗(ψ) = g◦ψ = idP . Hence g splits.

2. (a) ⇒ (b) 0 → Q
idQ→ Q

d0→ 0 d1→ 0 → . . . is a injective resolution of P . If N is an R-module, then

the exact sequence 0 → HomR(N,Q)
idQ∗→ HomR(N,Q) → 0 → 0 → . . . shows that ExtnR(P,N) = 0 for

all n ∈ N.
(b) ⇒ (c) Obvious.
(c) ⇒ (a) We must prove that every R-monomorphism Q → M splits. Thus let f : Q → M be

an R-monomorphism and M ′′ = Coker(f). The exact sequence 0 → Q
f→ M → M ′′ → 0 yields the

exact sequence . . . → HomR(M,Q)
f∗→ HomR(Q,Q) → Ext1R(M ′′, Q) = 0. Hence there exists some

varphi ∈ HomR(M,Q) such that f∗(ϕ) = ϕ◦f = idQ. Hence f splits.
�

Remarks. Let T : R-Mod → Ab be an additive exact functor.
1. Let M ′ ⊂M be an R-submodule, and consider the exact sequence 0 →M ′ j→M

π→M/M ′ → 0,
where j = (M ′ ↪→M) is the embedding and π : M →M/M ′ is the residue class homomorphism.

Then the sequence 0 → TM ′ Tj→ TM
Tπ→ T (M/M ′) → 0 is exact and induces isomorphisms

Tj : TM ′ ∼→ Im(Tj) ⊂ TM and (Tπ)∗ : TM/Im(Tj) ∼→ T (M/M ′). We may identify the modules
by means of these isomorphisms and obtain TM ′ ⊂ TM and T (M/M ′) = TM/TM ′.

2. Let f : M →M ′ be a homomorphism of R-modules. Then the exact sequences

0 → Ker(f) ↪→M
f→M ′ and M

f→M ′ →M ′/Im(f) → 0

induce the exact sequences

0 → T (Ker(f)) → TM
Tf→ TM ′ and TM

Tf→ TM ′ → T (M ′/Im(f)) → 0 .

Due to the identifications made above, we obtain Ker(Tf) = T (Ker(f)) and

TM ′/T (Im(f)) = T (M ′/Im(f)) = TM ′/Im(Tf)) , and therefore T (Im(f)) = Im(Tf) .

Conversely, if T is any additive functor preserving kernels and images, then T is exact.
3. Let K• be a complex in R-Mod. Then TK• is a complex, and, due to the above identifications,
Hn(TK•) = THn(K•) for all n ∈ Z.



36 1. MODULE THEORY

Exercise 1. Let R→ A be a flat commutative R-algebra, and let M, N be R-modules.
1. For every n ∈ Z, There is an A-isomorphism A ⊗R TorRn (M,N) ∼→ TorAn (A ⊗R M,A ⊗R N),

functorial in both M and N .
2. Let M be finitely presented [ that means, there is an exact sequence F ′ → F → M → 0 with

finitely generated free R-modules. Then the A-homomorphism

Φ: A⊗R HomR(M,N) → HomA(A⊗RM,A⊗R N)

introduced in Theorem 1.2.6 is an isomorphism.
3. Let R be noetherian, M finitely generated and n ∈ Z. Then there is an A-isomorphism

A⊗R ExtnR(M,N) ∼→ ExtnA(A⊗RM,A⊗R N), functorial in both M and N .



CHAPTER 2

Ring Theory

2.1. Local rings, Quotients, Localization, Prime and primary ideals

Theorem and Definition 2.1.1. Let R 6= 0 be a ring.
A subset T ⊂ R is called multiplicatively closed if 1 ∈ T and TT ⊂ T [ then TT = T ]. A subset

a ⊂ R is called a maximal left ideal [maximal right ideal, maximal ideal ] if it is maximal among those
distinct from R.

1. Let T ⊂ R be a multiplicatively closed subset, a ⊂ R a left ideal [ a right ideal, an ideal ] such
that a ∩ T = ∅, and let Ω be the set of all left ideals [ right ideals, ideals ] c ⊂ R such that a ⊂ c
and c∩T = ∅. Then Ω contains maximal elements, and if R is commutative, then every maximal
element of Ω is a prime ideal.

In particular (T = {1} ): If R 6= 0, then R contains maximal left ideals, maximal right ideals
and maximal ideals.

2. For a subset J ⊂ R, the following assertions are equivalent :
(a) J is the intersection of all maximal left ideals of R.
(b) J is the intersection of all maximal right ideals of R.
(c) J is the greatest left ideal [ right ideal, ideal ] of R such that 1 + J ⊂ R×.

If J satisfies these conditions, then J = J(R) is an ideal of R. It is called the Jacobson radical
of R.

3. The following assertions are equivalent :
(a) R \R× C R.
(b) J(R) = R \R×.
(c) R has a greatest left ideal [ right ideal ] ( namely J(R) ).
(d) R/J(R) is a division ring.
If these conditions are fulfilled, then the ring R is called local. Every division ring is local.
In particular, let R be commutative. Then R is local if and only if R a unique maximal ideal m,
and then m = J(R) = R \R×.

4. An element u ∈ R is called nilpotent if un = 0 for some n ∈ N. If every u ∈ R \R× is nilpotent,
then R is local.

Proof. 1. a ∈ Ω, and the union of every chain in Ω belongs to Ω. By Zorn’s Lemma, Ω has a
maximal element.

If R is commutative and p ∈ Ω is a maximal element, then p is a prime ideal. Indeed, if a, b ∈ R \ p,
then (p + aR)∩ T 6= ∅ and (p + bR)∩ T 6= ∅. Hence there exist elements p, q ∈ p and u, v ∈ R such that
p+ au ∈ T and q + bv ∈ T . But then y = (p+ au)(q + bv) ∈ T , and as y ≡ abuv mod p, it follows that
ab /∈ p.

2. Let L be the set of all maximal left ideals of R, and

J =
⋂

m∈L

m .

We shall prove the following three assertions :

37
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A. J C R.
B. 1 + J ⊂ R×.
C. If a ⊂ R is a left ideal such that 1 + a ⊂ R×, then a ⊂ J .

Suppose that A, B and C hold. Then J is the greatest left ideal (and thus also the greatest ideal) such
that 1 + J ⊂ R×. Hence a) ⇔ c). b) ⇔ c) is proved in the same way.

Proof of A. For m ∈ L, let m∗ = AnnR(R/m) = {x ∈ R | xR ⊂ m}. Then m∗ C R, m∗ ⊂ m, and
we set

J∗ =
⋂

m∈L

m∗ .

Then J∗ C R, J∗ ⊂ J , and we assert that J∗ = J (then A holds).
Assume to the contrary that x ∈ J \ J∗. Then there exist some m ∈ L and u ∈ R such that xu /∈ m,

and consequently Rxu 6⊂ m. Hence m +Rxu = R, and there exist elements y ∈ R and m ∈ m such that
m+ yxu = u, and thus (1− yx)u = m ∈ m.

CASE 1 : R(1− yx) = R. Let v ∈ R be such that v(1− yx) = 1. Then u = v(1− yx)u = vm ∈ m,
and thus ,xu ∈ m, a contradiction.

CASE 2 : R(1−yx) ( R. Then there exists some n ∈ L such that R(1−yx) ⊂ n, hence 1−yx ∈ n ⊂ J ,
and as x ∈ J , this implies that 1 ∈ J , a contradiction.

Proof of B. Let y ∈ J . We assert that R(1 − yx) = R for all x ∈ R. Indeed, assume that there is
some x ∈ R such that R(1− yx) ( R, and let n ∈ L be such that R(1− yx) ⊂ n. Then 1− yx ∈ n ⊂ J ,
and as y ∈ J , we obtain 1 ∈ J , a contradiction.

In particular, R(1 + y) = R, and there exists some u ∈ R such that u(1 + y) = 1. Since u = 1− uy,
we obtain also Ru = R, and there is some v ∈ R such that vu = 1. As u has both a left and a right
inverse, it follows that u ∈ R× and thus 1 + y = u−1 ∈ R×.

Proof of C. Let a ⊂ R be a left ideal such that 1 + a ⊂ R×. We must prove that a ⊂ m for all
m ∈ L. Suppose at the contrary that there is some m ∈ L such that a 6⊂ m. Then a + m = R, hence
a+m = 1 for some a ∈ a and m ∈ m. But then m = 1− a ∈ 1 + a ⊂ R×, a contraction.

3. (a) ⇒ (b) ⇒ (c) If R \ R× is an ideal, then it is the greatest (and thus the only maximal) left
ideal [ right ideal ] of R, and J(R) = R \R×.

(c) ⇒ (d) We must prove that (R/J(R))• is a group, that is, every ξ ∈ (R/J(R))• has a left-inverse.
Let ξ = x+ J(R) ∈ (R/J(R))•, where x ∈ R \ J(R). Then J(R) +Rx = R, and there exist y ∈ J(R) and
u ∈ R such that y + ux = 1. If η = u+ J(R), then ηξ = 1 ∈ R/J(R).

(d) ⇒ (b) It suffices to prove that R \ J(R) ⊂ R×. Indeed, once this is done, then R \ J(R) = R×,
and R \R× = J(R) C R. If a ∈ R \ J(R), then a+ J(R) ∈ (R/J(R))×, and thus there is some u ∈ R such
that au ∈ 1 + J(R) ⊂ R×, and thus a ∈ R×.

4. It suffices to prove that R \ R× ⊂ J(R) (then R \ R× = J(R)). Let u ∈ R \ R× and n ∈ N
minimal such that un = 0. We shall prove that 1 + Ru ⊂ R×, for then u ∈ Ru ⊂ J(R). If a ∈ R,
then y = −au /∈ R× for otherwise yun−1 = −aun = 0 implies un−1 = 0, a contradiction. Hence yk = 0
for some k ∈ N, and 1 = 1 − yk = (1 − y)(1 + y + . . . + yk−1) = (1 + y + . . . + yk−1)(1 − y) implies
1− y = 1 + au ∈ R× �

Example (Origin of the terminology ”local”). Let X be a topological space, x0 ∈ X, U = U(x0)
the system of neighborhoods of x0 in X and Ω the set of all pairs (U, f), where U ∈ U and f : U → R is a
continuous function. For (U1, f1), (U2, f2) ∈ Ω, we define (U1, f1) ∼ (U2, f2) if there exists some U ∈ U
such that U ⊂ U1 ∩ U2 and f1 |U = f2 |U . Then ∼ is an equivalence relation on Ω, and if (U, f) ∈ Ω,
then the equivalence class [U, f ] of (U, f) is called the germ of f in x0. The set O = OX,x0 = Ω/∼ of
all germs of continuous functions in x0 is made into a ring by means of [U1, f1] +̇ [U2, f2] = [U0, f0] if
f1 |U +̇ f2 |U = f0 |U for some U ∈ U such that U ⊂ U0 ∩ U1 ∩ U2. The map

ε : O → R , defined by ε([U, f ]) = f(x0) ,
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is a ring epimorphism, and O \ Ker(ε) = {[U, f ] ∈ O | f(x0) 6= 0 } = O× [ indeed, if [U, f ] ∈ O and
f(x0) 6= 0, then there is some U0 ∈ U such that U0 ⊂ U and f(x) 6= 0 for all x ∈ U0, which implies
[U, f ] · [U0, 1/f ] = 1O ]. Hence Ker(ε) = O \ O× C O, and thus O is local.

Theorem 2.1.2 (Nakayama’s Lemma). Let R 6= 0 be a ring, M an R-module and a ⊂ J(R) and
ideal of R.

1. Let M ′ ⊂ M be an R-submodule such that M/M ′ is finitely generated. If M = M ′ + aM , then
M = M ′. In particular (M ′ = 0 ) : If M is finitely generated and M = aM , then M = 0.

2. Let M be finitely generated, n ∈ N and u1, . . . , un ∈M .
(a) M = R〈u1, . . . , un〉 if and only if M/aM = R/a〈u1 + aM, . . . , un + aM〉.
(b) Suppose that M is finitely presented and u1+aM, . . . , un+aM is an R/a-basis of M/aM . If

the multiplication homomorphism µa : a⊗RM →M is a monomorphism, then (u1, . . . , un)
is an R-basis of M .

Proof. 1. Assume first that M ′ = 0, and let (u1, . . . , un) be a minimal system of generators of M .
We assert that aM = {a1u1 + . . .+ anun | a1, . . . , an ∈ a}.

Indeed, ⊃ follows by the very definition. Conversely, if x ∈ aM , then x = c1m1 + . . .+ ckmk, where
k ∈ N, c1, . . . , ck ∈ a and m1, . . . ,mk ∈M . For j ∈ [1, k], there exist bj,1, . . . , bj,n ∈ R such that

mj =
n∑
ν=1

bj,νuν , and then x =
n∑
ν=1

aνuν , where aν =
k∑
i=1

cibi,ν ∈ a for all ν ∈ [1, n].

In particular, M = aM implies u1 = a1u1 + . . . + anun for some a1, . . . , an ∈ a. Hence it follows
that (1 − a1)u1 = a2u2 + . . . + anun, and since 1 − a1 ∈ 1 + a ⊂ R×, we obtain u1 ∈ R〈u2, . . . , un〉 and
M = R〈u2, . . . , un〉, which contradicts the assumption that (u1, . . . , un) is a minimal system of generators.

2. (a) If M = R〈u1, . . . , un〉, then M/aM = R〈u1 + aM, . . . , un+ aM〉 = R/a〈u1 + aM, . . . , un+ aM〉.
Conversely, assume that M/aM = R/a〈u1 + aM, . . . , un + aM〉 = R〈u1 + aM, . . . , un + aM〉, and set
M ′ = R〈u1, . . . , un〉. Then (M ′+aM)/aM = R〈u1 +aM, . . . , un+aM〉 = M/aM , hence M ′+aM = M ,
and thus M ′ = M by 1.

(b) By assumption, M/aM = R/a〈u1 + aM, . . . , un + aM〉, and thus M = R〈u1, . . . , un〉 by (a).
Let F be a free R-module with basis (e1, . . . , en), let p : F → M be the unique epimorphism satisfying
p(ei) = ui for all i ∈ [1, n], K = Ker(p) and j = (K ↪→ F ). We shall prove that K = 0 (then p is an
isomorphism and M is free). F/aF is a free R/a-module with basis (e1 + aF, . . . , en + aF ), and therefore
p induces an isomorphism p∗ : F/aF → M/aM satisfying p∗(ei + aF ) = ui + aM for all i ∈ [1, n]. We
obtain the following commutative diagram with exact rows.

a⊗R K
a⊗j−−−−→ a⊗R F

a⊗p−−−−→ a⊗RM −−−−→ 0

µK
a

y µF
a

y µM
a

y
0 −−−−→ K

j−−−−→ F
p−−−−→ M −−−−→ 0 .

By the Snake Lemma, we obtain an exact sequence

0 = Ker(µMa ) → Coker(µKa ) = K/aK
j∗→ Coker(µFa ) = F/aF

p∗→ Coker(µMa ) = M/aM → 0 ,

and as p∗ is an isomorphism, this implies K/aK = 0 and thus K = aK. Since M is finitely presented,
the Corollary to Theorem 1.1.4 implies that K is finitely generated, and therefore K = 0. �

Corollary. Let R be a local ring, m = J(R) = R \R× and M an R-module.
1. Let M be finitely generated, n ∈ N and u1, . . . , un ∈M . Then (u1, . . . , un) is a minimal system

of generators of M if and only if (u1 + mM, . . . , un + mM) is an R/m-basis of M/mM . In
particular, any two minimal systems of generators of M have the same length.
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2. Let M be finitely presented, u1, . . . , un ∈M , and assume that the multiplication homomorphism
µMm : m⊗RM

∼→ mM is an monomorphism. Then (u1, . . . , un) is an R-basis of M if and only
if (u1 + mM, . . . , un + mM) is an R/m-basis of M/mM .

3. Consider the following assertions :
(a) M is free.
(b) M is projective.
(c) M is flat.
(d) The multiplication homomorphism µMm : m⊗RM →M is a monomorphism.
Then (a) ⇒ (b) ⇒ (c) ⇒ (d), and if M is finitely presented, then (d) ⇒ (a).

Proof. 1. By Theorem 2.1.2, (u1, . . . , un) is a minimal system of generators of M if and only if
(u1 + mM, . . . , un + mM) is a minimal system of generators of the R/m-module M/mM , but the latter
holds if and only if (u1 +mM, . . . , un+mM) is an R/m-basis of M/mM , since M/mM is a vector space
over R/m.

2. Obvious.
3. (a) ⇒ (b) ⇒ (c) Obvious.
(c) ⇒ (d) If i = (m ↪→ R), then µMm : m⊗RM

i⊗M→ R⊗RM
∼→M is a monomorphism, since i⊗M

is a monomorphism.
(d) ⇒ (a) By Theorem 2.1.2, since M/mM is a vector space over R/m. �

Definitions and Remarks. Let R be a ring and M an R-module.
1. M is called indecomposable if M 6= 0, and M = M1+̇M2 for some submodules M1, M2 ⊂ M

implies M1 = 0 or M2 = 0.
2. We call l(M) = sup{n ∈ N0 | there exist submodules M = M0 ) M1 ) . . . ) Mn = 0 } the

length of M . By definition, l(M) ∈ N0 ∪ {∞}, and if l(M) < ∞, then M is called a module of
finite length. l(M) = 0 if and only if M = 0, and M is called simple if l(M) = 1 [ equivalently,
M ∼= R/a for some maximal left ideal a ⊂ R ].
Example : Let K be a field, R a finite-dimensional K-algebra and M a finitely generated R-
module. Then l(M) < ∞ [ indeed, M is a finite-dimensional vector space over K, and every
R-submodule of M is a K-subspace ].

3. A finite sequence of submodules M = M0 ) M1 ) . . . ) Mn = 0 is called a composition series
if Mi/Mi−1 is simple for all i ∈ [1, n]. The following assertions are equivalent:
• M is both noetherian and artinian (that is, it satisfies the ACC and the DCC on submodules).
• M possesses a composition series.
• M is a module of finite length.

4. (Theorem or Jordan-Hölder) If M = M0 ) M1 ) . . . ) Mn = 0 and M = M ′
0 ) M ′

1 ) . . . ) M ′
m

are two composition series, then m = n = l(M), and there is some permutation σ ∈ Sn such
that M ′

i−1/M
′
i
∼= Mσ(i−1)/Mσ(i) for all i ∈ [1, n] .

Theorem 2.1.3. Let R be a ring, M 6= 0 an R-module and E = EndR(M).
1. (Fitting’s Lemma) If l(M) < ∞ and f ∈ E, then M = Ker(fn) +̇ Im(fn) for all sufficiently

large n ∈ N.
2. If M is indecomposable and l(M) <∞, then E is a local ring.
3. (Krull-Schmidt Theorem)

(a) Suppose that M is either artinian or noetherian. Then there exists some r ∈ N and inde-
composable submodules M1, . . . ,Mr ⊂M such that M = M1 +̇M2 +̇ . . . +̇Mr into .
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(b) Suppose that l(M) < ∞, and M = M1 +̇M2 +̇ . . . +̇Mr = N1 +̇N2 +̇ . . . +̇Ns, where
r, s ∈ N, and M1, . . . ,Mr, N1, . . . Ns ⊂ M are indecomposable submodules. Then r = s,
and there is a permutation σ ∈ Sr such that Mi

∼= Nσ(i) for all i ∈ [1, r].

Proof. 1. Since M ⊃ Im(f) ⊃ Im(f2) ⊃ . . ., 0 ⊂ Ker(f) ⊂ Ker(f2) ⊂ . . . and M satisfies both
the ACC and the DCC, there exists some m ∈ N such that Im(fn) = Im(fm) and Ker(fn) = Ker(fm)
for all n ≥ m. Assume now that n ≥ m, and let c ∈ M . Then fn(c) ∈ Im(fn) = Im(f2n), and therefore
fn(c) = f2n(d) for some d ∈M . Since fn(c−fn(d)) = fn(c)−f2n(d) = 0, we get c = (c−fn(d))+fn(d) ∈
Ker(fn) + Im(fn). If x ∈ Ker(fn) ∩ Im(fn), then x = fn(y) for some y ∈ M . But 0 = fn(x) = f2n(y)
implies y ∈ Ker(f2n) = Ker(fn), and therefore x = 0. Hence M = Ker(fn) +̇ Im(fn).

2. Let M be indecomposable and l(M) < ∞. By Theorem 2.1.1.4 it suffices to prove that every
f ∈ E \ E× is nilpotent. Thus let f ∈ E \ E× and n ∈ N such tht M = Ker(fn) +̇ Im(fn). Then either
Ker(fn) = 0 or Im(fn)0. If Im(fn) = 0, then fn = 0. If Ker(fn) = 0, then Im(fn) = M , hence fn

and thus also f is an isomorphism, which implies f ∈ E×.
3. (a) Assume the contrary. We construct two sequences of R-submodules (Mi)i≥0, (M ′

i)i≥1 of M
such that M0 = M , and for all i ≥ 0 the following assertions hold : Mi is not a direct sum of inde-
composable submodules, Mi = Mi+1 +̇M ′

i+1, Mi+1 6= 0 and M ′
i+1 6= 0. We proceed recursively. Set

M0 = M , and suppose that i ≥ 0 and Mi ⊂M is not a direct sum of indecomposable submodules. Then
Mi = Mi+1 +̇M ′

i+1, whereMi+1 6= 0, M ′
i+1 6= 0 andMi+1 is not a direct sum of indecomposable submod-

ules. If i ≥ 0, then it follows by an easy induction on j that Mi = Mi+j +̇M ′
i+j +̇M ′

i+j−1 +̇ . . . +̇M ′
i+1.

Hence we obtain M ) M1 ) M2 ) . . . and M ′
1 ( M ′

1 +̇M ′
2 ( M ′

1 +̇M ′
2 +̇M ′

3 ( . . ., contradicting the
assumption that M is either noetherian or artinian.

(b) We may assume that r ≥ s, and we proceed by induction on s. If s = 1, thenM is indecomposable
and r = 1.

s ≥ 2, s − 1 → s : For i ∈ [1, r], let pi ∈ HomR(M,Mi) such that pi |Mi = idMi and pi |Mj = 0
for all j ∈ [1, r] \ {i}. For i ∈ [1, s] let qi ∈ HomR(M,Ni) such that qi |Ni = idNi and qi |Nj = 0 for all
j ∈ [1, s] \ {i}. Then

idM =
s∑
i=1

qi , hence p1 =
s∑
i=1

p1◦qi and idM1 = p1 |M1 =
s∑
i=1

p1◦qi |M1

Since E1 = EndR(M1) is local, E1 \ E×1 ⊂ E1 is an ideal, and thus there is some i ∈ [1, s] such that
p1◦qi |M1 ∈ E×1 , say i = 1. Then p1◦q1 |M1 : M1 →M1 is an isomorphism, hence q1 |M1 : M1 → N1 is a
monomorphism, g = (p1◦q1 |M1)−1◦p1 |N1 : N1 →M1 is a homomorphism, and g◦q1 |M1 = idM1 . Hence
q1 |M1 : M1 → N1 splits, and therefore q1(M1) ⊂+N1. Since q1(M1) 6= 0 and N1 is indecomposable, it
follows that q1(M1) = N1, and q1 |M1 : M1 → N1 is an isomorphism. Now we assert :

A. M = M1 +̇N2 +̇ . . . +̇Ns.

Proof of A. We first show that N1 ⊂ M1 + N2 + . . . + Ns. If a ∈ N1 = q1(M1), then a = q1(b)
for some b ∈ M1, and q1(a − b) = q1(a) − q1(b) = a − a = 0. Hence a − b ∈ Ker(q1) = N2 + . . . + Ns,
and therefore a = b+ (a− b) ∈ M1 +N2 + . . .+Ns. Hence it follows that M = M1 + (N2 +̇ . . . +̇Ns),
and we assert that the sum is direct. Indeed, if a ∈ M1 ∩ (N2 + . . . + Ns), then q1(a) ∈ N1, and since
q1 |N2 + . . .+Ns = 0, we obtain q1(a) = 0 and therefore a = 0, since q1 |M1 is injective. �[A]

Since M = M1 +̇M2 +̇ . . . +̇Mr and M = M1 +̇N2 +̇ . . . +̇Ns we obtain

M/M1
∼= M2 +̇ . . . +̇Mr

∼= N2 +̇ . . . +̇Ns , and let Φ: M2 +̇ . . . +̇Mr
∼→ N2 +̇ . . . +̇Ns

be an isomorphism. Then Φ(M2) +̇ . . . +̇Φ(Mr) = N2 +̇ . . . +̇Ns, and the Theorem follows from the
induction hypothesis. �

Definition (Power series rings). Let R be a ring, r ∈ N and (e1, . . . ,er) the canonical basis of
Zr. We denote by R [[r]] the set of all maps f : Nr0 → R and by R[r] the set of all f ∈ R [[r]] satisfying
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f(n) = 0 for almost all n ∈ Nr0. Then R[r] ⊂ R [[r]] are R-modules under pointwise addition and scalar
multiplication. We define a multiplication on R [[r]] by

(f · g)(k) =
∑

(m,n)∈Nr
0×Nr

0
m+n=k

f(m)g(n) .

Then R [[r]] is a ring, and R[r] ⊂ R [[r]] is a subring. We define ν : R→ R[r] and µ : R [[r]] → R by

ν(c)(k) = c δk,0 =

{
c if k = 0 ,
0 otherwise,

and µ(f) = f(0) for all c ∈ R and f ∈ R [[r]] .

Then µ : R [[r [[ → R is a ring epimorphism, called augmentation, ν : R→ R[r] is a ring monomorphism,
and we identify R with ν(R). Then R ⊂ R[r] ⊂ R [[r]] are subrings. For i ∈ [1, r], we define Xi ∈ R[r] by
Xi(k) = δk,ei

, and for n = (n1, . . . , nr) ∈ Nr0 we set Xn = Xn1
1 · . . . ·Xnr

r . Then it follows (by an easy
induction on n1 + . . .+nr) that Xn(k) = δn,k for all n, k ∈ Nr0, Xn ·Xm = Xn+m for all m, n ∈ Nr0,
and

f =
∑

k∈Nr
0

f(k)Xk for all f ∈ R [[r]]

(note that pointwise this formally infinite sum reduces to a single summand). Hence every f ∈ R [[r]] has
a unique representation

f =
∑

(k1,...,kr)∈Nr
0

fk1,...,kr
Xk1

1 · . . . ·Xkr
r

with coefficients fk1,...,kr
∈ R, and we obtain f ∈ R[r] if and only if fk1,...,kr

= 0 for almost all
(k1, . . . , kr) ∈ Nr0. In particular, R[r] = R[X1, . . . , Xr] is a polynomial ring in (X1, . . . , Xr) over R.

If r, s ∈ N, then there is an isomorphism Φ: (R [[r]]) [[s]] ∼→ R [[r+s]], given by Φ(f)(m,n) = f(m)(n)
for all m ∈ Nr0 and n ∈ Ns0. It satisfies Φ(R[r])[s] = R[r+s], and we identify (R [[r]]) [[s]] = R [[r+s]] and
(R[r])[s] = R[r+s] by means of Φ.

We call R [[X1, . . . , Xr]] = R [[r]] the power series ring or ring of formal power series in (X1, . . . , Xr)
over R. If r ≥ 2, then it follows that R [[X1, . . . , Xr]] = R [[X1, . . . , Xr−1]] [[Xr]] ⊃ R [[X1, . . . , Xr−1]],
R[X1, . . . , Xr] = R[X1, . . . , Xr−1][Xr] ⊃ R[X1, . . . , Xr−1], and the augmentation maps behave transi-
tively. Explicitly, if

µ′ : R [[X1, . . . , Xr+1]] = R [[X1, . . . , Xr]] [[Xr+1]] → R [[X1, . . . , Xr]] and µ : R [[X1, . . . , Xr]] → R

are the (partial) augmentation maps, then µ◦µ′ : R [[X1, . . . , Xr+1]] → R is the (total) augmentation
map.

In particular, if r = 1 and X = X1, then every f ∈ R [[X]] has a unique representation

f =
∞∑
n=0

fnX
n , where fn ∈ R for all n ≥ 0,

and f ∈ R[X] if and only if fn = 0 for almost all n ≥ 0. If f ∈ R [[X]] is as above, then µ(f) = f0, and
we call

ord(f) = inf{n ∈ N0 : fn 6= 0} ∈ N0 ∪ {∞} the order of f.

If f 6= 0 then f has a unique representation f = Xord(f)f1, where f1 ∈ R [[X]] and µ(f1) 6= 0. If
f, g ∈ R [[X]], then ord(f) = ∞ if and only if f = 0, ord(f + g) ≥ min{ord(f), ord(g)} with equality if
ord(f) 6= ord(g), and ord(fg) ≥ ord(f) + ord(g) with equality if R has no zero divisors. In particular, if
R has no zero divisors, the same is true for R [[X]].

For f, g ∈ R [[X]], we define δ(f, g) = e−ord(f−g) (with e−∞ = 0). Then δ is a metric on R [[X]]. If
f ∈ R [[X]], then ord(f) = − log δ(f, 0) (where − log 0 = ∞), and the sets

f +XnR [[X]] = {g ∈ R [[X]] | ord(g − f) ≥ n} = {g ∈ R [[X]] | δ(g, f) ≤ e−n} (for n ∈ N )
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are a fundamental system of neighborhoods of f . Consequently, if

f =
∞∑
n=0

fnX
n ∈ R [[X]] , then f = lim

k→∞

k∑
n=0

fnX
n .

If R has no zero divisors, then it follows by induction that, for every r ∈ N, the power series ring
R [[X1, . . . , Xr]] has no zero divisors. In particular, if K is a field, then K [[X1, . . . , Xr]] is a domain. We
denote by K((X1, . . . , Xr)) the quotient field of K [[X1, . . . , Xr]] and call it the field of formal Laurent
series in (X1, . . . , Xr) over K.

Theorem 2.1.4. Let R be a ring, r ∈ N, R [[X1, . . . , Xr]] the power series ring in (X1, . . . , Xr) over
R, µ : R [[X1, . . . , Xr]] → R the augmentation map and f ∈ R [[X1, . . . , Xr]].

1. f ∈ R [[X1, . . . , Xr]]× if and only if µ(f) ∈ R×.
2. If R is local with maximal ideal m, then R [[X1, . . . , Xr]] is local with maximal ideal M = µ−1(m).

In particular, if r = 1 and X = X1, then

f =
∞∑
n=0

fnX
n ∈ R [[X]]× if and only if f0 ∈ R× ,

and if R is a division ring, then every f ∈ R [[X]] has a unique representation f = Xnh, where
n ∈ N0 and h ∈ R [[X]]×.

Proof. 1. If f ∈ R [[X1, . . . , Xr]]×, the µ(f) ∈ R×, since µ is a ring homomorphism. For the
converse, we use induction on r.

r = 1, X = X1 : Assume that

f =
∞∑
n=0

fnX
n ∈ R [[X]] and f0 = µ(f) ∈ R×.

We define a sequence (gn)n≥0 in R recursively by

g0 = f−1
0 , gn = −f−1

0

n∑
ν=1

fνgn−ν for all n ≥ 1 , and set g =
∞∑
n=0

gnX
n

Then

fg =
∞∑
n=0

(
f0gn +

n∑
ν=1

fνgn−ν

)
Xn = 1 .

Hence f has a right-inverse, and, by the same reason, f has a left-inverse. Hence f ∈ R [[X]]×.
r ≥ 2, r − 1 → r : By the induction hypothesis, R′ = R [[X1, . . . , Xr−1]] is local with maximal ideal

M′ = µ′−1(m), where µ′ : R′ → R denotes the augmentation map. Hence R = R [[X1, . . . , Xr]] = R′ [[Xr]]
is local with maximal ideal M = µ̃−1(M′), where µ̃ : R′ [[Xn]] → R′ denotes the augmentation. Since
µ = µ′◦µ̃, it follows that M = µ−1(m).

2. R [[X1, . . . , Xr]] \R [[X1, . . . , Xr]]× = {f ∈ R [[X1, . . . Xr]] | µ(f) ∈ R \R×} = µ−1(m) is an ideal of
R [[X1, . . . , Xr]]. �

Theorem 2.1.5. Let R be a commutative ring.
1. (Cohen’s Theorem) If every prime ideal of R is finitely generated, then R is noetherian.
2. Let R [[X]] be the power series ring, µ : R [[X]] → R the augmentation, p ⊂ R [[X]] a prime ideal,
m ∈ N and f1, . . . , fm ∈ p. Then µ(p) ⊂ R is an ideal, and if µ(p) = R〈µ(f1), . . . , µ(fm)〉, then

p =

{
R [[X]]〈f1, . . . , fm〉 if X /∈ p ,

R [[X]]〈µ(f1), . . . , µ(fm), X〉 if X ∈ p .

3. Let r ∈ N. Then the power series ring R [[X1, . . . , Xn]] is noetherian if and only if R is noetherian.
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Proof. 1. Suppose that every prime ideal of R is finitely generated, but R is not noetherian. Let
Ω be the set of all not finitely generated ideals of R. Then Ω 6= ∅, and the union of every chain in Ω
belongs to Ω. By Zorn’s Lemma, Ω has a maximal element q, and we shall prove that q ⊂ R is a prime
ideal (which contradicts our assumption that every prime ideal is finitely generated).

Assume to the contrary that there exist a, b ∈ R \ q such that ab ∈ q. Then q ( q + aR C R and
q ( q + bR ⊂ (q :aR) = {x ∈ R | xa ∈ q}. Hence the ideals q + aR and (q :aR) are finitely generated,
say q + aR = R〈q1 + ax1, . . . , qn + axn〉 and (q : aR) = R〈z1, . . . , zm〉, where m, n ∈ N, q1, . . . , qn ∈ q
and x1, . . . , xn, z1, . . . , zm ∈ R. Then R〈q1, . . . , qn, az1, . . . , azm〉 ⊂ q, and we assert that equality holds
(this contradicts the fact that q ∈ Ω is not finitely generated). Indeed, if z ∈ q ⊂ q+ aR, then there exist
b1, . . . , bn ∈ R such that

z =
n∑
ν=1

bν(qν + axν) =
n∑
ν=1

bνqν + a
n∑
ν=1

bνxν , and therefore a
n∑
ν=1

bνxν = z −
n∑
ν=1

bνqν ∈ q .

Hence
n∑
ν=1

bνxν ∈ (q :aR) = R〈z1, . . . , zm〉 , and z =
n∑
ν=1

bνqν + a
n∑
ν=1

bνxν ∈ R〈q1, . . . , qn, az1, . . . , azm〉 .

2. µ(p) ⊂ R is an ideal, since µ is an epimorphism. Suppose that µ(p) = R〈µ(f1), . . . , µ(fm)〉, and
set

fj =
∑
n≥0

fj,nX
n , where fj,n ∈ R for all j ∈ [1,m] and n ≥ 0

CASE 1 : X ∈ p. Obviously R [[X]]〈µ(f1), . . . , µ(fm), X〉 ⊂ p, since fj ∈ µ(fj) + XR [[X]] for all
j ∈ [1,m]. Conversely, if h ∈ p, then h = µ(h) + Xh1 for some h1 ∈ R [[X]], and therefore we obtain
h ∈ µ(p) +XR [[X]] = R [[X]]〈µ(f1), . . . , µ(fm), X〉.

CASE 2 : X /∈ p. It suffices to prove that p ⊂ R [[X]]〈f1, . . . , fm〉. Let h ∈ p. For j ∈ [1,m] and n ≥ 0,
we construct elements gj,n ∈ R such that, for all n ≥ 0,

h−
m∑
j=1

(n−1∑
ν=0

gj,νX
ν
)
fj ∈ XnR [[X]] , and for j ∈ [1,m] s we set gj =

∑
ν≥0

gj,νX
ν ∈ R [[X]] .

Then it follows that

h−
m∑
j=1

gjfj ∈
⋂
n≥0

XnR [[X]] = 0 , and therefore h ∈ R [[X]]〈f1, . . . , fm〉 .

We perform our construction by recursion on n. For n = 0, there is nothing to do. Thus suppose that
n ≥ 0, and there exist elements gj,ν for all j ∈ [1,m] and ν ∈ [0, n− 1] such that

h−
m∑
j=1

(n−1∑
ν=0

gj,νX
ν
)
fj = Xnq , where q =

∑
ν≥0

qνX
ν ∈ R [[X]] .

Then Xnq ∈ p, and as X /∈ p, it follows that q ∈ p and q0 = µ(q) ∈ R〈µ(f1), . . . , µ(fm)〉. Hence there
exist g1,n, . . . , gm,n ∈ R such that

q0 = −
m∑
j=1

gj,nµ(fj) = −
m∑
j=1

gj,nfj,0 ,

and we obtain

h−
m∑
j=1

( n∑
ν=0

gj,νX
ν
)
fj = Xn

∑
ν≥0

qνX
ν +Xn

n∑
j=1

gj,nfj = Xn
(
q0 +

n∑
j=1

gj,nfj,0

)
+Xn+1g∗ ∈ Xn+1g∗

for some g∗ ∈ R [[X]], which completes the construction.
3. Since R [[X1, . . . , Xr]] = R [[X1, . . . , Xr−1]] [[Xr]] if r ≥ 2, the assertion follows by induction on r,

once we have given the proof for r = 1. Thus let R [[X]] be a power series ring. If R [[X]] is noetherian,
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then R is noetherian, since µ : R [[X]] → R is an epimorphism. Thus suppose that R is noetherian. By
2., every prime ideal of R [[X]] is finitely generated, and thus R [[X]] is noetherian by 1. �

Definitions and Remarks (Recapitulation: Quotients). Let R be a commutative ring, T ⊂ R a
multiplicatively closed subset and M an R-module.

1. On T×M we define an equivalence relation by (t, x) ∼ (t′, x′) if there exists some s ∈ T such
that st′x = stx′. We set T−1M = T×M/ ∼, denote by x

t ∈ T−1M the equivalence class of
(t, x) and call T−1M the quotient module of M with T . By definition, if x ∈ M and t ∈ T ,
then

x

t
=
sx

st
for all s ∈ T , and

x

t
=

0
1

if and only if sx = 0 for some s ∈ T .

For any n ∈ N and z1, . . . , zn ∈ T−1M , there exist x1, . . . , xn ∈ M and t ∈ T such that zi = xi

t
for all i ∈ [1, n].

2. We make T−1M into an abelian group by means of
x

t
+
x′

t′
=
t′x+ tx′

tt′
check details! ,

and we define the quotient homomorphism j : M → T−1M by j(x) = x
1 for all x ∈ M . By

definition,

Ker(j) = {x ∈M | xt = 0 for some t ∈ T } = {x ∈M | T ∩AnnR(x) 6= ∅} .

If 0 ∈ T , then T−1M = 0. If M is torsion-free and 0 /∈ T , then j : M → T−1M is a monomor-
phism.

If M ′ ⊂M is an R-submodule, then T−1M ′ ⊂ T−1M is a subgroup [ indeed, if ∼′ denotes
the defining equivalence relation on T ×M ′, then ∼′ = ∼ ∩(T ×M ′), and therefore we may
identify, for every (t, x) ∈ T ×M ′, the equivalence class x

t ∈ M ′ with the equivalence class
x
t ∈M ].

3. Now we consider the special case M = R and definiere a multiplication on T−1R by
a

t

a′

t′
=
aa′

tt′
.

With this definition, T−1R is a commutative ring, called the quotient ring of R with respect
to T , and the quotient homomorphism j : R → T−1R is a ring homomorphism. Consequently
T−1R is an R-algebra.

Let z(R) be the set of zero divisors of R. Then R\z(R) is a multiplicatively closes subset of
R, and q(R) = (R\z(R))−1R is called the total quotient ring of R. The quotient homomorphism
j : R → q(R) is a monomorphism, we identify R with j(R) ( we set x = x

1 for every x ∈ R ),
and for every multiplicatively closed subset T ⊂ R \ z(R), we may assume that T−1R ⊂ q(R).
If R is a domain, then q(R) is just the usual quotient field. If T ⊂ R×, then T−1R = R and
T−1M = M for every R-module M .

4. Let M be an R-module. Then T−1M is a T−1R-module by means of
a

t

x

t′
=
ax

tt′
for all a ∈ R , x ∈M and t, t′ ∈ T . Check details!

If j : M → T−1M is the quotient homomorphism, and M = R〈E〉, then T−1M = T−1R〈j(E)〉.
In particular, if M is a finitely generated R-module, then T−1M is a finitely generated T−1R-
module.

If M ′ ⊂M is an R-submodule, then T−1M ′ ⊂ T−1M is a T−1R-submodule, and the map

Φ: T−1M/T−1M ′ → T−1(M/M ′) , defined by Φ
(x
t

+ T−1M ′
)

=
x+M ′

t

for all x ∈M and t ∈ T , is a T−1R-module isomorphism by which we usually identify these two
modules : T−1(M/M ′) = T−1M/T−1M ′.
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In particular, T−1M is also an R-module by means of the quotient homomorphism j : R→ T−1R.
For all r ∈ R, m ∈M and t ∈ T , we have

r
m

t
=
r

1
m

t
=
rm

t
.

5. Let f : M → M ′ be a homomorphism of R-modules. Then there is a unique homomorphism
T−1f : T−1M → T−1M ′ of T−1R-modules such that

T−1f
(x
t

)
=
f(x)
t

for all x ∈M and t ∈ T ,

It satisfies T−1idM = idT−1M , T−1(g + f) = T−1g + T−1f if g : M → M ′ is another R-
homomorphism, T−1(g◦f) = T−1g◦T−1f if g : M ′ →M ′′ is an R-homomorphism,

Ker(T−1f) = T−1Ker(f) ⊂ T−1M and Im(T−1f) = T−1Im(f) ⊂M ′ .

In particular, the assignment (M 7→ T−1M, f 7→ T−1f) defines an additive and exact functor
R-Mod → T−1R-Mod (it carries exact sequences into exact sequences).

6. Let ε : R→ A be an R-algebra. On T−1A, we define a multiplication by
a

t

a′

t′
=
aa′

tt′
for all a, a′ ∈ A and t, t′ ∈ T .

Then T−1A is a T−1R-algebra with structural homomorphism T−1ε : T−1R→ T−1A.
If A is commutative, then ε(T ) ⊂ A is multiplicatively closed, and if N is an A-module, then N
is an R-module, and T−1N = ε(T )−1N .

Theorem 2.1.6. Let R be a commutative ring, T ⊂ R a multiplicatively closed subset and M an
R-module. Then there is a T−1R-isomorphism

Φ: T−1R⊗RM
∼→ T−1M such that Φ

(r
t
⊗m

)
=
rm

t
for all r ∈ R , m ∈M and t ∈ T .

It is functorial in M , and if M is an R-algebra, then Φ is an isomorphism of T−1R-algebras. In
particular, T−1R is a flat R-algebra.

Proof. We define F : T−1R×M → T−1M by

F
(r
t
,m

)
=
rm

t
for all r ∈ R, t ∈ T, m ∈M ,

and we assert that this definition does not depend on representatives, that means, r
t = r′

t′ implies
rm
t = r′m

t′ for all r, r′ ∈ R, t, t′ ∈ T and m ∈ M . Indeed, if r
t = r′

t′ , then st′r = str′ for some s ∈ T ,
hence st′rm = str′m, and therefore rm

t = r′m
t′ . Obviously, F is R-bilinear, and thus it induces a group

homomorphism Φ: T−1R⊗RM → T−1M such that Φ
(
r
t ⊗m

)
= rm

t for all r ∈ R, m ∈M and t ∈ T .

It is easily checked that Φ is in fact a T−1R-homomorphism, that it is functorial in M , and that it is a
homomorphism of T−1-algebras if M is an R-algebra.

To prove that Φ is bijective, define Ψ: T−1M → T−1R ⊗M by Ψ(mt ) = 1
t ⊗m for all m ∈ M and

t ∈ T , and we assert that this definition does not depend on representatives, that means, mt = m′

t′ implies
frac1t ⊗m = 1

t′ ⊗m′ for all m, m′ ∈ M and t, t′ ∈ T . Indeed, if m
t = m′

t′ , then st′m = stm′ for some
s ∈ T , and we obtain

1
t
⊗m =

1
stt′

st′ ⊗m =
1
stt′

⊗ st′m =
1
stt′

⊗ stm′ =
1
stt′

st⊗m′ =
1
t′
⊗m′ .

If M ′ →M →M ′′ is an exact sequence in R-Mod, then the commutative diagram

T−1M ′ −−−−→ T−1M −−−−→ T−1M ′′

∼=
y y∼= y∼=

T−1R⊗RM ′ −−−−→ T−1R⊗RM −−−−→ T−1R⊗RM ′′
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shows that the sequence T−1R⊗RM ′ → T−1R⊗RM → T−1R⊗RM ′′ is also exact. Hence T−1R is flat
over R. �

Definition. Let R be a commutative ring. We denote by spec(R) be the set of all prime ideals and
by max(R) the set of all maximal ideals of R. Note that max(R) ⊂ spec(R), and R is local if and only
if |max(R)| = 1 [ then max(R) = {R \R×} ].

If p ∈ spec(R), then R \ p ⊂ R is a multiplicatively closed subset, and for an R-module M we call
Mp = (R \ p)−1M the localization of M at p. In particular, if R is a domain, then 0 ∈ spec(R), and
R0 = q(R). For an R-module homomorphism f : M → N , we set fp = (R \ p)−1f : Mp → Np.

Remark and Definition. Let ε : R→ A be an R-algebra. For an ideal a ⊂ R, we call aA = A〈ε(a)〉
the extension of a to A, and for an ideal A ⊂ A we call ε−1(A) ⊂ R the contraction of A to R.
Obviously, a ⊂ ε−1(aA) and ε−1(A)A ⊂ A for all ideals a C R and A C A, and the maps

{aA | a C R} � {ε−1A | A C A} , given by A 7→ ε−1A and a 7→ aA ,

are mutually inverse bijections from the set of extension ideals in A onto the set of contraction ideals of
R. If P ∈ spec(A), then ε−1(P) ∈ spec(R).

Theorem 2.1.7. Let T ⊂ R be a multiplicatively closed subset and j : R → T−1R the quotient
homomorphism.

1. If a C R, then aT−1R = T−1a, and T−1a = T−1R if and only if T ∩ a 6= ∅.
2. If A C T−1R, then A = T−1j−1(A). In particular, {T−1a | a C R} is the set of all ideals of
T−1R, and if R is noetherian, then T−1R is also noetherian.

3. If p ∈ spec(R) and T ∩ p = ∅, then T−1p ∈ spec(T−1R), p = j−1(T−1p),

T−1R \ T−1p =
{s
t

∣∣∣ s ∈ R \ p, t ∈ T
}
,

and there is a ring isomorphism

Rp
∼→ (T−1R)T−1p , given by

a

t
7→

a
1
t
1

for all a ∈ R and t ∈ R \ p .

4. The maps

{p ∈ spec(R) | p ∩ T = ∅ } � spec(T−1R) , p 7→ T−1p and P 7→ j−1(P)

are mutually inverse bijections.
5. If p ∈ spec(R), then Rp is a local ring with maximal ideal pp = pRp, and there is an isomorphism

q(R/p) = (R/p)p = Rp/pRp.

Proof. 1. j(a) = {a1 | a ∈ a} ⊂ T−1a, and T−1a C T−1R, hence aT−1R = T−1R〈j(a)〉 ⊂ T−1a.
Conversely, if a

t ∈ T
−1a, where t ∈ T and a ∈ a, then a

t = a 1
t ∈ aT−1R.

If T−1a = T−1R, then there exist a ∈ a and t ∈ T such that a
t = 1

1 , and thus there is some s ∈ T

such that sa = st ∈ a ∩ T . Conversely, if s ∈ a ∩ T , then s
s = 1

1 ∈ T
−1a, which implies T−1a = T−1R.

2. Obviously, T−1j−1(A) = j−1(A)T−1R ⊂ A. Conversely, suppose that a
s ∈ A, where a ∈ R and

s ∈ T . Then j(a) = a
1 = s

1
a
s ∈ A, hence a

1 ∈ j
−1(A) and a

s ∈ T
−1j−1(A). Consequently, {T−1a | a C R}

is the set of all ideals of T−1R. If a C R is a finitely generated ideal of R, then T−1a is a finitely
generated ideal of T−1R. Hence, if R is noetherian, then T−1R is also noetherian.

3. T−1p is a prime ideal : Let a
s ,

b
t ∈ T−1R ( where a, b ∈ R and s, t ∈ T ), a

s
b
t ∈ T−1p and

b
t /∈ T−1p. Then b /∈ p, and ab

st = c
w for some c ∈ p and w ∈ T . Hence there is some v ∈ T such that

vwab = vstc ∈ p, and since vwb /∈ p, it follows that a ∈ p and a
s ∈ T

−1p.
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p = j−1(T−1p) : Obviously, p ⊂ j−1(pT−1R) = j−1(T−1p). To prove the reverse inclusion, let
a ∈ j−1(T−1p). Then j(a) = a

1 = c
t for some c ∈ p and t ∈ T . Then there is some s ∈ T such that

sta = sc ∈ p, and st ∈ T ⊂ R \ p implies a ∈ p.
T−1R \ T−1p = { st | s ∈ R \ p, t ∈ T} : It suffices to prove that, for all a ∈ R and t ∈ T we

have a
t ∈ T−1p if and only if a ∈ p. By definition, a ∈ p implies a

t ∈ T−1p. Conversely, suppose that
a
t ∈ T

−1p, say a
t = c

s , where c ∈ p and s ∈ T . Then there is some w ∈ T such that wsa = wtc ∈ p, and
ws ∈ T ⊂ R \ p implies a ∈ p.

Finally, we prove that there is a ring isomorphism Φ: Rp
∼→ (T−1R)T−1p as asserted. Thus define

Φ: Rp → (T−1R)T−1p by Φ
(a
t

)
=

a
1
t
1

for all a ∈ R and t ∈ R \ p

(observe that t ∈ R \ p implies t
1 ∈ T−1R \ T−1p). We assert that this definition does not depend on

representatives. Indeed, suppose that a
t = a′

t′ , where a, a′ ∈ R and t, t′ ∈ R \ p. Then there is some
s ∈ R \ p such that st′a = sta′, and since s

1 ,
t
1 ,

t′

1 ∈ T
−1R \ T−1p and s

1
t′

1
a
1 = s

1
t
1
a′

1 , we get
a
1
t
1

=
a′

1
t′

1

. Since
a
s
v
t

=
at
st
sv
st

=
at
1
sv
1

= Φ
( at
sv

)
for all a ∈ R, s, v ∈ R \ p and t ∈ T ,

it follows that Φ is surjective. Obviously, Φ is a ring homomorphism. Suppose that a
t ∈ Ker(Φ), where

a ∈ R and t ∈ T . Then there exists some s
v ∈ T−1R \ T−1p ( where s ∈ R \ p and v ∈ T ) such that

s
v
a
1 = 0

1 . Then there is some w ∈ R \ p such that wsa = 0, and therefore a
t = 0

1 .
4. Obvious by 2. and 3.
5. Let p ∈ spec(R). Then {aRp | a C R} is the set of all ideals of Rp, and if a C R, then aRp ( Rp

is equivalent to a ⊂ p and thus to aRp ⊂ pRp. Hence Rp is a local ring with maximal ideal pRp = pp. If
π : R→ R/p denotes the residue class homomorphism, then

Rp/pRp = (R/p)p = π(R \ p)−1R/p = (R/p)•−1R/p = q(R/p) . �

Theorem 2.1.8. Let D be a domain, K = q(D) and T ⊂ D• a multiplicatively closed subset ( then
D ⊂ T−1D ⊂ K ).

1. Let J, J ′ ⊂ K be D-submodules. Then T−1(JJ ′) = (T−1J)(T−1J ′), and if for every T−1D-
submodule J̃ ⊂ K we set J̃−1

[T−1D] = {z ∈ K | zJ̃ ⊂ T−1D ), then T−1J−1 ⊂ (T−1J)−1
[T−1D] , and

if J is a finitely generated D-module, then equality holds.
2. Let J ⊂ K be a (D-)invertible fractional ideal. Then T−1J is (T−1D-)invertible.

Proof. 1. If x ∈ T−1(JJ ′), then there exist n ∈ N, t ∈ T , a1, . . . , an ∈ J and a′1, . . . , a
′
n ∈ J ′ such

that

x =
1
t

n∑
i=1

aibi =
n∑
i=1

ai
t

bi
1
∈ (T−1J)(T−1J ′) .

Conversely, if x ∈ (T−1J)(T−1J ′), then

x =
n∑
i=1

ai
ti

a′i
t′i
, where ai ∈ J , a′i ∈ J ′ and ti, t

′
i ∈ T for all i ∈ [1, n] , and we set t =

n∏
i=1

tit
′
i .

Then

x =
1
t

n∑
i=1

a∗i a
′
i , where a∗i =

( n∏
j=1
j 6=i

tjt
′
j

)
ai ∈ J for all i ∈ [1, n] ,

and therefore x ∈ T−1(JJ ′).
If z ∈ T−1J−1, then z = u

t , where uJ ⊂ D and t ∈ T . Then z(T−1J) ⊂ T−1uJ ⊂ T−1D,
and therefore z ∈ (T−1J)−1

[T−1D]. Assume now that J = D〈a1, . . . , an〉 and z ∈ (T−1J)−1
[T−1D]. Since

T−1D = T−1D〈a1, . . . , an〉, we obtain zai ∈ T−1D for all i ∈ [1, n], and therefore there exist c1, . . . , cn ∈ D
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and t ∈ T such that zai = ci

t for all i ∈ [1, n], and thus tzai ∈ D for all i ∈ [1, n]. Thus we obtain
tzJ ⊂ D, tz ∈ J−1 and z = tz

t ∈ T
−1J−1.

2. Let J be invertible. Then (T−1J)(T−1J−1) = T−1(JJ−1) = T−1D, and therefore T−1J is
T−1D-invertible. �

Theorem 2.1.9. Let R be a commutative ring and M an R-module.
1. If x ∈ M , then x = 0 if and only if x

1 = 0
1 ∈ Mp for all p ∈ max(R). In particular, M = 0 if

and only if Mp = 0 for all p ∈ spec(R).
2. Let f : M → N be an R-module homomorphism. Then f is a monomorphism [ an epimorphism,

an isomorphism ] if and only if, for all p ∈ max(R), fp : Mp → Np is a monomorphism [ an
epimorphism, an isomorphism ].

3. Let R be a domain, K = q(R), V a K-vector space and M ⊂ V an R-submodule. Then
M ⊂ T−1M ⊂ V for all multiplicatively closed subset T ⊂ R•, and

M =
⋂

p∈max(R)

Mp .

Proof. 1. Clearly, x = 0 implies x
1 = 0

1 ∈ p for all p ∈ max(R). If x 6= 0, then a = AnnR(x) ( R,
and there exists some p ∈ max(R) such that a ⊂ p. Hence sx 6= 0 for all s ∈ R \ p, and x

1 6=
0
1 ∈ Rp.

2. If p ∈ max(R), then Ker(fp) = Ker(f)p and Im(fp) = Im(f)p. Hence the assertion follows by 1.
3. Since AnnR(x) = 0 for all x ∈M•, it follows that M ⊂ T−1M ⊂ T−1V = V , since T ⊂ K×. By

definition
M ⊂ M =

⋂
p∈max(R)

Mp and M ⊂Mp for all p ∈ max(R).

Hence Mp = Mp and therefore (M/M)p = Mp/Mp = 0 for all p ∈ max(R). Hence M/M = 0 and
M = M . �

2.2. Valuation domains and Prüfer domains

Throughout, let D be a domain and K = q(D).

Definitions and Remarks. Let Γ = (Γ,+) be an additive abelian group.
1. Let ≤ be a total ordering of Γ. Then Γ = (Γ,≤) is called an ordered abelian group if a ≤ b

implies a+ c ≤ b+ c for all a, b, c ∈ Γ.
If Γ is a totally ordered abelian group, then Γ is torsion-free. Indeed, if γ ∈ Γ and n ∈ N, then
nγ ≥ γ > 0 if γ > 0, and nγ ≤ γ < 0 if γ < 0.
Assume that Γ>0 has no smallest element. If γ ∈ Γ>0 and n ∈ N, then there exists some
δ ∈ Γ>0 such that nδ < γ. Indeed, this is obvious for n = 1, and we use induction on n.
Suppose that n ≥ 2, let δ1 ∈ Γ>0 be such that (n − 1)δ1 < γ, and let δ ∈ Γ>0 be such that
δ < min{δ1, γ − (n− 1)δ1}. Then nδ = (n− 1)δ + δ < (n− 1)δ1 + δ < γ.
For an ordered abelian group we consider the extension Γ ∪ {∞}, where ∞ /∈ Γ, γ ≤ ∞ and
γ +∞ = ∞ for all γ ∈ Γ ∪ {∞}.

2. Let K be a field and Γ an ordered abelian group. A valuation of K with value group Γ is a
surjective map v : K → Γ ∪ {∞} such that the following assertions hold for all x, y ∈ K :
• v(x) = ∞ if and only if x = 0.
• v(xy) = v(x) + v(y).
• v(x+ y) ≥ min{v(x), v(y)}.



50 2. RING THEORY

A discrete valuation is a valuation with value group Z.
If v : K → Γ ∪ {∞} is a valuation, then v |K× : K× → Γ is a group epimorphism.
If x ∈ µ(K), then v(x) = 0. Indeed, if x ∈ µ(K), n ∈ N and xn = 1, then 0 = v(xn) = nv(x),
and thus v(x) = 0. In particular, v(−1) = 0 and v(−x) = v(−1) + v(x) = v(x) for all x ∈ K.
If x, y ∈ K and v(x) 6= v(y), then v(x + y) = min{v(x), v(y)}. Indeed, let v(x) < v(y).
Then v(x) = v(x + y + (−y)) ≥ min{v(x + y), v(−y)} ≥ min{v(x), v(y)} = v(x), and therefore
min{v(x+ y), v(y)} = v(x) < v(y), which implies v(x+ y) = v(x).

3. Let v : K → Γ ∪ {∞} be a valuation with value group Γ, Ov = {x ∈ K | v(x) ≥ 0} and
mv = {x ∈ K | v(x) > 0}. Then is is easily checked that Ov is a local domain with maximal
ideal mv, Ov \ mv = {x ∈ K | v(x) = 0} = O×v = Ker(v |K×), q(Ov) = K, and v induces
an isomorphism v∗ : K×/O×v

∼→ Γ. Moreover, mv is a principal ideal if and only if Γ>0 has a
smallest element. Ov is called the valuation ring and mv is called the valuation ideal of v.

4. D is called a valuation domain if D = Ov for some valuation v of K, and D is called a discrete
valuation domain or dv-domain if D = Ov for some discrete valuation v of K.

5. Let v0 : D• → Γ>0 be a surjective map such that the following assertions hold for all x, y ∈ D :
• v0(x) = ∞ if and only if x = 0.
• v0(xy) = v0(x) + v0(y).
• v0(x+ y) ≥ min{v0(x), v0(y)}.

Then there exists a unique valuation v : K → Γ ∪ {∞} such that v |D• = v0. In particular,
there exists a unique discrete valuation ω : K((X)) → Z∪{∞} such that ω |K [[X]] = ord. Every
f ∈ K((X))× has a unique representation f = Xω(f)f0, where f0 ∈ K [[X]]×, and Oω = K [[X]].

Theorem 2.2.1.
1. The following assertions are equivalent :

(a) D is a valuation domain.
(b) D is local, and every finitely generated ideal of D is a principal ideal.
(c) For all a, b ∈ D, either a ∈ bD or b ∈ aD.
(d) For all x ∈ K×, either x ∈ D or x−1 ∈ D.
(e) For all D-submodules A, B ⊂ K, either A ⊂ B or B ⊂ A. In particular, the set of

D-submodules of K is a chain with respect to ⊂.
(f) For all a, b ∈ K, either a ∈ bD or b ∈ aD.

2. Let D be a valuation domain.
(a) Let D ⊂ E ⊂ K be a domain. Then E is a valuation domain, and if m = E \ E× is its

maximal ideal, then p = m ∩D ∈ spec(D), and D = Dp.
(b) If p ∈ spec(D), then D/p is a valuation domain.

Proof. 1. (a) ⇒ (b) Let v be a valuation of K such that D = Ov. Then D is local with maximal
ideal m = mv = D \ D×. Let a = D〈a1, . . . , an〉 ⊂ D be a finitely generated ideal. After renumbering
if necessary, we may assume that v(a1) ≤ v(a2) ≤ . . . ≤ v(an) < ∞. For all i ∈ [2, n], it follows that
v(a−1

1 ai) = −v(a1) + v(ai) ≥ 0, hence a−1
1 ai ∈ D and ai ∈ a1D. Thus we obtain a = a1D.

(b) ⇒ (c) We may assume that a, b ∈ D•. Then 〈a, b〉 = aD + bD = dD for some d ∈ D•. Since
a ∈ dD and b ∈ dD, we get d−1a, d−1b ∈ D, and D〈d−1a, d−1b〉 = D. Hence there exist u, v ∈ D such
that 1 = d−1au + d−1bv, and therefore d−1a and d−1b cannot both lie in the maximal ideal of D. If
d−1a ∈ D×, then Da = Dd = Da+Db ⊃ Db. Similarly, if d−1b ∈ D×, then Db ⊃ Da.

(c) ⇒ (d) Suppose that x = a−1b ∈ K×, where a, b ∈ D•. If b ∈ aD, then x ∈ D, and if a ∈ bD,
then x−1 ∈ D.

(d) ⇒ (e) Let A, B ⊂ K be D-submodules, A 6⊂ B and a ∈ A \ B. Then it follows that B ⊂ A.
Indeed, if b ∈ B•, then bD ⊂ B, hence a /∈ bD and b−1a /∈ D, which implies a−1b ∈ D and b ∈ aD ⊂ A.
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(e) ⇒ (f) Obvious.

(f) ⇒ (a) Let Γ = K×/D×, written additively, that is aD× � bD× = abD× for all a, b ∈ K×.
Define ≤ on Γ by aD× ≤ bD× if bD ⊂ aD, and note that aD× = bD× if and only if aD = bD. By (f), ≤
is a total ordering on Γ, and obviously (Γ,≤) is an ordered abelian group with 0Γ = D×. Now we define
v : K → Γ ∪ {∞} by v(a) = aD× if a ∈ K×, and v(0) = ∞. We assert that v is a valuation. Indeed, if
a, b ∈ K, then v(ab) = v(a)�v(b) by the very definition of �. For the proof of v(a+ b) ≥ min{v(a), v(b)}
we may assume that a, b, a + b ∈ K× and v(a) ≤ v(b). Then bD ⊂ aD, hence (a + b)D ⊂ aD, and
v(a+ b) = (a+ b)D× ≥ aD× = v(a). If a ∈ K×, then v(a) = aD× ≥ 0Γ = D× if and only if a ∈ D, and
therefore D = Ov.

2. (a) If x ∈ K \ E, then x /∈ D, and thus x−1 ∈ D ⊂ E. Hence E is a valuation domain, and if
m is its maximal ideal, then p = m ∩ D ∈ spec(D), and D \ p ⊂ E \ m = E×, which implies Dp ⊂ E.
Suppose that there is some z ∈ E \ Dp. Then z /∈ D, hence z−1 ∈ D, and therefore z−1 ∈ E×. Since
z = (z−1)−1 /∈ Dp, it follows that z−1 ∈ p ⊂ m, a contradiction.

(b) Let p ∈ spec(D). As the ideals of D form a chain, the same holds true for the ideals of D/p, and
thus D/p is a valuation domain. �

Theorem 2.2.2. Let p ∈ spec(D) and L ⊃ K an extension field. Then there exists a valuation
domain V ⊂ L with maximal ideal m such that L = q(V ) and m ∩D = p.

Proof. The proof depends on the following Lemma.

L. Let R ⊂ S be commutative rings, u ∈ S× and a ( R an ideal. Then a survives in R[u] or in
R[u−1], that means, either aR[u] ( R[u] or aR[u−1] ( R[u−1].

We first prove the Theorem using L. Let Ω be the set of all intermediate domains Rp ⊂ S ⊂ L
satisfying pS 6= S. The Rp ∈ Ω, and we assert that the union of every chain in Ω belongs to Ω. Indeed,
let Σ ⊂ Ω be a chain and S∗ =

⋃
Σ. Then Rp ⊂ S∗ ⊂ L is an intermediate domain, and we assume

that, contrary to our assertion, pS∗ = S∗. Then there exist m ∈ N, a1, . . . , am ∈ p and x1, . . . , xm ∈ S∗
such that a1x1 + . . . + amxm = 1. Since Σ is a chain, there exists some S ∈ Σ such that xj ∈ S for all
j ∈ [1,m], whence pS = S, a contradiction.

By Zorn’s Lemma, Ω possesses a maximal element V . We assert that V is a valuation domain, and
q(V ) = L, and we prove that, for every x ∈ L×, either x ∈ V or x−1 ∈ V . Let x ∈ L×. Since pV 6= V ,
L implies pV [x] 6= V [x] or pV [x−1] 6= V [x−1], and thus V [x] ∈ Ω or V [x−1] ∈ Ω. As V was a maximal
element in Ω, this yields x ∈ V or x−1 ∈ V . Let m be the maximal ideal of V . Then pV ⊂ m, and
therefore pDp ⊂ m ∩Dp ( Dp. Hence m ∩Dp = pDp, and m ∩D = m ∩Dp ∩D = pDp ∩D = p.

Proof of L. We assert that every z ∈ aR[u] has a representation in the form

z =
n∑
i=0

aiu
i , where n ∈ N and a1, . . . , an ∈ a .

Indeed, if z ∈ aR[u], then

z =
m∑
j=1

cjxj , where m ∈ N, c1, . . . , cm ∈ a and x1, . . . , xm ∈ R[u] .

For all j ∈ [1,m],

xj =
n∑
i=0

bj,iu
i , where n ∈ N and bj,1, . . . , bj,n ∈ R .

Hence it follows that

z =
n∑
i=0

aiu
i , where ai =

m∑
j=1

cjbj,i ∈ a .
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Assume now that, contrary to our assertion, aR[u] = R[u] and aR[u−1] = R[u−1]. Then there exist
relations

1 =
n∑
i=0

aiu
i =

m∑
j=0

bju
−j , where m, n ∈ N and a1, . . . , an, b1, . . . , bm ∈ a .

Among all these relations we choose one, for which m + n is minimal, and we assume that m ≤ n
(otherwise we interchange m and n). Then we obtain

(1− b0)um =
m∑
j=1

bju
m−j and 1− b0 =

n∑
i=0

ai(1− b0)ui =
n−1∑
i=0

ai(1− b0)ui + anu
n−m

m∑
j=1

bju
m−j

and therefore

1 = [b0 + a0(1− b0)] +
n−1∑
i=1

Ciu
i for some C1, . . . , Cn−1 ∈ a,

contradicting the minimal choice of m+ n. �

Remarks (Recapitulation: Integrality). Let R ⊂ S be commutative rings.
1. An element x ∈ S is called integral over R if it satisfies one of the following equivalent conditions :

• There exists a monoid polynomial f ∈ R[X] \R such that f(x) = 0.
• There exist n ∈ N and a0, . . . , an−1 ∈ R such that xn+an−1x

n−1 + . . .+a1x+a0 = 0 (such
a relation is called an integral equation of x over R).

• R[x] is a finitely generated R-module.
• There exists a finitely generated R-module M ⊂ S such that xM ⊂M and, for all g ∈ R[X],
g(x)M = 0 implies g(x) = 0.

2. clS(R) = {x ∈ S | x is integral over R } is called the integral closure of R in S. If clS(R) = S,
then S is called integral over R, and if clS(R) = R, then R is called integrally closed in S.
clS(R) is a subring of S which is integral over R and integrally closed in S.

3. It T ⊂ R is a multiplicatively closed subset, then clT−1S(T−1R) = T−1clS(R), and S is integral
over R if and only if Sp is integral over Rp for all p ∈ max(R).

4. If R ⊂ S ⊂ S are commutative rings, then S is integral over R if and only if S is integral over S
and S is integral over R.

5. A domain D is called integrally closed if it is integrally closed in K = q(D). Every factorial
domain is integrally closed, and the intersection of any family of integrally closed domains between
D and K is integrally closed. In particular, D is integrally closed if and only if Dp is integrally
closed for every p ∈ max(D).

6. Let D be an integrally closed domain, K = q(D) and L/K an algebraic field extension. Then
S = clL(D) is an integrally closed domain, and L = KS = q(S). If x ∈ L and f ∈ K[X] is the
minimal polynomial of x over K, then x ∈ S if and only if f ∈ D[X].

Theorem 2.2.3. Let Ω the set of all valuation domains V such that D ⊂ V ⊂ K. Then

clK(D) =
⋂
V ∈Ω

V .

In particular, every valuation domain is integrally closed, and if D is integrally closed, then D is the
intersection of all valuation domains V such that D ⊂ V ⊂ K.

Proof. We show first that every valuation domain is integrally closed. Let D be a valuation domain
with maximal ideal m, and assume that x ∈ K\D is integral overD. Let xn+an−1x

n−1+. . .+a1x+a0 = 0
be an integral equation of x over D. Then 1 = −(a−1

n−1 + . . . + a
−(n−1)
1 + a−n0 ), and since x−1 ∈ m it

follows that 1 ∈ m, a contradiction.
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Now let D be any domain, Ω the set of all valuation domains between D and K, and

D′ =
⋂
V ∈Ω

V ⊃ D .

Then D′ is an integrally closed domain, and D ⊂ clK(D) ⊂ clK(D′) = D′. Thus we must prove that
every x ∈ D′ is integral over D. Thus suppose that x ∈ D′.

CASE 1 : x−1D[x−1] = D[x−1]. Then 1 = x−1(a0 + a1x
−1 + . . . + anx

−n) for some n ∈ N and
a0, . . . an ∈ D, and therefore xn+1−a0x

n−a1x
n−1− . . .−an = 0, which shows that x is integral over D.

CASE 2 : x−1D[x−1] ( D[x−1]. Let p ∈ spec(D[x−1]) be such that x−1D[x−1] ⊂ p. By Theorem
2.2.2, there exists a valuation domain V with maximal ideal m such that D[x−1] ⊂ V ⊂ K and m ∩
D[x−1] = p. Then V ∈ Ω, x−1 ∈ m and therefore x /∈ V , a contradiction. �

Theorem 2.2.4. Suppose that D 6= K. Then the following assertions are equivalent :
(a) D is a dv-domain.
(b) D is a noetherian valuation domain.
(c) D is a local principal ideal domain.
(d) D is a factorial domain and possesses (up to associates) exactly one prime element.

Proof. (a) ⇒ (b) Let v : K → Z∪{∞} be a discrete valuation such that D = Ov. We prove that D
is a principal ideal domain. Let 0 6= a C D, n = min v(a) ∈ N0 and n = v(a), where a ∈ a. Then aD ⊂ a,
and we assert that equality holds. Indeed, if x ∈ a, then v(x) ≥ v(a), hence v(a−1x) = −v(a) + v(x) ≥ 0,
and therefore a−1x ∈ D, whence x ∈ aD.

(b) ⇒ (c) Being a valuation domain, D is local and every finitely generated ideal is principal. By
assumption, D is noetherian and thus every ideal is principal.

(c) ⇒ (d) Since D is a principal ideal domain, it follows that D is factorial and every non-zero prime
ideal is maximal. Hence the maximal ideal pD of D is the unique non-zero prime ideal, and therefore p
is up to associates the only prime element of D.

(d) ⇒ (a) Let p be a prime element of D. Then every x ∈ K× has a unique representation x = pnu,
where n ∈ Z, u ∈ D×, and we set v(x) = n. We define v(0) = ∞. Then v : K → Z ∪ {∞} is a discrete
valuation, and D = Ov. �

Theorem and Definition 2.2.5.
1. The following assertions are equivalent :

(a) Every finitely generated non-zero ideal of D is invertible.
(b) For all p ∈ spec(D), Dp is a valuation domain.
(c) For all p ∈ max(D), Dp is a valuation domain.

If these conditions are fulfilled, then D is called a Prüfer domain. If Dp is a dv-domain for all
0 6= p ∈ spec(D), then D is called an almost Dedekind domain.

2. If D is a Prüfer domain, then D is integrally closed, and if D is an almost Dedekind domain,
then every non-zero prime ideal is maximal.

3. Let D be a Prüfer domain and D ⊂ E ⊂ K a domain. Then E is a Prüfer domain, and if
q ∈ spec(E), then p = q ∩D ∈ spec(D), and Dp = Eq, and q = pDp ∩ E.

4. Let D be a Prüfer domain and p ∈ spec(D). Then D/p is a Prüfer domain.

Proof. 1. (a) ⇒ (b) If p ∈ spec(D), then Dp is a local domain, and by Theorem 2.2.1.1(b) if
suffices to prove that every finitely generated ideal of Dp is principal. Let 0 6= A = Dp〈a1

t1
, . . . , an

tn
〉 ⊂ Dp

be a finitely generated ideal. If a = D〈a1, . . . , an〉, then ap = Dp〈a1, . . . , an〉 = A. Hence a 6= 0, a is
invertible, and thus a is D-projective. Since A = ap

∼= Dp ⊗D a, it follows that A is Dp-projective by
Theorem 1.2.5.3, and since Dp is local, the Corollary to Theorem 2.1.2 implies that A is free and thus a
principal ideal.
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(b) ⇒ (c) Obvious.
(c) ⇒ (a) Let 0 6= a be a finitely generated ideal of D, and suppose that a is not invertible. Then

aa−1 ( D, and thus there is some p ∈ max(D) such that aa−1 ⊂ p. Now Theorem 2.1.8 implies
ap(ap)−1 = ap(a−1)p = (aa−1)p = pp ( Dp, and thus ap is not Dp-invertible. However, ap is a finitely
generated ideal of Dp, hence principal and thus Dp-invertible, a contradiction.

2. If D is a Prüfer domain, then Dp is integrally closed for all p ∈ max(D). Hence D is integrally
closed. If D is an almost Dedekind domain, 0 6= p ∈ spec(D) and m ∈ max(D) such that p ⊂ m, then
0 6= pDm ⊂ mDm are prime ideals. As Dm is a dv-domain, it follows that pDm = mDp, and therefore
p = m is maximal.

3. If q ∈ spec(E), then p = q ∩ D ∈ spec(D), and D \ p ⊂ E \ q implies Dp ⊂ Eq. Since Dp is a
valuation domain, Theorem 2.2.1.2 implies that Eq is a valuation domain, qEq ∩ Dp ∈ spec(Dp), and
Eq = (Dp)qEq∩Dp . In particular, E is a Prüfer domain. Since qEq ∩Dp ∩D = q ∩D = p = pDp ∩D,
it follows that qEq ∩ Dp = pDp, and therefore Eq = (Dp)pDp = Dp. Hence pDp = qEq, and therefore
q = pDp ∩ E.

4. If Q ∈ spec(D/p), then Q = q/p for some prime ideal q ∈ spec(D) such that p ⊂ q, and
(D/p)Q = (D/p)q = Dq/pq is a valuation domain by Theorem 2.2.1. �

Theorem and Definition 2.2.6. The following assertions are equivalent :
(a) D is a noetherian Prüfer domain.
(b) D is noetherian, and for all 0 6= p ∈ spec(D), Dp is a dv-domain.
(c) D is noetherian, integrally closed, and every non-zero prime ideal is maximal.
(d) Every non-zero ideal of D is invertible.

If these conditions are fulfilled, then D is called a Dedekind domain.

Proof. (a) ⇒ (b) If 0 6= spec(D), then Dp 6= K is a noetherian valuation domain and thus a
dv-domain.

(b) ⇒ (a) Obvious.
(a) and (b) ⇒ (c) Since D is a Prüfer domain, it is integrally closed. By (b), D is an almost

Dedekind domain, and thus every non-zero prime ideal is maximal.
(c) ⇒ (d) It suffices to prove the following assertions : If 0 6= a C D, then
a. There exist r ∈ N and p1, . . . , pr ∈ max(D) such that p1 · . . . · pr ⊂ a.
b. If p ∈ max(D), then a ( ap−1.
Suppose that a. and b. hold, and not every non-zero ideal of D is invertible. Let a be maximal

among not invertible ideals and p ∈ max(D) such that a ⊂ p. Then a ( ap−1 ⊂ pp−1 ⊂ D by b. Hence
ap−1 is invertible, and there exists a fractional ideal b such that ap−1b = D. Hence p−1b ⊂ a−1, and
D = ap−1b ⊂ aa−1 ⊂ D implies aa−1 = D, a contradiction.

Proof of a. Assume the contrary. Then there exists a maximal non-zero ideal a ⊂ D which does not
contain a product of maximal ideal. Since every non-zero prime ideal is maximal, a is not a prime ideal,
and there exist x, y,∈ D \ a such that xy ∈ a. Then a ( a+xD and a ( a+ yD, and there exist r, s ∈ N
and p1, . . . pr, q1, . . . , qs ∈ max(D) such that p1 · . . . · pr ⊂ a + xD and q1 · . . . · qs ⊂ a + yD. It follows
that p1 · . . . · pr q1 · . . . · qs ⊂ (a + xD)(a + yD) ⊂ a + xyD = a, a contradiction. �[a.]

Proof of b. Since D ⊂ p−1, we obtain a ⊂ ap−1, and we assume that, contrary to our assertion,
a = ap−1. If x ∈ p−1, then xa ⊂ a, hence x is integral over D, and therefore x ∈ D. Thus we obtain
p−1 = D. Suppose that 0 6= a ∈ p, and let r ∈ N be minimal such that there exist p1, . . . , pr ∈ max(D)
satisfying p1 · . . . · pr ⊂ aD ⊂ p (such an r exists by a.). There exist some i ∈ [1, r] such that pi ⊂ p, say
i = 1. Hence p = p1, and by the minimal choice of r there exists some b ∈ p2 · . . . · pr \ aD. In particular,
a−1b /∈ D and bp ⊂ aD, hence a−1bp ⊂ D, and therefore a−1b ∈ p−1 \D. �[b.]

(d) ⇒ (a) Obvious, since every invertible ideal is finitely generated. �
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2.3. Integer-valued polynomials

Throughout, let D be a domain and K = q(D).

Definition. The domain
Int(D) = {f ∈ K[X] | f(D) ⊂ D}

is called the domain of integer-valued polynomials over D, and for an ideal a ⊂ D, we set

Int(D, a) = {f ∈ K[X] | f(D) ⊂ a} .

Then D[X] ⊂ Int(D) ⊂ K[X], Int(D) ∩K = D, Int(D, a) ⊂ Int(D) is an ideal, and Int(D, a) ∩K = a.

Theorem 2.3.1. Let T ⊂ D• be a multiplicatively closed subset.
1. If f ∈ K[X], then T−1

D〈f(D)〉 = T−1D〈f(T−1D)〉.
2. T−1Int(D) ⊂ Int(T−1D), and if D is noetherian, then equality holds.

Proof. 1. If f ∈ K[X], then obviously f(D) ⊂ f(T−1D) ⊂ T−1D〈f(T−1D〉, and therefore it follows
that T−1

D〈f(D)〉 ⊂ T−1D〈f(T−1D〉. Hence it suffices to prove that f(T−1D) ⊂ T−1
D〈f(D)〉, and we

use induction on n = deg(f). If f is constant, there is nothing to do. Thus suppose that n > 0 and
the assertion holds for all polynomials of smaller degree. Suppose that a ∈ D, t ∈ T , and consider
the polynomial g = tnf − f(tX) ∈ K[X]. Then deg(g) < n, and by the induction hypothesis we get
g(T−1D) ⊂ T−1

D〈g(D)〉 ⊂ T−1
D〈f(D)〉. Hence it follows that

tnf
(a
t

)
= g

(a
t

)
+ f(a) ∈ g(T−1D) + f(D) ⊂ T−1

D〈f(D)〉 , and thus f
(a
t

)
∈ T−1

D〈f(D)〉 .

2. If f ∈ Int(D) and t ∈ T , then (t−1f)(T−1D) ⊂ T−1D〈f(T−1D)〉 = T−1
D〈f(D)〉 ⊂ T−1D by 1.,

and therefore t−1f ∈ Int(T−1D).
Let now D be noetherian, f ∈ Int(T−1D) and C ⊂ K the D-module generated by the coefficients

of f . Then D〈f(D)〉 ⊂ T−1D ∩ C is a finitely generated submodule of T−1D, and therefore there exists
some t ∈ T such that tf(D) ⊂ D, hence tf ∈ Int(D) and f ∈ T−1Int(D). �

Theorem 2.3.2.
1. Let f ∈ K[X], deg(f) = n ∈ N and a0, . . . , an ∈ D such that f(ai) ∈ D for all i ∈ [0, n]. If

d =
∏

0≤i<j≤n

(ai − aj) , then df ∈ D[X] .

2. Let p ∈ spec(D) be a prime ideal such that D/p is infinite. Then Int(D)p = Int(Dp) = Dp[X].
3. Let Ω ⊂ spec(D) be a set of prime ideals such that |D/p| = ∞ for all p ∈ Ω.

Then D =
⋂
p∈Ω

Dp implies Int(D) = D[X] .

Proof. 1. If

f =
n∑
ν=0

cνX
ν , then

n∑
ν=0

cνa
ν
i = f(ai) for all i ∈ [0, n] , and d = det(aνi )i,ν∈[0,n] .

By Cramer’s rule, it follows that dcν ∈ D for all ν ∈ [0, n], and thus df ∈ D[X].
2. It suffices to prove that Int(D) ⊂ Dp[X].
Indeed, then D[X] ⊂ Int(D) ⊂ Dp[X] implies Dp[X] = D[X]p ⊂ Int(D)p ⊂ Dp[X] and thus

Int(D)p = Dp[X] ⊂ Int(Dp). Now we replace (D, p) by (Dp, pDp) and observe that (Dp)pDp = Dp and
Dp/pDp = q(D/p) is infinite. Hence we get Int(Dp) ⊂ Dp[X] and are done.
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Thus let f ∈ Int(D) and n = deg(f) ∈ N. Then there exist a0, . . . , an ∈ D such that ai − aj /∈ p for
all i, j ∈ [0, n] such that i 6= j. Then

d =
∏

0≤i<j≤n

(ai − aj) ∈ D \ p ,

df ∈ D[X] by 1., and thus f ∈ Dp[X].
3. By 2., it follows that

Int(D) ⊂
⋂
p∈Ω

Dp[X] = D[X] . �

Theorem and Definition 2.3.3. An ideal a ⊂ D is called a conductor ideal if a = xD ∩D for
some x ∈ K×. By definition, every principal ideal is a conductor ideal.

1. If x ∈ K, then xD ∩D = D if and only if x 6= 0 and x−1 ∈ D.
2. Let a ( D be an ideal which is maximal among proper conductor ideals. Then a is a prime ideal.
3. If a ( D is a conductor ideal such that D/a is finite, then D[X] ( Int(D).
4. If D is noetherian and D[X] ( Int(D), then there exists some p ∈ spec(D) such that D/p is

finite and p is a conductor ideal.
5. Let D be a valuation domain with maximal ideal m. Then D[X] ( Int(D) if and only if m is

principal and D/m is finite.

Proof. 1. If x ∈ K, then xD ∩D = D if and only if D ⊂ xD, and this is equivalent to x 6= 0 and
x−1 ∈ x−1D ⊂ D.

2. Suppose that a = xD ∩D for some x ∈ K×. Let a, b ∈ D• be such that ab ∈ a and a /∈ a. Since
a ⊂ xD ⊂ b−1xD and a ∈ b−1a ⊂ b−1xD, it follows that a ( a + aD ⊂ b−1xD ∩D. By the maximality
of a, we obtain b−1xD = D, hence xD = bD, and b ∈ xD = a.

3. Let a ( D be a conductor ideal such that D/a is finite, and let x ∈ K× be such that a = xD ∩D.
Let {u1, . . . , ur} ⊂ D be a set of representatives for D/a, and set f = x−1(X−u1) · . . . · (X−ur) ∈ K[X].
Then f(D) ⊂ x−1a ⊂ D, hence f ∈ Int(D), and a ( D implies x−1 /∈ D and therefore f /∈ D[X].

4. Let D be noetherian and f ∈ Int(D)\D[X]. Then f has a coefficient x ∈ K\D, and the conductor
ideal x−1D ∩D is contained in a maximal conductor ideal p which is a prime ideal ideal by 2. We assert
that D/p is finite. Assume the contrary. Then Int(D) ⊂ Dp[X] by Theorem 2.3.2.2, and therefore there
exists some t ∈ D \ p such that tf ∈ D[X]. In particular, it follows that tx ∈ D and t ∈ x−1D ∩D = p,
a contradiction.

5. If m is principal and D/m is finite, then D[X] ( Int(D) by 3. If |D/m| = ∞, then Theorem
2.3.2.2 implies Int(D) ⊂ Dm[X] = D[X]. Thus suppose that m is not principal, and yet there is some
f ∈ Int(D) \D[X]. Let v : K → Γ ∪ {∞} be the valuation defining D, E the set of all coefficients of f
and min{v(c) | c ∈ E} = −γ, where γ ∈ Γ>0. Since m is not principal, Γ>0 has no smallest element, and
thus there exist a0, . . . , an ∈ m such that v(a0), . . . , v(an) are distinct, and

(
n
2

)
v(ai) < γ for all i ∈ [0, n].

If d =
∏

1≤i<j≤n

(aj − ai) , then df ∈ D[X] by Theorem 2.3.2.1,

hence v(cd) = v(c) + v(d) ≥ 0 for all c ∈ E, and therefore v(d) ≥ γ. On the other hand,

v(d) =
∑

1≤i<j≤n

v(aj − ai) =
∑

1≤i<j≤n

min{v(aj), v(ai)} < γ , a contradiction. �

Theorem 2.3.4. Let P ∈ spec(Int(D)) be such that P ∩D = m ∈ max(D) is principal and D/m is
finite. Then P ∈ max(Int(D)), Int(D,m) ⊂ P, and the inclusion D ↪→ Int(D) induces an isomorphism
D/m

∼→ Int(D)/P (we identify).
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Proof. Let m = tD and {u1, . . . , ur} be a set of representatives of D/m. If f ∈ Int(D,m), then
f(D) ⊂ tD, hence f ∈ t Int(D) = m Int(D) ⊂ P, and thus Int(D,m) ⊂ P. For every f ∈ Int(D), we have

r∏
i=1

(f − ui) ∈ Int(D,m) ⊂ P ,

hence f − ui ∈ P for some i ∈ [1, r], and therefore Int(D)/P = {u1 + P, . . . , ur + P}. �

Remarks (Topology of discrete valuation domains). Let D be a dv-domain, v : K → Z ∪ {∞} the
defining valuation of K and t ∈ K such that v(t) = 1.

1. D = {x ∈ K | v(x) ≥ 0}, and m = tD = {x ∈ K | v(x) > 0} is the unique maximal ideal of D.
Every z ∈ K× has a unique representation z = tku, where k ∈ Z and u ∈ D× (in fact, k = v(z)).
In particular, D is factorial, and (up to associates) t is the unique prime element of D.

2. Fix some ρ ∈ (0, 1), and let | · | = | · |v,ρ : K → R≥0 the absolute value with basis ρ associated
with v, defined by |a| = ρv(a) for all a ∈ K (where ρ∞ = 0). Then |K| = 〈ρ〉 ∪ {0}, and the map
d : K×K → R≥0, defined by d(x, y) = |x − y| = ρv(x−y), is a metric. The topology induced on
K by d is called the v-topology. If a ∈ K and n ∈ N, then

a+ mn = a+ tnD = {x ∈ K | v(x− a) ≥ n} = {x ∈ K | d(x, a) ≤ ρn}
= {x ∈ K | v(x− a) > n− 1} = {x ∈ K | d(x, a) < ρn−1} .

Hence {a+ mn | n ∈ N} is a fundamental system of neighborhoods of a, and the v-topolgy does
not depend on ρ. Since

∣∣|x|− |y|∣∣ ≤ |x−y| for all x, y ∈ K, then map | · | : K → 〈ρ〉∪{0} ↪→ R≥0

is uniformly continuous, and therefore the sets a+ mn for a ∈ K and n ∈ N0 are clopen.
We endow Z∪{∞} with the topology induced by the extended real line R = R∪{−∞,∞}. Then
{a} is open for every a ∈ Z, and the sets Nn = {g ∈ N | g ≥ n} for n ∈ N are a fundamental
system of neighborhoods of ∞. The map θ : Z ∪ {∞} → 〈ρ〉 ∪ {∞} is a homeomorphism, and
therefore v = θ−1◦| · | : K → Z ∪ {∞} is continuous.
Let (xn)n≥0 be a sequence in K and x ∈ K. Then (xn)n≥0 → x if and only if (|xn−x|)n≥0 → 0
if and only if (v(xn − x))n≥0 → ∞, and then either (xn)n≥0 → 0 and v(xn)n≥0 → ∞, or
v(xn) = v(x) for all n � 1. If x, y ∈ K and (xn)n≥0, (yn)n≥0 are sequences in K such that
(xn)n≥0 → x and (yn)n≥0 → y, then (xn+ yn)n≥0 → x+ y, (xnyn)n≥0 → xy, and if x 6= 0, then
xn 6= 0 for all n� 1, and (x−1

n )n�1 → x−1. Hence K is a topological field under the v-topology.

For every n ∈ N, there is an isomorphism D/m
∼→ mn/mn+1, given by u+ m 7→ tnu+ mn+1. By

induction on n, we obtain |D/mn| = |D/m|n for all n ∈ N.
3. A sequence (an)n≥0 in K is a Cauchy sequence if and only if (v(an+1 − an))n≥0 → 0. Indeed, if
m > n ≥ 0, then

v(am − an) = v
(m−1∑
j=n

(aj+1 − aj)
)
≥ min{v(aj+1 − aj) | j ∈ [n,m− 1]} → ∞ .

Every convergent sequence is a Cauchy sequence, and K is called complete if every Cauchy
sequence in K converges. If (an)n≥0 is a Cauchy sequence, then either (v(an))n≥0 → ∞ or
(v(an))n≥0 is ultimately constant, and in any case there exists some c ∈ D• such that can ∈ D
for all n ≥ 0. Then (can)n≥0 is also a Cauchy sequence, and (can)n≥0 converges if and only if
(an)n≥0 converges. Hence K is complete if and only if every Cauchy sequence in D converges,
and then we call D a complete dv-domain.

4. Let K be complete and (an)n≥0 is a sequence in K. Then∑
n≥0

an converges if and only if (an)n≥0 → 0 .
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Let R be a set of representatives for D/m = D/tD. Then every a ∈ D has a unique representation

a =
∞∑
n=0

ant
n , where an ∈ R for all n ≥ 0.

If R is equipped with the discrete topology, then the map

Θ: RN0 → D , defined by Θ((an)n≥0) =
∞∑
n=0

ant
n ,

is a homeomorphism. In particular, if D/m if finite, then D is compact by Tychonoff’s Theorem.

5. A field K̂ with a discrete valuation v̂ : K̂ → Z ∪ {∞} is called a completion of K if K̂ is
complete, K ⊂ K̂ is a dense subfield and v̂ |K = v. Then D̂ = {x ∈ K̂ | v̂(x) ≥ 0} is a complete
dv-domain, D̂ is the (topological) closure of D in K̂, and if t ∈ D is such that v(t) = 1, then
m̂ = tD̂ is the maximal ideal of D̂. For every n ∈ N, m̂n = tnD̂ = {x ∈ D̂ | v̂(x) ≥ n} is the
(topological) closure of mn, mn = m̂n ∩D, and the inclusion D ↪→ D̂ induces an isomorphism
D/mn ∼→ D̂/m̂n (we identify these residue class rings). We call D̂ a completion of D.
Every discrete valued field has a completion which is unique up to a unique isomorphism. Explic-
itly, if (K̂, v̂) and K̃, ṽ) are completions of (K, v), then there is a unique isomorphism Φ: K̂ → K̃
such that Φ |K = idK and ṽ◦Φ = v̂.

Definitions and Remarks. LetD be a dv-domain with maximal ideal m = tD, |D/m| = q ∈ N and
v : K → Z∪{∞} the defining valuation. For g ∈ Z, we define ordq(g) = {sup{n ∈ N0 | qn | g} ∈ N0∪{∞}.

1. A sequence (un)n≥0 in D is called well distributed if v(um−un) = ordq(m−n) for all m, n ∈ N0.
If (un)n≥0 is well distributed and k ∈ N0, then (uk+n)n≥0 is also well distributed, and, for every
r ∈ N, the set {ui | i ∈ [k, k + qr − 1] } ⊂ D is a set of representatives for D/mr.
Proof. Let k ∈ N0 and r ∈ N. By the very definition, (uk+n)n≥0 is well distributed. If
i, j ∈ [k, k + qr − 1] and i 6= j, then 0 < |i − j| < qr, hence ordq(i − j) < r and therefore
v(ui − uj) < r, which implies ui 6≡ uj mod mr. Since |[k, k + qr − 1]| = qr = |D/mr|, it follows
that {ui | i ∈ [k, k + qr − 1] } ⊂ D is a set of representatives for D/mr. �

2. Let {u0, . . . , uq−1} ⊂ D be a set of representatives for D/m. For n ∈ N, let

n =
∞∑
i=0

niq
i , where ni ∈ [0, q − 1] for all i ≥ 0, and ni = 0 for almost all i ≥ 0

be the q-adic digit expansion, and set

un =
∞∑
i=0

unit
i .

If ni = 0 for all i ≥ l, then ∑
i≥0

unit
i =

l−1∑
i=0

unit
i +

u0t
l

t− 1
∈ D .

The sequence (un)n≥0 is well distributed.
Proof. Let m, n ∈ N0. We must prove that v(um−un) = ordq(m−n), and we may assume that
m 6= n. Then

m− n =
∞∑
i=0

(mi − ni)qi and um − un =
∞∑
i=0

(mi − ni)ti

If k = min{i ∈ N0 | mi 6= ni}, then mi − ni 6≡ mod q, and v(um − un) = k = ordq(m− n). �
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3. For n ∈ N0, we define

wq(n) =
n∑
l=1

ordq(n) , and we assert that wq(n) =
∞∑
k=1

⌊ n
qk

⌋
.

(note that wq(n) = vq(n!) if q ∈ P ). For all m, n ∈ N0, we have wq(m+ n) ≥ wq(m) + wq(n).

Proof. For n = 0, there is nothing to do. Suppose that n ∈ N. For k ∈ N0,⌊ n
qk

⌋
is the number of integers l ∈ [1, n] such that qk | l,

and therefore ⌊ n
qk

⌋
−

⌊ n

qk+1

⌋
= |{l ∈ [1, n] | ordq(l) = k}| .

Hence we obtain
n∑
l=0

ordq(l) =
∞∑
k=1

k
(⌊ n
qk

⌋
−

⌊ n

qk+1

⌋)
=

∞∑
k=1

k
⌊ n
qk

⌋
−

∞∑
k=1

(k − 1)
⌊ n
qk

⌋
=

∞∑
k=1

⌊ n
qk

⌋
.

For x, y ∈ R, we have bx+ yc ≥ bxc+ byc. If m, n ∈ N0, then

wq(m+ n) =
∞∑
k=1

(⌊m+ n

qk

⌋
≥

∞∑
k=1

⌊m
qk

⌋
+

∞∑
k=1

⌊ n
qk

⌋
= wq(m) + wq(n) .

Theorem and Definition 2.3.5. Let D be a dv-domain with maximal ideal m, |D/m| = q < ∞,
and let (un)n≥0 be a well distributed sequence in D. For n ≥ 0, define

gn =
n−1∏
i=0

(X − ui) ∈ D[X] and fn =
gn

gn(un)
=
n−1∏
i=0

X − ui
un − ui

∈ K[X] ( f0 = 1 ).

1. For all x ∈ D and n ∈ N we have v(gn(x)) ≥ v(gn(un)) = ordq(n!) .

2. Int(D) is a free D-module with basis (fn)n≥0.

(fn)n≥0 is called the regular basis associated with the well distributed sequence (un)n≥0.

3. Let f ∈ Int(D), deg(f) < qh for some h ∈ N and a, b ∈ D. Then v(f(a)−f(b)) ≥ v(a−b)−h+1.
In particular, f is uniformly continuous on D.

Proof. 1. Let x ∈ D, n ∈ N, and assume first that x /∈ {u0, . . . , un−1}. Then gn(x) 6= 0, we set
v(gn(x)) = s ∈ N0 and let m ∈ N be such that um ≡ x mod ms+1. Then gn(um)− gn(x) = (um − x)h(x)
for some h ∈ D[X], which implies v(gn(um)− gn(x)) ≥ v(um − x) > s = v(gn(x)), hence v(gn(um)) = s
and thus m ≥ n. Now we calculate

v(gn(x)) = v(gn(um)) =
n−1∑
k=0

v(um − uk) =
n−1∑
k=0

ordq(m− k)

=
m∑
k=0

ordq(k)−
m−n∑
k=0

ordq(k) = wq(m)− wq(m− n) ≥ wq(n)

with equality if m = n. In particular, it follows that v(gn(x)) ≥ v(gn(un)) = wq(n), and obviously this
also holds for x ∈ {u0, . . . , un−1} since then gn(x) = 0.

2. By 1. we obtain v(fn(x)) = v(gn(x)) − v(gn(un)) ≥ 0 for all x ∈ D, hence fn(D) ⊂ D and thus
fn ∈ Int(D). Since deg(fn) = n, it follows that (fn)n≥0 is a K-basis of K[X]. If f ∈ Int(D), then

f =
∑
n≥0

cnfn , where cn ∈ K for all n ≥ 0, and cn = 0 for almost all n ≥ 0,
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and prove by induction on n that cn ∈ D for all n ≥ 0. Thus suppose that n ≥ 0 and ci ∈ D for all
i ∈ [0, n− 1]. Then

g = f −
n−1∑
i=0

cifi =
∞∑
i=n

cifi ∈ Int(D) , and g(un) = cnfn(un) = cn ∈ D .

3. We assume that u0 = 0, and we set g = f(b + X) − f(b) and d = a − b. Then g ∈ Int(D),
deg(g) = deg(f) < qh and f(a)− f(b) = g(d). Hence we must prove that v(g(d)) ≥ v(d)− h+ 1. By 2.,

g =
∞∑
n=0

cnfn , where cn ∈ D for all n ≥ 0, and cn = 0 for all n ≥ qh.

Then c0 = g(u0) = g(0) = 0, and therefore v(g(d)) ≥ min{v(fn(d)) | n ∈ [1, qh − 1] }. Hence it suffices to
prove that v(fn(d)) ≥ v(d)− h+ 1 for all n ∈ [1, qh − 1]. If n ∈ [1, qh − 1], then

fn(d) =
n−1∏
i=0

d− ui
un − ui

=
d

un

n−1∏
i=1

d− ui
un − ui

.

Since (ui+1)i≥0 is a well distributed sequence, it follows by 1. that

f̃n =
n−1∏
i=1

X − ui
un − ui

∈ Int(D) , and therefore v(fn(d)) = v(d)− v(un) + v(f̃n(d)) ≥ v(d)− v(un) .

Since v(un) = v(un − u0) = ordq(n) ≤ h− 1, the assertion follows. �

Theorem 2.3.6 (Stone-Weierstrass Theorem for integer-valued polynomials). Let D be a dv-domain
with maximal ideal m = tD and |D/m| = q <∞. Let D̂ be a completion of D, m̂ = tD̂ its maximal ideal
and v̂ the defining valuation of D̂. Let ϕ : D̂ → D̂ a continuous function and k ∈ N. Then there exists
some f ∈ Int(D) such that v(ϕ(x)− f(x)) ≥ k for all x ∈ D̂.

Proof. We first prove the following two assertions.
A. There exists some h ∈ N with the following property : If N = qh − 1, {u0, . . . , uN} ⊂ D is a

set of representatives for D/mh = D̂/m̂h, and Ûi = ui + m̂h for all i ∈ [0, N ], then there exist
c0, . . . , cN ∈ D such that(

ϕ−
N∑
i=0

ci1Ûi

)
(x) ∈ m̂ for all x ∈ D̂.

B. Let h ∈ N, N = qh − 1, u ∈ D and Û = u+ m̂h. Then there exists some f ∈ Int(D) such that

(1Û − f)(x) ∈ m̂ for all x ∈ D̂.

Proof of A. Since D̂ is compact, it follows that ϕ is uniformly continuous, and therefore there exists
some h ∈ N such that, for all x, y ∈ D̂, v̂(x− y) ≥ h implies ϕ(x)−ϕ(y) ∈ m̂. Set now N = qh− 1, and
let {u0, . . . , uN} ⊂ D be a set of representatives for D/mh = D̂/m̂h. For i ∈ [0, N ], set Ûi = ui + m̂h,
and let ci ∈ D be such that ϕ(ui) − ci ∈ m̂. If x ∈ Ûi, then x − ui ∈ m̂h, hence ϕ(x) − ϕ(ui) ∈ m̂, and
therefore ϕ(x)− ci = ϕ(x)− ϕ(ui) + ϕ(ui)− ci ∈ m̂. Since

D̂ =
N⊎
i=0

Ûi , it follows that
(
ϕ−

N∑
i=0

ci1Ûi

)
(x) ∈ m̂ for all x ∈ D̂. �[A]

Proof of B. Let v = v̂ |D, (ui)i≥0 a well distributed sequence in D and (fn)n≥0 the associated
regular basis. For i ∈ [0, N ], set Ui = ui + mh. Then

D =
N⊎
i=0

Ui , and therefore fn =
N∑
i=0

fn1Ui
for all n ≥ 0.
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Assume not that n ∈ [0, N ]. Then deg(fn) < qh, and therefore v(fn(x)− fn(y)) ≥ v(x− y)− h+ 1 for
all x, y ∈ D. In particular, if i ∈ [0, N ] and x ∈ Ui, then v(x−ui) ≥ h, and therefore fn(x)− fn(ui) ∈ m.
It follows that the function

ψn = fn −
N∑
i=0

fn(ui)1Ui : D → D satisfies ψn(x) ∈ m for all x ∈ D.

We gather these equations for n ∈ [0, N ] into a matrix equation

(f0, . . . fN ) = (1U0 , . . . ,1UN
)T + (ψ0, . . . , ψN ) , where T = (fn(ui))n,i∈[0,N ] ∈ MN+1(D) .

Since fn(ui) = 0 if i < n and fn(un) = 1, it follows that T ∈ GLn(D), and we obtain

(1U0 , . . . ,1UN
) = (f0, . . . , fN )T−1 + (ψ̃0, . . . , ψ̃N ) , where (ψ̃0, . . . , ψ̃

′
N ) = −(ψ0, . . . , ψN )T−1 ,

and ψ̃i : D → D satisfy ψ̃i(D) ⊂ m for all i ∈ [0, N ]. In particular, for every i ∈ [0, N ] we obtain
1Ui

= gi + ψ̃i for some gi ∈ Int(D).
After these preparations, we can do the proof of B. If U = u + mh, then there is some i ∈ [0, N ]

such that U = Ui. Then Û = u + m̂h is the (topological) closure of U , U = Û ∩ D, and there exists
some f ∈ Int(D) such that (1U − f)(x) = (1Û − f)(x) ∈ m for all x ∈ D. Since Û ⊂ D̂ is clopen, its
characteristic function 1Û is continuous. Hence 1Û − f : D̂ → D̂ is continuous, and (1Û − f)(D) ⊂ m

implies (1Û − f)(D̂) ⊂ m̂. �[B]
Now we prove the Theorem by induction on k. We must prove that, for all k ∈ N, there exists some

f ∈ Int(D) such that ϕ− f = tkψ for some continuos function ψ : D̂ → D̂.

k = 1 : By A, there exist h, N ∈ N, c0, . . . , cN ∈ D and u0, . . . , uN ∈ D such that, if Ûi = ui + m̂h

for all i ∈ [0, N ], then (
ϕ−

N∑
i=0

ci1Ûi

)
(x) ∈ m for all x ∈ D̂.

For every i ∈ [0, N ], B implies that there exists some gi ∈ Int(D) such that (1Ûi
− gi)(x) ∈ m̂ for all

x ∈ D̂. Then

f =
N∑
i=0

cigi ∈ Int(D) , and (ϕ−f)(x) =
(
ϕ−

N∑
i=0

ci1Ûi

)
(x)+

( N∑
i=0

ci(1Ûi
−gi

)
(x) ∈ m̂ for all x ∈ D̂ ,

and therefore ϕ− f = tψ for some continuous function ψ : D̂ → D̂.
k ≥ 1, k → k + 1: Let f ∈ Int(D) be such that ϕ − f = tkψ for some continuous function

ψ : D̂ → D̂. Let f1 ∈ Int(D) be such that ψ − f1 = tψ1 for some continuous function ψ1 : D̂ → D̂. Then
f + tkf1 ∈ Int(D), and ϕ− (f + tkf1) = tk(ψ − f1) = tk+1ψ1.

Corollary. Let D be a dv-domain with maximal ideal m such that D/m is finite. Let D̂ be a com-
pletion of D and v̂ the defining valuation of D̂. Let r ∈ N, n1, . . . , nr ∈ Z and U1, . . . , Ur ⊂ D̂ disjoint
clopen subsets such that

D̂ =
r⊎
i=1

Ui .

Then there exists some f ∈ K[X] such that v̂(f(x)) = ni for all i ∈ [1, r] and x ∈ Ui, and even f ∈ Int(D)
provided that ni ≥ 0 for all i ∈ [1, r].

Proof. Let t ∈ D be such that v̂(t) = 1, and assume first that ni ≥ 0 for all i ∈ [1, r]. Let ϕ : D̂ → D̂
be the locally constant function defined by ϕ(x) = tni if i ∈ [1, r] and x ∈ Ui. Then ϕ is continuous.
Suppose that n ∈ N, n > max{n1, . . . , nr}, and let f ∈ Int(D) such that v̂(f(x) − ϕ(x)) > n for all
x ∈ D̂. Then it follows that v̂(f(x)) = ni for all i ∈ [1, r] and x ∈ Ui.
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If n1, . . . , nr ∈ Z are arbitrary, let m ∈ N be such that m + ni ≥ 0 for all i ∈ [1, r], and let
f1 ∈ Int(D) be such that v̂(f1(x)) = m+ ni for all i ∈ [1, r] and x ∈ Ui. Then f = t−mf1 ∈ K[X] fulfills
our requirements. �

Theorem 2.3.7. Let D be a dv-domain with maximal ideal m such that D/m is finite. Let D̂ be a
completion of D and m̂ the maximal ideal of D̂.

1. For α ∈ D̂, let Mα = {f ∈ Int(D) | f(α) ∈ m̂ }. Then Mα ∈ max(Int(D)) is not finitely
generated, Mα ∩D = m, Int(D,m) ⊂ Mα, Int(D)/Mα = D/m, and the map

D̂ → {P ∈ spec(Int(D)) | P ∩D = m} , α 7→ Mα ,

is bijective.
2. For an irreducible monic polynomial g ∈ K[X], let Pg = gK[X] ∩ Int(D). Then the map

Θ: {g ∈ K[X] | g monic and irreducible } → {P ∈ spec(Int(D)) | P 6= 0, P ∩D = 0} ,

defined by Θ(g) = Pg, is bijective. If g ∈ K[X] is monic and irreducible and α ∈ D̂, then
Pg ⊂ Mα if and only if g(α) = 0.

Proof. 1. Let q = |D/m| and v̂ be the defining valuation of D̂. By definition, Mα ∈ spec(Int(D)),
and Mα ∩D = m is principal. By Theorem 2.3.4 we obtain Mα ∈ max(Int(D)), Int(D,m) ⊂ Mα and
Int(D)/Mα = D/m.

If α, β ∈ D̂ and α 6= β, then there exists a continuous function ϕ : D̂ → D̂ such that ϕ(α) = 0
and ϕ(β) = 1. Let f ∈ Int(D) be such that v̂(f(x) − ϕ(x)) ≥ 1 for all x ∈ D̂. Then f(α) ∈ m̂ and
f(β) ∈ 1 + m̂, hence f ∈ Mα \Mβ , and thus Mα 6= Mβ .

Assume now that, contrary to our assertion, there exists some P ∈ spec(Int(D)) such that P∩D = m,
hence Int(D,m) ⊂ P by Theorem 2.3.4, and P 6= Mα for all α ∈ D̂. Consequently, for all α ∈ D̂, there
exists some function fα ∈ P such that fα(α) /∈ m̂. Since D̂\m̂ is open, there exists a clopen neighborhood
Uα of α in D̂ such that fα(x) /∈ m̂ for all x ∈ Uα. Since D̂ is compact, the open covering (Uα)α∈D̂ has a
finite subcovering. Hence there exist open subsets U1, . . . , Um ⊂ D̂ and polynomials f1, . . . , fm ∈ P such
that D̂ = U1 ∪ . . . ∪ Um and fj(x) /∈ m̂ for all j ∈ [1,m] and x ∈ Uj . For j ∈ [1,m], we set gj = fq−1

j .
Then gj ∈ P, gj(x) ≡ 0 or 1 mod m̂ for all x ∈ D̂, and gj(x) ≡ 1 mod m̂ for all x ∈ Uj . Now we obtain

g = 1−
m∏
j=1

(1− gj) ∈ P , and g(x)− 1 ∈ m̂ for all x ∈ D̂.

Hence it follows that g − 1 ∈ Int(D,m) ⊂ P, a contradiction.
It remains to prove that the ideals Mα are not finitely generated. Indeed, assume to the contrary

that α ∈ D̂ and Mα = Int(D)〈f1, . . . , fm〉. Then fj(α) ∈ m̂ for all j ∈ [1,m], and as m̂ ⊂ D̂ is open
and fj : D̂ → D̂ is continuous for all j ∈ [1,m], it follows that there is some k ∈ N with the following
property : If β ∈ D̂ and v̂(β − α) ≥ k, then fj(β) ∈ m̂ for all j ∈ [1,m], and thus fj ∈ Mβ for all
j ∈ [1,m], a contradiction if β 6= α.

2. Since K[X] = D•−1Int(D) = Int(D)0, the map

{P ∈ spec(Int(D)) | P ∩D = 0} → spec(K[X]) , P 7→ PK[X] ,

is bijective, and its inverse if given by Q 7→ Q ∩ Int(D). Since the map

{g ∈ K[X] | g monic and irreducible } → spec(K[X]) \ {0} , g 7→ gK[X]

is also bijective, it follows that Θ is bijective.
Let now g ∈ K[X] be monic and irreducible and α ∈ D̂. If g(α) = 0, then f(α) = 0 for all

f ∈ Pg, and thus Pg ⊂ Mα. Thus suppose that g(α) 6= 0, let d ∈ D• be such that dg ∈ D[X], and set
v̂(dg(α)) = n ∈ N0. Since v̂◦g : D̂ → N0 ∪ {∞} is continuous, there exists some clopen neighborhood
U ⊂ D̂ of α such that v̂(dg(x)) = n for all x ∈ U . By the Corollary to Theorem 2.3.6, there exists some



2.3. INTEGER-VALUED POLYNOMIALS 63

h ∈ K[X] such that v̂(h(x)) = −n for all x ∈ U , and v̂(h(x)) = 0 for all x ∈ D̂\U . Then v̂(dg(x)h(x)) = 0
for all x ∈ U , and v̂(dg(x)h(x)) = v̂(dg(x)) ≥ 0 for all x ∈ D̂ \U . Hence dgqh ∈ Int(D), hence dgh ∈ Pg,
but dgh(α) 6= 0 and therefore dgh /∈ Mα. �

Theorem 2.3.8 (Prime ideals of Int(Z)). For a prime p ∈ P, let Z(p) = ZpZ the domain of p-
integral rational numbers and Zp = Ẑ(p) the domain of p-adic numbers. For p ∈ P and α ∈ Zp, we
set Mp,α = {f ∈ Int(Z) | f(α) ∈ pZp}, and for a monic irreducible polynomial g ∈ Q[X], we set
Pg = gQ[X ∩ Int(Z).

1. For every prime p ∈ P, the map

Zp → {P ∈ spec(Int(Z)) | P ∩ Z = pZ} , α 7→ Mp,α ,

is bijective, and the ideals Mp,α are maximal and not finitely generated.
2. Then the map

Θ: {g ∈ Q[X] | g monic and irreducible } → {P ∈ spec(Int(Z)) | P 6= 0, P ∩ Z = 0} ,
defined by Θ(g) = Pg, is bijective. If g ∈ Q[X] is monic and irreducible, p ∈ P and α ∈ Zp, then
Pg ⊂ Mp,α if and only if g(α) = 0.

3. max(Int(Z)) = {Mp,α | p ∈ P, α ∈ Zp}, and the minimal non-zero prime ideals of Int(Z) are
the ideals Pg for monic irreducible polynomials g ∈ Q[X] and the ideals Mp,α, where p ∈ P and
α ∈ Zp is not algebraic over Q. In particular, dim(Int(Z)) = 2.

Proof. 1. Let p ∈ P. By Theorem 2.3.1, Int(Z) ⊂ Int(Z)pZ = Int(Z(p)), and therefore the map

spec(Int(Z(p))) → {P ∈ spec(Int(Z)) | P ∩ Z ⊂ pZ} , P 7→ P ∩ Int(Z) ,

is bijective. If P ∈ spec(Int(Z(p))) and P = P ∩ Int(Z), then P = P(p), and P ∩ Z = pZ if and only if
P ∩ Z(p) = pZ(p). Hence we obtain a bijective map

{P ∈ spec(Int(Z(p)) | P ∩ Z(p) = pZ(p)} → {P ∈ spec(Int(Z)) | P ∩ Z = pZ} , P 7→ P ∩ Int(Z) .

By Theorem 2.3.7.1, the assignment α 7→ Mp,α = {f ∈ Int(Z(p) | f(α) ∈ Zp} defines a bijective map
Zp → {P ∈ spec(Int(Z(p)) | P ∩ Z(p) = pZ(p)}, and since Mp,α ∩ Int(Z) = Mp,α, we obtain a bijective
map

Zp → {P ∈ spec(Int(Z)) | P ∩ Z = pZ} , α 7→ Mp,α .

The ideals Mp,α are not finitely generated and maximal ideals of Int(Z(p)). Since Mp,α = (Mp,α)(p), the
ideals Mp,α are likewise not finitely generated maximal ideals of Int(Z).

2. Since Q[X] = Z•−1Int(Z) = Int(Z)0, the map

{P ∈ spec(Int(Z)) | P ∩ Z = 0} → spec(Q[X]) , P 7→ PQ[X] ,

is bijective, and its inverse if given by Q 7→ Q ∩ Int(Z). Since the map

{g ∈ Q[X] | g monic and irreducible } → spec(Q[X]) \ {0} , g 7→ gQ[X]

is also bijective, it follows that Θ is bijective.
Assume now that g ∈ Q[X] is monic and irreducible, p ∈ P and α ∈ Zp. Then we obtain

Mp,α = {f ∈ Int(Z(p)) | f(α) ∈ pZp} = (Mp,α)(p) and Pg = gQ[X] ∩ Int(Z(p)) = (Pg)(p).

Hence Pg ⊂ Mp,α if and only if Pg ⊂ Mp,α, and by Theorem 2.3.7 this holds if and only if g(α) = 0.
3. If p ∈ P and α ∈ Zp, then Mp,α ∈ max(Int(Z)) by 1. If α is algebraic over Q and g ∈ Q[X] is its

minimal polynomial, then Pg ⊂ Mp,α by 2., and if α is not algebraic over Q, then Mp,α is a minimal
non-zero prime ideal of Int(Z). It therefore remains to prove that the ideals Pg for monic and irreducible
g ∈ Q[X] are not maximal.

Thus let g ∈ Q[X] be monic and irreducible. We shall prove that there exist infinitely many primes
p such that g(α) = 0 for some α ∈ Zp (and then Pg ⊂ Mp,α). Let d ∈ N be such that g1 = dg ∈ Z[X],
and let E be the (finite) set of all primes dividing d or the discriminant of g1. If p ∈ P \ E, then the
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residue class polynomial g1 = g1 + pZ[X] ∈ Fp[X] has no multiple roots. If z ∈ Fp is a root of g1, then
Hensel’s Lemma implies that there is some α ∈ Zp such that g1(α) = 0, hence g(α) = 0, and α+pZp = z.
Hence it suffices to prove that the set F = {p ∈ P \ E | g1(a) ∈ pZ for some a ∈ Z} is infinite. Let
g1 = a0 + a1X + . . .+ adX

d, where d ∈ N and a0, . . . , ad ∈ Z. If a0 = 0, then g1(p) ∈ pZ for all p ∈ P.
Thus suppose that a0 6= 0, and let F be finite. If s ≥ 2 is any product of primes, then there is some
k ∈ N such that g1(a0s

k) 6= ±a0, and then g1(a0s
k) = a0(1+ skb) for some b ∈ Z such that 1+ skb 6= ±1.

If p ∈ P and p | 1 + skb, then p - s and yet g1(a0s
k) ∈ pZ, a contradiction. �

Theorem 2.3.9.
1. Let D be an almost Dedekind domain such that D/m is finite and Int(D)m = Int(Dm) for all

m ∈ max(D). Then Int(D) is a Prüfer domain. In particular, if D is a Dedekind domain with
finite residue class fields, then Int(D) is a Prüfer domain.

2. If Int(D) is a Prüfer domain, then D is an almost Dedekind domain, and D/m is finite for every
non-zero prime ideal of D.

Proof. 1. We assume first that D is a dv-domain with maximal ideal m such that D/m is finite.
Let D̂ be a completion of D and v̂ the defining valuation of D̂. We show that every finitely generated
non-zero ideal of Int(D) is invertible. Thus let 0 6= A ⊂ Int(D) be a finitely generated ideal.

CASE 1 : A ∩ D 6= 0. Assume that A is not invertible. Then there exists some M ∈ max(Int(D))
such that A ⊂ AA−1 ⊂ M, and since 0 6= A ∩D ⊂ M ∩D, we get M ∩D = m, and therefore M = Mα

for some α ∈ D̂. Suppose that A = Int(D)〈f1, . . . , fr〉, and let n = min{v̂(f(α)) | f ∈ A}. Then it follows
that v̂(f0(α)) = n for some f0 ∈ A, and v̂(fi(α)) ≥ n for all i ∈ [1, r]. Since f1, . . . , fr : D̂ → D̂ are
continuous, there exists a clopen set U ⊂ D such that α ∈ U and fi(x) ≥ n for all i ∈ [1, r] and x ∈ U .
By the Corollary to Theorem 2.3.6, there exists some h ∈ K[X] such that v̂(h(x)) = −n if x ∈ U , and
v̂(h(x)) = 0 if x ∈ D̂ \ U . Then v̂(fi(x)h(x)) = v̂(fi(x)) + v̂(h(x)) ≥ 0 for all x ∈ D, hence fih ∈ Int(D)
for all i ∈ [1, r], and therefore h ∈ A−1. In particular, f0h ∈ AA−1, but v̂(f0(α)h(α)) = 0 and therefore
f0h /∈ Mα.

CASE 2 : A ∩D = 0. Then AK[X] = gK[X] for some g ∈ A \K, and since A is finitely generated,
there is some d ∈ D• such that dA ⊂ g Int(D). Then g−1dA ⊂ Int(D) is a finitely generated ideal, and
d ∈ g−1dA ∩D. By CASE 1, g−1dA is invertible, and therefore A is also invertible.

Now we do the general case. Let D be an almost Dedekind domain such that, for all m ∈ max(D),
D/m is finite and Int(D)m = Int(Dm). We must prove that Int(D)M is a valuation domain for all
M ∈ max(Int(D)). If M ∈ max(Int(D)), then either M ∩ D = 0 or M ∩ D = m ∈ max(D). In the
first case, K[X] ⊂ Int(D)M. Hence Int(D)M is a local Prüfer domain and thus a valuation domain. In
the second case, Dm is a dv-domain with finite residue class field Dm/mDm = D/m, hence Int(Dm) is a
Prüfer domain, and therefore Int(D)M = (Int(D)m)Mm = Int(Dm)Mm is also a Prüfer domain.

2. Let Int(D) be a Prüfer domain. The assignment f 7→ f(0) defines an epimorphism Int(D) → D.
Hence D is a Prüfer domain. If 0 6= p ∈ spec(D), then Dp is a valuation domain with maximal ideal
pDp and residue class field Dp/pDp = q(D/p). If either Dp/pDp is infinite or pDp is not principal,
then Int(Dp) = Dp[X] by Theorem 2.3.3.5. By Theorem 2.3.1, Int(D) ⊂ Int(D)p ⊂ Int(Dp) = Dp[X],
and thus Dp[X] is a Prüfer domain, a contradiction. It remains to prove that Dp is a principal ideal
domain, and therefore it suffices to prove that pDp is the only non-zero prime ideal. Thus suppose that
0 6= q ⊂ pDp is a prime ideal of Dp. Then q = qDp for some prime ideal q ⊂ D such that 0 6= q ⊂ p.
But then p/q is an ideal of D/q, which is finite and thus a field. Hence p = q and q = pDp. �


