POLYNOMIAL PARAMETRIZATION OF THE SOLUTIONS OF CERTAIN SYSTEMS OF DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH AND GÜNTER LETTL

Abstract

Let $f_{1}, f_{2}, \ldots, f_{k} \in \mathbb{Z}\left[X_{0}, X_{1}, \ldots, X_{N}\right]$ be non-constant homogeneous polynomials which define a projective variety V over \mathbb{Q}. Under the hypothesis that, for some $n \in \mathbb{N}$, there is a surjective morphism $\varphi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$, we show that all integral solutions of the system of Diophantine equations $f_{1}=0, \ldots, f_{k}=0$ (outside some exceptional set) can be parametrized by a single k-tuple of integer-valued polynomials. This result only depends on φ, but not on the embedding given by $f_{1}, f_{2}, \ldots, f_{k}$. If, in particular, φ is a normalization of V, then the exceptional set is really small.

Many questions in number theory deal with the problem whether a set $S \subset \mathbb{Z}^{k}$ has a polynomial parametrization, i.e. whether there exist polynomials $h_{1}, \ldots, h_{k} \in$ $\mathbb{Z}\left[T_{1}, \ldots, T_{r}\right]$ such that S is the image of \mathbb{Z}^{r} under the map $\boldsymbol{h}=\left(h_{1}, \ldots, h_{k}\right): \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{k}$; see e.g. L. Vaserstein [9]. This is also tightly connected with the notion of "Diophantine set", see e.g. the book of P. Ribenboim [8, Chap. 3.III], which is intrinsic to Matiyasevich's solution of Hilbert's tenth problem.
S. Frisch [2] proved an interesting connection between parametrizations by polynomials with integral coefficients and by integer-valued polynomials. Let us recall that a polynomial $g \in \mathbb{Q}\left[U_{1}, U_{2}, \ldots, U_{m}\right]$ is called integer-valued if for any $\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{Z}^{m}$ one has $g(\boldsymbol{u}) \in \mathbb{Z}$. S. Frisch and L. Vaserstein showed in [4] that the set of Pythagorean triples cannot be parametrized by any triple of polynomials with integral coefficients, but indeed it can be parametrized by a triple of integer-valued polynomials.

Recently, the affirmative part of this result was generalized by S. Frisch and the second author to the solution set of any homogeneous Diophantine equation in 3 variables, which defines an irreducible, plane curve with a rational function field [3]. This corresponds to the special case $N=2$ and $k=1$ of Theorem 1 of the present paper.

Let V be a variety defined over \mathbb{Q} and suppose that for some $n \in \mathbb{N}$ there is a surjective morphism $\varphi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$. For a point $p \in V$, let $\mathcal{O}_{V, p}$ be the local ring of V at $p, \mathrm{k}_{V}(p)$ its residue field and $\varphi^{-1}(p)=\mathbb{P}_{\mathbb{Q}}^{n} \times_{V} \operatorname{spec} k_{V}(p)$ the fibre of φ at p. For each point $\bar{p} \in \varphi^{-1}(p), \quad \varphi$ induces an embedding $\varphi_{\bar{p}}: \mathrm{k}_{V}(p) \hookrightarrow \mathrm{k}_{\mathbb{P}_{\Omega}^{n}}(\bar{p})$. We call a \mathbb{Q}-rational point $p \in V(\mathbb{Q})$ strongly \mathbb{Q}-rational (with respect to φ) if there exists some $\bar{p} \in \pi^{-1}(p)$ such that $\varphi_{\bar{p}}$ is the identity, that is, $\mathrm{k}_{\mathbb{Q}_{\mathbf{Q}}^{n}}(\bar{p})=\mathrm{k}_{V}(p)=\mathbb{Q}$. Let $V_{\varphi}(\mathbb{Q})^{*}$ denote the set of all strongly \mathbb{Q}-rational points of V.

If, in particular, φ is a normalization of V and $\mathbb{Q}(V)$ denotes the rational function field of V, then, for every $p \in V, \varphi^{-1}(p)=\operatorname{spec} \overline{\mathcal{O}_{V, p}}$ is finite, where $\overline{\mathcal{O}_{V, p}}$ denotes the integral closure of $\mathcal{O}_{V, p}$ in $\mathbb{Q}(V)$, and the exceptional set $V(\mathbb{Q}) \backslash V_{\varphi}(\mathbb{Q})^{*}$ of non strongly \mathbb{Q}-rational points of V is contained in the set of singular points of V and thus in a lower-dimensional

[^0]subset. Let us remark that "strongly \mathbb{Q}-rational" just generalizes the notion of "not bad", as given in [3] for \mathbb{Q}-rational points of curves, to higher dimensions.

Let V be a projective variety over \mathbb{Q} and fix an embedding $V \subset \mathbb{P}_{\mathbb{Q}}^{N}$ as a closed subvariety. Then $V=\operatorname{Proj}\left(\mathbb{Q}\left[X_{0}, \ldots, X_{N}\right] /\left(f_{1}, \ldots, f_{k}\right)\right)$, where $f_{1}, \ldots, f_{k} \in \mathbb{Q}\left[X_{0}, \ldots, X_{N}\right]$ are homogeneous polynomials, and

$$
V(\mathbb{Q})=\left\{\left(x_{0}: \ldots: x_{N}\right) \in \mathbb{P}^{N}(\mathbb{Q}) \mid f_{j}\left(x_{0}, \ldots, x_{N}\right)=0 \text { for all } 1 \leq j \leq k\right\} .
$$

Obviously, one can even choose $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{0}, \ldots, X_{N}\right]$.
Theorem 1. Let $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[X_{0}, \ldots, X_{N}\right]$ be non-constant homogeneous polynomials such that $V=\operatorname{Proj}\left(\mathbb{Q}\left[X_{0}, \ldots, X_{N}\right] /\left(f_{1}, \ldots, f_{k}\right)\right)$ is a projective variety admitting a surjective morphism $\varphi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$. Put

$$
\begin{aligned}
\mathcal{L} & =\left\{\left(x_{0}, \ldots, x_{N}\right) \in \mathbb{Z}^{N+1} \mid f_{j}\left(x_{0}, \ldots, x_{N}\right)=0 \text { for all } 1 \leq j \leq k\right\} \\
& =\left\{\left(x_{0}, \ldots, x_{N}\right) \in \mathbb{Z}^{N+1} \mid\left(x_{0}: \ldots: x_{N}\right) \in V(\mathbb{Q})\right\} \cup\{(0, \ldots, 0)\}
\end{aligned}
$$

and

$$
\mathcal{L}^{*}=\left\{\left(x_{0}, \ldots, x_{N}\right) \in \mathbb{Z}^{N+1} \mid\left(x_{0}: \ldots: x_{N}\right) \in V_{\varphi}(\mathbb{Q})^{*}\right\} \cup\{(0, \ldots, 0)\} \subset \mathcal{L} .
$$

Then there exist some $m \in \mathbb{N}$ and integer-valued polynomials $g_{0}, \ldots, g_{N} \in \mathbb{Q}\left[U_{1}, \ldots, U_{m}\right]$ such that

$$
\mathcal{L}^{*}=\left\{\left(g_{0}(\boldsymbol{u}), \ldots, g_{N}(\boldsymbol{u})\right) \mid \boldsymbol{u} \in \mathbb{Z}^{m}\right\} .
$$

Remark.

1. Note that in Theorem 1 the existence of a parametrization by integer-valued polynomials only depends on the variety V, but not on the explicit embedding given by $f_{1}, f_{2}, \ldots, f_{k}$. In contrast, the existence of a parametrization by polynomials with integral coefficients does depend on the embedding, as can be seen from [4] (unit circle) and [3, Ex. 1] (equilateral hyperbola).
2. If $\operatorname{dim} V=1$, then the normalization \bar{V} of V is non-singular, and $\bar{V} \cong \mathbb{P}_{\mathbb{Q}}^{1}$ holds if and only if the function field $\mathbb{Q}(V)$ is rational. In the higher-dimensional case, Theorem 1 applies if one supposes that $\bar{V} \cong \mathbb{P}_{\mathbb{Q}}^{n}$, which is a much stronger assumption.

The proof of Theorem 1 will use the implication $(\mathrm{D}) \Rightarrow(\mathrm{B})$ of the main result of [2], which for the sake of completeness we state in the following

Proposition 2. Let $k, r \in \mathbb{N}, h_{1}, \ldots, h_{k} \in \mathbb{Q}\left[T_{1}, \ldots, T_{r}\right]$ and

$$
S=\left\{\left(h_{1}(\boldsymbol{t}), \ldots, h_{k}(\boldsymbol{t})\right) \mid \boldsymbol{t} \in \mathbb{Z}^{r}\right\} \cap \mathbb{Z}^{k} .
$$

Then there exist integer-valued polynomials $g_{1}, \ldots, g_{k} \in \mathbb{Q}\left[U_{1}, \ldots, U_{m}\right]$ for some $m \in \mathbb{N}$ such that

$$
S=\left\{\left(g_{1}(\boldsymbol{u}), \ldots, g_{k}(\boldsymbol{u})\right) \mid \boldsymbol{u} \in \mathbb{Z}^{m}\right\} .
$$

Proof of Theorem 1. Let $\varphi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$ be a surjective morphism. Choose homogeneous polynomials of the same degree, say $h_{0}, \ldots, h_{N} \in \mathbb{Z}\left[T_{0}, \ldots, T_{n}\right]$, such that on geometric points $\left(t_{0}: \ldots: t_{n}\right) \in \mathbb{P}^{n}(\overline{\mathbb{Q}})$ the map φ is given by

$$
\varphi\left(t_{0}: \ldots: t_{n}\right)=\left(h_{0}\left(t_{0}, \ldots, t_{n}\right): \ldots: h_{N}\left(t_{0}, \ldots, t_{n}\right)\right) .
$$

In particular, it follows that h_{0}, \ldots, h_{N} have no common zero. Hence, by the projective Nullstellensatz [10, Ch. VII, §4], the radical of the homogeneous ideal $\left(h_{0}, \ldots, h_{N}\right)$ is given by

$$
\sqrt{\left(h_{0}, \ldots, h_{N}\right)}=\left(T_{0}, \ldots, T_{n}\right) \triangleleft \mathbb{Q}\left[T_{0}, \ldots, T_{n}\right] .
$$

For $p \in V(\mathbb{Q})$, there exists some $z \in \mathbb{P}^{n}(\mathbb{Q})$ with $p=\varphi(z)$ if and only if $p \in V_{\varphi}(\mathbb{Q})^{*}$. Thus we obtain

$$
\mathcal{L}^{*}=\left\{\left(w h_{0}(\boldsymbol{t}), \ldots, w h_{N}(\boldsymbol{t})\right) \mid \boldsymbol{t} \in \mathbb{Q}^{n+1}, w \in \mathbb{Q}\right\} \cap \mathbb{Z}^{N+1}
$$

and the assertion of Theorem 1 follows by the subsequent Lemma.

Lemma 3. Let $h_{0}, \ldots, h_{N} \in \mathbb{Z}\left[T_{0}, \ldots, T_{n}\right]$ be homogeneous polynomials of the same degree such that $\sqrt{\left(h_{0}, \ldots, h_{N}\right)}=\left(T_{0}, \ldots, T_{n}\right) \triangleleft \mathbb{Q}\left[T_{0}, \ldots, T_{n}\right]$ and

$$
L=\left\{\left(w h_{0}(\boldsymbol{t}), \ldots, w h_{N}(\boldsymbol{t})\right) \mid \boldsymbol{t} \in \mathbb{Q}^{n+1}, w \in \mathbb{Q}\right\} \cap \mathbb{Z}^{N+1}
$$

Then there exists some $m \in \mathbb{N}$ and integer-valued polynomials $g_{0}, \ldots, g_{N} \in \mathbb{Q}\left[U_{1}, \ldots, U_{m}\right]$ such that

$$
L=\left\{\left(g_{0}(\boldsymbol{u}), \ldots, g_{N}(\boldsymbol{u})\right) \mid \boldsymbol{u} \in \mathbb{Z}^{m}\right\} .
$$

Proof. We assert that there exists some $d \in \mathbb{N}$ such that, for all $\boldsymbol{t}=\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{Z}^{n+1}$ with $\operatorname{gcd}\left(t_{0}, \ldots, t_{n}\right)=1$ we have

$$
\operatorname{gcd}\left\{h_{0}(\boldsymbol{t}), \ldots, h_{N}(\boldsymbol{t})\right\} \mid d
$$

Indeed, since $\sqrt{\left(h_{0}, \ldots, h_{N}\right)}=\left(T_{0}, \ldots, T_{n}\right) \triangleleft \mathbb{Q}\left[T_{0}, \ldots, T_{n}\right]$ we obtain, by clearing up denominators, polynomials $q_{j, i} \in \mathbb{Z}\left[T_{0}, \ldots, T_{n}\right]$ (for $0 \leq i \leq N$ and $0 \leq j \leq n$) and integers $d, b \in \mathbb{N}$ such that

$$
d T_{j}^{b}=\sum_{i=0}^{N} h_{i} q_{j, i} \quad \text { for all } 0 \leq j \leq n
$$

Now, if $\boldsymbol{t}=\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{Z}^{n+1}$ with $\operatorname{gcd}\left(t_{0}, \ldots, t_{n}\right)=1$, then

$$
d t_{j}^{b}=\sum_{i=0}^{N} h_{i}(\boldsymbol{t}) q_{j, i}(\boldsymbol{t}) \quad \text { for all } 0 \leq j \leq n, \quad \text { and thus } \operatorname{gcd}\left\{h_{0}(\boldsymbol{t}), \ldots, h_{N}(\boldsymbol{t})\right\} \mid d
$$

With d as above, we set $h_{i}^{*}=d^{-1} h_{i} \in \mathbb{Q}\left[T_{0}, \ldots, T_{n}\right]$ (for $0 \leq i \leq N$), and we assert that

$$
\begin{equation*}
L=\left\{\left(w h_{0}^{*}(\boldsymbol{t}), \ldots, w h_{N}^{*}(\boldsymbol{t})\right) \mid w \in \mathbb{Z}, \boldsymbol{t} \in \mathbb{Z}^{n+1}\right\} \cap \mathbb{Z}^{N+1} \tag{1}
\end{equation*}
$$

Once this is proved, the Lemma follows by Proposition 2.
The inclusion " \supset " of (1) is obvious, and both sets contain the trivial solution.
Thus assume that $(0, \ldots, 0) \neq\left(x_{0}, \ldots, x_{N}\right) \in L$, and let $\boldsymbol{t} \in \mathbb{Q}^{n+1}$ and $w \in \mathbb{Q}$ be such that $x_{i}=w h_{i}(\boldsymbol{t})$ for all $0 \leq i \leq N$. Then $\boldsymbol{t}=c^{-1} \boldsymbol{t}^{\prime}$, where $c \in \mathbb{N}$, $\boldsymbol{t}^{\prime}=\left(t_{0}^{\prime}, \ldots, t_{n}^{\prime}\right) \in \mathbb{Z}^{n+1}$ and $\operatorname{gcd}\left(t_{0}^{\prime}, \ldots, t_{n}^{\prime}\right)=1$. For $0 \leq i \leq N$ this implies

$$
x_{i}=w c^{-\delta} h_{i}\left(\boldsymbol{t}^{\prime}\right)
$$

with $\delta=\operatorname{deg}\left(h_{i}\right)$. Since $x_{i} \in \mathbb{Z}$ and $\operatorname{gcd}\left\{h_{0}\left(\boldsymbol{t}^{\prime}\right), \ldots, h_{N}\left(\boldsymbol{t}^{\prime}\right)\right\}$ divides d, it follows that $w^{\prime}=d w c^{-\delta} \in \mathbb{Z}$ and $\left(x_{0}, \ldots, x_{N}\right)=\left(w^{\prime} h_{0}^{*}\left(\boldsymbol{t}^{\prime}\right), \ldots, w^{\prime} h_{N}^{*}\left(\boldsymbol{t}^{\prime}\right)\right)$.

In the following Lemma 4 we give a simple criterion for the normalization of V to be isomorphic to a projective space without mentioning this normalization explicitly.

Lemma 4. Let V be a projective variety over \mathbb{Q}. Then the following assertions are equivalent:
(a) The normalization of V is isomorphic to $\mathbb{P}_{\mathbb{Q}}^{n}$.
(b) There exists a finite birational morphism $\mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$.

Proof. Let $\pi: \bar{V} \rightarrow V$ be a normalization of V.
(a) \Rightarrow (b) If $\phi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow \bar{V}$ is an isomorphism, then $\pi \circ \phi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$ is a finite birational morphism.
(b) \Rightarrow (a) Let $\varphi: \mathbb{P}_{\mathbb{Q}}^{n} \rightarrow V$ be a finite birational morphism. Then $\varphi\left(\mathbb{P}_{\mathbb{Q}}^{n}\right) \subset V$ is closed, and since φ is birational, it follows that $\varphi\left(\mathbb{P}_{\mathbb{Q}}^{n}\right) \subset V$ is equidimensional. Hence φ is surjective, and the assertion follows by [7, Th. 2.24].

Obviously, Theorem 1 applies for rational varieties which are isomorphic to $\mathbb{P}_{\mathbb{Q}}^{n}$ for some $n \in \mathbb{N}$. We conclude with examples of rational varieties which are not isomorphic to some projective space and for which Theorem 1 can be used.
Example.
Let $V \subset \mathbb{P}^{3}$ be any Steiner surface defined over \mathbb{Q} (see [5, Ch. 4] and [1]). Such a surface is a suitable projection of the Veronese surface $V_{0} \subset \mathbb{P}^{5}$ into \mathbb{P}^{3}. Thus there is a surjective morphism $\mathbb{P}_{\mathbb{Q}}^{2} \rightarrow V$ and Theorem 1 applies. Since V has singular points, it is not isomorphic to $\mathbb{P}_{\mathbb{Q}}^{2}$.

As a special example, let $V \subset \mathbb{P}_{\mathbb{Q}}^{3}$ be the Roman surface, given by the homogeneous equation

$$
\begin{equation*}
X_{1}^{2} X_{2}^{2}+X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}-X_{0} X_{1} X_{2} X_{3}=0 \tag{2}
\end{equation*}
$$

whose singular locus is the union of the three lines

$$
X_{1}=X_{2}=0, X_{2}=X_{3}=0 \text { and } X_{3}=X_{1}=0
$$

There is a surjective morphism $\varphi: \mathbb{P}_{\mathbb{Q}}^{2} \rightarrow V$, given on geometric points by

$$
\left(t_{0}: t_{1}: t_{2}\right) \mapsto\left(t_{0}^{2}+t_{1}^{2}+t_{2}^{2}: t_{0} t_{1}: t_{1} t_{2}: t_{2} t_{0}\right) .
$$

For coprime integers $t_{0}, t_{1}, t_{2} \in \mathbb{Z}$ we obviously have $\operatorname{gcd}\left\{t_{0}^{2}+t_{1}^{2}+t_{2}^{2}, t_{0} t_{1}, t_{1} t_{2}, t_{2} t_{0}\right\}=1$, and thus we obtain for the set of solutions of the Diophantine equation (2) - up to those coming from non strongly \mathbb{Q}-rational points -

$$
\begin{aligned}
\mathcal{L}^{*} & =\left\{\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{4} \mid\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \in V_{\varphi}(\mathbb{Q})^{*}\right\} \cup\{(0,0,0,0)\} \\
& =\left\{\left(s\left(t_{0}^{2}+t_{1}^{2}+t_{2}^{2}\right), s t_{0} t_{1}, s t_{1} t_{2}, s t_{2} t_{0}\right) \mid s, t_{0}, t_{1}, t_{2} \in \mathbb{Z}\right\} .
\end{aligned}
$$

Let us finally remark that for the Roman surface V we have $V_{\varphi}(\mathbb{Q})^{*} \varsubsetneqq V(\mathbb{Q})$.
Indeed, for every \mathbb{Q}-rational point $p=(m: n: 0: 0)=\varphi\left(t_{0}: t_{1}: t_{2}\right)$ of the singular line $X_{2}=X_{3}=0$ with $n \neq 0$ we have

$$
0 \neq r=\frac{m}{n}=\frac{t_{0}^{2}+t_{1}^{2}}{t_{0} t_{1}}=\frac{t_{0}}{t_{1}}+\frac{t_{1}}{t_{0}} .
$$

Therefore $p \in V_{\varphi}(\mathbb{Q})^{*}$ if and only if $r=x+x^{-1}$ for some $x \in \mathbb{Q}^{\times}$, which is equivalent to $r^{2}-4$ being the square of a rational number.

References

[1] A. Coffman, Steiner Surfaces, http://www.ipfw.edu/math/Coffman/steinersurface.html.
[2] S. Frisch, Remarks on polynomial parametrization of sets of integer points, Comm. Algebra 36 (2008), 1110-1114.
[3] S. Frisch and G. Lettl, Polynomial parametrization of the solutions of Diophantine equations of genus 0, Funct. Approximatio, Comment. Math. (to appear).
[4] S. Frisch and L. Vaserstein, Parametrization of Pythagorean triples by a single triple of polynomials, J. Pure Appl. Algebra 212 (2008), 271-274.
[5] P. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley \& Sons, 1978.
[6] R. Hartshorne, Algebraic Geometry, GTM 52, Springer, 1977.
[7] S. Iitaka, Algebraic Geometry, GTM 76, Springer, 1982.
[8] P. Ribenboim, The new book of prime number records, Springer, 1996.
[9] L. Vaserstein, Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups, Ann of Math. (to appear).
[10] O. Zariski and P. Samuel, Commutative Algebra vol. II, GTM 29, Springer, 1960.

Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens-Universität, Heinrichstrasse 36, A-8010 Graz, AUSTRIA

E-mail address: franz.halterkoch@uni-graz.at
E-mail address: guenter.lettl@uni-graz.at

[^0]: 2000 Mathematics Subject Classification. Primary 11D85; secondary 14G05, 14M20, 13F20, 11 D 41.
 Key words and phrases. integer-valued polynomials, rational variety.
 This work was supported by the Austrian Science Fund FWF, project number P20120-N18.

