POLYNOMIAL PARAMETRIZATION OF THE SOLUTIONS OF
CERTAIN SYSTEMS OF DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH AND GUNTER LETTL

ABSTRACT. Let fi, fa,..., fr € Z[ Xy, X1, ..., Xn] be non-constant homogeneous poly-
nomials which define a projective variety V over Q. Under the hypothesis that, for some
n € N, there is a surjective morphism ¢: P — V, we show that all integral solutions of
the system of Diophantine equations f; = 0,..., fr = 0 (outside some exceptional set)
can be parametrized by a single k-tuple of integer-valued polynomials. This result only
depends on ¢, but not on the embedding given by f1, fo, ..., fx. If, in particular, ¢ is a
normalization of V| then the exceptional set is really small.

Many questions in number theory deal with the problem whether a set S C Z*
has a polynomial parametrization, i.e. whether there exist polynomials hq,..., hy €
Z[Ty,...,T,] such that S is the image of Z" under the map h = (hy, ..., hy): Z" — ZF; see
e.g. L. Vaserstein [9]. This is also tightly connected with the notion of “Diophantine set”,
see e.g. the book of P. Ribenboim [8, Chap. 3.III], which is intrinsic to Matiyasevich’s
solution of Hilbert’s tenth problem.

S. Frisch [2] proved an interesting connection between parametrizations by polynomials
with integral coefficients and by integer-valued polynomials. Let us recall that a poly-
nomial g € Q[Uy, Us, ..., U,] is called integer-valued if for any u = (uy,...,u,) € Z™
one has g(u) € Z. S. Frisch and L. Vaserstein showed in [4] that the set of Pythagorean
triples cannot be parametrized by any triple of polynomials with integral coefficients, but
indeed it can be parametrized by a triple of integer-valued polynomials.

Recently, the affirmative part of this result was generalized by S. Frisch and the second
author to the solution set of any homogeneous Diophantine equation in 3 variables, which
defines an irreducible, plane curve with a rational function field [3]. This corresponds to
the special case N = 2 and k = 1 of Theorem 1 of the present paper.

Let V be a variety defined over Q and suppose that for some n € N there is a surjective
morphism : Py — V. For a point p € V, let Oy,, be the local ring of V" at p, ky(p)
its residue field and ¢~ !(p) = Pf xv specky(p) the fibre of ¢ at p. For each point
P € ¢ '(p), ¢ induces an embedding ¢5: ky(p) — kpp (P). We call a Q-rational point
p € V(Q) strongly Q-rational (with respect to ¢ ) if there exists some p € 7!(p) such
that 5 is the identity, that is, kpg(p) = kv(p) = Q. Let V,,(Q)" denote the set of all
strongly Q-rational points of V.

If, in particular, ¢ is a normalization of V" and Q(V') denotes the rational function field
of V, then, for every p € V, ¢~ !(p) = spec Oy, is finite, where Oy, denotes the integral
closure of Oy, in Q(V'), and the exceptional set V(Q)\V,(Q)* of non strongly Q-rational
points of V' is contained in the set of singular points of V' and thus in a lower-dimensional
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subset. Let us remark that “strongly Q-rational” just generalizes the notion of “not bad”,
as given in [3] for Q-rational points of curves, to higher dimensions.

Let V' be a projective variety over Q and fix an embedding V' C Pg as a closed sub-

variety. Then V' = Proj (Q[XO, o XN/ (frs - ,fk)), where fi,..., fr € Q[Xo,..., XN]
are homogeneous polynomials, and

V(Q) ={(z0:...:2n) € PY(Q) | fi(zo,...,zn) =0 forall1 <j<k}.
Obviously, one can even choose fi,..., fi € Z[Xy,..., Xy].
Theorem 1. Let fi,...,fr € Z[Xo,...,Xn] be non-constant homogeneous polynomi-

als such that V = Proj (Q[Xo, ..., Xn]/(f1,-.., fr)) is a projective variety admitting a
surjective morphism ¢: Py — V. Put

L={(zo,...,an) € Z"| fi(zo,...,an) =0 foralll <j <k}

={(z0,...,zn) €ZN" | (2o :... 1 zy) € V(Q)} U{(0,...,0)}
and
£ ={(zo,...,on) €ZN" | (zo: ...  zn) € VL (Q)*} U{(0,...,0)} C L.
Then there exist some m € N and integer-valued polynomials go,...,gn € Q[Ui, ..., Uyl
such that
£ = {(go(u),...,gn(u) |ucZ™}.
Remark.

1. Note that in Theorem 1 the existence of a parametrization by integer-valued poly-
nomials only depends on the variety V', but not on the explicit embedding given by
f1, fay ..., fr. In contrast, the existence of a parametrization by polynomials with integral
coefficients does depend on the embedding, as can be seen from [4] (unit circle) and [3,
Ex. 1] (equilateral hyperbola).

2. If dimV = 1, then the normalization V of V is non-singular, and V =2 Rl@ holds if
and only if the function field Q(V') is rational. In the higher-dimensional case, Theorem 1
applies if one supposes that V' = P¢, which is a much stronger assumption.

The proof of Theorem 1 will use the implication (D)= (B) of the main result of [2],
which for the sake of completeness we state in the following

Proposition 2. Let k, r € N, hy,... h € Q[T},...,T,] and
S={(h(t),.... (t) |t €Z} NZ".

Then there ezist integer-valued polynomials gy, ..., g € Q[Uy, ..., Uy for some m € N
such that

S = {(gl('u,), o ge(w) |u e Zm} :

Proof of Theorem 1. Let : Py — V be a surjective morphism. Choose homogeneous
polynomials of the same degree, say hg,...,hy € Z[Ty,...,T,], such that on geometric

points (to : ... :t,) € P"(Q) the map ¢ is given by
o(to ... i ty) = (ho(to, ..., tn) : ...t hn(to, ... tn)) -
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In particular, it follows that hqg,..., hxy have no common zero. Hence, by the projective
Nullstellensatz [10, Ch. VII, §4], the radical of the homogeneous ideal (hy, ..., hy) is given
by

(ho,...,h]\[) = (To,...,Tn) < Q[Tg,,Tn] .
For p € V(Q), there exists some z € P*(Q) with p = ¢(2) if and only if p € V,,(Q)*. Thus
we obtain

LY = {(who(t), . ,whN(t)) ’ tc (@n—&-l7 w E Q} N ZN—H,

and the assertion of Theorem 1 follows by the subsequent Lemma. O

Lemma 3. Let hy,...,hy € Z[Ty, ..., T,] be homogeneous polynomials of the same degree
such that \/(ho,...,hn) = (Ty,...,T,) < Q[Ty,...,T,] and
L = {(who(t),...,why(t)) |t € Q" weQ}nZ .

Then there exists some m € N and integer-valued polynomials g, ...,gn € Q[Uy, ..., Uy
such that

L={(g0(w),...,gn(u)) |ueczm™}.
Proof. We assert that there exists some d € N such that, for all ¢ = (t¢,...,t,) € Z"
with ged(to, ..., t,) = 1 we have
ged{ho(t),...,hn(t)} | d.
Indeed, since +/(ho,...,hy) = (To,...,T) < Q[Tp,...,T,] we obtain, by clearing up

denominators, polynomials ¢;;, € Z[Ty,...,T,] (for 0 < ¢ < N and 0 < j < n) and
integers d, b € N such that

N
deb = Zhi%‘,z’ forall0 <j<nm.
i=0
Now, if t = (tg,...,t,) € Z"" with ged(to,...,t,) = 1, then

N
dth = Zhi(t) g;i(t) forall 0<j<mn, andthus ged{ho(t),...,hn(t)}|d.
i=0

With d as above, we set hf = d~'h; € Q[T,...,T,] (for 0 < i < N), and we assert that
(1) L= {(whi(t),...,whiy(t)) |weZ, teZ"" } nZ .
Once this is proved, the Lemma follows by Proposition 2.

The inclusion “D” of (1) is obvious, and both sets contain the trivial solution.
Thus assume that (0,...,0) # (zo,...,oy) € L, and let t € Q"™ and w € Q be such
that x; = wh;(t) forall 0 <i < N. Then t = ¢~ 't/, where c € N, ¥/ = (¢, ...,t,) € Z"**
and ged(tg,...,t,) = 1. For 0 <i < N this implies

x; = we Chy(t)
with 0 = deg(h;). Since z; € Z and ged{ho(t’), ..., hn(t")} divides d, it follows that
w' = dwc™ € Z and (zo, ..., zyn) = (Whi{t'),...,w'hy({t)). O



4 FRANZ HALTER-KOCH AND GUNTER LETTL

In the following Lemma 4 we give a simple criterion for the normalization of V' to be
isomorphic to a projective space without mentioning this normalization explicitly.

Lemma 4. Let V be a projective variety over Q. Then the following assertions are
equivalent:

(a) The normalization of V' is isomorphic to Pg.
(b) There exists a finite birational morphism Py — V.

Proof. Let m: V' — V be a normalization of V.

(a) = (b) If ¢: Pg — V is an isomorphism, then o ¢: P — V is a finite birational
morphism.

(b) = (a) Let p: PG — V be a finite birational morphism. Then ¢(Pg) C V is
closed, and since ¢ is birational, it follows that ¢(IPg) C V' is equidimensional. Hence ¢
is surjective, and the assertion follows by [7, Th. 2.24]. O

Obviously, Theorem 1 applies for rational varieties which are isomorphic to Pg for some
n € N. We conclude with examples of rational varieties which are not isomorphic to some
projective space and for which Theorem 1 can be used.

Ezample.

Let V C P3 be any Steiner surface defined over Q (see [5, Ch. 4] and [1]). Such a
surface is a suitable projection of the Veronese surface V; C P into P3. Thus there is a
surjective morphism IP’?Q — V and Theorem 1 applies. Since V' has singular points, it is
not isomorphic to IP?Q.

As a special example, let V' C IP’?Q be the Roman surface, given by the homogeneous
equation

(2) XEXI+ X2X2 + X2X7 — XoX1 X2 X3 =0,
whose singular locus is the union of the three lines
X1=Xo=0, Xo=X3=0 and X3=X;=0.
There is a surjective morphism ¢: IP’?@ — V/, given on geometric points by
(to ity :tg) = (t2 + 15 + 15 toty : tita : tatp) .

For coprime integers tg, t1, to € Z we obviously have ged{t2 + 2 + 13, toty, t1ta, talg} = 1,
and thus we obtain for the set of solutions of the Diophantine equation (2) — up to those
coming from non strongly Q-rational points —

L= {(xo,xl,xg,mg) €Z* | (wg: w19 :23) € V¢(Q)*} U {(0,0,0,0)}
= {(s(ty + t1 + 13), stot1, stita, stato) | 5,40, t1,t2 € Z} .
Let us finally remark that for the Roman surface V' we have V,,(Q)* & V(Q).

Indeed, for every Q-rational point p = (m :n :0:0) = @(ty : t; : t2) of the singular line
Xy = X3 =0 with n # 0 we have

n totl tl t()
Therefore p € V,(Q)* if and only if r =242~ for some z € Q*, which is equivalent to
r? — 4 being the square of a rational number.
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