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Abstract. Let f1, f2, . . . , fk ∈ Z[X0, X1, . . . , XN ] be non-constant homogeneous poly-
nomials which define a projective variety V over Q. Under the hypothesis that, for some
n ∈ N, there is a surjective morphism ϕ : Pn

Q → V , we show that all integral solutions of
the system of Diophantine equations f1 = 0, . . . , fk = 0 (outside some exceptional set)
can be parametrized by a single k-tuple of integer-valued polynomials. This result only
depends on ϕ, but not on the embedding given by f1, f2, . . . , fk. If, in particular, ϕ is a
normalization of V , then the exceptional set is really small.

Many questions in number theory deal with the problem whether a set S ⊂ Zk

has a polynomial parametrization, i.e. whether there exist polynomials h1, . . . , hk ∈
Z[T1, . . . , Tr] such that S is the image of Zr under the map h = (h1, . . . , hk) : Zr → Zk; see
e.g. L. Vaserstein [9]. This is also tightly connected with the notion of “Diophantine set”,
see e.g. the book of P. Ribenboim [8, Chap. 3.III], which is intrinsic to Matiyasevich’s
solution of Hilbert’s tenth problem.

S. Frisch [2] proved an interesting connection between parametrizations by polynomials
with integral coefficients and by integer-valued polynomials. Let us recall that a poly-
nomial g ∈ Q[U1, U2, . . . , Um] is called integer-valued if for any u = (u1, . . . , um) ∈ Zm

one has g(u) ∈ Z. S. Frisch and L. Vaserstein showed in [4] that the set of Pythagorean
triples cannot be parametrized by any triple of polynomials with integral coefficients, but
indeed it can be parametrized by a triple of integer-valued polynomials.

Recently, the affirmative part of this result was generalized by S. Frisch and the second
author to the solution set of any homogeneous Diophantine equation in 3 variables, which
defines an irreducible, plane curve with a rational function field [3]. This corresponds to
the special case N = 2 and k = 1 of Theorem 1 of the present paper.

Let V be a variety defined over Q and suppose that for some n ∈ N there is a surjective
morphism ϕ : Pn

Q → V . For a point p ∈ V , let OV,p be the local ring of V at p, kV (p)
its residue field and ϕ−1(p) = Pn

Q ×V spec kV (p) the fibre of ϕ at p. For each point
p ∈ ϕ−1(p), ϕ induces an embedding ϕp : kV (p) ↪→ kPn

Q
(p). We call a Q-rational point

p ∈ V (Q) strongly Q-rational (with respect to ϕ ) if there exists some p ∈ π−1(p) such
that ϕp is the identity, that is, kPn

Q
(p) = kV (p) = Q. Let Vϕ(Q)∗ denote the set of all

strongly Q-rational points of V .
If, in particular, ϕ is a normalization of V and Q(V ) denotes the rational function field

of V , then, for every p ∈ V , ϕ−1(p) = specOV,p is finite, where OV,p denotes the integral
closure of OV,p in Q(V ), and the exceptional set V (Q)\Vϕ(Q)∗ of non strongly Q-rational
points of V is contained in the set of singular points of V and thus in a lower-dimensional
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subset. Let us remark that “strongly Q-rational” just generalizes the notion of “not bad”,
as given in [3] for Q-rational points of curves, to higher dimensions.

Let V be a projective variety over Q and fix an embedding V ⊂ PN
Q as a closed sub-

variety. Then V = Proj
(
Q[X0, . . . , XN ]/(f1, . . . , fk)

)
, where f1, . . . , fk ∈ Q[X0, . . . , XN ]

are homogeneous polynomials, and

V (Q) =
{
(x0 : . . . : xN) ∈ PN(Q) | fj(x0, . . . , xN) = 0 for all 1 ≤ j ≤ k

}
.

Obviously, one can even choose f1, . . . , fk ∈ Z[X0, . . . , XN ].

Theorem 1. Let f1, . . . , fk ∈ Z[X0, . . . , XN ] be non-constant homogeneous polynomi-
als such that V = Proj

(
Q[X0, . . . , XN ]/(f1, . . . , fk)

)
is a projective variety admitting a

surjective morphism ϕ : Pn
Q → V . Put

L =
{
(x0, . . . , xN) ∈ ZN+1 | fj(x0, . . . , xN) = 0 for all 1 ≤ j ≤ k

}
=

{
(x0, . . . , xN) ∈ ZN+1 | (x0 : . . . : xN) ∈ V (Q)

}
∪

{
(0, . . . , 0)

}
and

L∗ =
{
(x0, . . . , xN) ∈ ZN+1 | (x0 : . . . : xN) ∈ Vϕ(Q)∗

}
∪

{
(0, . . . , 0)

}
⊂ L .

Then there exist some m ∈ N and integer-valued polynomials g0, . . . , gN ∈ Q[U1, . . . , Um]
such that

L∗ =
{
(g0(u), . . . , gN(u)) | u ∈ Zm

}
.

Remark.
1. Note that in Theorem 1 the existence of a parametrization by integer-valued poly-

nomials only depends on the variety V , but not on the explicit embedding given by
f1, f2, . . . , fk. In contrast, the existence of a parametrization by polynomials with integral
coefficients does depend on the embedding, as can be seen from [4] (unit circle) and [3,
Ex. 1] (equilateral hyperbola).

2. If dim V = 1, then the normalization V of V is non-singular, and V ∼= P1
Q holds if

and only if the function field Q(V ) is rational. In the higher-dimensional case, Theorem 1
applies if one supposes that V ∼= Pn

Q, which is a much stronger assumption.

The proof of Theorem 1 will use the implication (D)⇒ (B) of the main result of [2],
which for the sake of completeness we state in the following

Proposition 2. Let k, r ∈ N, h1, . . . , hk ∈ Q[T1, . . . , Tr] and

S =
{
(h1(t), . . . , hk(t)) | t ∈ Zr

}
∩ Zk .

Then there exist integer-valued polynomials g1, . . . , gk ∈ Q[U1, . . . , Um] for some m ∈ N
such that

S =
{
(g1(u), . . . , gk(u)) | u ∈ Zm

}
.

Proof of Theorem 1. Let ϕ : Pn
Q → V be a surjective morphism. Choose homogeneous

polynomials of the same degree, say h0, . . . , hN ∈ Z[T0, . . . , Tn], such that on geometric
points (t0 : . . . : tn) ∈ Pn(Q) the map ϕ is given by

ϕ(t0 : . . . : tn) =
(
h0(t0, . . . , tn) : . . . : hN(t0, . . . , tn)

)
.
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In particular, it follows that h0, . . . , hN have no common zero. Hence, by the projective
Nullstellensatz [10, Ch. VII, §4], the radical of the homogeneous ideal (h0, . . . , hN) is given
by √

(h0, . . . , hN) = (T0, . . . , Tn) / Q[T0, . . . , Tn] .

For p ∈ V (Q), there exists some z ∈ Pn(Q) with p = ϕ(z) if and only if p ∈ Vϕ(Q)∗. Thus
we obtain

L∗ =
{(

wh0(t), . . . , whN(t)
) ∣∣ t ∈ Qn+1, w ∈ Q

}
∩ ZN+1 ,

and the assertion of Theorem 1 follows by the subsequent Lemma. �

Lemma 3. Let h0, . . . , hN ∈ Z[T0, . . . , Tn] be homogeneous polynomials of the same degree

such that
√

(h0, . . . , hN) = (T0, . . . , Tn) / Q[T0, . . . , Tn] and

L =
{(

wh0(t), . . . , whN(t)
) ∣∣ t ∈ Qn+1 , w ∈ Q

}
∩ ZN+1 .

Then there exists some m ∈ N and integer-valued polynomials g0, . . . , gN ∈ Q[U1, . . . , Um]
such that

L =
{(

g0(u), . . . , gN(u)
) ∣∣ u ∈ Zm

}
.

Proof. We assert that there exists some d ∈ N such that, for all t = (t0, . . . , tn) ∈ Zn+1

with gcd(t0, . . . , tn) = 1 we have

gcd
{
h0(t), . . . , hN(t)

} ∣∣ d .

Indeed, since
√

(h0, . . . , hN) = (T0, . . . , Tn) / Q[T0, . . . , Tn] we obtain, by clearing up
denominators, polynomials qj,i ∈ Z[T0, . . . , Tn] (for 0 ≤ i ≤ N and 0 ≤ j ≤ n) and
integers d, b ∈ N such that

dT b
j =

N∑
i=0

hi qj,i for all 0 ≤ j ≤ n .

Now, if t = (t0, . . . , tn) ∈ Zn+1 with gcd(t0, . . . , tn) = 1, then

dtbj =
N∑

i=0

hi(t) qj,i(t) for all 0 ≤ j ≤ n , and thus gcd
{
h0(t), . . . , hN(t)

} ∣∣ d .

With d as above, we set h∗i = d−1hi ∈ Q[T0, . . . , Tn] (for 0 ≤ i ≤ N), and we assert that

(1) L =
{(

wh∗0(t), . . . , wh∗N(t)
) ∣∣ w ∈ Z , t ∈ Zn+1

}
∩ ZN+1 .

Once this is proved, the Lemma follows by Proposition 2.

The inclusion “⊃” of (1) is obvious, and both sets contain the trivial solution.
Thus assume that (0, . . . , 0) 6= (x0, . . . , xN) ∈ L, and let t ∈ Qn+1 and w ∈ Q be such
that xi = whi(t) for all 0 ≤ i ≤ N . Then t = c−1t′, where c ∈ N, t′ = (t′0, . . . , t

′
n) ∈ Zn+1

and gcd(t′0, . . . , t
′
n) = 1. For 0 ≤ i ≤ N this implies

xi = wc−δhi(t
′)

with δ = deg(hi). Since xi ∈ Z and gcd{h0(t
′), . . . , hN(t′)} divides d, it follows that

w′ = dwc−δ ∈ Z and (x0, . . . , xN) =
(
w′h∗0(t

′), . . . , w′h∗N(t′)
)
. �
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In the following Lemma 4 we give a simple criterion for the normalization of V to be
isomorphic to a projective space without mentioning this normalization explicitly.

Lemma 4. Let V be a projective variety over Q. Then the following assertions are
equivalent:

(a) The normalization of V is isomorphic to Pn
Q.

(b) There exists a finite birational morphism Pn
Q → V .

Proof. Let π : V → V be a normalization of V .

(a) ⇒ (b) If φ : Pn
Q → V is an isomorphism, then π ◦ φ : Pn

Q → V is a finite birational
morphism.

(b) ⇒ (a) Let ϕ : Pn
Q → V be a finite birational morphism. Then ϕ(Pn

Q) ⊂ V is
closed, and since ϕ is birational, it follows that ϕ(Pn

Q) ⊂ V is equidimensional. Hence ϕ
is surjective, and the assertion follows by [7, Th. 2.24]. �

Obviously, Theorem 1 applies for rational varieties which are isomorphic to Pn
Q for some

n ∈ N. We conclude with examples of rational varieties which are not isomorphic to some
projective space and for which Theorem 1 can be used.

Example.
Let V ⊂ P3 be any Steiner surface defined over Q (see [5, Ch. 4] and [1]). Such a
surface is a suitable projection of the Veronese surface V0 ⊂ P5 into P3. Thus there is a
surjective morphism P2

Q → V and Theorem 1 applies. Since V has singular points, it is
not isomorphic to P2

Q.

As a special example, let V ⊂ P3
Q be the Roman surface, given by the homogeneous

equation

(2) X2
1X

2
2 + X2

2X
2
3 + X2

3X
2
1 −X0X1X2X3 = 0 ,

whose singular locus is the union of the three lines

X1 = X2 = 0 , X2 = X3 = 0 and X3 = X1 = 0 .

There is a surjective morphism ϕ : P2
Q → V , given on geometric points by

(t0 : t1 : t2) 7→ (t20 + t21 + t22 : t0t1 : t1t2 : t2t0) .

For coprime integers t0, t1, t2 ∈ Z we obviously have gcd{t20 + t21 + t22, t0t1, t1t2, t2t0} = 1,
and thus we obtain for the set of solutions of the Diophantine equation (2) – up to those
coming from non strongly Q-rational points –

L∗ =
{
(x0, x1, x2, x3) ∈ Z4 | (x0 : x1 : x2 : x3) ∈ Vϕ(Q)∗

}
∪

{
(0, 0, 0, 0)

}
=

{
(s(t20 + t21 + t22), st0t1, st1t2, st2t0) | s, t0, t1, t2 ∈ Z

}
.

Let us finally remark that for the Roman surface V we have Vϕ(Q)∗ $ V (Q).
Indeed, for every Q-rational point p = (m : n : 0 : 0) = ϕ(t0 : t1 : t2) of the singular line
X2 = X3 = 0 with n 6= 0 we have

0 6= r =
m

n
=

t20 + t21
t0t1

=
t0
t1

+
t1
t0

.

Therefore p ∈ Vϕ(Q)∗ if and only if r = x + x−1 for some x ∈ Q×, which is equivalent to
r2 − 4 being the square of a rational number.
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