POLYNOMIAL PARAMETRIZATION OF THE SOLUTIONS OF CERTAIN SYSTEMS OF DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH AND GÜNTER LETTL

ABSTRACT. Let $f_1, f_2, \ldots, f_k \in \mathbb{Z}[X_0, X_1, \ldots, X_N]$ be non-constant homogeneous polynomials which define a projective variety V over \mathbb{Q} . Under the hypothesis that, for some $n \in \mathbb{N}$, there is a surjective morphism $\varphi \colon \mathbb{P}^n_{\mathbb{Q}} \to V$, we show that all integral solutions of the system of Diophantine equations $f_1 = 0, \ldots, f_k = 0$ (outside some exceptional set) can be parametrized by a single k-tuple of integer-valued polynomials. This result only depends on φ , but not on the embedding given by f_1, f_2, \ldots, f_k . If, in particular, φ is a normalization of V, then the exceptional set is really small.

Many questions in number theory deal with the problem whether a set $S \subset \mathbb{Z}^k$ has a polynomial parametrization, i.e. whether there exist polynomials $h_1, \ldots, h_k \in \mathbb{Z}[T_1, \ldots, T_r]$ such that S is the image of \mathbb{Z}^r under the map $\mathbf{h} = (h_1, \ldots, h_k) \colon \mathbb{Z}^r \to \mathbb{Z}^k$; see e.g. L. Vaserstein [9]. This is also tightly connected with the notion of "Diophantine set", see e.g. the book of P. Ribenboim [8, Chap. 3.III], which is intrinsic to Matiyasevich's solution of Hilbert's tenth problem.

S. Frisch [2] proved an interesting connection between parametrizations by polynomials with integral coefficients and by integer-valued polynomials. Let us recall that a polynomial $g \in \mathbb{Q}[U_1, U_2, \ldots, U_m]$ is called *integer-valued* if for any $\boldsymbol{u} = (u_1, \ldots, u_m) \in \mathbb{Z}^m$ one has $g(\boldsymbol{u}) \in \mathbb{Z}$. S. Frisch and L. Vaserstein showed in [4] that the set of Pythagorean triples cannot be parametrized by any triple of polynomials with integral coefficients, but indeed it can be parametrized by a triple of integer-valued polynomials.

Recently, the affirmative part of this result was generalized by S. Frisch and the second author to the solution set of any homogeneous Diophantine equation in 3 variables, which defines an irreducible, plane curve with a rational function field [3]. This corresponds to the special case N = 2 and k = 1 of Theorem 1 of the present paper.

Let V be a variety defined over \mathbb{Q} and suppose that for some $n \in \mathbb{N}$ there is a surjective morphism $\varphi \colon \mathbb{P}^n_{\mathbb{Q}} \to V$. For a point $p \in V$, let $\mathcal{O}_{V,p}$ be the local ring of V at p, $\mathsf{k}_V(p)$ its residue field and $\varphi^{-1}(p) = \mathbb{P}^n_{\mathbb{Q}} \times_V$ spec $\mathsf{k}_V(p)$ the fibre of φ at p. For each point $\overline{p} \in \varphi^{-1}(p)$, φ induces an embedding $\varphi_{\overline{p}} \colon \mathsf{k}_V(p) \hookrightarrow \mathsf{k}_{\mathbb{P}^n_{\mathbb{Q}}}(\overline{p})$. We call a \mathbb{Q} -rational point $p \in V(\mathbb{Q})$ strongly \mathbb{Q} -rational (with respect to φ) if there exists some $\overline{p} \in \pi^{-1}(p)$ such that $\varphi_{\overline{p}}$ is the identity, that is, $\mathsf{k}_{\mathbb{P}^n_{\mathbb{Q}}}(\overline{p}) = \mathsf{k}_V(p) = \mathbb{Q}$. Let $V_{\varphi}(\mathbb{Q})^*$ denote the set of all strongly \mathbb{Q} -rational points of V.

If, in particular, φ is a normalization of V and $\mathbb{Q}(V)$ denotes the rational function field of V, then, for every $p \in V$, $\varphi^{-1}(p) = \operatorname{spec} \overline{\mathcal{O}_{V,p}}$ is finite, where $\overline{\mathcal{O}_{V,p}}$ denotes the integral closure of $\mathcal{O}_{V,p}$ in $\mathbb{Q}(V)$, and the exceptional set $V(\mathbb{Q}) \setminus V_{\varphi}(\mathbb{Q})^*$ of non strongly \mathbb{Q} -rational points of V is contained in the set of singular points of V and thus in a lower-dimensional

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 11D85;\ secondary\ 14G05,\ 14M20,\ 13F20,\ 11D41.$

Key words and phrases. integer-valued polynomials, rational variety.

This work was supported by the Austrian Science Fund FWF, project number P20120-N18.

subset. Let us remark that "strongly \mathbb{Q} -rational" just generalizes the notion of "not bad", as given in [3] for \mathbb{Q} -rational points of curves, to higher dimensions.

Let V be a projective variety over \mathbb{Q} and fix an embedding $V \subset \mathbb{P}_{\mathbb{Q}}^N$ as a closed subvariety. Then $V = \operatorname{Proj} (\mathbb{Q}[X_0, \ldots, X_N]/(f_1, \ldots, f_k))$, where $f_1, \ldots, f_k \in \mathbb{Q}[X_0, \ldots, X_N]$ are homogeneous polynomials, and

$$V(\mathbb{Q}) = \left\{ (x_0 : \ldots : x_N) \in \mathbb{P}^N(\mathbb{Q}) \mid f_j(x_0, \ldots, x_N) = 0 \text{ for all } 1 \le j \le k \right\}.$$

Obviously, one can even choose $f_1, \ldots, f_k \in \mathbb{Z}[X_0, \ldots, X_N]$.

Theorem 1. Let $f_1, \ldots, f_k \in \mathbb{Z}[X_0, \ldots, X_N]$ be non-constant homogeneous polynomials such that $V = \operatorname{Proj}(\mathbb{Q}[X_0, \ldots, X_N]/(f_1, \ldots, f_k))$ is a projective variety admitting a surjective morphism $\varphi \colon \mathbb{P}^n_{\mathbb{Q}} \to V$. Put

$$\mathcal{L} = \left\{ (x_0, \dots, x_N) \in \mathbb{Z}^{N+1} \mid f_j(x_0, \dots, x_N) = 0 \text{ for all } 1 \le j \le k \right\} \\ = \left\{ (x_0, \dots, x_N) \in \mathbb{Z}^{N+1} \mid (x_0 : \dots : x_N) \in V(\mathbb{Q}) \right\} \cup \left\{ (0, \dots, 0) \right\}$$

and

$$\mathcal{L}^* = \left\{ (x_0, \dots, x_N) \in \mathbb{Z}^{N+1} \mid (x_0 : \dots : x_N) \in V_{\varphi}(\mathbb{Q})^* \right\} \cup \left\{ (0, \dots, 0) \right\} \subset \mathcal{L}.$$

Then there exist some $m \in \mathbb{N}$ and integer-valued polynomials $g_0, \ldots, g_N \in \mathbb{Q}[U_1, \ldots, U_m]$ such that

$$\mathcal{L}^* = \left\{ (g_0(\boldsymbol{u}), \dots, g_N(\boldsymbol{u})) \mid \boldsymbol{u} \in \mathbb{Z}^m
ight\}.$$

Remark.

1. Note that in Theorem 1 the existence of a parametrization by integer-valued polynomials only depends on the variety V, but not on the explicit embedding given by f_1, f_2, \ldots, f_k . In contrast, the existence of a parametrization by polynomials with integral coefficients does depend on the embedding, as can be seen from [4] (unit circle) and [3, Ex. 1] (equilateral hyperbola).

2. If dim V = 1, then the normalization \overline{V} of V is non-singular, and $\overline{V} \cong \mathbb{P}^1_{\mathbb{Q}}$ holds if and only if the function field $\mathbb{Q}(V)$ is rational. In the higher-dimensional case, Theorem 1 applies if one supposes that $\overline{V} \cong \mathbb{P}^n_{\mathbb{Q}}$, which is a much stronger assumption.

The proof of Theorem 1 will use the implication $(D) \Rightarrow (B)$ of the main result of [2], which for the sake of completeness we state in the following

Proposition 2. Let $k, r \in \mathbb{N}, h_1, \ldots, h_k \in \mathbb{Q}[T_1, \ldots, T_r]$ and

$$S = \left\{ (h_1(\boldsymbol{t}), \dots, h_k(\boldsymbol{t})) \mid \boldsymbol{t} \in \mathbb{Z}^r
ight\} \cap \mathbb{Z}^k$$

Then there exist integer-valued polynomials $g_1, \ldots, g_k \in \mathbb{Q}[U_1, \ldots, U_m]$ for some $m \in \mathbb{N}$ such that

$$S = \left\{ (g_1(\boldsymbol{u}), \dots, g_k(\boldsymbol{u})) \mid \boldsymbol{u} \in \mathbb{Z}^m \right\}.$$

Proof of Theorem 1. Let $\varphi \colon \mathbb{P}^n_{\mathbb{Q}} \to V$ be a surjective morphism. Choose homogeneous polynomials of the same degree, say $h_0, \ldots, h_N \in \mathbb{Z}[T_0, \ldots, T_n]$, such that on geometric points $(t_0 : \ldots : t_n) \in \mathbb{P}^n(\overline{\mathbb{Q}})$ the map φ is given by

$$\varphi(t_0:\ldots:t_n)=\left(h_0(t_0,\ldots,t_n):\ldots:h_N(t_0,\ldots,t_n)\right).$$

In particular, it follows that h_0, \ldots, h_N have no common zero. Hence, by the projective Nullstellensatz [10, Ch. VII, §4], the radical of the homogeneous ideal (h_0, \ldots, h_N) is given by

$$\sqrt{(h_0,\ldots,h_N)} = (T_0,\ldots,T_n) \triangleleft \mathbb{Q}[T_0,\ldots,T_n].$$

For $p \in V(\mathbb{Q})$, there exists some $z \in \mathbb{P}^n(\mathbb{Q})$ with $p = \varphi(z)$ if and only if $p \in V_{\varphi}(\mathbb{Q})^*$. Thus we obtain

$$\mathcal{L}^* = \left\{ \left(wh_0(\boldsymbol{t}), \dots, wh_N(\boldsymbol{t}) \right) \mid \boldsymbol{t} \in \mathbb{Q}^{n+1}, w \in \mathbb{Q} \right\} \cap \mathbb{Z}^{N+1},$$

and the assertion of Theorem 1 follows by the subsequent Lemma.

Lemma 3. Let $h_0, \ldots, h_N \in \mathbb{Z}[T_0, \ldots, T_n]$ be homogeneous polynomials of the same degree such that $\sqrt{(h_0, \ldots, h_N)} = (T_0, \ldots, T_n) \triangleleft \mathbb{Q}[T_0, \ldots, T_n]$ and

$$L = \left\{ \left(wh_0(\boldsymbol{t}), \dots, wh_N(\boldsymbol{t})\right) \mid \boldsymbol{t} \in \mathbb{Q}^{n+1}, \ w \in \mathbb{Q}
ight\} \cap \mathbb{Z}^{N+1}$$

Then there exists some $m \in \mathbb{N}$ and integer-valued polynomials $g_0, \ldots, g_N \in \mathbb{Q}[U_1, \ldots, U_m]$ such that

$$L = \left\{ \left(g_0(\boldsymbol{u}), \ldots, g_N(\boldsymbol{u}) \right) \mid \boldsymbol{u} \in \mathbb{Z}^m \right\}.$$

Proof. We assert that there exists some $d \in \mathbb{N}$ such that, for all $\mathbf{t} = (t_0, \ldots, t_n) \in \mathbb{Z}^{n+1}$ with $gcd(t_0, \ldots, t_n) = 1$ we have

$$\operatorname{gcd}\left\{h_0(\boldsymbol{t}),\ldots,h_N(\boldsymbol{t})\right\} \mid d.$$

Indeed, since $\sqrt{(h_0, \ldots, h_N)} = (T_0, \ldots, T_n) \triangleleft \mathbb{Q}[T_0, \ldots, T_n]$ we obtain, by clearing up denominators, polynomials $q_{j,i} \in \mathbb{Z}[T_0, \ldots, T_n]$ (for $0 \leq i \leq N$ and $0 \leq j \leq n$) and integers $d, b \in \mathbb{N}$ such that

$$dT_j^b = \sum_{i=0}^N h_i q_{j,i}$$
 for all $0 \le j \le n$.

Now, if $\boldsymbol{t} = (t_0, \ldots, t_n) \in \mathbb{Z}^{n+1}$ with $gcd(t_0, \ldots, t_n) = 1$, then

$$dt_j^b = \sum_{i=0}^N h_i(\boldsymbol{t}) q_{j,i}(\boldsymbol{t}) \quad \text{for all } 0 \le j \le n \,, \quad \text{and thus } \operatorname{gcd} \left\{ h_0(\boldsymbol{t}), \dots, h_N(\boldsymbol{t}) \right\} \mid d \,.$$

With d as above, we set $h_i^* = d^{-1}h_i \in \mathbb{Q}[T_0, \dots, T_n]$ (for $0 \le i \le N$), and we assert that (1) $L = \{ (wh_0^*(t), \dots, wh_N^*(t)) \mid w \in \mathbb{Z}, t \in \mathbb{Z}^{n+1} \} \cap \mathbb{Z}^{N+1}$.

(1)
$$L = \{ (wh_0(t), \dots, wh_N(t)) \mid w \in \mathbb{Z}, t \in \mathbb{Z}^{N+1} \} \cap$$

Once this is proved, the Lemma follows by Proposition 2.

The inclusion " \supset " of (1) is obvious, and both sets contain the trivial solution. Thus assume that $(0, \ldots, 0) \neq (x_0, \ldots, x_N) \in L$, and let $\mathbf{t} \in \mathbb{Q}^{n+1}$ and $w \in \mathbb{Q}$ be such that $x_i = wh_i(\mathbf{t})$ for all $0 \leq i \leq N$. Then $\mathbf{t} = c^{-1}\mathbf{t'}$, where $c \in \mathbb{N}$, $\mathbf{t'} = (t'_0, \ldots, t'_n) \in \mathbb{Z}^{n+1}$ and $\gcd(t'_0, \ldots, t'_n) = 1$. For $0 \leq i \leq N$ this implies

$$x_i = wc^{-\delta}h_i(t')$$

with $\delta = \deg(h_i)$. Since $x_i \in \mathbb{Z}$ and $\gcd\{h_0(\mathbf{t'}), \ldots, h_N(\mathbf{t'})\}$ divides d, it follows that $w' = dwc^{-\delta} \in \mathbb{Z}$ and $(x_0, \ldots, x_N) = (w'h_0^*(\mathbf{t'}), \ldots, w'h_N^*(\mathbf{t'}))$.

In the following Lemma 4 we give a simple criterion for the normalization of V to be isomorphic to a projective space without mentioning this normalization explicitly.

Lemma 4. Let V be a projective variety over \mathbb{Q} . Then the following assertions are equivalent:

- (a) The normalization of V is isomorphic to $\mathbb{P}^n_{\mathbb{Q}}$.
- (b) There exists a finite birational morphism $\mathbb{P}^n_{\mathbb{O}} \to V$.

Proof. Let $\pi \colon \overline{V} \to V$ be a normalization of V.

(a) \Rightarrow (b) If $\phi \colon \mathbb{P}^n_{\mathbb{Q}} \to \overline{V}$ is an isomorphism, then $\pi \circ \phi \colon \mathbb{P}^n_{\mathbb{Q}} \to V$ is a finite birational morphism.

(b) \Rightarrow (a) Let $\varphi \colon \mathbb{P}^n_{\mathbb{Q}} \to V$ be a finite birational morphism. Then $\varphi(\mathbb{P}^n_{\mathbb{Q}}) \subset V$ is closed, and since φ is birational, it follows that $\varphi(\mathbb{P}^n_{\mathbb{Q}}) \subset V$ is equidimensional. Hence φ is surjective, and the assertion follows by [7, Th. 2.24].

Obviously, Theorem 1 applies for rational varieties which are isomorphic to $\mathbb{P}^n_{\mathbb{Q}}$ for some $n \in \mathbb{N}$. We conclude with examples of rational varieties which are not isomorphic to some projective space and for which Theorem 1 can be used.

Example.

Let $V \subset \mathbb{P}^3$ be any *Steiner surface* defined over \mathbb{Q} (see [5, Ch. 4] and [1]). Such a surface is a suitable projection of the Veronese surface $V_0 \subset \mathbb{P}^5$ into \mathbb{P}^3 . Thus there is a surjective morphism $\mathbb{P}^2_{\mathbb{Q}} \to V$ and Theorem 1 applies. Since V has singular points, it is not isomorphic to $\mathbb{P}^2_{\mathbb{Q}}$.

As a special example, let $V \subset \mathbb{P}^3_{\mathbb{Q}}$ be the *Roman surface*, given by the homogeneous equation

(2)
$$X_1^2 X_2^2 + X_2^2 X_3^2 + X_3^2 X_1^2 - X_0 X_1 X_2 X_3 = 0,$$

whose singular locus is the union of the three lines

$$X_1 = X_2 = 0$$
, $X_2 = X_3 = 0$ and $X_3 = X_1 = 0$.

There is a surjective morphism $\varphi \colon \mathbb{P}^2_{\mathbb{Q}} \to V$, given on geometric points by

$$(t_0: t_1: t_2) \mapsto (t_0^2 + t_1^2 + t_2^2: t_0 t_1: t_1 t_2: t_2 t_0).$$

For coprime integers $t_0, t_1, t_2 \in \mathbb{Z}$ we obviously have $\gcd\{t_0^2 + t_1^2 + t_2^2, t_0t_1, t_1t_2, t_2t_0\} = 1$, and thus we obtain for the set of solutions of the Diophantine equation (2) – up to those coming from non strongly Q-rational points –

$$\mathcal{L}^* = \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{Z}^4 \mid (x_0 : x_1 : x_2 : x_3) \in V_{\varphi}(\mathbb{Q})^* \right\} \cup \left\{ (0, 0, 0, 0) \right\}$$
$$= \left\{ (s(t_0^2 + t_1^2 + t_2^2), st_0 t_1, st_1 t_2, st_2 t_0) \mid s, t_0, t_1, t_2 \in \mathbb{Z} \right\}.$$

Let us finally remark that for the Roman surface V we have $V_{\varphi}(\mathbb{Q})^* \subsetneqq V(\mathbb{Q})$. Indeed, for every \mathbb{Q} -rational point $p = (m : n : 0 : 0) = \varphi(t_0 : t_1 : t_2)$ of the singular line $X_2 = X_3 = 0$ with $n \neq 0$ we have

$$0 \neq r = \frac{m}{n} = \frac{t_0^2 + t_1^2}{t_0 t_1} = \frac{t_0}{t_1} + \frac{t_1}{t_0}.$$

Therefore $p \in V_{\varphi}(\mathbb{Q})^*$ if and only if $r = x + x^{-1}$ for some $x \in \mathbb{Q}^{\times}$, which is equivalent to $r^2 - 4$ being the square of a rational number.

References

- [1] A. Coffman, Steiner Surfaces, http://www.ipfw.edu/math/Coffman/steinersurface.html.
- [2] S. Frisch, Remarks on polynomial parametrization of sets of integer points, Comm. Algebra 36 (2008), 1110-1114.
- [3] S. Frisch and G. Lettl, Polynomial parametrization of the solutions of Diophantine equations of genus 0, *Funct. Approximatio, Comment. Math.* (to appear).
- [4] S. Frisch and L. Vaserstein, Parametrization of Pythagorean triples by a single triple of polynomials, J. Pure Appl. Algebra 212 (2008), 271-274.
- [5] P. Griffiths and J. Harris, Principles of Algebraic Geometry, J. Wiley & Sons, 1978.
- [6] R. Hartshorne, Algebraic Geometry, GTM 52, Springer, 1977.
- [7] S. Iitaka, Algebraic Geometry, GTM 76, Springer, 1982.
- [8] P. Ribenboim, The new book of prime number records, Springer, 1996.
- [9] L. Vaserstein, Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups, *Ann of Math.* (to appear).
- [10] O. Zariski and P. Samuel, Commutative Algebra vol. II, GTM 29, Springer, 1960.

INSTITUT FÜR MATHEMATIK UND WISSENSCHAFTLICHES RECHNEN, KARL-FRANZENS-UNIVERSITÄT, HEINRICHSTRASSE 36, A-8010 GRAZ, AUSTRIA

E-mail address: franz.halterkoch@uni-graz.at *E-mail address*: guenter.lettl@uni-graz.at