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Abstract. We investigate the ideal semigroup and the ideal class semigroup built by the
fractional ideals of an ideal system on a monoid or on a domain. We provide criteria for these
semigroups to be Clifford semigroups or Boolean semigroups. In particular, we consider the case
of valuation monoids (domains) and of Prüfer-like monoids (domains). By the way, we prove
that a monoid (domain) is of Krull type if every locally principal ideal is finite.

1. Introduction

One of the main aims of multiplicative ideal theory is the description of an integral domain
by means of the multiplicative semigroup of fractional ideals. In this context the ideal class
group (built by the isomorphism classes of invertible fractional ideals) has been one of the major
objects of investigations. Starting with the ideal class group of the ring of integers of algebraic
number fields, this notion has obtained several important generalizations in commutative alge-
bra. Among them, the class groups associated with star operations and ideal systems are the
most general and fruitful ones (see [1], [9] and [17, Ch.12]). In particular, the divisor class groups
of Krull domains and Krull monoids are special cases of these concepts (for their arithmetical
relevance the interested reader is invited to consult [15]).

Only recently the class semigroup (built by the isomorphism classes of all non-zero fractional
ideals) has been introduced and investigated by several authors. E.C. Dade, O. Taussky and
H. Zassenhaus [11] investigated the structure of the class semigroup of a non-principal order in
an algebraic number field. More generally, this was done in [18] for the semigroup of lattices
over Dedekind domains. S. Bazzoni and L. Salce [7] proved that the ideal class semigroup of
a valuation domain is a Clifford semigroup, and almost contemporaneously P. Zanardo and U.
Zannier [23] did the same for orders in quadratic number fields (reproving results from [11]).
They also observed that an integrally closed domain with Clifford class semigroup must be a
Prüfer domain. A systematic study of integral domains with Clifford class semigroup was made
in a series of papers by S. Bazzoni [2], [3], [4], [5]. Among others, she proved that a Prüfer domain
has Clifford semigroup if and only if it has finite character, and she disclosed the connections
with the theory of stable domains. S. Kabbaj and A. Mimouni in [19] and [20] continued the work
of S. Bazzoni. They investigated not only the question whether a class semigroup is a Clifford
semigroup but also the question whether it is a Boolean semigroup, they generalized several
results for noetherian domains to Mori domains and, above all, they generalized Bazzoni’s result
for Prüfer domains by characterizing Prüfer v-multiplication domains (pseudo-Prüfer domains
in the sense of Bourbaki [8, Ch.VII, Exercise 19]) with Clifford t-class semigroup.

Many of the results concerning integral domains with Clifford or Boolean class semigroup
turn out to be purely multiplicative in nature and thus they can be formulated and proved in
the language of ideal systems on cancellative commutative monoids. Also, it turns out, that the
results concerning the structure of the ideal class semigroup are in fact results concerning the
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multiplicative semigroup of fractional ideals itself. In this paper, we shall take this point of view
in a systematic way and investigate the semigroup of fractional ideals of a monoid defined by a
finitary ideal system. Under this hypothesis, we shall generalize and unify several results of the
literature and equip them with simpler proofs.

After reviewing the basic facts from the theory of semigroups in Section 2 and the theory of
ideal systems in Section 3, we present the general concepts concerning N-regularity and stability
of ideals relative to an ideal system in a purely multiplicative setting in Section 4. In Section 5 we
sketch the results for valuation monoids (which are are almost identical with those for valuation
domains). Finally, Section 6 deals with r-Prüfer monoids and contains the main results of the
paper. We prove that the semigroup of fractional r-ideals of an r-Prüfer monoid D is a Clifford
semigroup if and only if D is of Krull type, and that this is equivalent with the local invertibility
property (as conjectured by S. Bazzoni [5, Question 2]). Finally, we strengthen the main result
of Mimouni and Kabbaj on Prüfer-v-multiplication domains ([20, Theorem 3.2]) and prove that
the semigroup of fractional ideals of a v-domain D (that is, of a regularly integrally closed
domain in the sense of Bourbaki [8, Ch.VII, Exercise 30]) is a Clifford semigroup if and only if
D is a domain of Krull type.

2. Commutative semigroups

By a semigroup S we always mean a multiplicative commutative semigroup containing a
unit element 1 (satisfying 1x = x for all x ∈ S) and a zero element 0 (satisfying 0x = 0 for all
x ∈ S). An element x ∈ S is called

• invertible if there is some (unique) x′ ∈ S such that xx′ = 1.
• cancellative if xy = xz implies y = z for all y, z ∈ D.
• von Neumann regular (N-regular for short ), if x2y = x for some y ∈ S.

Note that 0 ∈ S is idempotent, and every idempotent element is N-regular. Obviously, an
element x ∈ S is invertible if and only if it is cancellative and N-regular. We denote by S× the
group of invertible elements of S, and for x ∈ S×, we denote by x−1 its inverse. For any set X,
we set X• = X \ {0}.

By a monoid we mean (deviating from the usual terminology) a semigroup D for which every
x ∈ D• is cancellative. If D is a monoid, then a monoid K is called a quotient monoid of D if K•

is a quotient group of D• (and then K• = K×). Every monoid D possesses a quotient monoid
which is unique up to canonical isomorphisms and is denoted by q(D). By an overmonoid of
a monoid D we mean a monoid E such that D ⊂ E ⊂ q(D). By a multiplicatively closed subset
of a monoid D we mean a subset T ⊂ D• with 1 ∈ T and TT = T . By definition, the sets {1},
D× and D• are multiplicatively closed subsets of D. A subsemigroup or a submonoid is always
assumed to contain 1, and a semigroup homomorphism is always assumed to respect 1.

Let S be a multiplicative commutative semigroup and Id(S) the subsemigroup of idempotent
elements of S. If S = Id(S), then S is called a Boolean semigroup. For e ∈ Id(S), let Se denote
the set of all x ∈ S such that xe = x and xy = e for some y ∈ S. The semigroup S is called
a Clifford semigroup if

S =
⋃

e∈Id(S)

Se ,

and for e ∈ Id(S) we call Se the constituent group of e (see Lemma 2.1). By definition, we
have S0 = {0}.
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If ϕ : S → S′ is a semigroup homomorphism and x ∈ S is idempotent [N-regular ], then
ϕ(x) is idempotent [ N-regular ]. In particular, the homomorphic image of a Boolean semigroup
[Clifford semigroup ] is again a Boolean semigroup [ Clifford semigroup ].

Lemma 2.1. Let S be a semigroup.
1. Let e, f ∈ Id(S). Then Se is a group with unit element e, and if e 6= f , then Se∩Sf = ∅.
2. For x ∈ S, the following assertions are equivalent :

(a) x is N-regular.
(b) There is a (unique) idempotent element e ∈ Id(S) such that x ∈ Se.
(c) x is contained in some group G ⊂ S.

In particular, S is a Clifford semigroup if and only if every element of S is N-regular.

Proof. 1. By definition, we have e ∈ Se, and if x, y ∈ Se, then also xy ∈ Se. If x ∈ Se and y ∈ S
are such that xy = e, then x(ye) = e and (ye)e = ye. Hence ye is the inverse of x in Se, and
thus Se is a group.

Assume now that e, f ∈ Id(S) and x ∈ Se ∩ Sf . Then xe = x = xf , and there exist y, z ∈ S
such that xy = e and xz = f . But then f = xz = xez = x2yz = (xy)(xz) = ef , and similarly
e = ef , which implies e = f .

2. (a) ⇒ (b) The uniqueness of e follows from 1. If x2y = x for some y ∈ S, then
e = xy ∈ Id(S) and ex = x, whence x ∈ Se.

(b) ⇒ (c) Obvious.
(c) ⇒ (a) If G ⊂ S is a group with unit element e and x ∈ G, then xy = e for some y ∈ G,

and x2y = xe = x. �

Let S be a semigroup and G ⊂ S× a subgroup. Two elements x, y ∈ S are called congruent
modulo G, x ≡ y mod G if x = uy for some u ∈ G. Congruence modulo G is a congruence
relation on S and we denote by S/G = {aG | a ∈ S} the quotient semigroup of S under this
congruence relation.

Lemma 2.2. Let S be a semigroup, G ⊂ S× a subgroup and ρ : S → S/G the residue class
epimorphism.

1. ρ(S×) = (S/G)×. In particular, S• is a group if and only if (S/G)• is a group.
2. An element a ∈ S is N-regular if and only if ρ(a) ∈ S/G is N-regular.
3. Id(S/G) = ρ(Id(S)) = {aG | a ∈ Id(S)}, and if e ∈ Id(S), then (S/G)ρ(e) = ρ(Se) and

Ker(ρ |Se) = Ge ⊂ Se. In particular, S is a Clifford semigroup if and only if S/G is a
Clifford semigroup, and if S is a Boolean semigroup, then so is S/G.

Proof. Since ρ is a homomorphism, it follows that ρ(S×) ⊂ (S/G)×, ρ(Id(S)) ⊂ Id(S/G) and
ρ(Se) ⊂ (S/G)ρ(e) for every e ∈ Id(S). Also, if a ∈ S is N-regular, then so is ρ(a). Let now
a ∈ S.

If aG ∈ (S/G)×, then abG = G for some b ∈ S, hence ab ∈ G ⊂ S× and thus also a ∈ S×. If
aG ∈ S/G is N-regular, then there exists some x ∈ S such that a2xG = aG, say a2x = au for
some u ∈ G. Then a2(xu−1) = a, and thus a is N-regular.

If aG ∈ Id(S/G), then a2G = aG, hence a2 = au for some u ∈ G, and therefore (au−1)2 =
au−1. This implies au−1 ∈ Id(S) and aG = au−1G ∈ ρ(Id(S)).

Assume finally that e ∈ Id(S) and aG ∈ (S/G)eG. Then there exists some b ∈ G such that
aeG = aG and abG = eG, and thus there exist u, v ∈ G satisfying aeu = a and abv = e. Hence
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it follows that a = a(abv)u = a2buv, and thus abuv = ue ∈ Id(S). From u2e = u2e2 = ue we
deduce ue = e, ae = a and a(bv) = e, whence a ∈ Se. Therefore we obtain (S/G)ρ(e) = ρ(Se),
and by the very definition it follows that Ker(ρ |Se) = Ge. �

3. Review on ideal systems

Throughout this section, let D be a monoid and K = q(D).

The most important example we have in mind is when D is the multiplicative monoid of an
integral domain and K is its quotient field (it is this case why we admit a zero element in D).
The main reference for the theory of ideal systems is [17]. All undefined notions are used as
there, but for the convenience of the reader we repeat the most central notions.

For any subsets X, Y ⊂ K, we set XY = {xy | x ∈ X , y ∈ Y }, (X : Y ) = {z ∈ K | zY ⊂ X}
and (if there is no doubt concerning D) X−1 = (D :X). A subset X ⊂ K is called D-fractional
if cX ⊂ D for some c ∈ D•. We denote by F (D) the set of all D-fractional subsets of K. A
subset P ⊂ D is called a prime ideal if ∅ 6= P ( D, DP = P and D \ P is a submonoid of
D. It is easily checked that the union and the intersection of any chain of prime ideals is again
a prime ideal.

By an ideal system on D we mean a map r : F (D) → F (D) with the following properties
for all subsets X, Y ∈ F (D) and all c ∈ K :

• X ∪ {0} ⊂ Xr.
• X ⊂ Yr implies Xr ⊂ Yr.
• (cX)r = cXr.
• Dr = D.

A D-fractional subset J ⊂ K is called a fractional r-ideal if Jr = J . A fractional r-ideal J
is called an r-ideal if J ⊂ D. A fractional r-ideal J is called r-finite if J = Fr for some finite
set F . If a ∈ K, then aD is a fractional r-ideal (called a fractional principal ideal ). We denote
by P(D) the set of all fractional principal ideals, by Fr(D) the set of all fractional r-ideals,
by Ir(D) the set of all r-ideals, by Fr,f(D) the set of all r-finite fractional r-ideals and by
Ir,f(D) the set of r-finite r-ideals of D. For any set J of ideals, we denote by J • the set of
non-zero ideals in J . For I, J ∈ Fr(D), we define their r-product by I ·r J = (IJ)r. Equipped
with the r-multiplication, Fr(D) is a semigroup (with unit element D and zero element {0}),
and Ir(D), Fr,f(D) and Ir,f(D) are subsemigroups of Fr(D). For all X, Y ⊂ F (D) we have
(XY )r = (XrY )r = (XrYr)r, and if Y ∩K• 6= ∅, then (Xr :Y ) = (Xr :Yr) = (Xr :Y )r ∈ Fr(D).

We denote by r-max(D) the set of all r-maximal r-ideals (that is, of all maximal elements of
Ir(D) \ {D}), and by r-spec(D) the set of all prime r-ideals of D. For a subset X ⊂ D, we set
r-max(D,X) = {M ∈ r- max(D) | X ⊂ M}.

For any ideal system r on D, the associated finitary ideal system rs is defined by

Xrs =
⋃

F⊂X
F finite

Fr for X ∈ F (D) .

For every finite subset Y ⊂ K we have Yr = Yrs . The ideal system r is called finitary if rs = r.
If r is finitary, then every r-ideal J 6= D is contained in an r-maximal r-ideal.

The intersection of any family of r-ideals is an r-ideal, and if r is finitary, then the union of
any chain of r-ideals is also an r-ideal.
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The most common ideal systems on an arbitrary monoid are the systems s = s(D), v = v(D)
and t = t(D) = vs, defined by Xs = DX and Xv = (X−1)−1 for all X ∈ F (D). s(D) and
t(D) are finitary ideal systems, v(D) is not finitary. If r and q are ideal systems, we set r ≤ q,
if Fq(D) ⊂ Fr(D) (equivalently, Xr ⊂ Xq for all X ∈ F (D)). If r is any ideal system on D,
then s(D) ≤ rs ≤ r ≤ v(D) and rs ≤ t(D).

If D is an integral domain, then the ideal system d = d(D) is defined by Xd = D(X) (the
ordinary ring ideal generated by X). It is a finitary ideal system. If r is any ideal system on D
satisfying r ≥ d, then the map Fd(D)• → Fd(D), defined by J 7→ Jr, is a star operation in the
sense of [16, §32].

For a multiplicatively closed subset T ⊂ D, let T−1D = {t−1c | c ∈ D , t ∈ T} be the quotient
monoid with respect to T . For a finitary ideal system r on D, the quotient system T−1r is the
unique finitary ideal system on T−1D satisfying FT−1r(T−1D) = {T−1J | J ∈ Fr(D)}. For all
X ∈ F (D) we have XT−1r = (T−1X)T−1r = T−1Xr. If I ∈ IT−1r(T−1D), then I ∩D ∈ Ir(D)
and T−1(I ∩ D) = I. If I, J ∈ Fr(D), then (T−1I :J) = (T−1I :T−1J) ⊃ T−1(I :J), with
equality if J ∈ Ir,f(D). We obviously have T−1s(D) = s(T−1D), and if D is a domain, then
T−1d(D) = d(T−1D). If P ⊂ D is a prime ideal, we write XP = (D\P )−1X for every X ∈ F (D)
and rP = (D \ P )−1r for every finitary ideal system r on D.

Let r be a finitary ideal system on D. If E ∈ Fr(D) is an overmonoid of D, then E is called
an r-overmonoid, and we define the (finitary) ideal system r[E] on E by Xr[E] = (XE)r for
X ∈ F (E) = F (D). For every I ∈ Fr(D)•, the monoid (I :I) is an r-overmonoid of D.

Let J ∈ Fr(D). For every P ∈ r-spec(D), we have JP = JrP ,

J =
⋂

M∈r-max(D)

JM =
⋂

M∈r-max(D)

JrM , and in particular D =
⋂

M∈r-max(D)

DM .

J is called r-locally principal if for every M ∈ r-max(D) there exists some aM ∈ K× such that
JM = aDM . If J is r-locally principal, then J is a cancellative element of Fr(D).

A fractional r-ideal I ∈ Fr(D)× is called r-invertible . If I is r-invertible, then I−1 is its
inverse in Fr(D), that is, (II−1)r = D. The group Fr(D)× is a subgroup of Fv(D)×, and if r is
finitary, then Fr(D)× = Fr,f(D)× is a subgroup of Ft,f(D)×.

4. Ideal (class) semigroups

Throughout this section, let D be a monoid, K = q(D) and r a finitary ideal system on D.

Two fractional r-ideals I, J ∈ Fr(D) are called equivalent, I ∼ J , if J = cI for some c ∈ K×.
Obviously, this is an equivalence relation on Fr(D), we call Sr(D) = Fr(D)/∼ the r-ideal class
semigroup of D, and for I ∈ Fr(D) we denote by [I]r ∈ Sr(D) the class of I. By definition, we
have Sr(D) = {[I]r | I ∈ Ir(D)}. By Lemma 2.2, Sr(D)× = {[I]r | I ∈ Fr(D)×} is the r-class
group of D. In particular, Sr(D)• is a group if and only if every non-zero (fractional) r-ideal of
D is r-invertible.

A fractional r-ideal J ∈ Fr(D) is called r-regular if it is an N-regular element of Fr(D)
[ equivalently, there exists some Z ∈ F (D) such that (J2Z)r = J ]. By Lemma 2.2, a fractional
r-ideal J ∈ Fr(D) is r-regular if and only if [J ]r is an N-regular element of Sr(D). In particular,
Fr(D) is a Clifford semigroup if and only if Sr(D) is a Clifford semigroup. In this case (following
the terminology of [20] and [5]), we call D Clifford r-regular. Note that D is Clifford r-regular
if and only if every I ∈ Ir(D) is N-regular in Fr(D).
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If J ∈ Fr(D), then Lemma 2.2 implies that [J ]r ∈ Sr(D) is an idempotent if and only if there
exists some a ∈ K× such that aJ is an idempotent in Fr(D). The monoid D is called Boolean
r-regular if Sr(D) is a Boolean semigroup.

Lemma 4.1. Let I ∈ Fr(D) be r-regular [ an idempotent of Fr(D) ].
1. If E ⊃ D is an r-overmonoid of D, then Ir[E] = (IE)r is r[E]-regular [ an idempotent

element of Fr[E](E) ].
2. If q is an ideal system on D with q ≥ r, then Iq is q-regular [ an idempotent element of
Fq(D) ]. Moreover, if D is Clifford r-regular [Boolean r-regular ], then D is also Clifford
q-regular [Boolean q-regular ].

3. Let T ⊂ D be a multiplicatively closed subset. Then T−1I is T−1r-regular [ an idempo-
tent element of FT−1r(T−1D) ]. Moreover, if D is Clifford r-regular [Boolean r-regular ],
then T−1D is Clifford T−1r-regular [Boolean T−1r-regular ].

Proof. The maps θ : Fr(D) → Fr[T ](T ), η : Fr(D) → Fq(D) and ϑ : Fr(D) → FT−1r(T−1D),
defined by θ(I) = Ir[T ] = (IT )r, η(I) = Iq and ϑ(I) = T−1I, are homomorphisms which act
trivially on fractional principal ideals. Moreover, η and ϑ are surjective. From these observations
the assertions follow. �

Proposition 4.2. Let I ∈ Fr(D)•, T = (I(I :I2))r and E = (I :I). Then T = (I(E :I))r,
and the following assertions are equivalent :

(a) I is r-regular, that is, I = (I2X)r for some X ∈ Fr(D).
(b) I = (I2(I :I2))r.
(c) I = (IT )r.

If X ∈ Fr(D) is such that I = (I2X)r, then T = (IX)r ∈ Ir[E](E), (T 2)r = (T 2)r[E] = T ,
and E = (T :T ) = (E :T ).

If I is r-finite and r-regular, then there exists some Y ∈ Fr,f(D) such that I = (I2Y )r, and
T is r-finite. In particular, if I is r-finite and r-regular, then I is N-regular in Fr,f(D).

Proof. 1. Obviously, (I :I2) = ((I :I) :I) = (E :I) and T = (I(E :I))r ⊂ Er = E. Hence it
follows that (IT )r = (I2(E :I))r = (I2(I :I2))r. Therefore (b) and (c) are equivalent, and (b)
implies (a) by the very definition.

Suppose that I = (I2X)r for some X ∈ Fr(D). Then I2X ⊂ I implies X ⊂ (I :I2), and

(IX)r ⊂ (I(I :I2))r = T = ((I2X)r(I :I2))r = (I2X(I :I2))r ⊂ (IX)r .

Hence (IX)r = T , and (T 2)r = (I2X2)r = ((I2X)rX)r = (IX)r = T . Since 1 ∈ E, we
obtain T ⊂ ET ⊂ ((I :I)I(E :I))r ⊂ (I(E :I))r = T , hence ET = T and thus T ∈ Ir[E](E).
Moreover, we have E = (I :I) = (I :(IT )r) = (I :IT ) = ((I :I):T ) = (E :T ) ⊃ (T :T ) ⊃ E, and
therefore E = (T :T ) = (E :T ).

Assume now that I is r-finite and r-regular, and let X ∈ Fr(D) be such that I = (I2X)r.
Let F ⊂ I be finite with I = Fr. Then there exists a finite subset Z ⊂ X such that F ⊂ (I2Z)r,
and if Y = Zr, then Y ⊂ X and I = Fr ⊂ (I2Z)r ⊂ (I2Y )r ⊂ (I2X)r = I. Hence I = (I2Y )r,
and by the above we obtain T = (IY )r, whence T is also r-finite. �

Lemma 4.3. Let I ∈ Fr,f(D). If IM is rM -regular for all M ∈ r-max(D), then I is r-regular.
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Proof. Since I is r-finite, we obtain

(I2(I :I2))r =
⋂

M∈r-max(D)

(I2(I :I2))rM =
⋂

M∈r-max(D)

(I2
M (IM :I2

M ))rM =
⋂

M∈r-max(D)

IM = I . �

Lemma 4.4. For J ∈ Fr(D), the following conditions are equivalent :
(a) J is r-invertible.
(b) J is r-finite and r-locally principal.
(c) J is r-regular and r-locally principal.

In particular, if D is Clifford r-regular, then every r-locally principal r-ideal is r-finite.

Proof. The equivalence of (a) and (b) is well known (see [17, Theorem 12.3]). For the equiva-
lence with (c) note that J is invertible in Fr(D) if and only if J is N-regular and cancellative
in Fr(D), and that every r-locally principal ideal is cancellative in Fr(D). �

The connection between Clifford regular and stable domains outlined by S. Bazzoni [4] has
its counterpart in the theory of ideal systems (although here the connection is not so fruitful
since there is no rich purely multiplicative theory of stable ideals). We merely mention the main
notions and results.

Definition 4.5. Let I ∈ Fr(D)• and E = (I : I). Then I is called r-stable if I is r[E]-invertible
[ that is, (I(E :I))r = E, or, equivalently, (IC)r = E for some C ∈ Fr(D) with EC = C ].
D is called (finitely) r-stable if every non-zero (r-finite) fractional r-ideal is r-stable.

Lemma 4.6. Let I ∈ Fr(D)•. If I is r-invertible, then I is r-stable, and if I is r-stable, then
I is r-regular. In particular, if D is r-stable, then D is Clifford r-regular.

Proof. Let E = (I : I). If I is r-invertible and X ∈ Fr(D) is such that (IX)r = D, then
(I(XE))r = E. Hence I is r-stable. Conversely, if I is r-stable, then T = (I(E : I))r = E,
hence I = IT = (IT )r, and thus I is r-regular by Lemma 4.2. �

In [4, Proposition 2.3] it is proved that a Clifford regular domain is finitely stable. In the
case of ideal systems we obtain only the following weaker result (because in general there is no
analog to Nakayama’s Lemma).

Lemma 4.7. Let I ∈ Fr,f(D)• be r-regular, E = (I :I), and assume that Ir[E],f(E) has no
non-trivial idempotents. Then Ir[E] is r[E]-invertible.

Proof. By Proposition 4.2 it follows that T = (I(E :I))r ∈ Ir[E](E) is an r-finite, and therefore
it is also r[E]-finite. Since (T 2)r[E] = T , we obtain T = E, and I is r[E]-invertible. �

Our next result shows that (for suitably closed monoids) r-stability may be used to charac-
terize r-Dedekind and r-Prüfer monoids (for these concepts see [17]).
Proposition 4.8.

1. If D is completely integrally closed, then D is r-stable if and only if D is an r-Dedekind
monoid.

2. If D is r-closed, then D is finitely r-stable if and only if D is an r-Prüfer monoid.
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Proof. Let I ∈ Fr(D)•. If either D is completely integrally closed or D is r-closed and I
is r-finite, then (I : I) = D. Hence, by the very definition, I is r-stable if and only if I is
r-invertible. �

5. Valuation monoids

For the sake of completeness we rephrase here the results of [7] in the language of monoids
and give full proofs (although they are not really different from those in the case of integral
domains). After that, we characterize Boolean regular valuation monoids by means of their
value group (Theorem 5.7). Basic facts on valuation monoids my be found in [17, Ch. 15 and
Ch. 16].

Throughout this section, let D be a valuation monoid.

We denote by MD = D \D× the maximal ideal of D. The s-system is the only finitary ideal
system on D. We only consider s-ideals, and thus we suppress the specification s whenever we
denote sets of ideals of D (hence F(D), I(D), spec(D) etc. have the obvious meaning, and
F(D)× = P(D)•, the set of all non-zero fractional principal ideals). Note that for any subsets
U, V, W ⊂ K we have DU ⊂ DV or DV ⊂ DU and thus (DU ∩DV )W = DUW ∩DV W .

Lemma 5.1.
1. If V ⊃ D is an overmonoid, then V is a valuation monoid, MV ⊂ D is a prime ideal,

and V = DMV
. In particular, if V 6= K, then V ∈ F(D).

2. If L ∈ spec(D), then L = MDL
is the maximal ideal of DL.

Proof. 1. We may assume that V 6= K. If x ∈ K \V , then x /∈ D and thus x−1 ∈ D ⊂ V . Hence
V is a valuation monoid. If x ∈ M•

V , then x−1 /∈ V , hence x−1 /∈ D and thus x ∈ D. This proves
MV ⊂ D. Clearly, MV is a prime ideal of D and DMV

⊂ V . If x ∈ V \D, then x−1 ∈ D ⊂ V ,
hence x−1 ∈ V × ∩D = D \MV and x = (x−1)−1 ∈ DMV

.
2. If L ∈ spec(D), then MDL

= LDL ⊂ D and therefore L = LDL ∩D = MDL
. �

For a non-zero fractional ideal I ∈ F(D)•, we set I# = M(I:I). Then Lemma 5.1 implies
I# ∈ spec(D), and by the very definition we have

II# ⊂ I , I# = {x ∈ D | xI ( I} and D \ I# = {x ∈ D | I = xI} = {x ∈ I | x−1I ⊂ I} .

Lemma 5.2. Let I ∈ F(D)•.
1. If I is principal, then (I :I) = D and I# = MD.
2. If I is not principal, then I# = II−1.

Proof. 1. Obvious.
2. Since II−1(I :I) ⊂ II−1 ⊂ D ⊂ (I :I), it follows that II−1 is an ideal of (I :I). Since

I is not principal, it is not invertible and thus 1 /∈ II−1. Hence II−1 ⊂ I#. Let now z ∈ I#

and a ∈ I \ zI. Then zI ⊂ aD, hence a−1zI ⊂ D and therefore a−1z ∈ I−1. It follows that
z = a(a−1z) ∈ II−1. �

Lemma 5.3. Let I ∈ F(D)•. Then IDI# = I, and I is a principal ideal of DI# if and only if
II# ( I.
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Proof. If a ∈ I and s ∈ D \ I#, then s−1a ∈ s−1I ⊂ I. Hence IDI# ⊂ I, and the other inclusion
is obvious.

Assume now that I = aDI# for some a ∈ I. We will prove that a /∈ II#. Assume to the
contrary that a = br for some b ∈ I and r ∈ I#. Then aDI# = rbDI# ⊂ rIDI# = rI ( I, a
contradiction.

For the converse, let a ∈ I \ II#. Then aDI# ⊂ I, and we shall prove that equality holds.
Let b ∈ I. If b ∈ aD, there is nothing to do. If b /∈ aD, then a ∈ bD, say a = bt for some t ∈ D.
Since a /∈ II#, we have t /∈ I# and b = t−1a ∈ aDI# . �

The subsequent Theorem 5.4 is essentially [7, Theorem 3]. Recall that every idempotent
ideal of D is a prime ideal (see [17, Proposition 16.1]).

Theorem 5.4.
1. D is Clifford regular (that is, every I ∈ F(D) is N-regular ).
2. L ∈ F(D) is an idempotent element of F(D) if and only if either L ⊃ D is an overmonoid

or L ∈ spec(D) is an idempotent prime ideal.

Proof. 1. It suffices to prove that every I ∈ I(D)• is N-regular. Thus let I ∈ I(D)•. If I is not
principal in DI# , then I is not a principal ideal of D and (using the Lemmas 5.2 and 5.3) we
obtain I = II# = I2I−1. If I = aDI# for some a ∈ I, then I2 = aIDI# = aI and I = I2(a−1D).

2. Obviously, overmonoids and idempotent prime ideals are idempotent elements of F(D).
Conversely, if L ∈ F(D) and L2 = L, then either L ⊃ D (and then L is an overmonoid) or
L ⊂ D (and then L is an idempotent ideal). �

We close this section with the determination of the constituent groups of F(D) and a criterion
for D to be Boolean regular. Following [14], a fractional ideal I ∈ F(D) is called archimedean
if I 6= {0} and I# = MD. Let G(D) denote the set of all archimedean fractional ideals. Then
P(D)• ⊂ G(D), and P(D)• ∼= K×/D×. Following [6], we let GD = G(D) \ P(D) denote the
set of all non-principal archimedean fractional ideals.

Lemma 5.5. G(D) ⊂ F(D) is a subsemigroup, and if MD is principal, then G(D) = P(D)•.
If MD is not principal, then M2

D = MD, and GD consists of all I ∈ F(D)• such that
IMD = I and IJ = MD for some J ∈ F(D). In particular, GD is the constituent group of the
idempotent MD in F(D), and MDP(D)• ⊂ GD is a subgroup.

Proof. If I ∈ G(D), then DI# = D, and (by Lemma 5.3) I is principal if and only if IMD 6= I.
Thus, if I ∈ GD, then I is not invertible, and II−1 = MD by Lemma 5.2. Consequently, if
GD 6= ∅, then MD is not invertible, hence not principal, and M2

D = MD.
Assume now that MD is not principal. If I ∈ GD, then we have already seen that IMD = I

and II−1 = MD. As to the converse, assume that IMD = I and IJ = MD for some J ∈ F(D).
Then I is not principal and J ⊂ I−1. Thus it follows that MD ⊃ II−1 ⊃ IJ = MD. Hence
I# = II−1 = MD and I ∈ G(D).

It remains to prove that G(D) ⊂ F(D) is a subsemigroup. We must show that the product
of two archimedean fractional ideals is again archimedean. But this follows immediately from
the characterization just given. �

Theorem 5.6. Let L ∈ F(D) be an idempotent, F(D)L its constituent group in F(D) and
S(D)L the constituent group of [L] in the ideal class semigroup S(D).
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1. If L ⊃ D is an overmonoid, then F(D)L = P(L)• ∼= K×/L×, and S(D)L is trivial.
2. If L ∈ spec(D)• is an idempotent non-zero prime ideal, then F(D)L = GDL

, and
S(D)L = GDL

/LP(DL)•.

Proof. By Lemma 2.2 it suffices to prove the assertions concerning F(D)L. Let I ∈ F(D). By
definition, we have I ∈ F(D)L if and only if IL = I and IJ = L for some J ∈ F(D).

1. The conditions for I ∈ F(D)L are fulfilled if and only if I is an invertible fractional ideal
of L, that is, if I ∈ P(L)•.

2. By Lemma 5.5, the conditions for I ∈ F(D)L are fulfilled if and only if I is a non-principal
archimedean fractional ideal of DL (observe that IL = I implies IDL = ILDL = IL = I). �

We finally give a description of GD using the completion of the value group associated with
D. Let ΓD be the additively written group K×/D×. For a, b ∈ K×, we define aD× ≤ bD× if
bD ⊂ aD. With this definition, ΓD becomes a totally ordered abelian group, and we denote by
Γ̂D its completion in the order topology (details concerning the construction of Γ̂D may be
found in [10] or [13, Kap. V.15]). If MD is principal, then ΓD has a smallest positive element,
hence ΓD is discrete and Γ̂D = ΓD. We define vD : K× → ΓD by vD(a) = aD×, we call ΓD the
value group and vD the valuation associated with D. If P ∈ spec(D), then there is natural
epimorphism ΓD → ΓDP

with kernel ∆P
∼= D×

P /D×, and P 7→ ∆P is a bijective map from
spec(D) onto the set of all convex subgroups of ΓD. Following [21], ΓD is called algebraically
complete if Γ̂DP

= ΓDP
for all P ∈ spec(D). If P is not idempotent, then PDP is principal.

Therefore ΓD is algebraically complete if and only if Γ̂DP
= ΓDP

for all idempotent non-zero
prime ideals P ∈ spec(D).

Theorem 5.7.
1. Let L ∈ spec(D)• be an idempotent non-zero prime ideal. Then there is an isomorphism

θL : GDL
→ Γ̂DL

satisfying θL(LP(DL)•) = ΓDL
.

In particular, we have an isomorphism S(D)L
∼= Γ̂DL

/ΓDL
.

2. D is Boolean regular if and only if ΓD is algebraically complete.

Proof. 1. By Theorem 5.6.2 we may assume that L = MD is idempotent, and then we must
establish an isomorphism θ : GD → Γ̂D satisfying θ(MDP(D)•) = ΓD. For this, we have to
recall the construction of Γ̂D.
For α ∈ ΓD, we set ΓD(α) = {γ ∈ ΓD | γ ≥ α}. A non-empty proper subset U ( ΓD is called
a filter if ΓD(α) ⊂ U for all α ∈ U . A filter U ⊂ ΓD is called a Cauchy filter if for every
positive ε ∈ ΓD there is some α ∈ U such that U ⊂ ΓD(α− ε), and U is called a principal filter
if U = ΓD(α) for some α ∈ ΓD. By construction, Γ̂D = {inf(U) | U ⊂ ΓD is a Cauchy filter }.

For I ∈ F(D)•, we define v∗D(I) = {vD(a) | a ∈ I•} ⊂ ΓD. Then v∗D is a bijection from F(D)•

onto the set of all filters of ΓD. If I ∈ F(D)•, then v∗D(I) is a Cauchy filter if and only if I is
archimedean, and v∗D(I) is a principal filter if and only if I is principal. We define θ : GD → Γ̂D

by θ(I) = inf v∗D(I). By definition, θ is a surjective homomorphism, and since GD ∩P(D) = ∅,
we obtain Ker(θ) = {MD} (the unit element of GD). Hence θ is an isomorphism. If a ∈ K×,
then θ(aMD) = vD(a) ∈ ΓD. Conversely, if I ∈ GD and θ(I) = vD(a) ∈ ΓD for some a ∈ K×,
then θ(a−1I) = 0, whence a−1I = MD and I ∈ MDP(D)•.

2. Obvious by 1. and Theorem 5.6. �
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Note that the characterization of Boolean regular valuation domains given in [19, Lemma 3.5]
is not correct (valuation domains with value group R are the simplest counterexample; this was
also observed in [22]).

6. Prüfer monoids

For the definition and the elementary properties of r-Prüfer monoids we refer to [17, Ch. 17].
The most important examples we have in mind are multiplicative monoids of Prüfer domains
and of Prüfer v-multiplication domains. However, our theory is purely multiplicative, and thus
we formulate it in the language of monoids.

Throughout this section, let D be an r-Prüfer monoid for some finitary ideal system r on D.

Recall that D is r-closed (that is, (J :J) = D for all J ∈ Fr,f(D)•), r = t(D), every r-finite
non-zero r-ideal is r-invertible, and for every P ∈ r-spec(D) the localization DP is a valuation
monoid. We start with some additional facts concerning the ideal theory of r-Prüfer monoids.

Lemma 6.1.
1. Let P ∈ r-spec(D) and Ω = {Q ∈ s-spec(D) | Q ⊂ P} the set of prime s-ideals of D

contained in P . Then Ω ⊂ r-spec(D), and Ω is a chain.
2. Suppose that P, Q ∈ r-spec(D) and P ( Q. Then there exist P1, Q1 ∈ r-spec(D) such

that P ⊂ P1 ( Q1 ⊂ Q, and there is no prime r-ideal lying strictly between P1 and Q1.
3. For any P, Q ∈ r-spec(D), the set Ω = {N ∈ r-spec(D) | N ⊂ P ∩ Q} has a greatest

element.

Proof. 1. Observe that sP = rP (since DP is a valuation monoid). Hence, if Q ∈ Ω, then
Q = QP ∩ D ∈ r-spec(D). The map Ω → spec(DP ), defined by Q 7→ QP , is an inclusion-
preserving bijection, and therefore Ω is a chain.

2. By 1., the set Ω =
{
R ∈ r-spec(D) | P ⊂ R ⊂ Q

}
is a chain. Let a ∈ Q \ P ,

P1 =
⋃

R∈Ω
a 6∈R

R and Q1 =
⋂

R∈Ω
a∈R

R .

Then P1, Q1 ∈ r-spec(D), P ⊂ P1 ( Q1 ⊂ Q, and there is no prime r-ideal strictly between
P1 and Q1 (recall that the union and the intersection of any chain of prime r-ideals is again a
prime r-ideal).

3. By 1., Ω is a chain, and therefore

R =
⋃

N∈Ω

N ∈ r-spec(D) is the greatest element of Ω. �

Lemma 6.2. Let I ∈ Ir(D), and suppose that for some a ∈ I the set r-max(D, {a}) is finite.
1. There exists some J ∈ Ir,f(D) such that J ⊂ I and r-max(D,J) = r-max(D, I).
2. Let

C =
⋂

M∈r-max(D)
I 6⊂M

DM

and N ∈ r-max(D). Then CN = DP for some P ∈ r-spec(D) with I 6⊂ P .
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Proof. 1. Let {M1, . . . ,Mn} = r- max(D, {a}) \ r- max(D, I) (where n ∈ N0). For i ∈ [1, n], let
yi ∈ I \Mi. Then J = {a, y1, . . . , yn}r has the required property.

2. By definition, CN ⊃ DN is an overmonoid, and as DN is a valuation monoid, it follows
that CN = (DN )P for some P ∈ s-spec(DN ). Then there is some P ∈ r-spec(D) satisfying
P = PN , P ⊂ N and CN = DP . It remains to prove that I 6⊂ P .
Let J ∈ Ir,f(D) be such that J ⊂ I and r-max(D,J) = r-max(D, I). If M ∈ r-max(D) and
I 6⊂ M , then J 6⊂ M and thus J−1 ⊂ DM [ indeed, if x ∈ J−1 and y ∈ J \ M , then xy ∈ D
and x = y−1(xy) ∈ DM ]. Hence it follows that J−1 ⊂ C ⊂ DP . Since J ∈ Ir,f(D), we obtain
JP = aDP for some a ∈ D and (J−1)P = (DP :JP ) = a−1DP ⊂ DP . Hence JP = DP , J 6⊂ P ,
and thus also I 6⊂ P . �

Recall that D is a monoid of Krull type if and only if for every a ∈ D• the set r-max(D, {a})
is finite [17, Theorem 22.4].

Theorem 6.3. If D is a monoid of Krull type, then D is Clifford r-regular.

Proof. Let I ∈ Ir(D) and r-max(D, I) = {M1, . . . ,Mn}. We shall prove that I is N-regular.
We may assume that I 6= D, hence n ≥ 1, and we must prove that [(I2(I :I2))r]M = IM for
all M ∈ r-max(D). If M ∈ r-max(D), then DM is a valuation monoid, hence rM = sM and
[(I2(I : I2))r]M = I2(I : I2)DM . If M 6∈ {M1, . . . ,Mn}, then I2(I : I2) 6⊂ M and therefore
I2(I :I2)DM = IM = DM . Thus let M ∈ {M1, . . . ,Mn}, say M = M1. Then

I2(I :I2)DM1 = I2
( ⋂

M∈r-max(D)

IM :I2
)
DM1 = I2DM1

[
(IM1 :I2) ∩

n⋂
i=2

(IMi :I
2)DM1 ∩ CDM1

]
,

where
C =

⋂
M∈r-max(D)

I 6⊂M

DM .

Since DM1 is a valuation monoid, the product distributes over the intersections, and therefore

I2(I :I2)DM1 = I2DM1(IM1 :I2) ∩
n⋂

i=2

I2DM1(IMi :I
2) ∩ I2CDM1 .

Being valuation monoids, the monoids DMi are Clifford regular, and thus we obtain

I2DM1(IM1 :I2) = I2
M1

(IM1 :I2
M1

) = IM1 and, for i ∈ [2, n],

I2DM1(IMi :I
2) = I2DM1DMi(IMi :I

2) = DM1I
2
Mi

(IMi :I
2
Mi

) = DM1IMi ⊃ DM1I = IM1 .

Lemma 6.2 implies that CDM1 = CM1 = DP for some P ∈ r-spec(D) with I 6⊂ P , hence
I2 6⊂ P and therefore I2CDM1 = I2DP = DP ⊃ IM1 . Putting all together, it follows that
I2(I :I2)DM1 = IM1 . �

Lemma 6.4. Let P ∈ r-spec(D)•.
1. If P /∈ r-max(D), then P is not r-invertible, and

P−1 = (P :P ) = DP ∩
⋂

M∈r-max(D)
P 6⊂M

DM .

2. If P ∈ r-max(D) and P is not r-invertible, then P−1 = (P :P ) = D.
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3. If Q ∈ r-spec(D), Q ⊂ P , z ∈ P \Q and J = (Q ∪ {z})r, then J is r-locally principal,
and Q ( J ⊂ P .

Proof. 1. If P /∈ r- max(D), then P is not r-invertible by [12, Lemma 4.7]. Hence P−1 = (P :P )
by [12, Proposition 4.8.2], and by [12, Theorem 4.6] P−1 is an intersection of localizations as
asserted.

2. By [12, Proposition 4.8.2].
3. It suffices to prove that J is r-locally principal. Let M ∈ r-max(D). If J 6⊂ M , then JM =

DM . If J ⊂ M , then QM ∩D = Q implies z /∈ QM , hence QM ⊂ zDM and JM = zDM . �

Lemma 6.5. Let E ⊃ D be an r-overmonoid, q = r[E] and Ω = {P ∈ r-spec(D) | Pq 6= E}.
1. E is a q-Prüfer monoid.
2. If P ∈ q-spec(E) and P = P ∩D, then P ∈ Ω, P = Pq and EP = DP .
3. Ω = {P ∈ r-spec(D) | E ⊂ DP }, and if P ∈ Ω, then Pq = PDP ∩ E ∈ q-spec(E).

In particular, the map θ : q-spec(E) → Ω, defined by θ(P ) = P ∩D, is bijective.

Proof. By [17, Theorem 27.2 and Supplement]. �

Lemma 6.6. Let P ∈ r-spec(D),

a ∈
⋂

N∈r-max(D)
P 6⊂N

DN \DP and I = a−1D ∩D .

Then we have I ∈ Ir,f(D), I ⊂ P and r-max(D, I) = r-max(D,P ).

Proof. By [17, Theorem 17.6] we have I ∈ Fr(D)× and thus I is r-finite (note that an r-Prüfer
monoid is an r-GCD-monoid). Since a /∈ DP , it follows that a−1 ∈ PDP and I ⊂ PDP ∩D = P ,
whence r-max(D,P ) ⊂ r-max(D, I). If N ∈ r-max(D) and P 6⊂ N , then a = s−1c for some
c ∈ D and s ∈ D\N , and consequently we obtain s = a−1c ∈ I\N , whence N /∈ r-max(D, I). �

A prime ideal P ∈ r-spec(D) is called branched if there is some prime ideal P0 ( P such
that there is no prime ideal lying strictly between P0 and P . Note that P is branched if and
only if for every family (Pλ)λ∈Λ of prime ideals Pλ ( P we have⋃

λ∈Λ

Pλ ( P .

For any P, Q ∈ r-spec(D), we denote by R∧r Q the greatest prime r-ideal contained in P ∩Q
(see Lemma 6.1.3).

Lemma 6.7. Suppose that every r-locally principal r-ideal of D is r-finite. Let P ∈ r-spec(D)
be branched, and let P0 ∈ r-spec(D) be such that P0 ( P and there is no prime r-ideal strictly
between P and P0. Then

(∗)
⋂

N∈r-max(D)
P 6⊂N

DN 6⊂ DP ,

and there exists some I ∈ Ir,f(D) such that P0 ( I ⊂ P and r-max(D, I) = r-max(D,P ).
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Proof. Assume that (∗) holds, let

a ∈
⋂

N∈r-max(D)
P 6⊂N

DN \DP and I0 = a−1D ∩D .

By Lemma 6.6 we have I0 ∈ Ir,f(D), I0 ⊂ P and r-max(D, I0) = r-max(D,P ). If z ∈ P \ P0,
then J = (P0 ∪ {z})r is r-locally principal by Lemma 6.4.3, hence r-finite by assumption, and
therefore I = (I0 ∪ J)r ∈ Ir,f(D) fulfills our requirements.

It remains to prove (∗).
Suppose first that P ∈ r-max(D). Since P is branched, we obtain

P )
⋃

N∈r-max(D)
N 6=P

P ∧r N , and if a ∈ P \
⋃

N∈r-max(D)
N 6=P

P ∧r N , then a−1 ∈
⋂

N∈r-max(D)
P 6⊂N

DN \DP .

Thus assume from now on that P 6∈ r-max(D).
We consider the r-overmonoid E = (P :P ) and set q = r[E]. By Lemma 6.5, the monoid

E is a q-Prüfer monoid and thus q = t(E). If Ω = {N ∈ r-spec(D) | Nq 6= E}, then there
is a bijective map θ : q-spec(E) → Ω such that θ(N) = N ∩ D for all N ∈ q-spec(E) and
θ−1(N) = Nq for all N ∈ Ω. Moreover, it follows that Ω = {N ∈ r-spec(D) | E ⊂ DN}. If
N ∈ Ω, then Nq = DN ∩ E, and if N ∈ E, then EN = DN∩D. If Ωmax denotes the set of all
maximal elements of Ω, then θ(q-max(E)) = Ωmax.

Since PE 6= E, it follows that Pq = Pr = P ∈ q-spec(E), and since all N ∈ r-spec(D) with
N ⊂ P belong to Ω, it follows that P is also branched in E. We claim that P ∈ q-max(E),
and for this we must prove that P ∈ Ωmax. Assume to the contrary that there is some Q ∈ Ω
such that P ( Q. By Lemma 6.4.3 there exists some r-locally principal r-ideal J such that
P ( J ⊂ Q, and by assumption J is r-finite, say J = Yr for some finite set Y ⊂ J . Therefore
it follows that (Jq)v(E) = Yv(E) = Yt(E) = Yq = Jq, and P ( Jq ⊂ Qq ( E (in fact, it can be
proved that Qq = Q, but we do not need this). Since P /∈ q-max(E), Lemma 6.4 (applied for
E) implies (E :P ) = E, and we obtain E = Pv(E) ⊂ Jv(E) = Jq ⊂ Qq ( E, a contradiction.

We show now that Ωmax = {P} ∪ {N ∈ r-max(D) | P 6⊂ N}. If N ∈ r-max(D) and P 6⊂ N ,
then E ⊂ DN by Lemma 6.4 and thus N ∈ Ωmax. To prove the converse, assume that N ∈
Ωmax \ {P}, and let N ′ ∈ r-max(D) be such that N ⊂ N ′. Since N and P are incomparable, it
follows that P 6⊂ N ′, hence N ′ ∈ Ω (as we have just proved) and N = N ′ ∈ r-max(D). Applying
the bijection θ, we obtain {N ∩ D | N ∈ q-max(E), N 6= P} = {N ∈ r-max(D) | P 6⊂ N}.
Since P is branched in E, we obtain

P )
⋃

N∈q-max(E)

N 6=P

P ∧r N ,

and if a ∈ P \
⋃

N∈q-max(E)

N 6=P

P ∧r N , then a−1 ∈
⋂

N∈q-max(E)

N 6=P

EN \EP =
⋂

N∈r-max(D)
P 6⊂N

DN \DP . �

An r-maximal r-ideal M ∈ r-max(D) is called r-essential if⋂
N∈r-max D

N 6=M

DN 6⊂ DM

[
equivalently, D (

⋂
N∈r-max D

N 6=M

DN

]
.
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Lemma 6.8. Let M ∈ r-max(D).
1. If M is r-essential, then there exists some I ∈ Ir,f(D) such that r-max(D, I) = {M}.
2. M is r-essential if and only if

M )
⋃

N∈r-max D
N 6=M

(N ∧r M) .

Proof. 1. By Lemma 6.6, applied with P = M .
2. Assume first that there is some x ∈ M such that x /∈ N for all N ∈ r-max(D)\{M}. Then

it follows that x−1 ∈ DN for all N ∈ r-max(D) \ {M} and yet x−1 /∈ DM .
To prove the converse, assume to the contrary that M is r-essential and yet

M =
⋃

N∈r-max D
N 6=M

(N ∧r M) .

By 1. there exists some I ∈ Ir,f(D) such that r-max(D, I) = {M}, say I = Yr for some finite
subset Y ⊂ D. Since Ω = {N ∧M | N ∈ r- max(D) , N 6= M} is a chain, there is some N ∈ Ω
such that Y ⊂ N , hence I ⊂ N and thus M = N , a contradiction. �

Lemma 6.9. Suppose that every r-locally principal r-ideal of D is r-finite. Let x ∈ D•,
(Mλ)λ∈Λ a family in r-max(D), and for each λ ∈ Λ, let Jλ ∈ Ir,f(D) be such that x ∈ Jλ ⊂ Mλ.
Assume further that for each N ∈ r-max(D) there is at most one λ ∈ Λ such that Jλ ⊂ N .
Then Λ is finite.

Proof. For each λ ∈ Λ we have xJ−1
λ ⊂ D, and thus it follows that

B =
( ⋃

λ∈Λ

J−1
λ

)
r
∈ Fr(D) .

If N ∈ r- max(D), then J−1
λ DN = (DN :JλDN ) is principal (since DN is a valuation monoid

and each Jλ is r-finite), and J−1
λ DN = DN if Jλ 6⊂ N . Therefore

BN =
⋃
λ∈Λ

J−1
λ DN

either coincides with DN or with J−1
µ DN , it N contains some (necessarily unique) Jµ. Therefore

BN is principal for all N ∈ r- max(D), hence, by assumption, B is r-finite. Hence there exist a
finite subset L ⊂ Λ such that

B =
⋃
l∈L

(J−1
l )r, whence B−1 =

⋂
l∈L

Jl , [ since (J−1
l )−1 = (Jl)v(D) = (Jl)r = Jl ].

For each λ ∈ Λ, J−1
λ ⊂ B implies B−1 ⊂ Jλ ⊂ Mλ and therefore Jl ⊂ Mλ for some λ ∈ Λ.

Since Jl ⊂ Ml, we obtain λ = l, and thus Λ = L is finite. �

Lemma 6.10. Suppose that every r-locally principal r-ideal of D is r-finite. Then every r-ma-
ximal r-ideal of D is r-essential.

Proof. Assume to the contrary that M ∈ r- max(D) is not r-essential and 0 6= x ∈ M . By
Lemma 6.8 we obtain

M =
⋃

N∈r-max(D)
N 6=M

N ∧r M .
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If {N ∈ r- max(D) | N 6= M, x ∈ N} = {Nλ | λ ∈ Λ}, then {N∧rM | N ∈ r- max(D), N 6= M}
is a chain, and therefore

M =
⋃
λ∈Λ

Pλ , where Pλ = Nλ ∧r M ∈ r-spec(D) and Pλ ( M for all λ ∈ Λ .

We may assume that Pλ 6= Pµ for all λ, µ ∈ Λ with λ 6= µ. For each λ ∈ Λ we have Pλ ( Nλ,
and by Lemma 6.1.2 there exist P ′

λ, Qλ ∈ r-spec(D) such that Pλ ⊂ P ′
λ ( Qλ ⊂ Nλ and there

is no prime r-ideal strictly between P ′
λ and Qλ. We shall prove:

A. If λ, µ ∈ Λ and λ 6= µ, then Qλ and Qµ are incomparable.

Proof of A. Assume to the contrary that there exist λ, µ ∈ Λ with Pλ ( Pµ such that Qλ

and Qµ are comparable. If Qµ ⊂ Qλ, then Pµ ⊂ Nλ ∧r M = Pλ, a contradiction. Hence we
have Qλ ⊂ Qµ, and thus Qλ and Pµ are comparable (since both lie in Nµ). If Qλ ⊂ Pµ, then
Qλ ⊂ Nλ ∧r M = Pλ, a contradiction. If Pµ ⊂ Qλ, then Pµ ⊂ Nλ ∧r M = Pλ, which again is
impossible. This completes the proof of A.

For λ ∈ Λ, Lemma 6.7 implies the existence of some Jλ ∈ Ir,f(D) such that Pλ ( Jλ ⊂ Qλ

and r-max(D,Jλ) = r-max(D,Qλ). We assert now that for every N ∈ r-max(D) there is at
most one λ ∈ Λ such that Jλ ⊂ N . Then Lemma 6.9 implies that Λ is finite which is impossible.

Assume to the contrary that N ∈ r-max(D) and λ, µ ∈ Λ are such that λ 6= µ and Jλ∪Jµ ⊂ N .
Then N ∈ r-max(D,Jλ) = r-max(D,Qλ) and also N ∈ r-max(D,Jµ) = r-max(D,Qµ), whence
Qλ and Qµ are comparable, a contradiction. �

Theorem 6.11. Suppose that every r-locally principal r-ideal of D is r-finite. Then D is a
monoid of Krull type. In particular, if D is Clifford r-regular, then D is a monoid of Krull
type.

Proof. By Lemma 4.4 it suffices to prove the first assertion.
Let x ∈ D•, and set {Mλ | λ ∈ Λ} = r-max(D, {x}) such that Mλ 6= Mµ if λ 6= µ. For each

λ ∈ Λ, Mλ is r-essential by Lemma 6.10, and by Lemma 6.8.1 there exists some Jλ ∈ Ir,f(D)
such that r-max(D,Jλ) = {Mλ}. For N ∈ r-max(D) and λ ∈ Λ we have Jλ ⊂ N if and only if
N = Mλ. Hence we may apply Lemma 6.9 and conclude that Λ is finite. �

Proposition 6.12. Suppose that Fr,f(D)• is cancellative and every r-finite r-ideal is r-regular.
Then D is an r-Prüfer monoid.
In particular, every t-Clifford regular v-domain is a Prüfer v-multiplication domain (and even
a domain of Krull type).

Proof. By Proposition 4.2, every J ∈ Fr,f(D)• is N-regular and cancellative and thus it is
invertible. Therefore Fr,f(D)• is a group and thus D is an r-Prüfer monoid.

If D is a v-domain (that means, D is a v-Prüfer monoid), then It,f(D)• = Iv,f(D)• is can-
cellative by [17, Theorem 19.2]. Hence Ft,f(D)• is cancellative, whence D is a t-Prüfer monoid
(that means, D is a Prüfer v-multiplication domain). That it is even a domain of Krull type
follows by Theorem 6.11. �

Note added in proof. We are indebted to the referee for pointing out, that Bazzoni’s con-
jecture (that is, Theorem 6.11 in the case of Prüfer domains) has only recently been proved
(using basically different techniques) by W. C. Holland, J. Martinez, W. Wm. McGovern and
M. Tesemma in the paper “Bazzoni’s conjecture”, accepted for publication in the Journal of
Algebra.
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