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CHAPTER 1

Supplements to Field Theory

1.1. Normal field extensions

Definition 1.1.1. Let K be a field, f ∈ K[X] \K, c ∈ K× the leading coefficient of f and
L ⊃ K an extension field. We say that f splits in L if there exist α1, . . . , αn ∈ L such that

f = c
n∏
i=1

(X − αi) ,

and if L = K(α1, . . . , αn), then L is called a splitting field of f .

Remark 1.1.2. Let K be a field and f ∈ K[X] \K. Then f possesses a spitting field, and
for any two splitting fields L, L′ of f there exists a K-isomorphism L

∼→ L′.
Proof. Let c ∈ K× be the leading coefficient of f and K an algebraic closure of K. There

exist α1, . . . , αn ∈ K such that f = c(X − α1) · . . . · (X − αn), and then L = K(α1, . . . , αn)
is a splitting field of f . To prove uniqueness, let L′ be another splitting field of f and L′ an
algebraic closure of L′. Since L′/K is algebraic, it follows that L′ is an algebraic closure of K,
and therefore there exists a K-isomorphism φ : K ∼→ L′. Let φ1K[X] → L′[X] be the trivial
extension of φ to the polynomial rings. Then

f = φ1(f) = c
n∏
i=1

(X − φ(αi)) .

Since f splits in L′, it follows that φ(αi) ∈ L′ for all i ∈ [1, n], hence L′ = K(φ(α1), . . . , φ(αn)) =
φ(L), and ϕ = φ |L : L ∼→ L′ is the desired K-isomorphism. �

Theorem and Definition 1.1.3. Let L/K be an algebraic field extension and K ⊃ L and
algebrically closed extension field.

1. The following statements are equivalent :
(a) For every K-homomorphism ϕ : L→ K we have ϕ(L) ⊂ L.
(b) Every irreducible polynomial f ∈ K[X] \K which has a zero in L already splits in

L.
If [L :K] <∞, then there is also equivalent :
(c) L is the splitting field of some polynomial f ∈ K[X] \K.

If these conditions are fulfilled, then the extension L/K is called normal. If L/K is
normal and separable, then L/K is called galois.

3



4 1. SUPPLEMENTS TO FIELD THEORY

2. L/K is a finite galois extension if and only if L is the splitting field of a separable
polynomial f ∈ K[X] \K.

3. The fields ϕ(L) for ϕ ∈ HomK(L,K) are called the conjugate fields of L ( over K in
K ), and its compositum

L̃ =
∏

ϕ∈HomK(L,K)

ϕ(L) = K
( ⋃
ϕ∈HomK(L,K)

ϕ(L)
)

is called the normal closure of L/K (inside K). If L/K is separable, then L̃ is called
that galois closure of L/K (inside K).

L̃ is the smallest subfield of K such that L ⊂ L̃ and L̃/K is normal. If L/K is
separable, then L̃/K is galois, and if [L :K] <∞, then [L̃ :K] <∞.

Proof. 1. (a) ⇒ (b) Let f ∈ K[X] \K be irreduzible, α ∈ L and f(α) = 0. Then

f = c
n∏
i=1

(X − αi) , where c ∈ K× is the leading coefficient of f and α = α1, . . . , αn ∈ K.

For i ∈ [2, n], let αi : K(α) → K be the unique K-homomorphism such that ϕ(α) = αi, and let
φi : L → K be a homomorphism such that φi |K(α) = ϕi. By assumption, we have φi(L) ⊂ L
and thus αi = φi(αi) ∈ L for all i ∈ [2, n]. Hence f splits in L.

(b) ⇒ (a) Let ϕ : L → K be a K-homomorphism, α ∈ L and f ∈ K[X] the minimal
polynomial of α over K. Then f splits in K, and since f(ϕ(α)) = 0, we obtain ϕ(α) ∈ L

(b) ⇒ (c) Since [L : K] < ∞, we obtain L = K(α1, . . . , αm) for some m ∈ N and
α1, . . . , αm ∈ L. For j ∈ [1,m], let fj ∈ K[X] be the minimal polynomial of αj over K,
and f = f1 · . . . · fm. By assumption, every fj splits in L. Hence f splits in L, and as L arises
from K be adjoining zeros of f , it is a splitting field of f .

(c) ⇒ (a) Let L be a splitting field of some f ∈ K[X] \K, say

f = c

n∏
i=1

(X − αi) , where c ∈ K× and L = K(α1, . . . , αn).

Let ϕ ∈ HomK(L,K) and ϕ1 : L[X] → K[X] its trivial extension to polynomial rings. Then

f = ϕ1(f) = c

n∏
i=1

(X − ϕ(αi)) = c

n∏
i=1

(X − αi) ,

hence {ϕ(α1), . . . , ϕ(αn)} = {α1, . . . , αn}, and ϕ(L) = K(ϕ(α1), . . . , ϕ(αn)) = K(α1, . . . , αn) =
L.

2. If L is the splitting field of a separable polynomial, then L/K is separabel and normal,
hence galois. Assume now that L/K is a finite galois extension. By 1., L is the splitting field of
some polynomial f ∈ K[X] \K. Let f = fe11 ˙. . . · fer

r , where r ∈ N, f1, . . . , fr ∈ K[X] \K are
distinct irreducible polynomials, and e1, . . . , er ∈ N. Then L = K(C), where C is the set of all
zeros of f1 · . . . · fr in L. Hence L is the splitting field of f∗ = f1 · . . . · fr, each fi is separable,
and thus f∗ is separable, too.
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3. L̃/K is normal : Let φ ∈ HomK(L̃,K). If ϕ ∈ HomK(L,K), then it follows that
ϕ(L) ⊂ L̃, hence φ◦ϕ ∈ HomK(L,K), and therefore φ(ϕ(L)) = φ◦ϕ(L) ⊂ L̃. Consequently,

φ(L̃) = K
( ⋃
ϕ∈HomK(L,K

φ(ϕ(L)
)
⊂ L̃ , and thus L̃/K is normal.

Let now L′ ⊂ K any subfield such that L ⊂ L′ and L′/K is normal. For every ϕ ∈ HomK(L,K),
there is some ϕ′ ∈ HomK(L′,K) such that ϕ′ |L = ϕ, and since ϕ′(L′) ⊂ L′, it follows that
ϕ(L) ⊂ L′. Hence

L̃ = K
( ⋃
ϕ∈HomK(L,K)

ϕ(L)
)
⊂ L′ .

If L/K is separable and ϕ ∈ HomK(L,K), then ϕ(L)/K is separable, say ϕ(L) = Cϕ, where
Cϕ ⊂ K is a set of separable elements over K. Then it follows that

L̃ = K
( ⋃
ϕ∈HomK(L,K)

ϕ(L) = K
( ⋃
ϕ∈HomK(L,K)

Cϕ

)
is separable over K.

If L/K is finite, then HomK(L,K) = [L :K]s ≤ [L :K] <∞, and therefore L̃/K is finite. �

primitiveselement Theorem 1.1.4 (Primitive Element Theorem). Let L/K be a finite field extension, n ∈ N,
and L = K(α1, . . . , αn), where α2, . . . , αn are separable over K. Then there exists some α ∈ L
such that L = K(α).

Proof. If K is finite, then L is finite. Hence L× is cyclic, and if L× = 〈ω〉, then L = K(ω).
Thus let K be infinite, and proceed by induction on n. For n = 1, there is nothing to do.

Thus suppose that n ≥ 2. By the induction hypothesis, there exists some α ∈ L such that
K(α1, . . . , αn−1) = K(α), and we set β = αn. Then L = K(α, β), β is separable over K, and
we shall prove that there exists some c ∈ K such that L = K(α+ cβ).

LetK ⊃ L be an algebraically closed extension field, let f ∈ K[X] be the minimal polynomial
of α and g ∈ K[X] the minimal polynomial of β. Suppose that

f =
r∏
i=1

(X − αi) ∈ K[X] and g =
s∏
j=1

(X − βj) ∈ K[X] ,

where α = α1, α2, . . . , αr, β = β1, β2, . . . , βs, and β1, . . . , βs are distinct. Since K is infinite,
there exists some c ∈ K such that αi + cβk 6= α + cβ for all i ∈ [1, r] and k ∈ [2, s], and we
set ϑ = α + cβ. Then g(β) = 0, f(ϑ − cβ) = 0, and β is the unique common zero of g and
f(ϑ− cX) ∈ K(ϑ)[X], since ϑ− cβk = α+ cβ − cβk /∈ {α1, . . . , αr} for all k ∈ [2, s]. since β is a
simple zero of g, it follows that X−β = gcd(g, f(ϑ− cX)) ∈ K(ϑ)[X] (note that the gcd of two
polyomials can be calculated by the eucidean algorithm). Hence β ∈ K(ϑ), and consequently
K(α, β) = K(ϑ). �
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1.2. Roots of unity

Remarks and Definitions 1.2.1. Let K be a commutative ring and n ∈ N.
1. An element ζ ∈ K is called an n-th root of unity if ζn = 1. We denote by µn(K) the

set of all n-th roots of unity in K. For ζ ∈ µn(K) and κ = k + nZ ∈ Z/nZ, we define
ζκ = ζk. If K is a field, then µn(K) ⊂ K× is a cyclic subgroup and |µn(K)| divides n.

2. An n-th root of unity ζ ∈ µn(K) is called primitive if ord(ζ) = n. We denote by µ∗n(K)
the set of all primitive n-th roots of unity. Then

µn(C) = {e2πik/n | k ∈ [1, n] , (k, n) = 1} ,
and ζn = e2πi/n is called the normalized primitive n-th root of unity.

Let K be a field. If ζ ∈ µ∗n(K), then |µn(K)| = n, char(K) - n, Xn − 1 ∈ K[X] is
separable, µ∗n(K) = {ζκ | κ ∈ (Z/nZ)×}, and |µ∗n(K)| = ϕ(n).

In particular, if K is algebraically closed and char(K) - n, then |µn(K)| = n and
|µ∗n(K)| = ϕ(n) = |(Z/nZ)×|.

cyclotomicpoly Theorem and Definition 1.2.2. Let K be a field, K ⊃ K and algebraically closed exten-
sion field, n ∈ N, char(K) - n and F the prime ring of K (F = Z if char(K) = 0, and F = Fp
if char(K) = p > 0 ).

1. If ζ ∈ µ∗n(K), then K(ζ) is the splitting field of Xn − 1,

Φn =
∏

ζ∈µ∗n(K)

(X − ζ) ∈ F [X] , and Xn − 1 =
∏
d |n

Φd .

The polynomial Φn ∈ F [X] is called the n-th cyclotomic polynomial in characteristic
char(K).

2. In characteristic 0, the polynomial Φn ∈ Z[X] is irreducible.

Proof. 1. By definition,

Xn − 1 =
∏

ξ∈µn(K)

(X − ξ) =
∏
d |n

∏
ξ∈µn(K)
ord(ξ)=d

(X − ξ) =
∏
d |n

Φd ,

since, for d |n, µd(K) = {ξ ∈ µn(K) | ord(ξ) = d}. If ζ ∈ µ∗n(K), then µn(K) = 〈ζ〉, and
therefore K(ζ) is the splitting field of Xn − 1.

Now we prove Φn ∈ F [X] by induction on n. Clearly, Φ1 = X − 1 ∈ F [X]. Suppose that
n > 1 and Φd ∈ F [X] for all d < n. Then

Φn =
Xn − 1∏
d |n
d<n

Φd
∈ F [X]

since the polynomial division of monic polynomials can be performed in F [X].
2. Let ζ ∈ µ∗n(C) and f ∈ Q[X] the minimal polynomial of ζ over Q. Then Xn − 1 = fh

for some monic polyomial h ∈ Q[X], and by Gauß’ Lemma we obtain f, h ∈ Z[X]. It suffices to
prove :

A. If p ∈ P is a prime, p - n, ξ ∈ C and f(ξ) = 0, then f(ξp) = 0.
B. f(ξ) = 0 for all ξ ∈ µ∗n(C).
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Indeed, by B if follows that Φn | f , and as f is irreducible, we obtain Φn = f .
Proof of A. Assume to the contrary that there is some prime p ∈ P such that p - n, and

there is some ξ ∈ C such that f(ξ) = 0 and f(ξp) 6= 0. Then ξ and ξp are zeros of Xn − 1, and
therefore h(ξp) = 0. Hence ξ is a zero of h(Xp), and as f is the minimal polynomial of ξ, we
obtain h(Xp) = fg for some polynomial g ∈ Z[X] (again by Gauß’ Lemma). For a polynomial
q ∈ Z[X], let q ∈ Fp[X] be the residue class polynomial. Since ap = a for all a ∈ Z, we obtain
h(Xp) = h

p = fg, and therefore gcd(f, h) = ψ ∈ Fp[X] \ Fp. Since Xn − 1 = f h, this implies
ψ2 |Xn − 1, a contradition, since Xn − 1 ∈ Fp[X] is separable.

Proof of B. Assume the contrary and observe that µ∗n(C) = {ζq | q ∈ N , (q, n) = 1 }. Let
q ∈ N be minimal such that (q, n) = 1 and f(ζq) 6= 0. By A, q is not a prime, and thus q = rp
for some prime p and r ≥ 2. Then f(ζr) = 0, and by A also f(ζq) = 0, a contradiction. �

Remarks and Definitions 1.2.3. Let n ∈ N.
1. Q(n) ⊂ C denotes the splitting field of Xn − 1 over Q. If ζ ∈ µ∗n(C), then Q(n) = Q(ζ).

Q(n) is called the n-th cyclotomic field, [Q(n) :Q] = ϕ(n).
2. If a ∈ Q× and α ∈ C is such that αn = a, then

Xn − a =
∏

ζ∈µn(C)

(X − ζα) =
n−1∏
i=0

(X − ζinα) ,

and Q(n)(α) = Q(ζ, n
√
a ) is the splitting field of Xn − a (on account of ambiguity we

usually avoid the notation n
√
a ).

1.3. Galois theory

unabhaengigkeitssatz Theorem 1.3.1 (Dedekind’s Independence Theorem). Let K be a field, (M, ·) a monoid
and σ1, . . . , σn : H → K× distince monoid homomorphisms. Then (σ1, . . . , σn) ∈ Map(M,K) is
linearly independent over K.

Proof. By induction on n.
n = 1 : σ1 6= 0 is linearly independent.
n ≥ 2 , n − 1 → n : Let λ1, . . . , λn ∈ K be such that λ1σ1 + . . . + λnσn = 0: M → K. By

definition,
n∑
i=1

λiσi(x) = 0 for all x ∈M .

Let y ∈M be such that σ1(y) 6= σn(y). Then it follows that

0 =
n∑
i=1

λiσi(xy) =
n∑
i=1

λiσi(x)σi(y) and 0 =
n∑
i=1

λiσi(x)σn(y) for all x ∈M ,

hence also

0 =
n−1∑
i=1

λi [σi(y)− σn(y) ]σi(x) , and therefore 0 =
n−1∑
i=1

λi [σi(y)− σn(y) ]σi .
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By the induction hypothesis, λi [σi(y) − σn(y) ] = 0 for all i ∈ [1, n − 1], hence λ1 = 0, and
consequently λ2σ2 + . . . + λnσn = 0. Again by the induction hypothesis, it follows that also
λ2 = . . . = λn = 0. �

Remark and Definition 1.3.2.
1. For a field extension L/K, we denote by HomK(L,L) the set of all K-homomorphisms
L → L, and by Gal(L/K) ⊂ Aut(L) the set of all K-automorphisms of L. If L/K is
algebraic, then HomK(L,L) = Gal(L/K).

2. Let H ⊂ Aut(L) a subgroup. Then it is easily checked that

LH = {x ∈ L | σ(x) = x for all σ ∈ H} ⊂ L

is a subfield. It is called that fixed field of H.

artin Theorem 1.3.3 (Artin’s Theorem). Let L be a field and G < Aut(L) a finite subgroup.
Then L/LG is a finite galois field extension satisfying [L :LG] = |G| and Gal(L/LG) = G.

Proof. We set K = LG, n = |G|, G = {σ1, . . . , σn}, and we denote by K ⊃ L an
algebraically closed extension field. It suffices to prove that [L : K] ≤ n. Indeed, since G ⊂
Gal(L/K), this implies

n = |G| ≤ |Gal(L/K)| ≤ |HomK(L,K)| = [L :K]s ≤ [L :K] ≤ n ,

hence [L :K] = |G|, Gal(L/K) = G, L/K is normal since HomK(L,K) = Gal(L/K), and L/K
is separable since [L :K]s = [L :K].

The map S = σ1 + . . .+σn : L→ L is K-linear, by Theorem
unabhaengigkeitssatz
1.3.1 we obtain S 6= 0, and we

assert that S(L) = K. Indeed, for all x ∈ L and τ ∈ G we have τS(x) = τσ1(x) + . . .+ τσn =
S(x), since {τσ1, . . . , τσn} = {σ1, . . . , σn}, and therefore S(x) ∈ LG = K. Hence S(L) ⊂ K,
and therefore S(L) = K. It is now sufficient to prove that any n+ 1 elements of L are linearly
dependent over K.

Let y1, . . . , yn+1 ∈ L. Then the system of linear homogeneous equations
n+1∑
ν=1

σ−1
i (yν) aν = 0 for i ∈ [1, n] has a non-trivial solution (a1, . . . , an+1) ∈ Ln+1 \ 0 .

After renumbering σ1, . . . , σn if necessary, we may assume that a1 6= 0. As S(a1L) = S(L) = K,
there exists some z ∈ L such that S(a1z) 6= 0, and we obtain

0 =
n∑
i=1

σi

(n+1∑
ν=1

σ−1
i (yν)aνz

)
=

n+1∑
ν=1

n∑
i=1

σi(aνz)yν =
n+1∑
ν=1

S(aνz)yν ,

which shows the linear dependence of (y1, . . . , yn+1) over K. �

galoismain Theorem 1.3.4 (Main Theorem of finite Galois Theory). Let L/K be a finite field exten-
sion and G = Gal(L/K).

1. The following assertions are equivalent :

(a) L/K is galois; (b) [L :K] = |G| ; (c) K = LG .
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2. Let L/K be galois, Z(L/K) the set of all intermediate fields of L/K and U(G) the set
of all subgroups of G. Then the maps{

Z(L/K) → U(G)
M 7→ Gal(L/M)

and

{
U(G) → Z(L/K)
H 7→ LH

are mutually inverse inclusion-reversing bijections. In particular, if M and M ′ are
intermediate fields of L/K, H = Gal(L/M) and H ′ = Gal(L/M ′), then :
• M ⊂M ′ ⇐⇒ H ⊃ H ′.
• MM ′ = LH∩H

′
and H ∩H ′ = Gal(L/MM ′).

• M ∩M ′ = L〈H,H
′〉 and 〈H,H ′〉 = Gal(L/M ∩M ′).

3. Let K ⊂M ⊂ L be an intermediate field and H = Gal(L/M).
(a) For all σ ∈ G, we have Gal(L/σM) = σHσ−1.
(b) Let L/K be galois. Then M/K is galois if and only if H / G, and then there is an

isomorphism G/H
∼→ Gal(M/K), given by σH 7→ σ |M for all σ ∈ G.

Proof. Let K ⊃ L be an algebraically closed extension field.
1. (a) ⇔ (b) Note that |G| ≤ |HomK(L,K)| = [L :K]s ≤ [L :K]. Here the first inequality

is an equality if and only if L/K is normal, and the second inequality is an equality if and only
if L/K is separable. Hence L/K is galois if and oly if [L :K] = |G|.

(b) ⇔ (c) Since K ⊂ LG ⊂ L, Theorem
artin
1.3.3 implies [L :K] = [L :LG] [LG :K] = |G| [LG :

K], and therefore K = LG if and only if [L :K] = |G|.
2. Assume that M ∈ Z(L/K) and H = Gal(L/M). Since L/K is galois, L is the splitting

field of some separable polynomial f ∈ K[X] \K. But then L also the splitting field of f over
M , and therefore L/M is normal. Hence L/M galoissch, and M = LH by 1.

If H < G is a subgroup and M = LH , then Gal(L/LH) = H by Theorem
artin
1.3.3. Hence the

maps described in the Theorem are mutually inverse bijections, and obviously they are inclusion-
reversing. From this the extra assertions follow. Indeed, MM ′ is the smallest field containing
both M and M ′, and M ∩M ′ is the largest field contained in both M and M ′. On the other
hand, H ∩H ′ is the largest subroup contained in both H and H ′, and 〈H,H ′〉 is the smallest
subgroup containing both H and H ′.

3. (a) Let σ ∈ G. Then we obtain, for all τ ∈ G : τ ∈ Gal(L/σM) ⇐⇒ (∀x ∈
M) τσx = σx ⇐⇒ (∀x ∈ M) σ−1τσ(x) = x ⇐⇒ σ−1τσ ∈ H ⇐⇒ τ ∈ σHσ−1. Hence
Gal(L/σM) = σHσ−1.

(b) By definition, M/K is galois if and only if ϕ(M) ⊂ M for all ϕ ∈ HomK(M,K). Since
L/K is galois, the map G → HomK(M,K), defined by σ 7→ σ |M , is surjective. Hence M/K
is galois if and only if σM ⊂ M (and then σM = M) for all σ ∈ G. By 2., this holds if and
only if Gal(L/σM) = Gal(L/M), and, by (a), this is equivalent to σHσ−1 = H for all σ ∈ G,
and thus to H / G.

Assume now that H / G. Then the map G → Gal(M/K), defined by σ 7→ σ |M , is
a group epimorphism with kernel H = Gal(L/M), and therefore it defines an isomorphism
G/H

∼→ Gal(M/K), given by σH 7→ σ |M for all σ ∈ G. �

galoisshifting Theorem 1.3.5 (Shifting Theorem of Galois Theory). Let K ⊂ L, M ⊂ K be fields.
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1. Let L/K be a finite galois extension. Then LM/M is also a finite galois extension, and
the map

ρ : Gal(LM/M) ∼→ Gal(L/L ∩M) ⊂ Gal(L/K) , defined by ρ(σ) = σ |L ,

is an isomorphism. In particular, [LM :M ] = [L :L ∩M ] | [L :K].

2. Let L/K and M/K be finite galois extensions and L∩M = K. Then LM/K is a finite
galois extension, and the map

ρ : Gal(LM/K) ∼→ Gal(L/K)×Gal(M/K) , defined by ρ(σ) = (σ |L, σ |M)

is an isomorphism.

Proof. 1. We may assume that K is algebraically closed. L is the splitting field of some
separable polynomial f ∈ K[X] \K, and LM is the splitting field of f over M . Hence LM/M
is finite galois. If σ ∈ Gal(LM/M), then σ |L ∈ HomK(L,K) and σ |L ∩M = idL∩M , hence
σ |L ∈ Gal(L/LM), and the map ρ : Gal(LM/M) → Gal(L/L ∩M), defined by σ 7→ σ |L, is
a group homomorphism. If σ ∈ ker(ρ), then σ |L = idL, and as σ |M = idM it follows that
σ = idLM . Hence ρ is a monomorphism. If H = ρ

(
Gal(LM/M)

)
, then L ∩M ⊂ LH , and if

z ∈ LH , then σ(z) = z for all σ ∈ Gal(LM/M), and therefore z ∈M . Hence LH = L ∩M , and
H = Gal(L/L ∩M).

2. Let L be the splitting fiels of a separable polynomial f ∈ K[X] \K and M the splitting
field of a separable polynomial g ∈ K[X] \K. If q = gcd(f, g), then LM is the splitting field of
the separable polynomial q−1fg, and therefore it is a finite galois extension. Obviously, ρ is a
group monomorphism, and we must prove that it is surjective. Thus let (τ1, τ2) ∈ Gal(L/K)×
Gal(M/K). By 1., there are isomorphisms Gal(LM/L) ∼→ Gal(M/K), given by τ 7→ τ |M , and
Gal(LM/M) ∼→ Gal(L/K), given by τ 7→ τ |L. Hence there exists some (σ1, σ2) ∈ Gal(LM/M)×
Gal(LM/L) ⊂ Gal(LM/K)×Gal(LM/K) such that σ1 |L = τ1 and σ2 |M = τ2. Hence ρ(σ1◦σ2) =
(τ1, τ2). �

Theorem 1.3.6 (Cyclotomic extensions). Let K be a field, n ∈ N, char(K) - n, L a
splitting field of Xn − 1 over K, G = Gal(L/K) and ζ ∈ µ∗n(L). For every σ ∈ G, there is
a unique κ = θ(σ) ∈ (Z/nZ)× such that σ(ζ) = ζκ. The map θ : G → (Z/nZ)× is a group
monomorphism, and for all ξ ∈ µn(L) and σ ∈ G we have σ(ξ) = ξθ(σ). In particular, θ does
not depend on ζ. If K = Q, then θ is an isomorphism.

Proof. If ζ ∈ µ∗n(L) and σ ∈ G, then σ(ζ) ∈ µ∗n(G), and thus there exists a unique
θ(σ) ∈ (Z/nZ)× such that σ(ζ) = ζθ(σ). If σ, τ ∈ G, then ζθ(στ) = στ(ζ) = σ(ζθ(τ)) =
σ(ζ)θ(τ) = ζθ(σ)θ(τ), and therefore θ : G → (Z/nZ)× is a group homomorphism. If σ ∈ ker(θ),
then σ(ζ) = ζθ(σ) = ζ1+nZ = ζ, and thus σ = id. Hence σ is a monomorphism, and if K = Q,
then it is an isomorphism by Theorem

cyclotomicpoly
1.2.2. If ξ ∈ µn(L), then there is some λ ∈ Z/nZ such

that ξ = ζλ, and we obtain, for all σ ∈ G, σ(ξ) = σ(ζ)λ = ζθ(σ)λ = ξθ(σ). Hence LH = L ∩M ,
and therefore H = Gal(L/L ∩M). �

Theorem 1.3.7 (Cyclic extensions). Let K be a field, n ∈ N and µ∗n(K) 6= ∅.
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1. Let a ∈ K×, L a splitting field of Xn − a over K, G = Gal(L/K) and α ∈ L such that
αn = a. Then

Xn−a =
∏

ζ∈µn(K)

(X−ζα) , and χ : G→ µn(K) , defined by χ(σ) =
σ(α)
α

for all σ ∈ G,

is a group monomorphism which does not depend on the choice of α.
2. Let L/K be a cyclic field extension such that [L :K] |n. Then there is some α ∈ L such

that αn ∈ K and L = K(α).

Proof. 1. The factorization of Xn−1 in L is obvious, and therefore it follows that, for every
σ ∈ G, there is some ζ ∈ µn(K) such that σ(α) = ζα. Therefore there is a map χ : G→ µn(K)
such that

χ(σ) =
σ(α)
α

.

If α1 ∈ L is another element satisfying αn1 = a, then α1 = ξα for some ξ ∈ µn(K), and therefore

σ(α1)
α1

=
σ(ξα)
ξα

=
ξσ(α)
ξα

=
σ(α)
α

.

Hence χ does not depend on α, and if σ, τ ∈ G, then (τα)n = a, and therefore

χ(στ) =
στ(α)
α

=
στ(α)
τ(α)

τ(α)
α

= χ(σ)χ(τ) .

Hence χ is a group homomorphism. If σ ∈ ker(χ), then σ(α) = α, and thus σ = id. Therefore
σ is a monomorphism.

2. Let G = Gal(L/K) = 〈σ〉, and [L :K] = m |n. If ζ ∈ µ∗n(K), then ξ = ζn/m ∈ µ∗m(K), by
Theorem

unabhaengigkeitssatz
1.3.1 we obtain(m−1∑

j=0

ξ−jσj : L→ L
)
6= 0 , and thus there is some β ∈ L such that

m−1∑
j=0

ξ−jσj(β) = α ∈ L× .

We find

σ(α) =
m−1∑
j=0

ξ−jσj+1(β) =
m∑
j=1

ξ−j+1σj(β) = ξα , hence σ(αm) = αm , and thus αm ∈ K .

By definition, K(α) ⊂ L, we assert that K(α) = L, and for this we prove that Gal(L/K(α)) =
{id}. Let d ∈ [0,m− 1] be such that σd ∈ Gal(L/K(α)). Then α = σd(α) = ξdα, and therefore
d = 0. �

1.4. Norms, traces and discriminants

Definition 1.4.1. Let K be a field, A a commuatative K-algebra and dimK(A) = n ∈ N.
For a ∈ A let µa : A → A be defined by µa(x) = ax for all x ∈ A. µa is a K-linear map, and
we define the norm NA/K(a) and the trace TrA/K(a) of a for A/K by

NA/K(a) = det(µa) and TrA/K(a) = trace(µa) .

Remarks 1.4.2. Let K be a field, A a commutative K-algebra und dimK(A) = n ∈ N.
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1. Let u = (u1, . . . , un) ∈ An be a K-basis of A. For a ∈ A, let Ma ∈ Mn(K) be the
matrix of µa with respect to u. Then au = uMa, NA/K(a) = det(Ma) and TrA/K(a) =
trace(Ma).

2. If a, b ∈ A and λ ∈ K, then µab = µa◦µb, µλa = λµa and µa+b = µa+µb. Consequently,

NA/K(ab) = NA/K(a)NA/K(b) , NA/K(λa) = λnNA/K(a) , NA/K(λ1A) = λn , and

TrA/K(a+ b) = TrA/K(a) + TrA/K(b) , TrA/K(λa) = λTrA/K(a) , TrA/K(λ1A) = nλ .

3. Let r ∈ N and A = A1×. . .×Ar the direct product of commutative algebras A1, . . . , Ar
(A is the external direct product of the vector spaces A1, . . . , Ar, equipped with the
component-wise multiplication).

For a = (a1, . . . , ar) ∈ A, we obtain µa = (µa1 , . . . , µar) : A1×. . .×Ar → A1×. . .×Ar,
and therefore

NA/K(a) =
r∏
i=1

NAi/K(ai) and TrA/K(a) =
r∑
i=1

TrAi/K(ai) .

normspur Theorem 1.4.3. Let L/K be a finite field extension, [L :K] = n, q = [L :K]i the degree
of inseparability of L/K ( hence [L :K] = [L :K]s[L :K]i ) and K ⊃ L an algebraically closed
extension field.

1. Let x ∈ L, [K(x) :K] = d, g = Xd + ad−1X
d−1 + . . .+ a1X + a0 ∈ K[X] the minimal

polynomial of x over K and [L :K(x)] = m ( hence n = md ). Then

NL/K(x) = (−1)nam0 and TrL/K(x) = −mad−1 .

2. If x ∈ L, then

NL/K(x) =
∏

σ∈HomK(L,K)

σ(x)q and TrL/K(x) = q
∑

σ∈HomK(L,K)

σ(x) .

In particular :
(a) If L/K is inseparable, then TrL/K = 0.
(b) If L/K is galois and G = Gal(L/K), then

NL/K(x) =
∏
σ∈G

σ(x) and TrL/K(x) =
∑
σ∈G

σ(x) .

3. If K ⊂M ⊂ L is an intermediate field, then

NL/K = NM/K ◦NL/M and TrL/K = TrM/K ◦TrL/M .

Proof. 1. u = (1, x, . . . , xd−1) is a K-basis of K(x), and

x (1, x, . . . , xd−1) = (1, x, . . . , xd−1)T , where T =


0 0 . . . . . . 0 −a0

1 0 . . . . . . 0 −a1

0 1 . . . . . . 0 −a2

. . . . . . . . . .
0 0 . . . . . . 1 −ad−1

 ,

trace(T ) = −ad and det(T ) = (−1)da0. Let now (v1, . . . , vm) be a K(x)-basis of L. Then it fol-
lows that (v1u, . . . , vmu) is a K-Basis of L, and x (v1u, . . . , vmu) = (v1u, . . . , vmu)T (m), where
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T (m) = diag(T, . . . , T ) is a diagonal box matrix with det(T (m) = det(T )m and trace(T (m) =
m trace(T ). Hence we obtain

NL/K(x) = det(T (m)) = ((−1)da0)m = (−1)nam0 and TrL/K(x) = trace(T (m)) = −mad−1 .

2. Let x ∈ L, g = Xd + ad−1X
d−1 + . . . + a1X + a0 ∈ K[X] the minimal polynomial of x

over K, q0 = [K(x) :K]i the degree of inseparability of x over K and [L :K(x)] = m ( hence
d = [K(x) :K] and n = md ). Let H = HomK(K(x),K). Then |H| = [K(x) :K]s, q0|H| = d,
and

q

q0
[L :K(x)]s = [L :K(x)]s

[L :K] [K(x) :K]s
[L :K]s [K(x) :K]

= [L :K(x)] = m.

Now we obtain
g =

∏
ϕ∈H

(X − ϕ(x))q0 ,

hence
ad−1 = −q0

∑
ϕ∈H

ϕ(x) and a0 =
∏
ϕ∈H

(−ϕ(x))q0 = (−1)d
∏
ϕ∈H

ϕ(x)q0 .

Now it follows that∏
σ∈HomK(L,K)

σ(x)q =
∏
ϕ∈H

∏
σ∈HomK(L,K)
σ |K(x)=ϕ

σ(x)q =
∏
ϕ∈H

ϕ(x)q [L:K(x)]s = [(−1)da0][L:K(x)]sq/q0

= (−1)nam0 = NL/K(x)

and

q
∑

σ∈HomK(L,K)

σ(x) = q
∑
ϕ∈H

∑
σ∈HomK(L,K)
σ |K(x)=ϕ

σ(x) = q [L : K(x)]s
∑
ϕ∈H

ϕ(x) = − q

q0
[L :K(x)]sad−1

= −mad−1 = TrL/K(x) .

3. Let K ⊂ M ⊂ L be an intermediate field, x ∈ L, q1 = [M :K]i and q2 = [L :M ]i. Then
q = q1q2, and

NL/K(x) =
∏

σ∈HomK(L,K)

σ(x)q =
∏

ϕ∈HomK(M,K)

∏
σ∈HomK(L,K)

σ |M=ϕ

σ(x)q .

If L̃ ⊂ K is a normal closure of L/K, then HomK(M,K) = HomK(M, L̃), HomK(L,K) =
HomK(L, L̃) and HomM (L,K) = HomM (L, L̃). Let now ϕ ∈ HomK(M, L̃) and ϕ̃ ∈ Gal(L̃/K)
such that ϕ̃ |M = ϕ.

If σ ∈ HomK(L, L̃) and σ |M = ϕ, then ϕ̃◦σ |M = idM , and therefore ψ = ϕ̃−1 ◦σ ∈
HomM (L, L̃). Conversely, if ψ ∈ HomM (L, L̃), then σ = ϕ̃◦ψ ∈ HomK(L, L̃) and σ |M = ϕ.
Hence the assignment σ 7→ ψ = ϕ̃−1◦σ defines a bijective map {σ ∈ HomK(L,K) | σ |M =
ϕ} → HomM (L,K), and therefore we obtain∏
σ∈HomK(L,K)

σ |M=ϕ

σ(x)q =
∏

ψ∈HomM (L,K)

ϕ̃◦ψ(x)q2q1 = ϕ̃
( ∏
ψ∈HomM (L,K)

ψ(x)q2
)q1

= ϕ(NL/M (x))q1 ,
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hence
NL/K(x) =

∏
ϕ∈HomK(M,K)

ϕ(NL/M (x)q1 = NM/K ◦NL/M (x) .

The assertion concerning the trace is proved in the same way. �

polynomdiskriminante Remark and Definition 1.4.4. Let K be a field, g ∈ K[X] a monic polynomial, n =
deg(g) ∈ N, L ⊃ K an extension field and α1, . . . , αn ∈ L such that g = (X−α1) · . . . · (X−αn).
Then the discriminant ∆(g) of g is defined by

∆(g) =
∏

1≤i<j≤n
(αj − αi)2 = (−1)(

n
2)

n∏
i, j=1
i6=j

(αj − αi)

By definition, ∆(g) = 0 if and only if g is inseparable. We assert that ∆(g) ∈ K, and ∆(g) is
independent of the field L used for the definition.

Proof. Let g separable, L a splitting field of g and G = Gal(L/K). Every σ ∈ G induces a
permutation of {α1, . . . , αn}, hence σ(∆(g)) = ∆(g), and therefore ∆(g) ∈ LG = K. Let now L′

be any extension field of K such that g splits in L′, and let L1 ⊃ L be any algebraically closed
field. Then there exists some ϕ ∈ HomK(L,L1), g = (X − ϕ(α1)) · . . . · (X − ϕ(αn)), and∏

1≤i<j≤n

(
ϕ(αj)− ϕ(αi)

)2 = ϕ(∆(g)) = ∆(g) . �

Suppose that f = Xn + a1X
n−1 + . . .+ an−1X + an. Then

∆(f) = a2
1 − 4a2 if n = 2, and ∆(f) = −4a3

1a3 + a2
1a

2
2 + 18a1a2a3 − 4a3

2 − 27a2
3 if n = 3 .

Definition 1.4.5. Let L/K be a finite field extension and n = [L : K]. For an n-tuple
(u1, . . . , un) ∈ Ln we define its discriminant ∆(u1, . . . , un) by

∆L/K(u1, . . . , un) = det
(
TrL/K(uiuj)

)
i, j∈[1,n]

.

If L/K is inseparable, then ∆L/K(u1, . . . , un) = 0 for all (u1, . . . , un) ∈ Ln.

diskriminante Theorem 1.4.6. Let L/K be a finite separable field extension, [L : K] = n, K ⊃ L an
algebraically closed field and HomK(L,K) = {σ1, . . . , σn}.

1. For (u1, . . . , un) ∈ Ln, we have ∆L/K(u1, . . . , un) = det
(
σν(ui)

)2

ν, i∈[1,n]
.

2. If L = K(α) and g ∈ K[X] is the minimal polynomial of α over K, then

∆L/K(1, α, . . . , αn−1) = ∆(g) =
∏

1≤ν<µ≤n

(
σµ(α)− σν(α)

)2 = (−1)(
n
2)NL/K(g′(α)) 6= 0 .

3. Suppose that u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Ln, and let T ∈ Mn(K) be such that
u = v T . Then ∆L/K(u1, . . . , un) = ∆L/K(v1, . . . , vn) det(T )2.

4. An n-tuple (u1, . . . , un) ∈ Ln is a K-basis of L if and only if ∆L/K(u1, . . . , un) 6= 0.
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Proof. 1. With U = (σν(ui))ν, i∈[1,n] ∈ Mn(K), we obtain

U tU =
( n∑
ν=1

σν(ui)σν(uj)
)
i, j∈[1,n]

=
( n∑
ν=1

σν(uiuj)
)
i, j∈[1,n]

=
(
TrL/K(uiuj)

)
i, j∈[1,n]

,

and therefore ∆L/K(u1, . . . , un) = det
(
TrL/K(uiuj)

)
i, j∈[1,n]

= det(U tU) = det(U)2.

2. As L = K(α), we get g = (X − σ1(α)) · . . . · (X − σn(α)), and 1. implies that

∆L/K(1, α, . . . , αn−1) = det


1 σ1(α) . . . σ1(α)n−1

1 σ2(α) . . . σ2(α)n−1

. . . . . .
1 σn(α) . . . σn(α)n−1


2

=
∏

1≤ν<µ≤n

(
σµ(α)− σν(α)

)2

= ∆(g) 6= 0 ,

with the famous Vandermonde determinant. Now we calculate

g′ =
n∑
ν=1

n∏
i=1
i6=ν

(
X − σi(α)

)
, hence g′(σν(α)) =

n∏
i=1
i6=ν

(
σν(α)− σi(α)

)
for all ν ∈ [1, n] ,

and

NL/K(g′(α)) =
n∏
ν=1

σν(g′(α)) =
n∏
ν=1

g′(σν(α)) =
n∏
ν=1

n∏
µ=1
µ 6=ν

(
σµ(α)− σν(α)

)
= (−1)(

n
2)∆(g) .

3. For ν ∈ [1, n], we have (σν(u1), . . . , σν(un)) = (σν(v1), . . . , σν(vn))T , and therefore

∆L/K(u1, . . . , un) = det
(
σν(ui)

)2

ν, i∈[1,n]
= det

(
σν(vi)

)2

ν, i∈[1,n]
det(T )2

= ∆L/K(v1, . . . , vn) det(T )2 .

4. By Theorem
primitiveselement
1.1.4, there exists some α ∈ L such that L = K(α). Then (1, α, . . . , αn−1)

is a K-basis of L, and ∆L/K(1, α, . . . , αn−1) 6= 0 by 2. For any (u1, . . . , un) ∈ Ln, there is
some T ∈ Mn(K) such that (u1, . . . , un) = (1, α, . . . , αn−1)T , and then it follows by 3. that
∆L/K(u1, . . . , un) = ∆L/K(1, α, . . . , αn−1) det(T )2. Hence ∆L/K(u1, . . . , un) 6= 0 holds if and
only if det(T ) 6= 0, and this holds if and only if (u1, . . . , un) is a K-basis of L. �

dualbasis Definition and Theorem 1.4.7. Let L/K be a finite separable field extension.
1. For every K-Basis (u1, . . . , un) of, L, there exists a unique K-basis (u∗1, . . . , u

∗
n) of L such

that TrL/K(uiu∗j ) = δi,j for all i, j ∈ [1, n]. ∆L/K(u∗1, . . . , u
∗
n) = ∆L/K(u1, . . . , un)−1.

(u∗1, . . . , u
∗
n) is called the dual basis of (u1, . . . , un).

2. Suppose that L = K(α), let g ∈ K[X] be the minimal polynomial of α over K, and
suppose that g = (X − α)(β0 + β1X + . . .+ βn−1X

n−1, where β0, . . . , βn−1 ∈ L. Then( β0

g′(α)
, . . . ,

βn−1

g′(α)

)
is the dual basis of (1, α, . . . , αn−1).
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Beweis. 1. Let (u1, . . . , un) be a K-basis of L. We must prove that there exists a unique
matrix T ∈ GLn(K) with the following property :

If (u∗1, . . . , u
∗
n) = (u1, . . . , un)T , then TrL/K(uiu∗j ) = δi,j for all i, j ∈ [1, n].

Thus let T = (ti,j)i, j∈[1,n] ∈ GLn(K) and (u∗1, . . . , u
∗
n) = (u1, . . . , un)T . Then it follows that

∆L/K(u∗1, . . . , u
∗
n) = ∆L/K(u1, . . . , un) det(T )2 and

∆L/K(u1, . . . , un) = det
(
SL/K(uiuj)

)
i, j∈[1,n]

6= 0

by Theorem
diskriminante
1.4.6. For all i, j ∈ [1, n], we have

u∗j =
n∑
ν=1

uνtν,j ,

and therefore

TrL/K(uiu∗j ) =
n∑
ν=1

TrL/K(uiuν)tν,j =
[(

TrL/K(uiuν)
)
i,ν∈[1,n]

T
]
i,j
.

Hence TrL/K(uiu∗j ) = δi,j for all i, j ∈ [1, n] if and only if T =
(
TrL/K(uiuj)

)−1

i, j∈[1,n]
. This

implies the existence and uniqueness of T . Moreover, we obtain det(T ) = ∆L/K(u1, . . . , un)−1,
and therefore ∆L/K(u′1, . . . , u

′
n) = ∆L/K(u1, . . . , un) det(T )2 = ∆L/K(u1, . . . , un)−1.

2. We must prove that

TrL/K

(
αi

βj
g′(α)

)
= δi,j for all i, j ∈ [0, n− 1] ,

and for this we show that
n−1∑
j=0

TrL/K

(
αi

βj
g′(α)

)
Xj = Xi ∈ K[X] für alle i ∈ [0, n− 1] .

Let K ⊃ L be an algebraically closed extensio field and HomK(L,K) = {σ1, . . . , σn}. Then
σ1(α), . . . , σn(α) are distinct, g = (X − σ1(α)) · . . . · (X − σn(α)), and it suffices to prove that

n−1∑
j=0

TrL/K

(
αi

βj
g′(α)

)
σl(α)j = σl(α)i for all l ∈ [1, n] and i ∈ [0, n− 1].

We denote the trivial extensions of the homomorphisms σν to the polynomial rings again by σν .
Then

σν

( g

X − α

)
=

g

X − σν(α)
=

n−1∑
j=0

σν(βj)Xj =
n∏
k=1
k 6=ν

(X − σk(α)) for all ν ∈ [1, n] ,

and then we obtain, for all i ∈ [0, n− 1],
n−1∑
j=0

TrL/K

(
αi

βj
g′(α)

)
σl(α)j =

n−1∑
j=0

n∑
ν=1

σν(α)i
σν(βj)
g′(σν(α))

σl(α)j =
n∑
ν=1

σν(α)i

g′(σν(α))

n−1∑
j=0

σν(βj)σl(α)j

=
n∑
ν=1

σν(α)i

g′(σν(α))

n∏
k=1
k 6=ν

(
σl(α)− σk(α)

)
=

σl(α)i

g′(σl(α))
g′(σl(α) = σl(α)i . �



CHAPTER 2

Ideal Theory of algebraic integers

2.1. Integral elements

Definition 2.1.1. Let R ⊂ S be commutative rings.
1. An element x ∈ S is called integral over R if there exists a monoic polynomial f ∈ R[X]

such that f(x) = 0. In particular, every x ∈ R is integral over R ( set f = X − x ).
By definition, x is integral over R if and only if there exist n ∈ N and a0, . . . , an−1 ∈ R
such that xn+an−1x

n−1+ . . .+a1x+a0 = 0, and every such relation is called an integral
equation for x over R.

2. clS(R) = {x ∈ S | x is integral over R } is called the integral closure of R in S.
3. S is called integral over R and R ⊂ S is called an integral ring extension if clS(R) = S

[ equivalently, every x ∈ S is integral over R ], and R is called integrally closed in S if
clS(R) = R.

4. A domain is called integrally closed if it is integrally closed in its quotient field.

factorialclosed Theorem 2.1.2. Every factorial domain is integrally closed.

Proof. Let R be a factorial domain, K = q(R), and assume that there is some x ∈ K \ R
which is integral over R. Then x = a−1b, where a, b ∈ R, a 6= 0, and there is some prime
element p ∈ R such that p | a and p - b. Let xd + ad−1x

d−1 + . . . + a1x + a0 = 0, where d ∈ N
and a0, . . . , ad−1 ∈ R. We multiply this equation by ad and obtain bd + ay = 0 for some y ∈ R.
Now p | a implies p | bd and finally p | b, a contradiction. �

maincriterion Theorem 2.1.3. Let R ⊂ S be commutative rings, M ⊂ S a finitely generated R-submodule
of S, x ∈ S, xM ⊂ M , and suppose that, for all polynomials g ∈ R[X], g(x)M = 0 implies
g(x) = 0 ( that is, M is R[x]-torsion-free ). Then x is integral over R.

Proof. Let M = Ru1 + . . .+Rum, where m ∈ N and u1, . . . , um ∈M . For j ∈ [1,m], there
is a relation

xuj =
m∑
µ=1

cj,µuµ with coefficients cj,µ ∈ R , and thus
m∑
µ=1

(δj,µx− cj,µ)uj = 0 .

If T = (δj,µx − cj,µ)j,µ∈[1,m] ∈ Mm(R), T# denotes its adjoint matrix and u = (u1, . . . , um)t,
then det(T )u = T#Tu = 0. Hence det(T )M = 0, and since det(T ) = g(x) for some monic
polynomial g ∈ R[X] \R, it follows that g(x) = 0, and x is integral over R. �

17
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mainintegral Theorem 2.1.4. Let R ⊂ S be commutative rings.
1. Assume that n ∈ N, x1, . . . , xn ∈ S, and S = R[x1, . . . , xn]. Then the following

assertions are equivalent :
(a) S is integral over R.
(b) For all i ∈ [1, n], xi is integral over R.
(c) S = R[x1, . . . , xn] is a finitely generated R-module.

2. Let T ⊃ S be a commutative overring, let S integral over R and x ∈ T integral over S.
Then x is integral over R. In particular, T is integral over R if and only if T is integral
over S and S is integral over R.

3. clS(R) is a ring which is integrally closed in S and integral over R.
4. Let x ∈ S be integral over R and ϕ : S → S′ a ring homomorphism. Then ϕ(x) is

integral over ϕ(R). In particular, if A / S, a = A∩R, and if we embed R/a ⊂ S/A by
means of the identification a+ a = a+ A for all a ∈ R, then x+ A is integral over R/a.

Proof. 1. (a) ⇒ (b) Obvious.
(b) ⇒ (c) By induction on n.
n = 1 : Suppose that S = R[x] and x is integral over R, say xd+ad−1x

d−1+. . .+a1x+a0 = 0,
where d ∈ N and a0, . . . , ad−1 ∈ R. We set M = R〈1, x, . . . , xd−1〉, and we shall prove that
R[x] = M . For this, we assert that xj ∈M for all j ∈ N0, and we show this by induction on j.
For j < d, there is nothing to do. Thus suppose that j ≥ d and xν ∈ M for all ν ∈ [0, j − 1].
From the integral equation we get xj = −ad−1x

j−1 − . . .− a1x
j−d+1 − a0x

j−d ∈M .
n ≥ 1 , n → n + 1 : By the induction hypothesis, R[x1, . . . , xn] is a finitely generated

R-module. xn+1 is integral over R, hence over R[x1, . . . , xn], and therefore R[x1, . . . , xn+1] =
R[x1, . . . , xn][xn+1] is a finitely generated R[x1, . . . , xn]-modulet. Hence R[x1, . . . , xn+1] is a
finitely generated R-module.

(c) ⇒ (a) By Theorem
maincriterion
2.1.3, applied with M = R[x1, . . . , xn].

2. Suppose that xd + ad−1x
d−1 + . . . + a1x + a0 = 0, where d ∈ N and a0, . . . , ad−1 ∈ S.

Then x is integral over R[a0, . . . , ad−1], and R[a0, . . . , ad−1, x] = R[a0, . . . , ad−1][x] is a finitely
generated R[a0, . . . , ad−1]-module by 1. As a0, . . . , ad−1 are integral over R, it follows (again by
1.) that R[a0, . . . , ad−1] is a finitely generated R-module. Hence R[a0, . . . , ad−1, x] is a finitely
generated R-module, and therefore x is integral over R.

3. If x, y ∈ clS(R), thenR[x, y] is a finitely generatedR-module, and since x−y, xy ∈ R[x, y],
it follows that {x − y, xy} ⊂ clS(R). Hence clS(R) ⊂ S is a subring. If x ∈ S is integral over
clS(R), then x is integral over R by 2., and thus x ∈ S.

4. If xd + ad−1x
d−1 + . . .+ a1x+ a0 = 0 is an integral equation for x over R (where d ∈ N

and a0, . . . , ad−1 ∈ R), then ϕ(x)d+ϕ(ad−1)ϕ(x)d−1 + . . .+ϕ(a1)ϕ(x)+ϕ(a0) = 0 is an integral
equation for ϕ(x) over ϕ(R). �

integralideal Theorem 2.1.5. Let R ⊂ S be commutative rings such that S is integral over R.
1. If a ( R is an ideal of R, then aS = S〈a〉 6= S. In particular, S× ∩ R = R×, and if S

is a field, then R is a field.
2. Let S be a domain and 0 6= A ⊂ S an ideal. Then A ∩ R 6= 0, and if R is a field, then
S is a field.
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Proof. 1. Let a ⊂ R be an ideal such that aS = S. Then there exist some n ∈ N,
a1, . . . , an ∈ a and x1, . . . , xn ∈ S such that a1x1 + . . . + anxn = 1. By Theorem

mainintegral
2.1.4,

R[x1, . . . , xn] is a finitely generated R-module, say R[x1, . . . , xn] = R〈b1, . . . , bm〉 for somem ∈ N
and b1, . . . , bm ∈ R[x1, . . . , xn]. Then there are relations

xν =
m∑
j=1

cν,jbj and bjbi =
m∑
k=1

dj,i,kbk with coefficients cν,j , dj,i,k ∈ R ,

and therefore, for all i ∈ [1,m],

bi =
m∑
ν=1

aν

m∑
j=1

cν,j

m∑
k=1

dj,i,kbk =
m∑
k=1

a′i,kbk , where a′i,k =
n∑
ν=1

m∑
j=1

aνcν,jdj,i,l ∈ a .

Thus it follows that
m∑
k=1

(δi,k − a′i,k)bk = 0 for all i ∈ [1,m] .

If T = (δi,k − a′i,k)i,k∈[1,m] ∈ Mn(R) and b = (b1, . . . bm)t, then det(T )b = T#Tb = 0. Hence it
follows that det(T )R[x1, . . . , xn] = 0, and therefore det(T ) = 0. Expanding the determinant,
we obtain det(T ) ∈ 1 + a, hence 1 ∈ a and thus a = R.

Clearly, R× ⊂ S×∩R, and if a ∈ S×∩R, then aS = S and therefore aR = R. If S is a field,
then R• = R ∩ S• = R ∩ S× = R×, and therefore R is a field.

2. Let 0 6= x ∈ A and n ∈ N minimal such that xn + an−1x
n−1 + . . .+ a1x+ a0 = 0 for some

a0, . . . , an−1 ∈ R. Then a0 ∈ xS ∩R ⊂ A∩R, and we assert that a0 6= 0. Indeed, if a0 = 0, then
x 6= 0 implies xn−1 + an−1x

n−2 + . . .+ a1 = 0, contradicting the minimal choice of n.
Let R be a field and A ⊂ S a non-zero ideal. Then 0 6= A∩R / R, henc A∩R = R and thus

A = S, since 1 ∈ A. Therefore S has no non-zero proper ideals, and thus it is also a field. �

integralclosure Theorem 2.1.6. Let R be an integrally closed domain, K = q(R), L/K a finite field
extension, and S = clL(R).

1. S is an integrally closed domain, S ∩K = R, and L = q(S) = {q−1x | x ∈ S, q ∈ R• }.
In particular, S contains a K-basis of L.

2. Let α ∈ L and g ∈ K[X] the minimal polynomial of α over K. Then α is integral over R
if and only if g ∈ R[X]. In particular, if α ∈ S, then NL/K(α) ∈ R and TrL/K(α) ∈ S,
and if (u1, . . . , un) ∈ Sn is a K-basis of L, then ∆(u1, . . . , un) ∈ R.

3. Let R be noetherian and L/K separable. Then S is a finitely generated R-module and
a noetherian domain. If R is even a principal ideal domain, then S is a free R-module,
and every R-basis of S is a K-basis of L.

Proof. 1. By Theorem
mainintegral
2.1.4, S is integrally closed, and since R is integrally closed, it

follows that S ∩K = R. Clearly, {q−1x | x ∈ S, q ∈ R•} ⊂ q(S) ⊂ L, and thus we must prove
that, for every z ∈ L, there exists some q ∈ R• such that qx ∈ S.

Let z ∈ L and f = Xd + ad−1X
d−1 + . . .+ a1X + a0 ∈ K[X] the minimal polynomial of z

over K. If q ∈ R• is such that qai ∈ R for all i ∈ [0, d− 1], then (qz)d + (qad−1)(qz)d−1 + . . .+
(qd−1a1)(qz) + qda0 = 0 is an integral equation of qz over R, which implies qz ∈ S.

2. If g ∈ R[X], then g(α) = 0 is an integral equation of α over R, and thus α ∈ S. Assume
now that α ∈ S, and let f ∈ R[X] be a monic polynomial such that f(α) = 0. Let K ⊃ L be an
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algebraically closed field, and let α2, . . . , αn ∈ K be such that g = (X − α)(X − α2) · . . . · (X −
αn). For i ∈ [2, n], let ϕi : K(α) ∼→ K(αi) ↪→ K be the unique K-homomorphism satisfying
ϕi(α) = αi. Then it follows that f(αi) = ϕi(f(α)) = 0, hence αi is integral over R. Therefore
R[α1, . . . , αn] is integral over R, and g ∈ (R[α1, . . . , αn] ∩K)[X] = R[X].

3. Let (u1, . . . , un) ∈ Sn be a K-basis of L and (u′1, . . . , u
′
n) its dual basis. We assert that

S ⊂ Ru′1 + . . .+Ru′n. Indeed, if z ∈ S, then z = a1u
′
1 + . . .+ anu

′
n for some a1, . . . , an ∈ K, and

for all i ∈ [1, n] we obtain

TrL/K(uiz) =
n∑
ν=1

aνTrL/K(uiu′ν) = ai ∈ R .

Since R is noetherian, it follows that S is a finitely generated R-module. Every ideal of S is a
finitely generated R-module and thus a finitely generated ideal. Hence S is noetherian.

If R is even a principal ideal domain, then S is a free R-module, since it is a submodule of
a free R-module, and by 1. it follows that every R-basis of S is a K-basis of L. �

2.2. Algebraic integers

integralbasis Remarks and Definitions 2.2.1. An algebraic number field is a finite extension field of
Q. By a basis of K we mean a Q-basis of K. Let in the sequel K be an algebraic number field
of degree n = [K :Q].

1. OK = clK(Z) is called the ring of integers or the maximal order of K. By Theorem
integralclosure
2.1.6, OK is a noetherian domain and a finitely generated Z-module. A Z-basis
(u1, . . . , un) of OK is called an integral basis of K.

2. A complete module or full Z-lattice in K is a finitely generated Z-module M ⊂ K which
contains a basis of K. By a basis of M we mean a Z-basis of M . Note that an n-tuple
(u1, . . . , un) ∈ Kn is linearly independent over Q if and only if it is linearly independent
over Z.

3. Let M ⊂ K be a complete module and (u1, . . . , un) is a Z-basis of M . Then the
discriminant ∆(M) = ∆K/Q(u1, . . . , un) only depends on M and not on (u1, . . . , un).
∆(M) is called the discriminant of M .
Indeed, let (v1, . . . , vn) be another basis of M . Then (v1, . . . , vn) = (u1, . . . , un)T , where
T ∈ GLn(Z), and ∆L/K(v1, . . . , vn) = ∆L/K(u1, . . . , un) det(T )2 = ∆L/K(u1, . . . , un),
since |det(T )| = 1.

4. ∆K = ∆(OK) is called the discriminant of K. By definition, ∆K ∈ Z.

Theorem 2.2.2. Let K be an algebraic number field and [K : Q] = n. For a submodule
M ⊂ K, the following assertions are equivalent :

(a) M is a complete module in K.
(b) M is a free (Z-)module of rank n.
(c) M is finitely generated, and QM = K.
(d) M is finitely generated, and for every x ∈ K there exists some q ∈ N such that qx ∈M .



2.2. ALGEBRAIC INTEGERS 21

Proof. (a) ⇒ (b) As M is a finitely generated torsion-free Z-module, it is free of some
rank m ∈ N. Since every basis of M is linearly independent over Q, we have m ≤ n. If
(u1, . . . , un) ∈ Mn is a Q-basis of K, then M ′ = 〈u1, . . . , un〉 ⊂ M is a free submodule of rank
n, and therefore n ≤ m.

(b) ⇒ (c) By assumption, M is finitely generated. If (u1, . . . , un) is a basis of M , then
(u1, . . . , un) is linearly independent over Q, and therefore QM = Qu1 + . . .+ Qun = K.

(c) ⇒ (d) If x ∈ K, then x = λ1v1 + . . .+ λmvm, where m ∈ N, λj ∈ Q and vj ∈M for all
j ∈ [1,m]. If q ∈ N is such that qλj ∈ Z for all j ∈ [1,m], then qx ∈M .

(d) ⇒ (a) Let (u1, . . . , un) be a basis of K, and let q ∈ N be such that qui ∈ M for all
i ∈ [1, n]. Then (qu1, . . . , qun) is a basis of K in M . �

Example 2.2.3. An algebraic number field K satisfying [K : Q] = 2 is called a quadratic
number field.

Let K be a quadratic number field. Then there exists a unique square-free integer d ∈ Z\{1}
such that K = Q(

√
d) (we normalize

√
d ∈ C such that

√
d > 0 if d > 0, and =(

√
d) > 0 if

d < 0). d is called the radicand of K. Note that K/Q is galois, Gal(K/Q) = {idK , σ}, and
σ(OK) = OK . Every x ∈ K has a unique representation x = a+ b

√
d, where a, b ∈ Q, and then

σ(x) = a − b
√
d, TrK/Q(x) = 2a, NK/Q(x) = a2 − b2d, and X2 − 2aX + (a2 − b2d) ∈ Q[X] is

the minimal polynomial of x over Q.

1. If d ≡ 1 mod 4, then
(
1, 1+

√
d

2

)
is an integral basis of K, and ∆K = d.

2. If d ≡ 2 or 3 mod 4, then (1,
√
d) is an integral basis of K, and ∆K = 4d.

Proof. 1. Let d ≡ 1 mod 4 and ω = 1+
√
d

2 . Then ω2 − ω − d−1
4 = 0, hence ω ∈ OK , and

we obtain σ(ω) = 1−
√
d

2 = −ω + 1 ∈ OK . Clearly, (1, ω) is a basis of K, and we must prove: If
a, b ∈ Q and a+ bω ∈ OK , then a, b ∈ Z.

Thus suppose that a, b ∈ Q and a+bω ∈ OK . Then (a+bω)−σ(a+bω) = b
√
d ∈ OK , hence

b2d ∈ OK∩Q = Z, and since d is squarefree, we get b ∈ Z. Hence a = (a+bω)−bω ∈ OK∩Q = Z,
and we are done. Now we calculate

∆K = det
(

1 ω
1 σ(ω)

)2

= (σ(ω)− ω)2 = d .

2. Suppose that d ≡ 2 or 3 mod 4. Then
√
d ∈ OK , (1,

√
d) is a basis of K, and we must

prove: If a, b ∈ Q and a+ b
√
d ∈ OK , then a, b ∈ Z.

Thus suppose that a, b ∈ Q and a+ b
√
d ∈ OK . Then the minimal polynomial of a+ b

√
d is

in Z[X], which implies a′ = 2a ∈ Z, a2 − b2d ∈ Z and thus 4b2d = a′2 − 4(a2 − b2d) ∈ Z. Since
d is squarefree, we get b′ = 2b ∈ Z and a′2 − b′2d ≡ 0 mod 4. Since d 6≡ mod 4, this implies
a′ ≡ b′ ≡ 0 mod 2 and thus a, b ∈ Z. Now we calculate

∆K = det
(

1
√
d

1 −
√
d

)2

= 4d .

In both cases we obtain K = Q(
√

∆K ), and if

ω =
σ +

√
∆K

2
, where σ =

{
1 if ∆K ≡ 1 mod 4 ,
0 if ∆K ≡ 0 mod 4 ,
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then (1, ω) is an integral basis of K. �

Definition 2.2.4. Let K be an algebraic number field and [K :Q] = n.
1. Let M ⊂ K be a complete module. Then R(M) = {x ∈ K | xM ⊂ M} is called the

ring of multipliers of M .
2. A subring R ⊂ K is called an order in K if it is a complete module.

completemodules Theorem 2.2.5 (Main Theorem on complete modules and orders). Let K be an algebraic
number field, M ⊂ K a complete module and R ⊂ K an order in K.

1. Let N ⊂ K be another complete module in K. Then there exists some q ∈ N such that
qM ⊂ N , and if M ⊂ N , then ∆(M) = ∆(N) (N :M)2.

2. If λ ∈ K×, then λM is a complete module,

R(λM) = R(M) , and ∆(λM) = NK/Q(λ)2∆(M) .

3. If λ ∈ R(M)•, then (M :λM) = |NK/Q(λ)|.
4. Let 0 6= C ⊂ K be a finitely generated R-module. Then C is a complete module in K,

and R ⊂ R(C).
5. R(M) is an order in K, R(M) ⊂ OK , and M ∩ N 6= ∅.
6. R is a noetherian domain, and R = R(R) ⊂ OK . If ∅ 6= a ⊂ R is an ideal, then

(R :a) <∞, and every non-zero prime ideal of R is maximal.

Proof. Let (u1, . . . , un) be a basis of M .
1. If q ∈ N is such that qui ∈ N for all i ∈ [1, n], then qM ⊂ N .
Assume now that M ⊂ N . Then there exist a basis (v1, . . . , vn) of N and e1, . . . , en ∈ N such

that (e1v1, . . . , envn) is a basis of M . Since (e1v1, . . . , envn) = (v1, . . . , vn)D with the diagonal
matrix D = diag(e1, . . . , en), it follows that

∆(M) = ∆K/Q(e1v1, . . . , envn) = det(D)2∆K/Q(v1, . . . , vn) = det(D)2∆(N) ,

and
(N :M) = (Zv1 ⊕ . . .⊕ Zvn :Ze1v1 ⊕ . . .⊕ Zenvn) = e1 · . . . · en = det(D) .

2. If λ ∈ K×, then (λu1, . . . , λun) is be a basis of λM , and therefore λM is a complete
module. If x ∈ R(M), then xλM ⊂ λM , which implies x ∈ R(λM). Hence R(M) ⊂ R(λM),
and since M = λ−1(λM), equality follows.

Let now HomQ(K,C) = {σ1, . . . , σn}. Then

∆(λM) = ∆K/Q(λu1, . . . , λun) = det
(
σν(λui)

)2

ν,i∈[1,n]
=

( n∏
ν=1

σν(λ)
)2

det
(
σν(ui)

)
ν,i∈[1,n]

)2

= NK/Q(λ)2 det
(
σν(ui)

)2

ν,i∈[1,n]
= NK/Q(λ)2∆K/Q(u1, . . . , un) = NK/Q(λ)2∆(M) .

3. If λ ∈ R(M)•, then λM ⊂M and, by 1. and 2., ∆(λM) = NK/Q(λ)2∆(M) = ∆(M) (M :
λM)2. Hence it follows that (M :λM) = |NK/Q(λ)|.

4. As R is a finitely generated Z-module and M is a finitely generated R-module, it follows
that C is a finitely generated Z-module. If (v1, . . . , vn) ∈ Rn is a basis of K and c ∈ C•, then
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(cu1, . . . , cun) ∈ Cn is a basis of K, and thus C is a complete module. Obviously, RC = C
implies R ⊂ R(C).

5. If x, y ∈ R(M), then (x−y)M ⊂ xM +yM ⊂M and xyM ⊂ xM ⊂M . Hence it follows
that {x− y, xy} ⊂ R(M), and therefore R(M) ⊂ K is a subring. If x ∈ R(M), then xM ⊂M ,
and therefore x ∈ clK(Z) = OK by Theorem

maincriterion
2.1.3. Hence R(M) ⊂ OK , and therefore R(M) is

finitely generated.
If x ∈ K×, then xM is a complete module, and there exists some q ∈M such that qxM ⊂M .

Hence qx ∈ R(M), and therefore R(M) is a complete module.
It remains to prove that M ∩ N 6= ∅. Let x ∈ M• and q ∈ N such that qx ∈ R(M). Then

0 6= qxR(M) ⊂ R(M) and, by Theorem
integralideal
2.1.5, qxR(M) ∩ Z 6= 0. Since qxR(M) ⊂ M , the

assertion follows.
6. Since R is a finitely generated Z-module, every ideal of R is a finitely generated Z-module

and thus a finitely generated ideal. Hence R is noetherian. Since RR = R, it follows that
R ⊂ R(R), and if z ∈ R(R), then z = z1 ∈ R, and therefore R(R) = R.

If 0 6= a ⊂ R is an ideal and λ ∈ a•, then λR ⊂ a ⊂ R, and (R :a) ≤ (R :λR) = |NK/Q(λ)| <
∞. If 0 6= p ⊂ R is a prime ideal, then R/p is a finite domain, hence a field, and thus p is a
maximal ideal. �

basissatz Theorem 2.2.6 (Basis Theorem for complete modules). Let K be an algebraic number field
of degree [K : Q] = n, M ⊂ OK a complete module, (v1, . . . , vn) ∈ Mn a basis of K and
d = |∆K/Q(v1, . . . , vn)|. Then d ∈ N, and we set d = d2

0d1, where d0, d1 ∈ N and d1 is
squarefree. For i ∈ [1, n], let bi,i ∈ N be minimal such that

ui =
1
d0

i∑
j=1

bj, ivj ∈M for some b1,i, . . . , bi−1,i ∈ Z .

Then (u1, . . . , un) is a basis of M .
In particular, M has a basis (u1, . . . , un) such that u1 = min(M ∩N), and every order in K

has a basis (u1, . . . , un) such that u1 = 1.

Proof. Let M0 = Zv1 + . . .+ Zvn ⊂M ⊂ OK . Then it follows that ∆(M) ∈ Z, and

d = |∆K/Q(v1, . . . , vn)| = |∆(M0)| = |∆(M)| (M :M0)2 ∈ N .

In particular, (M :M0)2 | d, hence (M :M0) | d0, and therefore d0M ⊂ M0. By assumption, we
have

(u1, . . . , un) = (v1, . . . , vn)B mit B =
1
d0


b1,1 b1,2 . . . . bn,1
0 b2,2 . . . . bn,2
0 0 . . . . .

. .
. . . . .

0 0 . . . 0 bn,n

 ∈ GLn(Q) .

Hence (u1, . . . , un) is a basis of K, and Zu1+ . . .+Zun ⊂M . To prove equality, we use induction
on i to prove the following assertion for all i ∈ [0, n] :

A. If c1, . . . , ci ∈ Z are such that x = d−1
0 (c1v1 + . . .+ civi) ∈M , then x ∈ Zu1 + . . .+ Zui.



24 2. IDEAL THEORY OF ALGEBRAIC INTEGERS

Once A is proved, the assertion follows. Indeed, if x ∈ M , then d0x ∈ M0, and therefore
there exist c1, . . . , cn ∈ Z such that x = d−1

0 (c1v1+ . . .+cnvn). By A we infer x ∈ Zu1+ . . .Zun.
Proof of A. For i = 0, there is nothing to do.
i ≥ 1 , i − 1 → i : Let c1, . . . , ci ∈ Z be such that x = d−1

0 (c1v1 + . . . + civi) ∈ M , and set
ci = kbi,i + r, where k ∈ Z and r ∈ [0, bi,i − 1]. Then we obtain

x− kui =
1
d0

i∑
j=1

(cj − kbi,j)vj ∈M and ci − kbi,i = r ∈ [0, bi,i − 1] .

By the minimal choice of bi,i, it follows that ci−kbi,i = 0, and therefore x−kui ∈ Zu1+. . .+Zui−1

by the induction hypothesis. Hence x ∈ Zu1 + . . .+ Zui.
If (v1, . . . , vn) is chosen such that v1 = min(M ∩ N), then u1 = v1. �

diskriminantenvorzeichen Theorem 2.2.7. Let K be an algebraic number field, and suppose that [K :Q] = n = r1+2r2,
where HomQ(K,C) = {σ1, . . . , σn} such that σj(K) ⊂ R for all j ∈ [1, r1], and σr1+r2+j = σr1+j

for all j ∈ [1, r2]. Then sgn ∆K/Q(u1, . . . , un) = (−1)r2 for every basis (u1, . . . , un) of K, and,
in particular, sgn ∆K = (−1)r2.

Proof. Let d = det(σν(ui))ν∈[1,n] = a + bi, where a, b ∈ R. Then ∆K/Q(u1, . . . , un) = d2,
and the matrix

(
σν(ui)

)
ν,i∈[1,n]

arises from
(
σν(ui)

)
ν,i∈[1,n]

by interchanging r2 rows. Hence it

follows that a − bi = det
(
σν(ui)

)
ν,i∈[1,n]

= (−1)r2d. If r2 is even, then b = 0 and d2 = b2 > 0.
If r2 is odd, then a = 0 and d2 = (ib)2 = −b2 < 0. �

teilerfremdediskriminanten Theorem 2.2.8. Let K and L be galois algebraic number fields, [K :Q] = n, [L :Q] = m,
K ∩ L = Q, N = KL and (∆K ,∆L) = 1. Let (ω1, . . . , ωn) be an integral basis of K and
(η1, . . . , ηm) and integral basis of L. Then (ωiηj)(i,j)∈[1,n]×[1,m] is an integral basis of N , and
∆N = ∆m

K∆n
L.

Proof. By Theorem
galoisshifting
1.3.5, N/K is galois, and there are isomorphisms

Gal(N/L) → Gal(K/Q) , given by σ 7→ σ |K ,

Gal(N/K) → Gal(L/Q) , given by σ 7→ σ |L
and

Gal(N/K) ∼→ Gal(K/Q)×Gal(L/Q , given by σ 7→ (σ |K,σ |L) .
Then (ωiηj)(i,j)∈[1,n]×[1,m] is a basis of N , since N = Q〈(ωiηj)(i,j)∈[1,n]×[1,m]〉 and [N :Q] = mn.
Let Gal(N/L) = {σ1, . . . , σn} and Gal(N/K) = {τ1, . . . , τm}. Let α ∈ ON , say

α =
n∑
i=1

m∑
j=1

ai,jωiηj , where ai,j ∈ Q for all (i, j) ∈ [1, n]×[1,m] .

Since {ωiηj | (i, j) ∈ [1, n]× [1,m]} ⊂ ON , it suffices to prove that ai,j ∈ Z for all (i, j) ∈
[1, n]×[1,m]. For j ∈ [1,m], set

βj =
n∑
i=1

ai,jωi ∈ K , which implies α =
m∑
j=1

βjηj and τµ(α) =
m∑
j=1

βjτµ(ηj) ∈ ON .
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We set T = (τµ(ηj))j,µ∈[1,m]. Then T# ∈ Mm(Z), and therefore

(τ1α, . . . , τmα)T# = (β1, . . . , βm)TT# = (β1, . . . , βm) det(T ) ∈ Om
N .

Since Gal(L/Q) = {τ1 |L, . . . , τm |L), we obtain det(T )2 = ∆K/Q(η1, . . . , ηm) = ∆L and thus it
follows that βj∆L ∈ ON ∩K = OK for all j ∈ [1,m]. But now

βj∆L =
n∑
i=1

ai,j∆Lωi for all j ∈ [1,m] implies ai,j∆L ∈ Z for all (i, j) ∈ [1, n]×[1,m] .

By interchanging the roles of L and K, it follows that ai,j∆K ∈ Z for all (i, j) ∈ [1, n]×[1,m],
and since (∆K ,∆L) = 1 this implies ai,j ∈ Z for all (i, j) ∈ [1, n]×[1,m].

Now it follows that

∆N = det
(
σντµ(ωiηj)

)2

(ν,µ), (i,j)∈[1,n]×[1,m]
=

[
det(σνωi)mν,i∈[1,n] det(τµηj)nµ,j∈[1,m]

]2 = ∆m
K∆n

L .

Calculation of the determinant : Let A = (ai,ν)i,ν∈[1,n] ∈ Mn(K), B = (bj,µ)j,µ∈[1,n] ∈ Mm(K),
and define A⊗B =

(
ai,νbj,µ

)
(i,j),(ν,µ)∈[1,n]×[1,m]

∈ Mmn(K). Then

A⊗B =


a1,1B a1,2B . . . a1,nB
· · . . . ·
· · . . . ·

an,1B an,2B . . . an,nB

 =


a1,1Im a1,2Im . . . a1,nIm
· · . . . ·
· · . . . ·

an,1Im an,2Im . . . an,nIm


B . . . 0

0
. . . 0

0 · · · B


and we may apply the product formula for determinants. �

eisenstein1 Theorem 2.2.9 (Eisenstein criterion). Let K be an algebraic number field, [K : Q] = n,
α ∈ K and f = Xn + an−1X

n−1 + . . . + a1X + a0 ∈ Z[X] the minimal polynomial of α.
Let p ∈ P be a prime such that p | ai for all i ∈ [0, n − 1] and p2 - a0 [ such a polynomial is
called a p-Eisenstein polynomial ]. Then f is irreducible, and Z[α] ⊂ K is an order satisfying
p - (OK :Z[α]).

Proof. We show first that f is irreducible. Let Z[X] → Z/pZ[X] = Fp[X], h 7→ h be
the residue class map, and suppose that f = gh for some polynomials g, h ∈ Z[X] \ Z. We
may assume that both g and h are monic, and since f = Xn = gh, it follows that g = Xr and
h = Xs, where r, s ∈ N and r + s = n. But this implies that a0 = g(0)h(0) ≡ 0 mod p2, a
contradiction.

Since deg(f) = n, Z[α] ⊂ K is an order, and we assume that p | (OK : Z[α]. Then there
exists some ξ ∈ OK \ Z[α] such that pξ ∈ Z[α], say pξ = b0 + b1α + . . . + bn−1α

n−1, where
b0, . . . , bn−1 ∈ Z, and p - bj for at least one j ∈ [0, n − 1]. Let j ∈ [0, n − 1] be minimal
such that p - bj . Then pξ = pη + bjα

j + αj+1θ for some η, θ ∈ Z[α], and therefore bjα
n−1 =

p(ξ − η)αn−j−1 + αnθ. Since αn = −a0 − a1α − . . . − an−1α
n−1 ∈ pZ[α], it follows that

bjα
n−1 ∈ pOK , and NK/Q(bjαn−1) ∈ pnZ. Since NK/Q(bjαn−1) = bnjNK/Q(α)n−1 = ±bnj a

n−1
0

and p - bj , we obtain pn | an−1
0 and therefore p2 | a0, a contradiction. �
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cyclotomic Theorem 2.2.10. Let n ∈ N, n ≥ 3, ζn ∈ µ∗n(C) and Q(n) = Q(ζn) the n-th cyclotomic
field. Then OQ(n) = Z[ζn], (1, ζn, ζ2

n, . . . , ζ
ϕ(n)
n ) is an integral basis of Q(n), and

∆Q(n) = (−1)ϕ(n)/2nϕ(n)
[∏
p |n

pϕ(n)/(p−1)
]−1

.

Proof. As n ≥ 3, there is no σ : Q(n) → R, and by Theorem
diskriminantenvorzeichen
2.2.7 we obtain r2 = ϕ(n)/2

and therefore sgn(∆Q(n)) = (−1)ϕ(n)/2.

CASE 1 : n = pe ≥ 3 is a prime power, ζ = ζpe , N = [Q(pe) :Q] = ϕ(pe) = pe−1(p− 1), and
(1, ζ, . . . , ζN−1) is a basis of Z[ζ] = Z[ζ − 1]. The polynomial

Φ = Φpe =
Xpe − 1
Xpe−1 − 1

=
p−1∑
ν=0

Xpe−1ν

is the minimal polynomial of ζ, Φ1 = Φ(X + 1) is the minimal polynomial of ζ − 1, and we
assert that Φ1 is a p-Eisenstein polynomial. Indeed, let π : Z[X] → Z/pZ[X] be the residue class
homomorphism. Then

π
(
(X+1)p

e−1−1
)
π(Φ1) = π

(
(X+1)p

e−1
)
, hence Xpe−1

π(Φ1) = Xpe
and π(Φ1) = XN .

Since Φ1(0) = Φ(1) = p, Φ1 is a p-Eisenstein polynomial, and therefore p - (OQ(pe) :Z[ζ]).

Next we calculate ∆(Z[ζ]) = (−1)N(N−1)/2NQ(pe)/Q(Φ′(ζ)). We have

Φ′(ζ) =
p−1∑
ν=1

pe−1νζp
e−1ν−1 = pe−1ζ−1

p−1∑
ν=1

νξν , where ξ = ζp
e−1 ∈ µ∗p(C) .

Hence it follows that

ζ(ξ − 1)Φ′(ζ) = pe−1(ξ − 1)
p−1∑
ν=1

νξν = pe−1
(p−1∑
ν=1

νξν+1 −
p−2∑
ν=0

(ν + 1)ξν+1
)

= pe−1
(
(p− 1)− ξ −

p−2∑
ν=1

ξν+1
)

= pe , Φ′(ζ) =
pe

ζ(ξ − 1)
,

and

NQ(pe)/Q(Φ′(ζ)) =
pNe

NQ(pe)/Q(ζ)NQ(pe)/Q(ξ − 1)
=

pNe

NQ(ξ)/Q(ξ − 1)pe−1 ,

since NQ(pe)/Q(ζ) = Φ(0) = 1 and [Q(pe) :Q(ξ)] = pe−1. The polynomial

Φp(X + 1) =
(X + 1)p − 1
(X + 1)− 1

= Xp−1 + pXp−2 + . . .+ p

is the minimal polynomial of ξ − 1, and therefore NQ(ξ)/Q(ξ − 1) = (−1)p−1p. Putting all
together, we obtain

∆(Z[ζ]) = (−1)N(N−1)/2(−1)(p−1)pe−1)peN−p
e−1

= (−1)ϕ(pe)/2pp
e−1(ep−e−1) ,

hence (OQ(pe) :Z[ζ]) is a p-power, and therefore OQ(pe) = Z[ζ] and ∆Q(pe) = ∆(Z[ζ]).
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CASE 2 : n is arbitrary. If n is odd, then Q(n) = Q(2n), and thus we assume that n 6≡ 2
mod 4. We prodeed by induction on the number of prime divisors of n, and we set n = qem,
where q ∈ P, e, m ∈ N, m ≥ 2 and q - m. Since n 6≡ 2 mod 4, we get qe ≥ 3 and m ≥ 3.

If ζqe ∈ µ∗qe(C) and ζm ∈ µ∗m(C), then ζqeζm ∈ µ∗n(C). Hence Q(qe)Q(m) = Q(n), and we
assert that Q(qe) ∩ Q(m) = Q. Indeed, suppose that K = Q(qe) ∩ Q(m) and [K : Q] = d. By
Theorem

galoisshifting
1.3.5, we get

ϕ(n)
d

= [Q(n) :K] = [Q(qe) :K] [Q(m) :K] =
ϕ(qe)
d

ϕ(m)
d

=
ϕ(n)
d2

, and therefore d = 1 .

By the induction hypothesis, (∆Q(qe) ,∆Q(m)) = 1, and we apply Theorem
teilerfremdediskriminanten
2.2.8 and the in-

duction hypothesis for Q(qe) and Q(m). (1, ζqe , . . . , ζ
ϕ(qe)−1
qe ) is an integral basis of Q(qe), and

(1, ζm, . . . , ζ
ϕ(m)−1
m ) is an integral basis of Q(m). Hence the products ζiqeζ

j
m for i ∈ [1, ϕ(qe)− 1]

and j ∈ [1, ϕ(m)− 1] form an integral basis of Q(n). Since Z[ζn] ⊂ OQ(n) ⊂ Z[ζqeζm] ⊂ Z[ζn], it

follows that OQ(n) = Z[ζn], and (1, ζn, . . . , ζ
ϕ(n)−1
n ) is an integral basis of Q(n). Finally,

∆Q(n) = ∆ϕ(m)

Q(qe)∆
ϕ(qe)

Q(m) =
[
(−1)

ϕ(qe)
2 q

eϕ(qe)−ϕ(qe)
q−1

]ϕ(m)[
(−1)

ϕ(m)
2 mϕ(m)

∏
p |m

p
−ϕ(m)

p−1

]ϕ(qe)

= (−1)ϕ(n)nϕ(n)
∏
p |n

p
−ϕ(n)

p−1 = nϕ(n)
∏
p |n

p
−ϕ(n)

p−1 ,

and the assertion follows since ϕ(n) = ϕ(pe)ϕ(m) ≡ 0 mod 4. �

2.3. Gauß sums and the quadratic reciprocity law

Definition 2.3.1. Let p ∈ P \ {2} be an odd prime. We consider the group Xp =
Hom(F×p ,C×) (with pointwise multiplication), and we call the elements χ ∈ Xp characters
modulo p. Explicitly : If χ1, χ2 ∈ Xp, then (χ1χ2)(t) = χ1(t)χ2(t) for all t ∈ Fp, the unit
character 1 ∈ Xp is defined by 1(t) = 1 for all t ∈ Fp, and for χ ∈ Xp, we have χ(t) ∈ µp−1(C)
and χ−1(t) = χ(t) = χ(t)−1 = χ(t) for all t ∈ Fp. If Fp = 〈ω〉, then ord(χ) = ord(χ(ω)) for all
χ ∈ Xp, and therefore the map Xp → µp−1(C), defined by χ 7→ χ(ω), is a group isomorphism.
For a ∈ Z \ pZ and χ ∈ Xp, we define χ(a) = χ(a + pZ). For κ = k + pZ ∈ Fp and ξ ∈ µp(C),
we define ξκ = ξk. Then it follows that∑

κ∈Fp

ξκ =

{
p if ξ = 1 ,
0 if ξ 6= 1 .

Indeed, if ξ 6= 1, then
∑
κ∈Fp

ξκ =
p−1∑
ν=0

ξν =
ξp − 1
ξ − 1

= 0 .

Let ζp = e2πi/p be the normalized primitive p-th root of unity. For χ ∈ Xp and a ∈ Fp, we define
the Gauß sum by

τp(a, χ) =
∑
t∈F×p

χ(t)ζatp ∈ Z[ζp(p−1) , and we set τp(χ) = τp(1, χ) .
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gausssum Theorem 2.3.2. Let p ∈ P \ {2} be an odd prime, χ ∈ Xp and a ∈ Fp. Then

τp(a, χ) =


p− 1 if a = 0 and χ = 1 ,
0 if a = 0 and χ 6= 1 ,

χ(a) τp(χ) if a 6= 0 ,
|τp(χ)| =

{
1 if χ = 1 ,
√
p if χ 6= 1 ,

τp(χ) = χ(−1)τp(χ) and τp(χ)τp(χ) = χ(−1)p .

Proof. As above, we have

τp(a,1) =
∑
t∈F×p

ζatp =
∑
t∈Fp

ζatp − 1 =

{
p− 1 if a = 0 ,
−1 if a 6= 0 ,

and |τp(1)| = 1 .

If χ 6= 1 and F×p = 〈ω〉, then

τp(0, χ) =
∑
t∈F×p

χ(t) =
p−2∑
ν=0

χ(ω)ν =
χ(ω)p−1 − 1
χ(ω)− 1

= 0 .

Thus assume that a ∈ F×p . Then F×p = {at | t ∈ F×p } and therefore, putting at = s and observing
χ(a−1s) = χ(a)χ(s), we obtain

τp(a, χ) =
∑
t∈F×p

χ(t)ζatp = [ t=a−1s ]

∑
s∈F×p

χ(a−1s)ζsp = χ(a)
∑
s∈F×p

χ(s)ζsp = χ(a)τp(χ) .

Hence |τp(χ)| = |τp(a, χ)|, and if χ 6= 1, then τp(0, χ) = 0. Thus, for χ 6= 1 we obtain

(p− 1)|τp(χ)|2 =
∑
a∈Fp

τp(a, χ)τp(a, χ) =
∑

s, t∈F×p

χ(t)χ(s)
∑
a∈Fp

ζa(t−s)p .

Since ∑
a∈Fp

ζa(t−s)p = 0 if t 6= s , and |χ(t)| = 1 ,

it follows that (p− 1)|τp(χ)|2 = p(p− 1), and thus |τp(χ)| = √
p. Finally, we obtain

χ(−1)τp(χ) = τp(−1, χ) =
∑
t∈F×p

χ(t)ζ−tp =
∑
t∈F×p

χ(t)ζtp = τp(χ) ,

and consequently τp(χ)τp(χ) = χ(−1) |τp(χ)|2 = χ(−1)p. �

Remark and Definition 2.3.3. Let p ∈ P \ {2} be an odd prime. Then there is a unique
character ϕ ∈ Xp such that ord(ϕ) = 2. If Fp = 〈ω〉, then ϕ is given by ϕ(ωk) = (−1)k for all
k ∈ Z. ϕ is called the quadratic character modulo p. For a ∈ Z \ pZ, we define the Legendre
symbol by (a

p

)
=

(a+ pZ
p

)
= ϕ(a) =

{
1 if a ∈ F×2

p ,

−1 otherwise .
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By definition,
(
a
p

)
= 1 if and only if there exists some x ∈ Z such that x2 ≡ a mod p, and in

this case a is said to be a quadratic residue modulo p. For all a, b ∈ Z \ pZ we have(ab
p

)
=

(a
p

)( b
p

)
and

(ab2
p

)
=

(a
p

)
.

euler Theorem 2.3.4 (Euler’s criterion). Let p ∈ P \ {2} be an odd prime.

1. If a ∈ Z \ pZ, then(a
p

)
≡ a(p−1)/2 mod p . In particular,

(−1
p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 mod 4 ,
−1 if p ≡ 3 mod 4 .

2. If p∗ = (−1)(p−1)/2p, then
√
p∗ ∈ Q(p).

Proof. Suppose that F×p = 〈ω〉, and let ϕ ∈ Xp be the quadratic character modulo p.

1. Let k ∈ N be such that α = a + pZ = ωk ∈ F×p . Since ω(p−1)/2 6= 1 + pZ and
(ω(p−1)/2)2 = 1 + pZ, it follows that ω(p−1)/2 = −1 + pZ. Hence(a

p

)
+ pZ = ϕ(ωk) + pZ = (−1)k + pZ = (ω(p−1)/2)k = α(p−1)/2 = a(p−1)/2 + pZ ,

and therefore (a
p

)
≡ a(p−1)/2 mod p .

In particular, (−1
p

)
≡ (−1)(p−1)/2 mod p implies

(−1
p

)
= (−1)(p−1)/2 .

2. Since ϕ = ϕ, Theorem
gausssum
2.3.2 implies

τp(ϕ)p = ϕ(−1)p =
(−1
p

)
p = p∗ ,

and as τp(ϕ) ∈ Q(p), it follows that
√
p∗ ∈ Q(p). �

quadraticreciprocity Theorem 2.3.5 (Quadratic Reciprocity Law).

1. Let p ∈ P \ {2} be an odd prime. Then(2
p

)
= (−1)(p

2−1)/8 =

{
1 if p ≡ ±1 mod 8 ,
−1 if p ≡ ±3 mod 8 .

2. Let p, q ∈ P \ {2} be distinct odd primes. Then(p
q

)(q
p

)
= (−1)

p−1
2

q−1
2 =

{
−1 if p ≡ q ≡ 3 mod 4 ,
1 otherwise.
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Proof. 1. We calculate in Z[i]/pZ[i] and observe that −1 6≡ 1 mod pZ[i]. By Theorem
euler
2.3.4,

(1 + ip)(1 + i) ≡ (1 + i)p+1 = (2i)(p+ 1)/2 = 2(p−1)/2 · 2i(p+1)/2 ≡
(2
p

)
2i(p+1)/2 mod pZ[i] .

CASE 1 : p ≡ 1 mod 4. Then ip = i,

(1 + ip)(1 + i) = (1 + i)2 = 2i ≡
(2
p

)
(2i)i(p−1)/2 mod pZ[i] ,

and since (2i, p) = 1, it follows that(2
p

)
(−1)(p−1)/4 ≡ 1 mod pZ[i] , hence

(2
p

)
= (−1)(p−1)/4 = (−1)(p

2−1)/8 .

CASE 2 : p ≡ 3 mod 4. Then ip = −i,

(1 + ip)(1 + i) = 2 ≡
(2
p

)
2i(p+1)/2 mod pZ[i] ,

and since (2, p) = 1, it follows that(2
p

)
(−1)(p+1)/4 ≡ 1 mod pZ[i] , hence

(2
p

)
= (−1)(p+1)/4 = (−1)(p

2−1)/8 .

2. Let ϕ ∈ Xp be the quadratic character modulo p. Then ϕ = ϕ, τp(ϕ)2 = (−1)(p−1)/2p,

ϕ(q + pZ) =
(q
p

)
, ϕ(−1 + pZ) = (−1)(p−1)/2 and

(p
q

)
≡ p(q−1)/2 mod q .

We calculate the Gauss sum τp(χ) ∈ Z[ζp] modulo qZ[ζp]. Since

τp(ϕ)q =
( ∑
t∈F×p

ϕ(t)ζtp
)q
≡

∑
t∈F×p

ϕ(t)ζtqp = τp(q + pZ, ϕ) =
(q
p

)
τp(ϕ) mod qZ[ζp] ,

it follows that
τp(ϕ)q+1 ≡

(q
p

)
(−1)(p−1)/2p mod qZ[ζp] .

On the other hand,

τp(ϕ)q+1 = [τp(ϕ)2](q+1)/2 = (−1)
p−1
2

q+1
2 p(q+1)/2 ≡ (−1)

p−1
2

q+1
2 p

(p
q

)
mod qZ[ζp] ,

and thus we obtain (q
p

)
(−1)(p−1)/2p ≡ (−1)

p−1
2

q+1
2 p

(p
q

)
mod qZ[ζp] .

Since ((−1)(p−1)/2p, q) = 1 , it follows that(q
p

)
≡ (−1)

p−1
2

q−1
2

(p
q

)
mod qZ[ζp] , hence

(p
q

)(q
p

)
= (−1)

p−1
2

q−1
2 . �
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2.4. Dedekind domains

Definition 2.4.1. Let R be a domain and K = q(R).
1. For R-submodules a, b ⊂ K we define a−1 = (R :a) = {x ∈ K | xa ⊂ R},

a + b = {a+ b | a ∈ a, b ∈ b} and ab =
{ n∑
i=1

aibi

∣∣∣ n ∈ N , ai ∈ a , bi ∈ b
}
.

Obviously, a−1, ab and a + b are R-submodules of K. The operations + and · are
associative and commutative, and a(b + c) = ac + bc for all R-submodules a, b, c ⊂ K.
Moreover, aa−1 ⊂ R, and a ⊂ b implies a−1 ⊃ b−1.

2. An R-submodule a ⊂ K is called a fractional ideal of R if a 6= 0 and a−1 6= 0. We
denote by
• F(R) the set of all fractional ideals of R, and by
• I(R) = {a ∈ F(R) | a ⊂ R} the set of all non-zero ideals of R.

3. For a ∈ K× we call Ra ∈ F(R) the fractional principal ideal generated by a, and we
denote by (K×) ⊂ F(R) the set of all fractional principal ideals of R.

4. A fractional ideal a ∈ F(R) is called (R-)invertible if aa−1 = R.

Lemma 2.4.2. Let R be a domain and K = q(R).
1. Let a ⊂ K be an R-submodule.

(a) a ∈ F(R) if and only if aa ∈ I(R) for some a ∈ R•.
(b) If a is a finitely generated R-module and a 6= 0, then a ∈ F(R).
(c) If R is noetherian and a ∈ F(R), then a is a finitely generated R-module.

2. If a and b are fractional R-ideals, then a + b, ab and a−1 are also fractional R-ideals.
3. Let K be an algebraic number field.

(a) If M ⊂ K is a complete module and R ⊂ K an order such that R ⊂ R(M), then
M ∈ F(R).

(b) If R ⊂ K is an order and M ∈ F(R), then M ⊂ K is a complete module.

Proof. 1. (a) If a ∈ F(R), then a 6= 0 and there is some x ∈ K× such that xa ⊂ R. Let
c ∈ R• be such that a = cx ∈ R. Then 0 6= aa = cxa ⊂ R is a non-zero ideal of R.

Conversely, if a ∈ R• is such that aa ∈ I(R), then a 6= 0 and a ∈ a−1. Hence a−1 6= 0, and
a ∈ F(R).

(b) Let 0 6= a = R〈a1, . . . , an〉 ⊂ K. Then there is some a ∈ R• such that aai ∈ R for all
i ∈ [1, n], and it follows that aa ⊂ R, hence a ∈ a−1, and thus a ∈ F(R).

(c) Let R be noetherian and a ∈ F(R). By (a), there is some a ∈ R• such that aa ∈ I(R).
Then aa = R〈a1, . . . , an〉 for some a1, . . . , an ∈ R, and therefore a = R〈a−1a1, . . . , a

−1an〉.
2. Let a, b ∈ F(R), a ∈ a•, b ∈ b• and c, d ∈ R• such that ca ⊂ R and db ⊂ R. Then

a ∈ a+b and cd(a+b) ⊂ R, hence a+b ∈ F(R). Since (ca)(db) ∈ (a∩b)• and 0 6= a−1 ⊂ (a∩b)−1,
it follows that a ∩ b ∈ F(R). Since ab ∈ ab and cdab ⊂ R, it follows that ab ∈ F(R), and finally
0 6= a ⊂ (a−1)−1 implies a−1 ∈ F(R).

3. (a) As M 6= 0 is a finitely generated Z-module, it is a finitely generated R-module. Hence
M ∈ F(R) by 1.(b).
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(b) If R is an order and M ∈ F(R), then R is noetherian, hence M 6= 0 is a finitely generated
R-module, and by Theorem

completemodules
2.2.5.4, M ⊂ K is a complete module. �

invertible Theorem and Definition 2.4.3. Let R be a domain and K = q(R).
1. Let a, b ∈ F(R) and ab = R. Then a is invertible, and b = a−1. In particular, (F(R), ·)

is a commutative monoid with unit element R, F(R)× = {a ∈ F(R) | a is invertible },
and if a ∈ F(R), then a−1 is its inverse in F(R)×.

2. If a ∈ F(R)×, then a is finitely generated.
3. If a ∈ F(R)× and c ∈ K×, then ca ∈ F(R)×, and (ca)−1 = c−1a−1.
4. If a ∈ K×, then aR ∈ F(R)×, and the map

∂ : K× → F(R)× , defined by ∂a = aR ,

is a group homomorphism, Ker(∂) = R×, and ∂(K×) = (K×) ⊂ F(R)×.
The factor group C(R) = F(R)/(K×) is called the ideal class group or Picard group of
R. For a ∈ F(R)× we denote by [a] ∈ C(R) the ideal class containing a. As [ca] = [a]
for all c ∈ K×, we obtain C(R) = {[a] | a ∈ I(R)}.
Two fractional ideals a, b ∈ F(R) are called equivalent, a ∼ b if [a] = [b] ∈ C(R).

There is an exact sequence 1 → R× ↪→ K× ∂→ F(R)× → C(R) → 1 .

Proof. 1. If ab = R, then b ⊂ a−1, and a−1 = a−1ab ⊂ b. Hence b = a−1, and the
remaining assertions are obvious.

2. If a ∈ F(R)×, then there exist n ∈ N, a1, . . . , an ∈ a and c1, . . . , cn ∈ a−1 such that
n∑
i=1

aici = 1 .

For all c ∈ a, it follows that cic ∈ R for all i ∈ [1, n], and therefore

c =
n∑
i=1

aicic ∈ R〈a1, . . . , an〉 .

Hence a = 〈a1, . . . , an〉.
3. and 4. Obvious. �

Definition 2.4.4. A domain R is called a Dedekind domain if it is noetherian, integrally
closed, and every non-zero prime ideal of R is maximal. For a Dedekind domain R, we denote
by P(R) = max(R) the set of all non-zero prime ideals of R.

principalisdedekind Theorem 2.4.5. Every principal ideal domain is a Dedekind domain.

Proof. Let R be a principal ideal domain. Then R is noetherian and factorial. By Theorem
factorialclosed
2.1.2 R is integrally closed. Let pR be a non-zero prime ideal of R and pR ⊂ aR ( R for some
a ∈ R \R×. Then p = ab for some b ∈ R, and as a /∈ R×, we obtain b ∈ R× and pR = aR. Thus
every non-zero prime ideal of R is maximal. �

dedekindlemma Lemma 2.4.6. Let R be a Dedekind domain and a ∈ I(R).
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1. There exist some n ∈ N and p1, . . . , pr ∈ P(R) such that p1 · . . . · pr ⊂ a.
2. If p ∈ P(R), then ap−1 ) a.

Proof. 1. Assume the contrary. As R is noetherian, the set of all non-zero ideals of R which
do not contain a product of principal ideals has a maximal element, say a. Then a /∈ P(R),
and thus there exist b, c ∈ R \ a such bc ∈ a. Since a ( a + bR and a ( a + cR, there exist
p1, . . . , pr, q1, . . . , qs ∈ P(R) such that p1 · . . . · pr ⊂ a + bR and q1 · . . . · qs ⊂ a + cR. Hence we
obtain p1 · . . . · prq1 · . . . · qs ⊂ (a + bR)(a + cR) ⊂ a, a contradiction.

2. Since p−1 ⊃ R, we obtain ap−1 ⊃ a, and we assume to the contrary that ap−1 = a. For all
x ∈ p−1 we have xa ⊂ a, and thus x is integral over R by Theorem

maincriterion
2.1.3. Hence it follows that

p−1 ⊂ R and thus p−1 = R. Let a ∈ p•, and let r ∈ N be minimal such that p1 · . . . · pr ⊂ aR
for some p1, . . . , pr (this exists by 1.). Then it follows that p1 · . . . · pr ⊂ p, and thus there exists
some i ∈ [1, r] such that pi ⊂ p, say p1 ⊂ p, and thus p1 = p. By the minimal choice of r, we
obtain p2 · . . . · pr 6⊂ aR. If b ∈ p2 · . . . · pr \ aR, then a−1b /∈ R, bp ⊂ p1 · . . . · pr ⊂ aR, hence
a−1bp ⊂ R and thus a−1b ∈ p−1 \R, a contradiction. �

Theorem 2.4.7. Let R be a domain. Then the following assertions are equivalent :
(a) R is a Dedekind domain.
(b) Every non-zero ideal a ∈ I(R) is invertible.
(c) F(R)× = F(R).

Proof. (a) ⇒ (b) Assume the contrary. Then the set of non-zero ideals which are not
invertible contains a maximal element, say a. Let p ∈ P(R) be such that a ⊂ p. Then a (
ap−1 ⊂ pp−1 ⊂ R by Lemma

dedekindlemma
2.4.6, and therefore ap−1 is an invertible ideal. If b ∈ F(R) is such

that ap−1b = R, then p−1b ∈ F(R), and thus a is invertible, a contradiction.
(b) ⇒ (c) If a ∈ F(R), then there exists some c ∈ R• such that ca ∈ I(R). Hence ca is

invertible, and thus a is also invertible.
(c) ⇒ (a) Every a ∈ I(R) ⊂ F(R) is invertible and thus finitely generated by Theorem

invertible
2.4.3. Hence R is noetherian.

Let x ∈ K = q(R) be integral over R. Then R[x] is a finitely generated R-module by
Theorem

mainintegral
2.1.4, hence R[x] ∈ F(R), and R = R[x]−1R[x] = R[x]−1R[x]R[x] = R[x] and thus

x ∈ R. Hence R is integrally closed.
Let p ⊂ R be a non-zero prime ideal, and suppose that p is not maximal. Then there exists

some q ∈ I(R) such that p ( q, and we obtain pq−1 ⊂ qq−1 = R, since q is invertible. Hence it
follows that p = (pq−1)q, and as q 6⊂ p, we get pq−1 ⊂ p and therefore q−1 = p−1pq−1 ⊂ p−1p =
R, a contradiction. �

Remarks and Definitions 2.4.8.
1. A partially ordered set (X,≤) is called a lattice if any two elements a, b ∈ X possess a

supremum sup{a, b} and an infimum inf{a, b}.
2. Let (X,≤) and (Y,≤) be lattices. A bijective map f : X → Y is called a lattice iso-

morphism if, for all a, b ∈ X, a ≤ b holds if and only if f(a) ≤ f(b). If f is a lattice
isomorphism, then sup{f(a), f(b)} = f(sup{a, b}) and inf{f(a), f(b)} = f(inf{a, b})
for all a, b ∈ X.
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3. A lattice-ordered group (G, ·,≤) is an abelian group (G, ·) with a partial ordering ≤ such
that (G,≤) is a lattice and a ≤ b implies ac ≤ bc for all a, b, c ∈ G. An isomorphism of
lattice-ordered groups is a group isomorphism which is a lattice isomorphism.

4. Let I be a set, X = Z(I) = {(xi)i∈I ∈ ZI | xi = 0 for almost all i ∈ I } or X = N(I)
0 =

Z(I) ∩ NI
0. For (xi)i∈I , (yi)i∈I ∈ X, we define (xi)i∈I ≤ (yi)i∈I if xi ≤ yi for all i ∈ I.

Then (X,≤) is a lattice, and for all (xi)i∈I , (yi)i∈I ∈ X, we have sup{(xi)i∈I , (yi)i∈I} =
(max{xi, yi})i∈I and inf{(xi)i∈I , (yi)i∈I} = (min{xi, yi})i∈I .

5. Let R be a domain. Then (F(R),⊃) is a lattice, and for all a, b ∈ F(R) we have
sup{a, b} = a∩ b, and inf{a, b} = a+ b. If R is a Dedekind domain, then (F(R)×, ·,⊃)
is a lattice-ordered group.

dedekindmain Theorem and Definition 2.4.9. Let R be a Dedekind domain.
1. Every a ∈ I(R) is a product of prime ideals, and this product representation is unique

up to the order of the factors.
2. Every a ∈ F(R) has a unique representation

a =
∏

p∈P(R)

pνp , where νp ∈ Z , and νp = 0 for almost all p ∈ P(R) .

In this representation we have νp ≥ 0 for all p ∈ P(R) if and only if a ∈ I(R).
For a ∈ F(R) and p ∈ P(R), the integer vp(a) = νp is called the p-adic value of a.

3. For each p ∈ P(R), the map vp : F(R) → Z is a group epimorphism, vp(p) = 1, F(R)
is a free abelian group with basis P(R), and the map

v = (vp)p∈P(R) : F(R) ∼→ Z(P(R)) , given by v(a) = (vp(a))p∈P(R) ,

is an isomorphism of lattice-ordered groups. In particular, if a, b ∈ F(R), then

• a ⊂ b if and only if vp(a) ≥ vp(b) for all p ∈ P(R),

• vp(a + b) = min{vp(a), vp(b)} for all p ∈ P(R), and

• vp(a ∩ b) = max{vp(a), vp(b)} for all p ∈ P(R).
4. For p ∈ P(R), the map

vp : K → Z ∪ {∞} , defined by vp(x) =

{
vp(xR) if x ∈ K× ,

∞ if x = 0 ,

is called the p-adic valuation or p-adic exponent of K. For all x, y ∈ K and p ∈ P(R),
we have

vp(xy) = vp(x) + vp(y) and vp(x+ y) ≥ min{vp(x), vp(y)} .

5. The following assertions are equivalent :
(a) R is factorial.
(b) R is a principal ideal domain.
(c) |C(R)| = 1.
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Proof. 1. Existence : Assume the contrary. Then the set of all non-zero ideals of R which
are not a product of prime ideals contains a maximal element, say a. Then a /∈ P(R), and there
exists some p ∈ P(R) such that a ( p. By Lemma

dedekindlemma
2.4.6, a ( ap−1 ⊂ pp−1 = R, and therefore

ap−1 = p2 · . . . · pr for some r ∈ N and p2, . . . pr ∈ P(R). But then a = pap−1 = pp2 · . . . · pr, a
contradiction.

Uniqueness : Let a = p1 · . . . · pr = q1 · . . . · qs, for some r, s ∈ N0 and p1, . . . , pr, q1, . . . , qs ∈
P(R), and prove uniqueness by induction on r + s. If r0 or s = 0, then r = s = 0, and there
is nothing to do. Thus suppose that r, s ∈ N. Then q1 · . . . · qs ⊂ p1, and thus there exists
some i ∈ [1, s] such that qi ⊂ p1. After renumbering if necessary, we may assume that i = 1 and
obtain p2 · . . . · pr = q2 · . . . · qs. By the induction hypothesis, it follows that r = s and, after
renumbering again if necessary, pi = qi for all i ∈ [2, r].

2. Let a ∈ F(R).
Existence : Let c ∈ R• be such that ca ∈ I(R). Then ca = p1 · . . . ·pr and cR = q1 · . . . ·qs for

some r, s ∈ N0 and p1, . . . , pr, q1, . . . , qs ∈ P(R) by 1, hence a = (cR)−1(ca) = q−1
1 · . . . · q−1

s p1 ·
. . . · pr, and, gathering equal powers, we obtain the existence of a representation as asserted.

Uniqueness : Assume that∏
p∈P(R)

pνp =
∏

p∈P(R)

pµp , where νp, µp ∈ Z , and νp = µp = 0 for almost all p ∈ P(R).

Then it follows that ∏
p∈P(R)
νp>µp

pνp−µp =
∏

p∈P(R)
νp<µp

pµp−νp ,

and by the uniqueness in 1. we obtain νp = µp for all p ∈ P(R).
3. Let a, b ∈ F(R). Then

ab =
∏

p∈P(R)

pvp(a)
∏

p∈P(R)

pvp(b) =
∏

p∈P(R)

pvp(a)+vp(b) ,

and by 2. we obtain vp(ab) = vp(a) + vp(b) for all p ∈ P(R). Hence vp : F(R) → Z is a group
homomorphism, vp(p) = 1 by definition, and therefore vp is surjective.

By 2., F(R) is a free abelian group with basis P(R), and v : F(R) → Z(P(R)) is a group
isomorphism. It remains to prove that v is a lattice isomorphism. We must prove that, for all
a, b ∈ F(R), a ⊂ b holds if and only if vp(a) ≥ vp(b) for all p ∈ P(R).

Let a, b ∈ F(R) and a ⊂ b. Then a = b(b−1a), and since b−1a ⊂ b−1b = R, it follows that
vp(b−1a) ≥ 0 and thus vp(a) = vp(b) + vp(b−1a) ≥ vp(b) for all p ∈ P(R). As to the converse,
assume that vp(a) ≥ vp(b) for all p ∈ P(R). Then γp = vp(a) − vp(b) ≥ 0 for all p ∈ P(R),
γp = 0 for almost all p ∈ P, hence

c =
∏
p∈P

pγp ∈ I(R) , and a = bc ⊂ b .

4. If x, y ∈ K×, then

vp(xy) = vp((xR)(yR)) = vp(xR) + vp(yR) = vp(x) + vp(y) ,

and if xy = 0, this holds trivially. If x, y, x+ y ∈ K×, then (x+ y)R ⊂ xR+ yR, and therefore

vp(x+ y) = vp((x+ y)R) ≥ vp(xR+ yR) = min{vp(xR), vp(yR)} = min{vp(x), vp(y)} .
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Again, if xy(x+ y) = 0, this holds trivially.
5. (a) ⇒ (b) By 1., it suffices to prove that every p ∈ P(R) is a principal ideal. Thus let

p ∈ P(R) and a ∈ p•. Then a /∈ R×, and thus a = p1 · . . . · pr for some r ∈ N and prime elements
p1, . . . , pr ∈ R. Since a ∈ p, we obtain pi ∈ p for some i ∈ [1, r], hence piR ⊂ p, and since every
non-zero prime ideal is maximal, it follows that p = piR.

(b) ⇒ (a) This is well known.
(b) ⇔ (c) By definition. �

Remarks 2.4.10 (Ideal arithmetic in Dedekind domains). Let R be a Dedekind domain.
Every non-zero ideal a ∈ I(R) has a unique representation

a =
∏

p∈P(R)

pvp(a) , where vp(a) ∈ N0 , and vp(a) = 0 for almost all p ∈ P(R).

Hence I(R) is a factorial monoid, I(R)× = {R}, and the map

I(R) → N(P(R))
0 , defined by a 7→ (vp(a))p∈P(R) ,

is an isomorphism. In I(R), divisibility is defined by

a | b ⇐⇒ b = ac for some c ∈ I(R) ⇐⇒ b ⊂ a .

Consequently, (I(R), |) = (I(R),⊃) is a lattice, and the isomorphism I(R) ∼→ N(P(R))
0 as above

is a lattice isomorphism. In (I(R), |), we have

a ∩ b = sup{a, b} = lcm(a, b) =
∏

p∈P(R)

pmax{vp(a), vp(b)}

and
a + b = inf{a, b} = gcd(a, b) =

∏
p∈P(R)

pmin{vp(a), vp(b)} .

In particular, a + b = R if and only if a ∩ b = ab, and every fractional ideal a ∈ F(R) has a
unique representation a = c−1b, where b, c ∈ I(R) and b + c = R.

Theorem 2.4.11. Let R be a Dedekind domain, a ∈ I(R) and a = pe11 · . . . · per
r , where

r ∈ N, p1, . . . , pr ∈ P(R) are distinct and e1, . . . , er ∈ N.

1. For p ∈ P(R), the following assertions are equivalent :
(a) p ∈ {p1, . . . , pr}.
(b) a ⊂ p.
(c) vp(a) ≥ 1.

2. Let a ∈ I(R), p ∈ P(R) and e ∈ N0. Then vp(a) = e if and only if a = peb for some
b ∈ I(R) such that p + b = R.

3. (Chinese Remainder Theorem) There is a ring isomorphism

R/a
∼→ R/pe11 ×. . .×R/p

er
r , given by a+ a 7→ (a+ pe11 , . . . , a+ per

r ) .

Proof. 1. and 2. are obvious, and 3. is well known. �
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dedekindextension Theorem 2.4.12 (Extension Theorem). Let R be a Dedekind domain, K = q(R), L ⊃ K
a finite field extension and S = clL(R). Then S is a Dedekind domain, L = q(S), and the map
j : F(R) → F(S), defined by j(a) = aS = S〈a〉 is a group monomorphism.

In particular, if K is an algebraic number field, then OK is a Dedekind domain.

Proof. CASE 1 : L/K is separable. By Theorem
integralclosure
2.1.6, S is a finitely generated R-module

and a noetherian domain, L = q(S), and by Theorem
mainintegral
2.1.4, S is integrally closed. Let P ⊂ S

be a non-zero prime ideal and p = P ∩ R. By Theorem
integralideal
2.1.5 it follows that p ∈ P(R), hence

R/p is a field, and the inclusion R ↪→ S induces a monomorphism R/p → S/P. We identify
R/p with its image. Then R/p ⊂ S/P is an integral ring extension. By Theorem

integralideal
2.1.5, S/P is

a field and thus P ⊂ S is a maximal ideal. Hence S is a Dedekind domain, and L = q(S).

CASE 2 : L/K is inseparable. Let p = char(K), K ⊃ L an algebraically closed extension
field and L0 ⊂ L the separable closure of K in L. Then there exists some p-power q ∈ N such
that Lq ⊂ L0 and thus L ⊂ L

1/q
0 ⊂ K. By CASE 1, S0 = clL0(R) is a Dedekind domain, and

since the map x 7→ x1/q defines an isomorphism L → L
1/q
0 , it follows that S1/q

0 is a Dedekind
domain and L1/q

0 = q(S1/q). Now we prove :

A. S
1/q
0 = cl

L
1/q
0

(R) (and consequently S
1/q
0 ∩ L = S.)

Proof of A. If x ∈ S
1/q
0 , then xq ∈ S0, hence x is integral over S0, and thus x is integral

over R. As to the converse, suppose that x ∈ L1/q
0 is integral over R, and let xd + ad−1x

d−1 +
. . .+ a1x+ a0 = 0 be an integral equation of x over R, where d ∈ N and a0, . . . , ad−1 ∈ R. Then
it follows that

0 = (xd + ad−1x
d−1 + . . .+ a1x+ a0)q = (xq)d + aqd−1(x

q)d−1 + . . .+ aq1x
q + aq0 .

Hence xq is integral over R, and as xq ∈ L0, it follows that xq ∈ S0 and x ∈ S1/q
0 . �[A.]

Now we prove that every non-zero ideal a ∈ I(S) is invertible. If a ∈ I(S), then ã = aS
1/q
0 ∈

I(S1/q) is S1/q
0 -invertible. Hence there exist n ∈ N, a1, . . . , an ∈ ã and x1, . . . , xn ∈ L

1/q
0 such

that xiã ∈ S1/q
0 for all i ∈ [1, n] and a1x1 + . . .+ anxn = 1. For i ∈ [1, n], we have

ai =
ki∑
j=1

ai,js
1/q
i,j for some ki ∈ N , ai,j ∈ a and si,j ∈ S0 ,

and we obtain

1 =
( n∑
i=1

aixi

)q
=

n∑
i=1

ki∑
j=1

aqi,jsi,jx
q
i =

n∑
i=1

ki∑
j=1

ai,j(si,ja
q−1
i,j x

q
i ) .

Thus it suffices to prove that si,ja
q−1
i,j x

q
i ∈ a−1 for all i ∈ [1, n] and j ∈ [1, ki]. However,

si,ja
q−1
i,j x

q
i ∈ L, and si,ja

q−1
i,j x

q
i a ⊂ si,j(xia)q ⊂ si,j(xiã)q ⊂ S0, and thus si,ja

q−1
i,j x

q
i ∈ a−1.

Obviously, if a ∈ F(R), then aS = S〈a〉 ∈ F(S), and clearly abS = (aS)(bS) for all a, b ∈
F(R). Hence j is a group homomorphism. If a ∈ Ker(j), then aS = S, hence a ⊂ S ∩K = R,
and thus a = R by Theorem

integralideal
2.1.5. �
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decompositionbehavior Remark and Definition 2.4.13. Let R be a Dedekind domain, K = q(R), L ⊃ K a finite
field extension and S = clL(R). If p ∈ P(R), then pS ∈ I(S) and pS 6= S by Theorem

integralideal
2.1.5.

Hence Theorem
dedekindmain
2.4.9 implies

pS = Pe1
1 · . . . ·Per

r , where r ∈ N, P1, . . . ,Pr ∈ P(S) are distinct, and e1, . . . , er ∈ N.

For i ∈ [1, r], the number ei = e(Pi/p) is called the ramification index of Pi/p, and the number
f(Pi/p) = dimR/p S/Pi is called the inertia index or residue class degree of Pi/p. Obviously,
{P1, . . . ,Pr} = {P ∈ P(S) | p ⊂ P} = {P ∈ P(S) | P ∩ R = p}. We say that a prime ideal
P ∈ P(S) lies above p if P∩R = p, and in this case we write P | p, and consequently we obtain

pS =
∏
P | p

Pe(P/p) .

If P ∈ P(S) and p = P ∩R, then P/p is called

• unramified if e(P/p) = 1 and S/P ⊃ R/p is separable, and ramified otherwise;
• tamely ramified if char(R/p) - e(P/p) and S/P ⊃ R/p is separable, and wildely ramified

otherwise.
If p ∈ P(R), then we say that p

• is ramified or ramifies in L if e(P/p) > 1 for at least ond P ∈ P(OL) such that P | p;
• is unramified in L if e(P/p) = 1 for all P ∈ P(OL) such that P | p;
• is fully ramified in L if there is only one P ∈ P(OL) such that P | p, and e(P/p) = [L :K];
• is inert in L if pOL ∈ P(OL);
• splits in L if |{P ∈ OL | P ∩R = p}| > 1;
• splits completely in L if e(P/p) = f(P/p) = 1 for all P ∈ P(OL) such that P | p.

Let K be an algebraic number field and p ∈ P a prime. If p ∈ P(OK), then we write p | p
instead of p | pZ, and we say tha p lies above or divides p. Also, we set e(p/p) = e(p/pZ) and
f(p/p) = f(p/pZ). Note that f(p/p) = dimFp(OK/p) = pf(p/p). Also, in the definitions above,
we speak of the behavior of p in K instead of that of pZ.

2.5. Quotient rings

Definition 2.5.1. A commutative ring R is called local if |max(R)| = 1, and semilocal if
max(R) is finite.

local Theorem 2.5.2. A commutative ring R is local if and only if R \R× is an ideal of R, and
then max(R) = {R \R×}.

Proof. If R\R× is an ideal of R, then obviously max(R) = {R\R×}, and R is local. Thus
assume that R is local with unique maximal ideal m. If a ∈ R \ R×, then a is containes in a
maximal ideal of R by Krull’s Theorem, hence a ∈ m, and therefore m = R \R×. �

semilocaldedekind Theorem 2.5.3. Let R be a semilocal domain. Then every invertible fractional ideal of R
is principal. In particular, every semilocal Dedekind domain is a principal ideal domain.
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Proof. We may assume that R is not a field and max(R) = {p1, . . . , pr} for some r ∈ N.
For j ∈ [1, r], we set

p∗j =
r⋂
i=1
i6=j

pi and obtain p∗j 6⊂ pj .

It suffices to prove that every invertible ideal is principal. Let 0 6= a ⊂ R be an invertible ideal.
For j ∈ [1, r], we have ap∗j 6⊂ apj , we choose some aj ∈ ap∗j \apj , and we set a = a1 + . . .+ar. As
aja

−1 ⊂ R for all j ∈ [1, r], it follows that aa−1 ⊂ R. If i, j ∈ [1, r] and i 6= j, then ai ∈ apj \api,
and therefore a ≡ aj 6≡ 0 mod apj . Hence it follows that aa−1 6⊂ pj for all j ∈ [1, r], and thus
aa−1 = R by Krull’s Theorem. Hence a = aR is a principal ideal. �

quotientremarks Remarks and Definitions 2.5.4 (Quotients). Let R be a domain, K = q(R) and L ⊃ K
and extension field. Let T ⊂ R• be a multiplicatively closed subset (that means, 1 ∈ T and
TT = T ). For a subset X ⊂ L, we define

T−1X = {t−1x | t ∈ T , x ∈ X} .
By definition, X ⊂ T−1X ⊂ T−1L = L.

1. Let S ⊂ L be a subring. Then T−1S ⊂ L is a subring, T−1R ⊂ T−1S, and q(T−1S) =
q(S) ⊂ L. If M ⊂ L is an S-module, then T−1M is a T−1S-module, and if E ⊂ M is
such that M = S〈E〉, then T−1M = T−1S〈E〉.
Proof. Obviously, T−1S ⊂ L is a subring, T−1R ⊂ T−1S, q(T−1S) = q(S) ⊂ L,
T−1M ⊂ L is a T−1S-module, and T−1S〈E〉 ⊂ T−1M . If x

t ∈ T−1M , where x ∈
M = S〈E〉 and t ∈ T , then x = s1u1 + . . . + snun, where sν ∈ S, uν ∈ E, and
x
t = s1

t u1 + . . .+ sn
t un ∈ T−1S〈E〉 ⊂ T−1M . �

2. Let V ⊂ R• be another multiplicatively closed subset and M ⊂ L an R-module. Then
TV ⊂ R and T−1V ⊂ T−1R are multiplicatively closed subsets, and

(T−1V )−1(T−1M) = (TV )−1M .

Proof. Obviously, TV ⊂ R and T−1V ⊂ T−1R are multiplicatively closed subsets. If
x ∈M , t, t′ ∈ T and v ∈ V , then the identities

x
t
v
t′

=
t′x

tv
and

x

tv
=

x
t
v
1

show that (T−1V )−1(T−1M) = (TV )−1M . �

3. If a ∈ F(R), then T−1a = aT−1R ∈ F(T−1R).
Proof. 0 6= T−1a = aT−1R ⊂ K is a T−1R-module. If c ∈ R• is such that ca ⊂ R, then
cT−1a ⊂ T−1R, and thus T−1a ∈ F(T−1R). �

4. If a, b ∈ F(R), then

T−1(a∩b) = T−1a∩T−1b , T−1(a+b) = T−1a+T−1b , and T−1(ab) = T−1aT−1b .

In particular, the map

F(R) → F(T−R) , defined by a 7→ T−1a ,

is a monoid homomorphism. Consequently, a ∈ F(R)× implies T−1a ∈ F(T−1R)×, and
T−1a−1 = (T−1a)−1.
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Proof. Obvious. �

5. If a / R, then T−1a / T−1R, a ⊂ T−1a∩R, and T−1a = T−1R if and only if a∩T 6= ∅.
Proof. If a / R, then obviously T−1a / T−1R and a ⊂ T−1a∩R. If T−1a = T−1R, then
1 = a

t ∈ T
−1a for some a ∈ a and t ∈ T , and thus a = t ∈ a∩T . Conversely, if c ∈ a∩T ,

then 1 = c
c ∈ T

−1a and thus T−1a = T−1R. �

6. If A / T−1R, then A ∩R / R, and A = T−1(A ∩R). In particular, I(T−1R) = {T−1a |
a ∈ I(R)}, and if R is noetherian, then T−1R is also noetherian.
Proof. If A / T−1R, then obviously A ∩ R / R and A ⊃ T−1(A ∩ R). Conversely, if
a
s ∈ A, where a ∈ R and s ∈ T , then a = sas ∈ A∩R and thus a

s ∈ T
−1(A∩R). Together

with 4., this implies I(T−1R) = {T−1a | a ∈ I(R)}. If a / R is a finitely generated
ideal of R, then 1. implies that T−1a is a finitely generated ideal of T−1R. Thus, if R
is noetherian, then so is T−1R. �

quotientprimeideals Theorem 2.5.5. Let R be a domain and T ⊂ R• a multiplicatively closed subset. Then the
maps

{p ∈ spec(R) | p ∩ T = ∅} → spec(T−1R) , defined by p 7→ T−1p

and
spec(T−1R) → {p ∈ spec(R) | p ∩ T = ∅} , defined by P 7→ P ∩R ,

are mutually inverse inclusion-preserving bijective maps.

Proof. If P ∈ spec(T−1R), then P ∩R ∈ spec(R), and P = T−1(P ∩R) by
quotientremarks
2.5.4.6. Thus

we must prove :
A. If p ∈ spec(R) and p ∩ T = ∅, then T−1p ∈ spec(T−1R), and T−1p ∩R = p.

Let p ∈ spec(R), and suppose that a
s
b
t ∈ T−1p for some a, b ∈ R and s, t ∈ T . Then a

s
b
t = c

w
for some c ∈ p and w ∈ T . Thus we obtain abw = cst ∈ p, and as w /∈ p, it follows that a ∈ p or
b ∈ p, and consequently a

s ∈ T
−1p or b

t ∈ T
−1p. Hence T−1p ∈ spec(T−1R).

Obviously, p ⊂ T−1p∩R. To prove the reverse inclusion, let a = c
t ∈ T

−1p∩R, where c ∈ p
and t ∈ T . Then it follows that at = c ∈ p, and as t /∈ p, we get a ∈ p. �

quotientintegral Theorem 2.5.6. Let R ⊂ S be domains and T ⊂ R• a multiplicatively closed subset. Then

clT−1S(T−1R) = T−1clS(R) .

In particular, if R is integrally closed, then T−1R is also integrally closed.

Proof. Suppose that z ∈ clT−1S(T−1R) ⊂ T−1S, say z = x
t , where x ∈ S and t ∈ T . Let(x

t

)d
+
ad−1

td−1

(x
t

)d−1
+ . . .+

a1

t1

(x
t

)
+
a0

t0
= 0

be an integral equation of z over T−1R, where d ∈ N, a0, . . . ad−1 ∈ R and t0, . . . td−1 ∈ T .
Multiplying by tdt0 · . . . · td−1 yields an equation sxd+ bd−1x

d−1 + . . .+ b1x+ b0 = 0, where s ∈ S
and b0, . . . , bd−1 ∈ R. If we multiply this equation by sd−1, we obtain an integral equation for
sx of R, which implies sx ∈ clS(R) and thus x ∈ T−1clS(R).
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Assume now that x ∈ clS(R) and t ∈ T , and let xd + ad−1x
d−1 + . . .+ a1x+ a0 = 0 be an

integral equation for x over R, where d ∈ N and a0, . . . , ad−1 ∈ R. Then we obtain(x
t

)d
+
ad−1

t

(x
t

)d−1
+ . . .+

a1

td−1

x

t
+
a0

td
= 0 , and thus

x

t
∈ clT−1S(T−1R) .

Assume now that R is integrally closed and K = q(R). Then T−1K = K = q(T−1R), and
clK(T−1R) = T−1(clK(R)) = T−1R. Hence T−1R is integrally closed. �

quotientdedekind Theorem 2.5.7. Let R be a Dedekind domain and T ⊂ R• a multiplicatively closed subset.
1. T−1R is a Dedekind domain, and P(T−1R) = {T−1p | p ∈ P(R) , p ∩ T = ∅}.
2. Let p ∈ P(R) be such that p ∩ T = ∅. Then vT−1p(T−1a) = vp(a) for all a ∈ F(R), and

vT−1p = vp : K → Z ∪ {∞}.

Proof. 1. By
quotientremarks
2.5.4.6, R is noetherian, by Theorem

quotientintegral
2.5.6 R is integrally closed, and by

Theorem
quotientprimeideals
2.5.5 it follows that P(T−1R) = {T−1p | p ∈ P(R) , p ∩ T = ∅} and every non-zero

prime ideal of T−1R is maximal. Hence T−1R is a Dedekind domain.
2. If a ∈ F(R), then, by Theorem

quotientprimeideals
2.5.5,

a = pvp(a)
∏

q∈P(R)
q6=p

qvq(a) implies T−1a = (T−1p)vp(a)
∏

q∈P(R)
q6=p , T∩q=∅

(T−1q)vq(a) ,

and therefore vT−1p(T−1a) = vp(a). If x ∈ K×, then vT−1p(x) = vT−1p(xT−1R) = vp(xR) =
vp(x). �

2.6. Localization

Definition 2.6.1. Let R be a domain, K = q(R), L ⊃ K an extension field and p ∈ spec(R).
For a subset X ⊂ L, we call Xp = (R \ p)−1X the localization of X at p. If R = Z and p = pZ
for some prime p ∈ P, we set X(p) = XpZ.

quotientlocalization Theorem 2.6.2. Let R be a domain, K = q(R), L ⊃ K an extension field, M ⊂ L an
R-module, T ⊂ R• a multiplicatively closed subset, p ∈ spec(R) and p ∩ T = ∅. Then T−1M is
a T−1R-module, T−1p ∈ spec(T−1R), T−1R \ T−1p = T−1(R \ p), and (T−1M)T−1p = Mp.

Proof. By
quotientremarks
2.5.4.1, T−1M is a T−1R-module, and by Theorem

quotientprimeideals
2.5.5 we get T−1p ∈

spec(T−1R). If a
t ∈ T−1R, where a ∈ R and t ∈ T , then a

t ∈ T−1p if and only if a ∈ p,
and consequently we obtain T−1R \ T−1p = T−1(R \ p). By

quotientremarks
2.5.4.2 we get

(T−1M)T−1p = (T−1R \ T−1p)−1(T−1M) = T−1(R \ p)−1(T−1M) = (T (R \ p))−1M

= (R \ p)−1M = Mp . �

intersection Theorem 2.6.3. Let R be a domain and K = q(R).
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1. Let L ⊃ K be an extension field and M ⊂ L and R-module. Then

M =
⋂

p∈max(R)

Mp .

2. Suppose that Rp is integrally closed for all p ∈ max(R). Then R is integrally closed.

Proof. 1. It suffices to prove : If x ∈ L and x ∈Mp for all p ∈ max(R), then x ∈M .
Thus let x ∈ L, x ∈Mp for all p ∈ max(R), and let J = {c ∈ R | cx ∈M}. Then J 6⊂ p for

all p ∈ max(R). Indeed, then it follows that J = R, hence 1 ∈ J and x ∈ M . If p ∈ max(R),
then x ∈Mp and therefore sx ∈M for some s ∈ R \ p. Consequently, s ∈ J \ p.

2. Let x ∈ K be integal over R. Then x is integral over Rp for all p ∈ max(R). Hence
x ∈ Rp for all p ∈ max(R), and thus x ∈ R by 1. �

localizationisok Theorem 2.6.4. Let R be a domain and p ∈ spec(R).
1. Rp is a local domain with maximal ideal pp = pRp.
2. Let L ⊂ R be a field and M ⊂ L and R-module.

(a) If M is R-free with basis (u1, . . . , un) ( for some n ∈ N ), then M/pM is R/p-free
with basis (u1 + pM, . . . , un + pM).

(b) Suppose that p ∈ max(R) and n ∈ N. Then pnMp ∩M = pnM , and there is an
R-module isomorphism

ι : M/pnM → Mp/p
nMp , given by ι(a+ pnM) = a+ pnMp for all a ∈M.

By this isomorphism, we identify M/pnM = Mp/p
nMp. In particular, we obtain

R/pn = Rp/p
nRp.

Proof. 1. By Theorem
quotientprimeideals
2.5.5.

2. (a) Obviously, M = R〈u1, . . . , un〉 implies

M/pM = R〈u1 + pM, . . . , un + pM〉 = R/p〈u1 + pM, . . . , un + pM〉 ,

and we must prove linear independence. Thus let a1, . . . , an ∈ R be such that

0 =
n∑
i=1

(ai + p)(ui + pM) =
n∑
i=1

aiui + pM ∈M/pM , hence x =
n∑
i=1

aiui ∈ pM .

Then

x =
m∑
j=1

cjyj for some m ∈ N, c1, . . . , cm ∈ p and y1, . . . , ym ∈M ,

and for all j ∈ [1,m] we have

yj =
n∑
i=1

bj,iui for some bj,1, . . . bj,n ∈ R , and x =
n∑
i=1

( m∑
j=1

bj,icj

)
ui ,

hence

ai =
m∑
j=1

bj,icj ∈ p and ai + p = 0 ∈ R/p for all i ∈ [1, n] .
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(b) Obviously, pnM ⊂ pnMp ∩M . To prove the reverse inclusion, let c ∈ pnMp ∩M , say

c =
m∑
j=1

ajuj
s

, where aj ∈ pn, uj ∈M and s ∈ R \ p .

Since R = pn + sR, there exist some b ∈ pn and t ∈ R such that 1 = b+ st, and consequently

c = bc+ stc = bc+
m∑
j=1

ajtuj ∈ pnM .

In particular, it follows that ι is injective. To prove sujectivity, let z = u
s ∈ Mp, where u ∈ M

and s ∈ R \ p. As above, there exist b ∈ pn and t ∈ R such that 1 = b + st. Then z − ut =
z(1− st) = zb ∈ pnMp, and therefore z + pnMp = ι(ut+ pnM). �

Definition 2.6.5. A domain R is called a discrete valuation domain or dv-domain if it is
a Dedekind domain, and |P(R)| = 1.

dv Theorem 2.6.6. Let R be a domain and K = q(R).
1. R is a dv-domain if and only if R is a local principal ideal domain and not a field.
2. Let R be a dv-domain, P(R) = {p} and π ∈ K such that vp(π) = 1. Then

R = {x ∈ K | vp(x) ≥ 0} , R× = {x ∈ K | vp(x) = 0} ,

and p = {x ∈ K | vp(x) > 0} = R \ R× = πR. If x ∈ K×, then x = πvp(x)u, where
u ∈ R×, and if a ∈ F(R), then a = πvp(a)R.

3. R is a Dedekind domain if and only if R is noetherian and, for all p ∈ max(R), Rp is
a dv-domain.

4. Let R be a Dedekind domain and p ∈ P(R). Then

Rp = {x ∈ K | vp(x) ≥ 0} , vpRp = vp : K → Z ∪ {∞} ,
and if a ∈ F(R), then vpRp(aRp) = vp(a) and dimR/p(a/ap) = 1.

Proof. 1. Let R be a dv-domain. As |P(R)| = 1, it follows that R is local and not a field.
By Theorem

semilocaldedekind
2.5.3, R is a principal ideal domain. Conversely, if R is a local principal ideal

domain and not a field, then R is a Dedekind domain by Theorem
principalisdedekind
2.4.5, and |P(R)| = 1.

2. If P(R) = {p}, then R \ R× = p = πR by Theorem
local
2.5.2, where π ∈ K is any element

satisfying vp(π) = 1 by Theorem
dedekindmain
2.4.9. Now all assertion follow by Theorem

dedekindmain
2.4.9.

3. If R is a Dedekind domain and p ∈ P(R), then Rp is a Dedekind domain by Theorem
quotientdedekind
2.5.7. Assume now that R is noetherian and Rp is a dv-domain for all p ∈ max(R). By Theorem
intersection
2.6.3,

R =
⋂

p∈max(R)

Rp is integrally closed ,

and it remains to prove that every non-zero prime ideal of R is maximal. Thus assume that
0 6= p ⊂ R is a prime ideal, and let p ⊂ R be a maximal ideal such that p ⊂ p. Then
0 6= pRp ⊂ pRp ⊂ Rp are prime ideals, hence pRp = pRp, and p = pRp ∩R = pRp ∩R = p.

4. By Theorem
quotientdedekind
2.5.7 it follows that vpRp = vp : K → Z ∪ {∞} and vpRp(aRp) = vp(a) for

all a ∈ F(R), and by 2. we obtain Rp = {x ∈ K | vp(x) ≥ 0}.



44 2. IDEAL THEORY OF ALGEBRAIC INTEGERS

For the proof of dimR/p(a/ap) = 1, observe that R/p = Rp/pRp and a/ap = aRp/apRp

by Theorem
localizationisok
2.6.4.2. If π ∈ K is an element such that vp(π) = 1, then aRp = πvp(a)Rp and

apRp = πvp(a)+1Rp. The map Rp → aRp/apRp, defined by x 7→ πvp(a)x+apRp, is an Rp-module
epimorphism with kernel πRp = pRp, and thus it defines an isomorphism Rp/pRp

∼→ aRp/apRp,
as asserted. �

2.7. Factorization in extension fields

dedekindextension1 Theorem 2.7.1. Let R be a Dedekind domain, K = q(R), L ⊃ K an extension field,
[L :K] = n, S = clL(R), p ∈ P(R), and pS = Pe1

1 · . . . ·Per
r , where r ∈ N, P1, . . . ,Pr ∈ P(S)

are distinct, ei = vPi(pS) ≥ 1 and fi = dimR/p(S/Pi) for all i ∈ [1, r].

1. Sp = clL(Rp) is a semilocal principal ideal domain, P(Sp) = {P1Sp, . . . ,PrSp} and
pSp = (P1Sp)e1 · . . . · (PrSp)er . S/pS = Sp/pSp, PiSp ∩ Rp = pRp, ei = vPiSp(pSp)
and f(PiSp/pRp) = fi for all i ∈ [1, r].

2. We have
r∑
i=1

eifi = dimR/p(S/pS) ≤ n , and equality holds if and only if Sp is Rp-free.

In particular, equality holds if L/K is separable.

Proof. 1. By Theorem
quotientintegral
2.5.6, Sp = clL(Rp), and by Theorem

dedekindextension
2.4.12 Sp is a Dedekind

domain. Clearly pSp = (pS)p = (P1Sp)e1 · . . . · (PrSp)er , ei = vPiSp(pSp) and PiSp ∩Rp = pRp

for all i ∈ [1, r]. Since P ⊃ p for all P ∈ P(Sp), we obtain P(Sp) = {P1Sp, . . . ,PrSp},
and thus Sp is semilocal. By the Theorems

quotientlocalization
2.6.2 and

localizationisok
2.6.4, we obtain R/p = RP/pRp and

Sp/PiSp = (Sp)PiSp/(PiSp)PiSp = SPi/PiSPi , which implies fi = f(PiSp/pRp) for all i ∈ [1, r].
2. By 1., it suffices to consider Rp instead of R, and thus we may assume that R is a dv-

domain and P(R) = {p}. Then P(S) = {P1, . . . ,Pr}, S is a semilocal principal ideal domain,
and since pS = Pe1

1 · . . . ·Per
r , it follows that

S/pS ∼=
r⊕
i=1

S/Pei
i .

Now we proceed in three steps.
A. dimR/p(S/P

ei
i ) = eifi for all i ∈ [1, r].

Proof of A. Let i ∈ [1, r], e = ei, f = fi and P = Pi. Then we have the descending
sequence of R/p-vector spaces S/Pe ⊃ . . . ⊃ Pj/Pe ⊃ . . . ⊃ Pe−1/Pe ⊃ {0} with quotient
spaces

Wj = (Pj/Pe)/(Pj+1/Pe) ∼= Pj/Pj+1 ∼= S/P for all j ∈ [0, e− 1] by Theorem
dv
2.6.6 .

Consequently,

dimR/p(S/pS) =
e−1∑
j=0

dimR/p(Wj) = e dimR/p(S/P) = ef . �[A.]

B. If S is a free R-module, then S/pS is a free R/p-module of rank n, and if L/K is
separable, then S is a free R-module.
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Proof of B. By the Theorems
localizationisok
2.6.4 and

integralclosure
2.1.6. �[B.]

C. Let m = dimR/p(S/pS) and u1, . . . , um ∈ S such that (u1 + pS, . . . , um + pS) is an
R/p-basis of S/pS. Then (u1, . . . , um) is linearly independent over R, m ≤ n, and
m = n if and only if S is R-free.

Proof of C. Suppose that p = πR.
Assume that (u1, . . . , um) is linearly dependent over R, let c1, . . . , cm ∈ R be such that

c1u1 + . . . + cmum = 0, and k = min{vp(cj) | j ∈ [1,m]} = vp(c1) < ∞. Then π−kc1 + p 6= 0,
and

m∑
j=1

(π−kcj + p)(uj + pS) =
m∑
j=1

π−kcjuj + pS = 0 ∈ S/pS ,

a contradiction. If S is R-free, then it has a basis consisting of n elements, and thus m = n by
Theorem

localizationisok
2.6.4.

Assume now that m = n. Then (u1, . . . , un) is a K-basis of L, and we shall prove that
S = R〈u1, . . . , un〉. Let x ∈ S, x = b1u1 + . . . + bnun, where b1, . . . , bn ∈ K, not all in R, and
assume that k = min{vp(bj) | j ∈ [1,m]} = vp(b1) < 0. Then π−kbj ∈ R for all j ∈ [1, r],
π−1b1 + p 6= 0, and

0 = π−kx+ pS =
m∑
j=1

(π−kbj + p)(uj + S) ∈ S/pS , a contradiction. �

transitivityofef Theorem 2.7.2. Let R be a Dedekind domain, K = q(R), L/K a finite field extension
and K ⊂ M ⊂ L an intermediate field. Let S = clL(R) and T = clM (R) [ then S = clL(T ),
R = K ∩ S and T = M ∩ S ]. Let P ∈ P(S), q = P ∩ T and p = P ∩ R = q ∩ R. Then
e(P/p) = e(P/q) e(q/p), and f(P/p) = f(P/q) f(q/p).

Proof. By definition, pT = qe(q/p)b and qS = Pe(P/q)B, where b ∈ I(T ), B ∈ I(S),
q + b = T and P + B = S. Hence pS = Pe(q/p)e(P/q)bB, and since 1 ∈ q + b and 1 ∈ P + B,
it follows that 1 ∈ (q + b)(P + B) ⊂ P + bB, hence P + bB = S and e(P/p) = e(q/p)e(P/q).

From the finite field extensions R/p ⊂ T/q ⊂ S/P we obtain

f(P/p) = [S/P :R/p] = [S/P :T/q] [T/q :R/p] = f(P/q)f(q/p) . �

galoisdecomposition Theorem 2.7.3. Let R be a Dedekind domain, K = q(R), L/K a finite galois extension,
[L :K] = n, G = Gal(L/K), P ∈ P(S), p = P ∩ R ∈ P(R), e = e(P/p) and f = f(P/p).
Suppose that pS = Pe1

1 ·. . .·Per
r , where P1, . . . ,Pr ∈ P(S) are distinct, e1, . . . , er ∈ N, P1 = P,

e1 = e and f1 = f . Then {P1, . . . ,Pr} = {σP | σ ∈ G}, ei = e and fi = f for all i ∈ [1, r],
and efr = n.

Proof. Let σ ∈ G. Then σ(S) = S, and σ |S : S → S is a ring isomorphism. Hence
σP ∈ P(S), and σP ∩R = σ(P ∩R) = σp = p. Since e = e(P/p), we obtain pS = PeB, where
B ∈ I(S) and P + B = S, pS = σ(P)eσB, and σP + σB = σ(P + B) = σS = S, which
implies e = e(σP/p). Moreover, σ induces an R/p-isomorphism σ∗ : S/P → S/σP , given by
σ∗(a+ P) = σ(a) + σP, and therefore f(σP/p) = dimR/p S/σP = dimR/p S/P = f .

It remains to prove that, for each i ∈ [1, r] there exists some σ ∈ G such that Pi = σP.
Assume the contrary. Then there exists some i ∈ [2, r] such that Pi 6= σP for all σ ∈ G. By the
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Chinese Remainder Theorem, there is some x ∈ S such that x ≡ 0 mod Pi and x ≡ 1 mod σP
for all σ ∈ G. Consequently, σ−1(x) ≡ 1 mod P for all σ ∈ G, and therefore

NL/K(x) =
∏
σ∈G

σ−1(x) ∈ (1 + P) ∩K = 1 + p ⊂ 1 + Pi .

On the other hand, x ∈ Pi implies

NL/K(x) = x
∏

σ∈G\{idL}

σ(x) ∈ xS ⊂ Pi , a contradiction. �

kummersplitting Theorem 2.7.4 (Kummer’s Weak Splitting Law). Let R be a Dedekind domain, K = q(R),
p ∈ P(R), and consider the residue class homomorphism

Rp[X] → Rp/pRp[X] = R/p[X] , g 7→ g .

Let L/K be a finite field extension, S = clL(R) and α ∈ S such that Sp = Rp[α]. Let P ∈ R[X]
be the minimal polynomial of α over K, and P = P

e1
1 · . . . · P er

r , where P1, . . . , Pr ∈ R[X] \ R
are monic, P 1, . . . , P r ∈ R/p[X] are irreducible and distinct, and e1, . . . , er ∈ N. For i ∈ [1, r],
let Pi = pS + Pi(α)S. Then P1, . . . ,Pr ∈ P(S) are distinct, pS = Pe1

1 · . . . · Per
r , and

f(Pi/p) = deg(Pi) for all i ∈ [1, r].

Proof. We set k = R/p and denote by k ⊃ k an algebraically closed extension field. For
i ∈ [1, r], let αi ∈ k be such that P i(αi) = 0. Next we prove :

A. For every i ∈ [1, r], there exists a unique ring homomorphism Φi : S → k(αi) with the
following propoerty : If x ∈ S and x = g(α) for some polynomial g ∈ Rp[X], then
Φi(x) = g(αi).

Proof of A. Let i ∈ [1, r]. Uniqueness is obvious, and if Φi is a map with the asserted
property, then it is a ring homomorphism. Thus it suffices to prove : If x ∈ S and g, g1 ∈ Rp[X]
are such that x = g(α) = g1(α), then g(αi) = g1(αi).

If g, g1 ∈ Rp[X] and g(α) = g1(α), then (g− g1)(α) = 0, hence P | g− g1, P i |P | g− gi, and
therefore g(αi)− g1(αi) = (g − gi)(αi) = 0. �[A.]

If Pi = Ker(Φi), then Pi ∈ P(S), and as Φ |R : R → k is just the residue class homomor-
phism, we get Pi ∩ R = p and f(Pi/p) = dimR/p S/Pi = [k(αi) : k] = deg(Pi). Therefore it
remains to prove the following two assertions :

B. For all i ∈ [1, r], we have Pi = pS + Pi(α)S .
C. pS = Pe1

1 · . . . ·Per
r .

Proof of B. Let i ∈ [1, r]. Then Φi(Pi(α)) = P i(αi) = 0, and therefore it follows that
pS + Pi(α)S ⊂ Ker(Φi) = Pi. To prove the reverse inclusion, let x ∈ Pi and g ∈ Rp[X]
be such that x = g(α). Then g(αi) = Φi(x) = 0, hence P i | g in k[X], say g = P i h for
some h ∈ R[X]. Since k[X] = Rp[X]/pRp[X], we obtain g − Pih ∈ Rp[X] and consequently
g(α) − Pi(α)h(α) ∈ pRp[α] ∩ S = pSp ∩ S = pS by Theorem

localizationisok
2.6.4. Hence it follows that

x = g(α) ∈ pS + Pi(α)S. �[B.]
Proof of C. We have already proved that {P1, . . . ,Pr} ⊂ {P ∈ P(S) | P ∩ R = p}, and

we assert that equality holds. Thus let P ∈ P(S) be such that P ∩ R = p, and consider the
residue class α = α + P ∈ S/P = Sp/Pp ⊃ Rp/pp = k. Since Sp = Rp[α], it follows that
S/P = k[α] = k(α). Since P (α) = 0, it follows that P (α) = 0, and therefore P i(α) = 0 for
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some i ∈ [1, r]. Hence there exists a k-isomorphism S/P = k(α) ∼→ k(αi) mapping α → αi.
Combining it with the residue class homomorphism S → S/P, we obtain a ring homomorphism
Ψ: S → k(αi) such that Ψ(α) = αi, Ψ |R : R → k is the residue class homomorphism, and
consequently Ψ(g(α)) = g(αi) for every polynomial g ∈ Rp[X]. Hence it follows that Ψ = Φi,
and P = Ker(Ψ) = Pi.

Since {P1, . . . ,Pr} = {P ∈ P(S) | P ∩ R = p}, there exist e′1, . . . , e
′
r ∈ N such that

pS = P
e′1
1 · . . . ·Pe′r

r , and we must prove e′i = ei for all i ∈ [1, r]. Since P e11 · . . . ·P er
r −P ∈ pR[X]

and P (α) = 0, it follows that

P1(α)e1 · . . . · Pr(α)er = (P e11 · . . . · P er
r − P )(α) ∈ S ∩ pR[α] ⊂ S ∩ pSp = pS = P

e′1
1 · . . . ·Pe′r

r

and therefore
r∏
i=1

Pei
i =

r∏
i=1

(pS + Pi(α)S)ei ⊂ pS +
r∏
i=1

Pi(α)eiS ⊂ pS +
r∏
i=1

P
e′i
i =

r∏
i=1

P
e′i
i .

Hence it follows that ei ≥ e′i for all i ∈ [1, r], and since Sp = Rp[α] is Rp-free, we obtain

[L :K] =
r∑
i=1

e′if(Pi/p) ≤
r∑
i=1

eif(Pi/p) = degP = [L :K] ,

and thus it follows that ei = e′i for all i ∈ [1, r]. �

kummersplitting1 Corollary 2.7.5. Let p ∈ P a prime. For a polynomial h ∈ Z[X], let h ∈ Fp[X] be the
residue class polynomial. Let K be an algebraic number field, α ∈ OK and p - (OK :Z[α]). Let
P ∈ Z[X] be the minimal polynomial of α, and suppose that P = P

e1
1 · . . . · P er

r ∈ Fp[X], where
r ∈ N, P1, . . . , Pr ∈ Z[X] are monic, and P 1, . . . , P r ∈ Fp[X] are distinct and irreducible.

Then pOK = Pe1
1 · . . . ·Per

r , where Pi = pOK + Pi(α)OK ∈ P(OK) for all i ∈ [1, r].

Proof. By Theorem
kummersplitting
2.7.4, it suffices to prove that OK,(p) = Z(p)[α]. Obviously, Z[α] ⊂ OK

implies Z(p)[α] ⊂ OK,(p). To prove the revers inclusion, suppose that z = c
s ∈ OK,(p), where

c ∈ OK and s ∈ Z \ pZ. Since p - (OK : Z[α]), there exists some m ∈ N such that p - m and
mc ∈ Z[α], which implies z = mc

ms ∈ Z(p)[α]. �

Theorem 2.7.6 (Splitting law for quadratic number fields). Let K = Q(
√
d ) be a quadratic

number field, where d ∈ Z \ {1} is squarefree, and let p ∈ P be a prime.
1. If p 6= 2,

(
d
p

)
= 1 and a ∈ Z is such that a2 ≡ d mod p, then pOK = p+p−, where

p± = pZ + (
√
d± a)OK = OK

〈p,
√
d± a〉 ∈ P(OK) ( p splits in K).

2. If p 6= 2 and
(
d
p

)
= −1, then pOK ∈ P(OK) ( p is inert in K).

3. If p | d, then pOK = p2, where p = pZ +
√
dOK = OK

〈p,
√
d〉 ( p ramifies in K).

4. If p = 2 and d ≡ 3 mod 4, then pOK = p2, where p = 2Z+(
√
d−1)OK = OK

〈2,
√
d−1〉

( 2 ramifies in K).
5. If p = 2 and d ≡ 1 mod 8, then 2OK = p+p−, where

p± = 2Z +
1±

√
d

2
OK = OK

〈
2,

1±
√
d

2
〉
∈ P(OK)

( p splits in K).



48 2. IDEAL THEORY OF ALGEBRAIC INTEGERS

6. If p = 2 and d ≡ 5 mod 8, then 2OK ∈ P(OK) ( 2 is inert in K).

Proof. We apply Theorem
kummersplitting
2.7.4 and Corollary

kummersplitting1
2.7.5. Recall that

OK = Z[
√
d ] if d 6≡ 1 mod 4 , and OK = Z

[1 +
√
d

2

]
if d ≡ 1 mod 4 .

CASE 1 : p 6= 2. Then (OK :Z[
√
d]) - p, X2 − d ∈ Z[X] is the minimal polynomial of

√
d,

and we consider X2 − d ∈ Fp[X].

• If
(
d
p

)
= 1, then d = a2 for some a ∈ Z \ pZ, and X2 − d = (X − a)(X + a) ∈ Fp[X].

Hence pOK = p+p−, where p± = pZ + (
√
d± a)OK = OK

〈p,
√
d± a〉 ∈ P(OK).

• If
(
d
p

)
= −1, then d is not a square in Fp, hence X2 − d ∈ Fp[X] is irreducible, and

therefore pOK ∈ P(OK).

• If p | d, then X2 − d = X2 ∈ Fp[X]. Hence pOK = p2, where p = pZ +
√
dOK =

OK
〈p,
√
d〉 ∈ P(OK).

CASE 2 : p = 2.

• If d ≡ 2 mod 4, then OK = Z[
√
d ], and X2 − d = X2 ∈ F2[X]. Hence 2OK = p2,

where p = 2Z +
√
dOK = OK

〈2,
√
d〉.

• If d ≡ 3 mod 4, then OK = Z[
√
d ], and X2− d = (X − 1)2 ∈ F2[X]. Hence 2OK = p2,

where p = 2Z + (
√
d− 1)OK = OK

〈2,
√
d− 1〉.

• If d ≡ 1 mod 4, then OK =
[

1+
√
d

2

]
, and f = X2 − X + 1−d

4 ∈ Z[X] is the minimal

polynomial of 1+
√
d

2 .
If d ≡ 1 mod 8, then f = X2−X = X(X−1) ∈ F2[X], and therefore 2OK = p+p−,

where p+ = 2Z + 1+
√
d

2 OK and p− = 2Z +
(

1+
√
d

2 − 1
)
OK = 2Z + 1−

√
d

2 OK , hence

p± = OK

〈
2, 1±

√
d

2

〉
∈ P(OK).

If d ≡ 5 mod 8, then f = X2+X+1 ∈ F2[X] is irreducible, and 2OK ∈ P(OK). �

Theorem 2.7.7 (Splitting law for cyclotomic fields). Let n ∈ N≥2 and K = Q(n) = Q(ζn),
where ζn ∈ µ∗n(C). Let p ∈ P be a prime and n = pem, where e ∈ N0, m ∈ N and p - m. Let
f ∈ N be minimal such that pf ≡ 1 mod m. Then f |ϕ(m), and if ϕ(m) = fr, then

pOK = (P1 · . . . ·Pr)ϕ(pe) ,

where P1, . . . ,Pr ∈ P(OK are distinct, and f = f(Pi/p) for all i ∈ [1, r].

Proof. By definition, f = ord(Z/mZ)×(p+mZ), and therefore f |ϕ(m). By Theorem
cyclotomic
2.2.10,

we obtain OK = Z[ζ], and by Theorem
kummersplitting
2.7.4 it suffices to prove that the residue class polynomial

Φn ∈ Fp[X] of the cyclotomic polynomial Φn ∈ Z[X] behaves as follows.

A. Φn = Φϕ(pe)
m .

B. Φm is the product of r distinct irreducible monic polynomials of degree f in Fp[X].
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Proof of A. By induction on m.
m = 1 : Since

Φpe =
Xpe − 1
Xpe−1 − 1

, we get (Xpe−1 − 1)Φpe(Xpe − 1) ,

we obtain

(X − 1)p
e−1

Φpe = (X − 1)p
e

and Φpe = (X − 1)p
e−pe−1

= Φϕ(pe)
1 .

m > 1 : Assume that the assertion holds for all d < m. Since

Xpem − 1 = Φmpe(Xpe−1m − 1)
∏
d |m

1≤e<m

Φdpe ,

we obtain, using the induction hypothesis,

(Xm − 1)p
e

= Φmpe(Xm − 1)p
e−1

∏
d |m

1≤e<m

Φϕ(pe)
d ,

and therefore

(Xm − 1)ϕ(pe) = Φmpe

∏
d |m

1≤e<m

Φd

ϕ(pe)

= Φn

(Xm − 1
Φm

)ϕ(pe)
= (Xm − 1)ϕ(pe) Φn

Φϕ(pe)
m

,

which proves A.
Proof of B. Since Φm |Xm−1, it follows that Φm is separable, and therefore Φm = ψ1·. . .·ψs,

where s ∈ N and ψ1, . . . , ψs ∈ Fp[X] are irreducible, monic and distinct. It suffices to prove that
deg(ψi) = f for all i ∈ [1, s], for then ϕ(m) = deg Φm = sf , and thus s = r.

By definition, Fpf = F(m)
p is a splitting field of Φm. We shall prove that, for all i ∈ [1, s] and

ξ ∈ Fpf , if ψi(ξ) = 0, then ξ ∈ µ∗m(Fpf ), hence Fpf = Fp(ξ) and deg(ψi) = f . Thus let ξ ∈ Ppf

be such that ψi(ξ) = 0 and ord(ξ) = d < m. Since Xm − 1 = (Xd − 1)Φmh for some monic
polynomial h ∈ Z[X], it follows that Xm − 1 = (Xd − 1)Φmh, and since Φm(ξ) = 0, it follows
that ξ is a double root of Xm − 1, a contradiction. � �





CHAPTER 3

Geometric methods

3.1. Geometric lattices

Recall that a finitely generated group A is called free if A ∼= Zn for some n ∈ N. Then A
possesses a (Z-)basis (u1, . . . , un), and the (uniquely determined) integer n is called the rank of
A, n = rk(A).

elementarteilersatz Theorem 3.1.1 (Main Theorem on finitely generated abelian groups). Let A be a finitely
generated abelian group.

1. Let A be free of rank n ∈ N and B ⊂ A a subgroup. Then there exist a basis (u1, . . . , un) of
A, some m ∈ [0, n] and e1, . . . , em ∈ N such that e1 | e2 | . . . | em, and (e1u1, . . . , emum)
is a basis of B.
In particular : B is free, rk(B) ≤ rk(A), A/B ∼= Zn−m ⊕ Z/e1Z ⊕ . . . ⊕ Z/emZ, and
(A :B) <∞ if and only if rk(A) = rk(B).

2. There exist ( uniquely determined ) numbers r, t ∈ N0 and e1, . . . , et ∈ N such that
1 < e1 | e2 | . . . | et and A ∼= Zr ⊕ Z/e1Z⊕ . . .⊕ Z/etZ.

3. Let A be free, B ⊂ A a subgroup and rk(A) = rk(B) = n ∈ N. Let u ∈ An be a basis of
A, v ∈ Bn a basis of B and T ∈ Mn(Z) such that v = uT . Then (A :B) = |det(T )|.

Proof. Elementary Algebra. �

Definition 3.1.2. Let V be an R-vector space and dimR(V ) = n ∈ N.
1. A subset Γ ⊂ V is called a (geometric) lattice if there exist some m ∈ [0, n] and R-

linearly independent vectors v1 . . . , vm ∈ Γ such that Γ = Zv1 + . . .+ Zvm [ then Γ is a
free abelian group, and (v1, . . . , vm) is a basis of Γ ]. We denote by RΓ the R-subspace
of V spanned by Γ. Then dimR RΓ = rk(Γ) = m, and Γ is called complete ( in V ) if
RΓ = V .

2. Let Γ ⊂ V be a lattice, m ∈ [0, n] and (v1, . . . , vm) a basis of Γ. Then the set

G =
{ m∑
j=1

xjvj

∣∣∣ x1, . . . , xm ∈ [0, 1)
}

is called a fundamental parallelotope of Γ. Obviously, G depends on (v1, . . . , vm), and

RΓ =
⊎
{γ + Γ | γ ∈ G } =

⊎
{u+ G | u ∈ Γ } .

In particular, G is a system of representatives of RΓ/Γ in RΓ.

51
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3. Let now V be an euclidean real vector space, Γ ⊂ V a complete lattice and G a fun-
damental parallelotope of Γ. The n-dimensional elementary volume vol(Γ) = vol(G) is
called the volume of Γ. If (v1, . . . , vn) is a basis of Γ, then vol(Γ) = |det(v1, . . . , vn)|.

gitter Theorem 3.1.3. Let V be an R-vector space, n = dimR(V ) ∈ N and Γ ⊂ V a subgroup.
1. The following assertions are equivalent :

(a) Γ is a lattice.
(b) 0 /∈ Γ′ ( 0 is not an accumulation point of Γ ).
(c) Γ ⊂ V is a discrete subset ( that means, Γ′ = ∅ ).

2. Let Γ be a lattice. Then Γ is complete if and only if V/Γ has a bounded system of
representatives in V [ that means, V =

⋃
{Γ +m | m ∈ M } for some bounded subset

M ⊂ V ].

Proof. By the Norm Equivalence Theorem, any two norms on V are equivalent. Hence we
may investigate the topological notions with any suitable norm.

1. (a) ⇒ (b) Let m ∈ [0, n], (u1, . . . , um) a basis of Γ, u = (u1, . . . , um, um+1, . . . , un) an
R-basis of V and ‖ · ‖ : V → R≥0 the norm defined by ‖λ1u1 + . . .+λnun‖ = max{|λ1|, . . . , |λn|}
for all (λ1, . . . , λn) ∈ Rn. Then it follows that Γ ∩ {x ∈ V | ‖x‖ < 1} = {0}, and consequently
0 /∈ Γ′.

(b) ⇒ (c) Assume the contrary, let c ∈ Γ′ and (xn)n≥0 a sequence in Γ \ {c} such that
(xn)n≥0 → c. Then (xn+1 − xn)n≥0 is a sequence in Γ such that (xn+1 − xn)n≥0 → 0, and since
0 /∈ Γ′, there is some m ≥ 0 such that xn = xn+1 for all n ≥ m, a contradiction.

(c) ⇒ (a) Let V0 = RΓ ⊂ V be the subspace of V spanned by Γ, dimR V0 = m ∈ N0

and (u1, . . . , um) ∈ Γm an R-basis of V0. Then Γ0 = Zu1 + . . . + Zum is a lattice in V0,
G0 = {λ1u1 + . . .+ λmum | λ1, . . . , λm ∈ [0, 1) } is the fundamental parallelotope of Γ0, and

Γ ⊂ V0 =
⋃
{u+ Γ0 | u ∈ G0} implies Γ =

⋃
{u+ Γ0 | u ∈ Γ ∩ G0} .

The set Γ∩G0 ⊂ V0 is discrete and bounded, hence finite, and therefore d = (Γ:Γ0) <∞. Thus
we obtain dΓ ⊂ Γ0, hence Γ ⊂ d−1Γ0, and since d−1Γ0 is free with basis (d−1u1, . . . , d

−1um),
it follows that Γ is a free abelian group of rank rk(Γ) = k ≤ m. If (v1, . . . , vk) is a basis of Γ,
then V0 = RΓ = Rv1 + . . .+ Rvk. Hence it follows that k ≥ dimR V0 = m, and we finally obtain
k = m, and that (v1, . . . , vm) is linearly independent over R.

2. If Γ is complete, then every fundamental parallelotope of Γ is a bounded system of
representative of V/Γ. Let now M ⊂ V be a bounded system of representatives of V/Γ. Then
V = Γ + M , we set V0 = RΓ ⊂ V , and we shall prove that V0 = V . Thus let v ∈ V . For
k ∈ N, we set kv = uk +mk, where uk ∈ Γ and mk ∈M . Then v = k−1uk + k−1mk, and as M
is bounded, we obtain (k−1mk)k≥1 → 0. Hence it follows that (k−1uk)k≥1 → v, and therefore
v ∈ V0, since k−1uk ∈ RΓ = V0 for all k ∈ N and V0 ⊂ V is closed. �

diskret Corollary 3.1.4. Let W ⊂ R>0 be a (multiplicative ) subgroup. Then the following asser-
tions are equivalent :

(a) W is discrete . (b) W is cylic . (c) 1 /∈W ′ .

If these conditions are fulfilled, then W = 〈ρ〉, where ρ = min{x ∈ W | x > 1} ( then it follows
that W = 〈ρ−1〉 and ρ−1 = max{x ∈W | x < 1} ).
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Proof. log : R>0 → R is a topological isomorphism. Hence W ⊂ R>0 is discrete if and only
if log(W ) ⊂ R is discrete, W is cyclic if and only if log(W ) ⊂ R is a lattice, and 1 ∈ W ′ if and
only if 0 ∈ log(W )′. Now the assertions follow by Theorem

gitter
3.1.3. �

gitterpunktsatz Theorem 3.1.5 (Minkowski’s Lattice Point Theorem). Let n ∈ N, Γ ⊂ Rn a complete
lattice and X ⊂ Rn a convex subset such that −X = X and λ(X) > 2n vol(Γ) (where λ(X)
denotes the Lebesgue measure of X ). Then X ∩ Γ 6= {0}.

Proof. We prove that there exist v1, v2 ∈ Γ such that

v1 6= v2 and
(1
2
X + v1

)
∩

(1
2
X + v2

)
6= ∅ .

If this is done, then there exist x1, x2 ∈ X such that 1
2x1 + v1 = 1

2x2 + v2, and we obtain
0 6= v1 − v2 = 1

2 [x2 + (−x1)] ∈ X ∩ Γ.
Let G be a fundamental parallelotope of Γ. We assume that, contrary to our assertion,(

1
2X + v

)
v∈Γ

is a family of pairwise disjoint sets. Then

Rn =
⊎
{G − v | v ∈ Γ} implies

1
2
X =

⊎ {
(G − v) ∩ 1

2
X

∣∣∣ v ∈ Γ
}
,

and since λ is σ-additive and translation-invariant, we obtain
1
2n
λ(X) = λ

(1
2
X

)
=

∑
v∈Γ

λ
(
(G − v) ∩ 1

2
X

)
=

∑
v∈Γ

λ
(
G ∩

(1
2
X + v

))
≤ λ(G) = vol(Γ) ,

a contradiction. �

3.2. Minkowski theory of algebraic number fields

Definition 3.2.1. Let K be an algebraic number field and [K : Q] = n = r1 + 2r2, where
r1, r2 ∈ N0, and Hom(K,C) = {σ1, . . . , σn} such that

σj(K) ⊂ R for all j ∈ [1, r1] , and σr1+r2+j = σr1+j for all j ∈ [1, r2] .

Then we call σ1, . . . , σr1 the real embeddings and (σr1+1, σr1+1), . . . , (σr1+r2 , σr1+r2) the pairs
of conjugate complex embeddings of K. The fields σ1(K), . . . , σr1(K) ⊂ R are called the real
conjugates and the field σr1+1(K), . . . , σr1+r2(K) are called the complex conjugates of K. The
algebraic number field K is called totally real if r2 = 0, and totally imaginary if r1 = 0.

The map ϕ : K → Rn, defined by

ϕ(x) =
(
σ1(x), . . . , σr1(x),=σr1+1(x), . . . ,=σr1+r2(x), <σr1+1(x), . . . ,<σr1+r2(x)

)t ∈ Rn ,

is called the geometric embedding of K. It is a Q-vector space monomorphism.

koerpereinbettung Theorem 3.2.2. Let K be an algebraic number field, [K : Q] = n = r1 + 2r2, and suppose
that Hom(K,C) = {σ1, . . . , σn}, where σj(K) ⊂ R for all j ∈ [1, r1] and σr1+r2+j = σr1+j for
all j ∈ [1, r2]. Let ϕ : K → Rn be the geometric embedding and M ⊂ K a complete module.

1. ϕ(M) ⊂ Rn is a complete lattice, and vol(ϕ(M)) = 2−r2
√
|∆(M)|.

2. For every C ∈ R>0, the set MC of all α ∈M satisfying |σν(α)| ≤ C for all ν ∈ [1, n] is
finite.
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3. There exists some α ∈ OK such that K = Q(α) and |σν(α)| < 2n−1|∆K | + 1 for all
ν ∈ [1, n].

Proof. 1. Let (u1, . . . , un) be a basis of M . Then
√
|∆(M)| = |det

(
σν(uj)

)
ν,j∈[1,n]

| 6= 0,
and we shall prove that

|det(ϕ(u1), . . . , ϕ(un))| = 2−r2 |det
(
σν(uj)

)
ν,j∈[1,n]

| .

Then (ϕ(u1), . . . , ϕ(un)) is linearly independent over R, ϕ(M) = Zϕ(u1) + . . .+ Zϕ(un) ⊂ Rn

is a complete lattice, and vol(ϕ(M)) = |det(ϕ(u1), . . . , ϕ(un))| = 2−r2
√
|∆(M)|.

For j ∈ [1, n], let Sj = (σ1(uj), . . . , σr1(uj))
t and Tj = (σr1+1(uj), . . . , σr1+r2(uj))

t. Then
(σ1(uj), . . . , σn(uj))t = (Sj , Tj , T j)t ∈ Cn,

ϕ(uj) =

 Sj
1
2i (Tj − T j)
1
2 (Tj + T j)

 =

I 0 0
0 1

2iI − 1
2iI

0 1
2I

1
2I

 Sj
Tj
T j

 ∈ Cn , and det

I 0 0
0 1

2iI − 1
2iI

0 1
2I

1
2I

 = 2−r2 .

This proves our assertion.
2. Let ‖ · ‖ be the maximum norm of Rn. Then ‖ϕ(x)‖ ≤ max{|σ1(x)|, . . . , |σn(x)|} für all

x ∈ K. If C ∈ R>0, then ϕ(MC) ⊂ {z ∈ ϕ(M) | ‖z‖ ≤ C}, but this set is bounded and discrete
and therefore finite.

3. Let B = 2n−1|∆K | + 1
2 and X = [−B,B]×

(
−1

2 ,
1
2

)n−1 ⊂ Rn. Then X is convex and
−X = X. By 1., ϕ(OK) ⊂ Rn is a complete lattice, and since

2n vol(ϕ(OK)) = 2n−r2
√
|∆K | < 2n |∆K |+ 1 = 2B = λ(X) ,

Theorem
gitterpunktsatz
3.1.5 implies that there is some α ∈ O•

K mit ϕ(α) ∈ X. We shall prove :

K = Q(α), and |σj(α)| < 2n−1|∆K |+ 1 for all j ∈ [1, r1 + r2].

Let m = [K :Q(α)]. Then there are m distinct embeddings τ1, . . . , τm ∈ {σ1, . . . , σn} such that
τj(α) = σ1(α) for all j ∈ [1,m].

CASE 1 : r1 > 0. Then |σ1(α)| ≤ B < 2n−1|∆K | + 1, |σj(α)| < 1
2 < 2n−1|dK | + 1 for all

j ∈ [2, r1], and |σr1+j(α)| ≤ |=σr1+j(α)| + |<σr1+j(α)| < 1 < 2n−1|∆K | + 1 for all j ∈ [1, r2].
Since

1 ≤ |NK/Q(α)| = |σ1(α)|
r1∏
i=2

|σi(α)|
r2∏
i=1

|σr1+i(α)|2 < |σ1(α)|

it follows that σ1 is the unique embedding of K satisfying |σ1(α)| > 1, and therefore we obtain
m = 1 and K = Q(α).

CASE 2 : r1 = 0. Then |=σ1(α)| ≤ B, |<σ1(α)| < 1
2 , |σ1(α)| < B + 1

2 = 2n−1|∆K | + 1,
and |σj(α)| ≤ |=σj(α)|+ |<σj(α)| < 1 < 2n−1|∆K |+ 1 for all j ∈ [2, r2]. Since

1 ≤ |NK/Q(α)| = |σ1(α)|2
r2∏
i=2

|σi(α)|2 < |σ1(α)|2 < |=σ1(α)|2 +
1
4

we obtain |=σ1(α)| > 1
2
.

Hence |=σν(α)| > 1
2 holds only for ν ∈ {1, r2 + 1}. But since =σr2+1(α) = −=σ1(α) 6= =σ1(α),

we get again m = 1 and K = Q(α). �
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gitterpunktanwendung Theorem 3.2.3. A. Let r1, r2 ∈ N0 and n = r1 + 2r2 ∈ N. For a ∈ R>0, we denote by
Ur1,r2(a) the set of all (x1, . . . , xn) ∈ Rn such that

r1∑
j=1

|xj |+ 2
r2∑
j=1

| ixr1+j + xr1+r2+j | < a ,

and for c = (c1, . . . , cr1+r2) ∈ Rr1+r2
>0 , we denote by W (c) the set of all (x1, . . . , xn) ∈ Rn such

that |xj | < cj for all j ∈ [1, r1], and |ixr1+j + xr1+r2+j | < cr1+j for all j ∈ [1, r2].
Then Ur1,r2(a) = −Ur1,r2(a), W (c) = −W (c), Ur1,r2(a) and W (c) are convex,

λ(Ur1,r2(a)) = 2r1
(π

2

)r2 an
n!
, and λ(W (c)) = 2r1πr2d|c|e , where d|c|e =

r1∏
j=1

cj

r2∏
j=1

c2r1+j .

B. Let K be an algebraic number field, [K :Q] = n = r1+2r2, and Hom(K,C) = {σ1, . . . , σn}
such that σj(K) ⊂ R for all j ∈ [1, r1], and σr1+r2+j = σr1+j for all j ∈ [1, r2]. Let M ⊂ K be a
complete module.

1. If c = (c1, . . . , cr1+r2) ∈ Rr1+r2
>0 is such that

d|c|e >
( 2
π

)r2√
|∆(M)| ,

then there exists some α ∈M• such that |σj(α)| < cj for all j ∈ [1, r1 + r2]
2. If a ∈ R>0 is such that

an > n!
( 4
π

)r2√
|∆(M)| ,

then there exists some β ∈M• such that
r1∑
j=1

|σj(β)|+ 2
r2∑
j=1

|σr1+j(β)| < a , and then |NK/Q(β)| <
(a
n

)n
.

3. There exists some α ∈M•, so dass

|NK/Q(α)| ≤ B =
n!
nn

( 4
π

)r2√
|∆(M)| .

Beweis. A. This is an exercise in analysis (use induction on r1 and r2).
B. 1. By Theorem

koerpereinbettung
3.2.2 we obtain

λ(W (c)) = 2r1πr2d|c|e > 2r1+r2
√
|∆(M)| = 2nvol(ϕ(M)) ,

and by Theorem Satz
gitterpunktsatz
3.1.5 this implies W (c)∩ϕ(M) 6= {0}. Hence there exists some α ∈M•

such that σj(α)| < cj for all j ∈ [1, r1 + r2].
2. By Theorem

koerpereinbettung
3.2.2 we obtain

λ(Ur1,r2(a)) = 2r1
(π

2

)r2 an
n!

> 2r1+r2
√
|∆(M)| ,

and by Theorem Satz
gitterpunktsatz
3.1.5 this implies Ur1,r2(a) ∩ ϕ(M) 6= {0}. Hence there exists some

β ∈M• such that
r1∑
j=1

|σj(β)|+ 2
r2∑
j=1

|σr1+j(β)| < a ,
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and by the mean inequality this implies

n

√
|NK/Q(β)| = n

√√√√ r1∏
i=1

|σi(β)|
r2∏
i=1

|σr1+i(β)|2 ≤ 1
n

( r1∑
i=1

|σi(β)|+ 2
r2∑
i=1

|σr1+i(β)|
)
<

a

n
.

3. If q ∈ N is such that qM ⊂ OK , then NK/Q(M) ⊂ NK/Q(q−1OK) ⊂ q−nZ, and therefore
there exists some η ∈ R>0 such that

min
{
|NK/Q(α)|

∣∣ α ∈M , |NK/Q(α)| > B
}

= B + η , and we set a = n
√
nnB + η .

Since an > nnB, 2. implies the existence of some α ∈M• such that

|NK/Q(α)| <
(a
n

)n
=
nnB + η

nn
≤ B + η , and thus |NK/Q(α)| ≤ B . �

hermite Theorem 3.2.4 (Discriminant Theorem of Hermite and Minkowski).
1. Let K be an algebraic number field and [K :Q] = n = r1 + 2r2 ≥ 2 such that K has r1

real embeddings and r2 pairs of conjugate complex embeddings. Then

|∆K | ≥
(π

4

)2r2(nn
n!

)2
> 1 .

2. For every C ∈ R>0 there exist only finitely many algebraic number fields K such that
|∆K | ≤ C.

Proof. By Theorem
gitterpunktanwendung
3.2.3.3, applied with M = OK , there exists some α ∈ O•

K satisfying

|NK/Q(α)| ≤ n!
nn

( 4
π

)r2√
|∆K | ,

and since |NK/Q(α)| ≥ 1, this implies

|∆K | ≥
(π

4

)2r2(nn
n!

)2
≥

(π
4

)n (nn
n!

)2
= Φ(n) , and

Φ(n+ 1)
Φ(n)

=
π

4

(
1 +

1
n

)2n
> 2 .

Since Φ(2) > 2, it follows that Φ(n) > 1 for all n ≥ 2, and

lim
n→∞

Φ(n) = ∞ .

In particular, this implies 1., and for 2. we must prove :

For every n ∈ N und B ∈ R>0 there exist only finitely many algebraic number fields
K ⊂ C such that [K :Q] = n and |∆K | ≤ B.

For B ∈ R>0 and n ∈ N we denote by T (B,n) the set of all algebraic integers α ∈ C of degree
n with conjugates α = α1, . . . , αn ∈ C such that |αν | ≤ B for all ν ∈ [1, n]. By Theorem

koerpereinbettung
3.2.2.3

it suffices to prove that, for all B ∈ R>0 and n ∈ N, the set T (B,n) is finite.
Thus suppose that B ∈ R>0, n ∈ N, α ∈ T (B,n) with conjugates α1, . . . , αn ∈ C, and

let f = Xn + a1X
n−1 + . . . + an−1X + an ∈ Z[X] be the minimal polynomial of α. For every

i ∈ [1, n], we obtain

|ai| =
∣∣∣ ∑
1≤ν1<...<νi≤n

αν1 · . . . · ανi

∣∣∣ ≤ (
n

i

)
Bi ,

and there exist only finitely many polynomials in Z[X] whose coefficients satisfy these inequali-
ties. �
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Definition 3.2.5. Let K be an algebraic number field. Two complete modules M, N ⊂ K
are called equivalent , M ∼ N if there exists some λ ∈ K× such that N = λM .
In particular, two fractional ideals a, b ∈ F(OK) are equivalent if and only if they lie in the
same ideal class C ∈ C(OK).

klassenzahl Theorem and Definition 3.2.6 (Finiteness of the class number). Let K be an algebraic
number field and R ⊂ K an order. Then the set of equivalence classes of complete modules M
such that R(M) = R is finite.
In particular, the group C(OK) is finite. The group CK = C(OK) is called the class group and
hK = |CK | is called the class number of K.

Proof. Let M ⊂ K be a complete module and R(M) = R. By Theorem
gitterpunktanwendung
3.2.3 there exists

some α ∈M• such that

|NK/Q(α)| ≤ B

√
|∆(M)|√
|∆(R)|

mit B =
n!
nn

( 4
π

)r2√
|∆(R)| .

Then Rα ⊂M , hence R ⊂ α−1M , and by Theorem
completemodules
2.2.5 we obtain

(α−1M :R) =

√
|∆(R)|√

|∆(α−1M)|
= |NK/Q(α)|

√
|∆(R)|√
|∆(M)|

≤ B .

Hence it suffices to prove :
For every N ∈ N, there are only finitely many abelian groups A such that R ⊂ A ⊂ K
and (A :R) ≤ N .

If N ∈ N and R ⊂ A ⊂ K is an abelian group such that (A :R) ≤ N , then N !A ⊂ R, hence
R ⊂ A ⊂ N !−1R, and as N !−1R/R is finite, there are only finitely many abelian groups A with
this property.

By definition, CK is the set of equivalence classes of complete modules M ⊂ K such that
R(M) = OK . �

absolutenorm Theorem and Definition 3.2.7. Let K be an algebraic number field. For a fractional ideal
a ∈ F(OK) we call

N(a) =
∏

p∈P(OK)

(OK :p)vp(a) ∈ Q>0 the absolute norm of a.

1. If p ∈ P, p ∈ P(OK) and p | p, then N(p) = pf(p/p).
2. N : F(OK) → Q>0 is a group homomorphism, N(a) = (OK :a) for all a ∈ I(OK), and

N(xOK) = |NK/Q(x)| for all x ∈ K×.

3. For all B ∈ R>0, there are only finitely many a ∈ I(OK) such that N(a) ≤ B.

Proof. 1. If p ∈ P, p ∈ P(OK) and p | p, then N(p) = (OK :p) = pdimFp (OK/p) = pf(p/p).
2. By definition, N : F(OK) → Q>0 is a group homomorphism. To prove N(a) = (OK :a),

we use induction on (OK : a). If a = OK or a ∈ P(OK), there is nothing to do. Thus suppose
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that a = bp, where b ∈ I(OK) is such that N(b) = (OK : b) by induction hypothesis, and
p ∈ P(OK). Then b/a = b/bp ∼= OK/p by Theorem

dv
2.6.6, and therefore

N(a) = N(b)N(p) = (OK :b)(OK :p) = (OK :b)(b :a) = (OK :a) .

If x ∈ K×, we set x = u−1z, where u, z ∈ O•
K , and we obtain

N(xOK) =
N(zOK)
N(uOK)

=
(OK :zOK)
(OK :uOK)

=
|NK/Q(z)|
|NK/Q(u)|

= |NK/Q(x)| .

3. Obvious. �

Theorem 3.2.8. Let K be an algebraic number field. In every ideal class C ∈ CK there
exists some ideal a ∈ I(OK) such that

N(a) ≤ n!
nn

( 4
π

)r2√
|∆K | .

Proof. Let C ∈ CK and b ∈ I(OK) such that b ∈ C−1. By Theorem
gitterpunktanwendung
3.2.3, there exists

some α ∈ b• such that
|NK/Q(α)| ≤ n!

nn

( 4
π

)r2√
|∆(b)| .

Since |∆(b)| = |∆(OK)|N(b)2, we obtain
√
|∆(b)| =

√
|∆K |N(b), and if a = αb−1, then

a ∈ I(OK), a ∈ C, and

N(a) = N(b)−1|NK/Q(α)| ≤ n!
nn

( 4
π

)r2√
|∆K | . �

einheitensatz Theorem 3.2.9 (Dirichlet’s Unit Theorem). Let K be an algebraic number field, R ⊂ K
an order and [K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings and r2
denotes the number of pairs of conjugate complex embeddings of K.

1. R× consists of all α ∈ R such that |NK/Q(α)| = 1.
2. µ(R) is a finite cyclic group, and R× ∼= µ(R)×Zr1+r2−1. Explicitly : There exist some
ζ ∈ µ(R) and ε1, . . . , εr1+r2−1 ∈ R× such that every ε ∈ R× has a unique representation

ε = ζd
r1+r2−1∏
i=1

εki
i where d ∈ [0, ord(ζ)− 1] and k1, . . . , kr1+r2−1 ∈ Z .

Every such (r1 + r2− 1)-tuple (ε1, . . . , εr1+r2−1) is called a system of fundamental units
of R [ or of K if R = OK ].

Proof. 1. If α ∈ R, then α ∈ R× if and only if 1 = (R :αR) = |NK/Q(α)|.
2. Let Hom(K,C) = {σ1, . . . , σn}, where σj(K) ⊂ R for all j ∈ [1, r1] and σr1+r1+j = σr1+j

for all j ∈ [1, r2]. We wet r = r1 + r2 define the logarithmic embedding λ : K → Rr by

λ(x) = (λ1(x), . . . , λr(x)) , where λj(x) = lj log |σj(x)| and lj =

{
1 if j ∈ [1, r1] ,
2 if j ∈ [r1 + 1, r] ,

and we consider the hyperplane H = {(x1, . . . , xr) ∈ Rr | x1 + . . . + xr = 0} ⊂ Rr. Then
dimRH = r − 1, and λ(R×) ⊂ H. By Theorem

koerpereinbettung
3.2.2, the sets

{α ∈ R | |σj(α)| ≤ C for all j ∈ [1, r]} and {α ∈ R | |λj(α)| ≤ C for all j ∈ [1, r]}
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are finite for every C ∈ R>0. Hence λ(R×) ⊂ H is a discrete subgroup, and thus a lattice, say
λ(R×) ∼= Zs for some s ∈ [0, r − 1]. The map λ |R× : R× → λ(R×) is an epimorphism, and
since λ(R×) is free, there exists a homomorphism j : λ(R×) → R× such that λ◦j = idλ(R×). In
particular, R× = Ker(λ |R×)×j(λ(R×)) ∼= Ker(λ |R×)×λ(R×).

Since Ker(λ |R×) = {α ∈ R× | λ(α) = 0} ⊂ K× is a finite subgroup, it follows that
Ker(λ |R×) = µ(R) is cyclic. Thus it remains to prove that s = r − 1, that is, λ(R×) ⊂ H is
a complete lattice. By Theorem

gitter
3.1.3 we must prove that H/λ(R×) has a bounded system of

representatives in H.
For x = (x1, . . . , xr) ∈ Rr

>0 and α ∈ K× we define

L(x) = (l1 log x1, . . . , lr log xr) , d|x|e =
r∏
i=1

xlii , αx =
(
|σ1(α)|x1, . . . , |σr(α)|xr

)
,

and we obtain d|αx|e = |NK/Q(α)| d|x|e and L(αx) = λ(α) + L(x).
Now we consider the set S = {x ∈ Rr

>0 | d|x|e = 1}. By definition L(S) = H, and εS = S
for all ε ∈ R× ist. We shall prove :

A. There exists a bounded set T ⊂ S such that

S =
⋃
ε∈R×

εT .

Proof of A. Let c = (c1, . . . , cr) ∈ Rr
>0 and α1, . . . , αN ∈ R• such that

d|c|e >
( 2
π

)r2√
|∆(R)| ,

and {α1R, . . . , αNR} is the set of all principal ideals a ⊂ R satisfying (R :a) ≤ d|c|e. Now we set

X =
r∏
i=1

(0, ci) ⊂ Rr
>0 and T = S ∩

N⋃
ν=1

α−1
ν X ⊂ S .

Then T is bounded, εT ⊂ S for all ε ∈ R×, and it suffices to prove that

S ⊂
⋃
ε∈R×

εT .

Thus suppose that y = (y1, . . . , yr) ∈ S. Then
r∏
i=1

(y−1
i ci)li = d|c|e >

( 2
π

)r2√
|∆(R)| ,

and by Theorem
gitterpunktanwendung
3.2.3 there exists some α ∈ R• such that |σi(α)| < y−1

i ci for all i ∈ [1, r]. But
then it follows that αy ∈ X, and

(R :αR) = |NK/Q(α)| =
r∏
i=1

|σi(α)|li <
r∏
i=1

(y−1
i ci)li = d|c|e .

Hence there exists some ν ∈ [1, N ] such that αR = ανR, which implies ε = α−1αν ∈ R×, and
since ε−1ανy = αy ∈ X it follows that y ∈ εα−1

ν X ∩ S ⊂ εT . �[A.]



60 3. GEOMETRIC METHODS

Now it is easy to finish the proof. Since T ⊂ S is bounded, there exists some B ∈ R>0 such
that T ⊂ [B−1, B]r. Then L(T ) ⊂ Rr is also bounded, and as

H = L(S) =
⋃
ε∈R×

L(εT ) =
⋃
ε∈R×

⋃
t∈T

{
λ(ε) + L(t)

}
= λ(R×) + L(T ) ,

we see that L(T ) ⊂ H is a bounded system of representatives of H/λ(R×). �

quadreinheiten Theorem 3.2.10 (Quadratic orders). Let ∆ ∈ Z be not a square, ∆ ≡ 0 or 1 mod 4 and
K = Q(

√
∆ ). Then

O∆ =
{u+ v

√
∆

2

∣∣∣ u, v ∈ Z , u ≡ v∆ mod 2 }

is the unique order in K with discriminant ∆. If (OK :O∆) = f , then ∆ = ∆Kf
2, and

O×
∆ =

{u+ v
√

∆
2

∣∣∣ u, v ∈ Z , |u2 −∆v2| = 4
}
.

1. If ∆ < 0, then O×
∆ = µ(O∆), and

|O×
∆| =


6 if ∆ = −3 ,
4 if ∆ = −4 ,
2 if ∆ < −4 .

2. If ∆ > 0 and ε∆ = min{ε ∈ O×
∆ | ε > 1 }, then O×

∆ = 〈−1, ε∆〉 ∼= Z/2Z×Z.

Proof. Let d ∈ Z be the squarefree kernel of ∆ and ∆ = dq2, where q ∈ N. Then ∆K = s2d
and ∆ = ∆Kf

2, where

s =

{
1 if d ≡ 1 mod 4 ,
2 if d 6≡ 1 mod 4 ,

and ∆ = ∆Kf
2 , where f =

q

s
∈ N .

Let now σ ∈ {0, 1} be such that ∆K ≡ σ mod 2, and set

ω =
σ +

√
∆K

2
.

Then OK = Z[ω] = Z + Zω, and we assert that OK,f = Z + Zfω is the unique order with
discriminant ∆ in K. Indeed, OK,f ⊂ OK is an order, and since (OK :OK,f ) = f , it follows that
∆(OK,f ) = ∆Kf

2 = ∆. Conversely, if R ⊂ OK is an order of discriminant ∆ = ∆Kf
2, then

(OK :R) = f , hence fω ∈ R, OK,f ⊂ R, and as (OK :R) = (OK :OK,f ) = f , it follows that
R = OK,f . Hence we must prove that

OK,f =
{u+ v

√
∆

2

∣∣∣ u, v ∈ Z , u ≡ v∆ mod 2 } .

Note that ∆ = ∆Kf
2 ≡ fσ mod 2. If x ∈ OK,f , then x = a+ bfω for some a, b ∈ Z, hence

x = a+ b
fσ + f

√
∆K

2
=

2a+ bfσ + b
√

∆
2

, and 2a+ bfσ ≡ b∆ mod 2 .

Conversely, if u, v ∈ Z and u ≡ v∆ ≡ vfσ mod 2, then

u+ v
√

∆
2

=
u− vfσ

2
+ vf

σ +
√

∆K

2
∈ Z + Zfω = OK,f .
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Now it follows that

O×
∆ =

{
α ∈ O∆

∣∣ |NK/Q(α)| = 1
}

=
{u+ v

√
∆

2

∣∣∣ u, v ∈ Z , |u2 −∆v2| = 4
}

(observe that |u2 −∆v2| = 4 implies u ≡ v∆ mod 2 ).
If ∆ < 0, then it is easily checked that, for all (u, v) ∈ Z2, we have |u2−v2∆| = u2+v2|∆| = 4

if and only if we are in one of the following cases :
• ∆ = −3, (u, v) ∈ {(±2, 0), (±1± 1), (±1,∓1) };
• ∆ = −4, (u, v) ∈ {(±2, 0), (0,±1) };
• ∆ < −4, (u, v) ∈ {(±2, 0) }.

If ∆ > 0, then O∆ ⊂ R, hence µ(O∆) = {±1}, and by Theorem
einheitensatz
3.2.9 (whith r1 = 2 and

r2 = 0) we get O×
∆ = 〈−1, ε0〉 ∼= Z/2Z×Z for some ε0 ∈ O×

∆ \ {±1}.
As {ε1 ∈ O×

∆ | O×
∆ = 〈−1, ε1〉 } = {±ε0,±ε−1

0 }, there exists a unique ε∆ ∈ R>1 such that
O×

∆ = 〈−1, ε∆〉. Then O∆ ∩R>1 = {εn∆ | n ∈ N}, and therefore ε∆ = min{ε ∈ O×
∆ | ε > 1 }. �





CHAPTER 4

Valuations and local methods

4.1. Absolute values and valuations

Definition 4.1.1. Let K be a field.
1. A ( discrete rank one ) valuation of K is a surjective map v : K → Z ∪ {∞} such that

the following properties hold for all x, y ∈ K :
(V1) v(x) = ∞ if and only if x = 0.
(V2) v(xy) = v(x) + v(y).
(V3) v(x+ y) ≥ min{v(x), v(y)}.

2. An absolute value of K is a map | · | : K → R≥0 such that the following properties hold
for all x, y ∈ K :

(A1) |x| = 0 if and only if x = 0, and there exists some x ∈ K× such that |x| 6= 1.
(A2) |xy| = |x| |y|.
(A3) |x+ y| ≤ |x|+ |y|.

3. An absolute value | · | : K → R≥0 is called non-archimedean or ultrametric if

|x+ y| ≤ max{|x|, |y|} for all x, y ∈ K .

Otherwise | · | is called archimedean.
4. An absolute value | · | : K → R≥0 is called discrete if it is non-archimedean and |K×|

is a discrete subset of R>0. By Corollary
diskret
3.1.4 this holds if and only if |K×| = 〈ρ〉 for

some ρ ∈ (0, 1).
5. If | · | is a [ (non-)archimedean, discrete ] absolute value, then we call (K, | · |) a [ (non-)

archimedean, discrete ] valued field.
6. Let (K, |·|) and (K ′, |·|′) be valued fields. A value homomorphism ϕ : (K, |·|) → (K ′, |·|′)

is a field homomorphism ϕ : K → K ′ satisfying |ϕ(x)|′ = |x| for all x ∈ K.

valuationexamples Remarks and Examples 4.1.2.
1. Let R be a Dedekind domain, K = q(R) and p ∈ P(R). Then vp : K → Z ∪ {∞} is a

valuation, called the p-adic valuation of K (see Theorem and Definition
dedekindmain
2.4.9). For a

prime p ∈ P, the valuation vp = vpZ : Q → Z∪ {∞} is called the p-adic valuation of Q.
2. Let | · | : K → R≥0 be an absolute value. If x ∈ K×, then |x| > 1 if and only if |x−1| < 1,

and thus there exist x, y ∈ K such that 0 < |x| < 1 < |y|. If ϕ : K0 → K is a field
homomorphism, then | · |ϕ = | · |◦ϕ : K0 → R≥0 is an absolute value of K0 if and only if
there is some x ∈ K×

0 such that |ϕ(x)| 6= 1. In particular, if K0 ⊂ K is a subfield, then
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| · | �K0 is an absolute value of K0 if and only if there exists some x ∈ K×
0 such that

|x| 6= 1.
3. The ordinary absolute value of complex numbers will be denoted by | · |∞. For every

subfield K ⊂ C, | · |∞ : K → R≥0 is an archimedean absolute value (we write again
| · |∞ instead of | · |∞ � K).

4. Let K be an algebraic number field, [K : Q] = n = r1 + 2r2, and suppose that
Hom(K,C) = {σ1, . . . , σn} such that σj(K) ⊂ R for all j ∈ [1, r1] and σr1+r2+j = σr1+j

for all j ∈ [1, r2]. For j ∈ [1, r1 + r2], define

| · |∞,j = | · |∞◦σj : K → R≥0 by |a|∞,j = |σj(a)|∞ .

Then | · |∞,1, . . . , | · |∞,r1+r2 are distinct archimedean absolute values of K [ indeed, if
i, j ∈ [1, r1 + r2] and i 6= j, then there is some a ∈ K such that σi(a) 6= σj(a) and
σi(a) 6= σj(a). Hence there exists some g ∈ N such that |g + σi(a)|∞ 6= |g + σj(a)|∞,
and consequently |g + a|∞,i 6= |g + a|∞,j ].

5. Let K be a field, v : K → Z ∪ {∞} be a valuation and ρ ∈ (0, 1). Then

| · |v,ρ : K → R≥0 , defined by |a|v,ρ = ρv(a) (with ρ∞ = 0 )

is a absolute value. We call | · |v,ρ an absolute value associated with v .
If R is a Dedekind domain, K = q(R) and p ∈ P(R), then we set | · |p,ρ = | · |vp,ρ and
call | · |p,ρ a p-adic absolute value.
If p ∈ P is a prime, then the absolute value | · |p = | · |pZ,p−1 : Q → R≥0 is called the
p-adic absolute value. For a ∈ Q×, we have |a|p = p−vp(a). In particular, we have the
product formula ∏

p∈P∪{∞}

|a|p = 1 .

Let K be an algebraic number field. For p ∈ P(OK), we define the normalized p-adic
absolute value | · |p : K → R≥0 by

|a|p = N(p)−vp(a) for all a ∈ K .

6. Let (K, | · |) be a discrete valued field and ρ ∈ (0, 1) such that |K×| = 〈ρ〉. We define

v : K → Z ∪ {∞} by v(a) =
log |a|
log ρ

( = ∞ for a = 0 ) for all a ∈ K .

Then v is a valuation and | · | = | · |v,ρ is an absolute value associated with v. We call v
the valuation associated with | · |.

Theorem 4.1.3 (Elementary properties of absolute values and valuations). Let K be a field.
1. Let | · | : K → R≥0 be an absolute value.

(a) | · | � K× : K× → R>0 is a group homomorphism, |z| = 1 for all z ∈ µ(K), and
|− a| = |a| for all a ∈ K.

(b) For all x, y ∈ K, we have
∣∣|x| − |y|∣∣ ≤ |x− y| ≤ |x|+ |y|.

(c) If | · | is non-archimedean, x, y ∈ K and |x| 6= |y|, then |x+ y| = max{|x|, |y|}.
(d) If | · | is non-archimedean, n ∈ N≥2, x1, . . . , xn ∈ K and x1 + . . . + xn = 0, then

there exist i, j ∈ [1, n] such that i 6= j, and |xi| = |xj | = max{|x1|, . . . , |xn|}.
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2. Let v : K → Z ∪ {∞} be a valuation.
(a) v �K× : K× → Z is a group epimorphism, and v(z) = 0 for all z ∈ µ(K). In

particular, v(1) = 0 and v(−a) = v(a) for all a ∈ K.
(b) If x, y ∈ K and v(x) 6= v(y), then v(x+ y) = v(x− y) = min{v(x), v(y)}.
(c) If n ∈ N≥2, x1, . . . , xn ∈ K and x1 + . . . + xn = 0, then there exist i, j ∈ [1, n]

such that i 6= j, and v(xi) = v(xj) = min{v(x1), . . . , v(xn)}.

Proof. 1. (a) By definition, | · | � K× is a homomorphism. If z ∈ µ(K) and n ∈ N is such
that zn = 1, then 1 = |zn| = |z|n, and thus |z| = 1. If a ∈ K, then |− a| = |− 1| |a| = |a|.

(b) Let x, y ∈ K. Then |x− y| = |x+ (−y)| ≤ |x| + |− y| = |x| + |y|. On the other hand,
|x| = |(x− y) + y| ≤ |x− y|+ |y| implies |x| − |y| ≤ |x− y|, and if we interchange x and y, we
get |y| − |x| ≤ |y − x| = |x− y|. Hence

∣∣|x| − |y|∣∣ ≤ |x− y|.
(c) Assume that x, y ∈ K and |x| < |y|. Then

|y| = |(x+ y) + (−x)| ≤ max{|x+ y|, |x|} ≤ max{|x|, |y|} = |y| ,

and thus equality holds.
(d) Assume the contrary. Then there exist x1, . . . , xn ∈ K such that x1 + . . .+ xn = 0, and

there is some i ∈ [1, n] such that |xi| > |xj | for all j ∈ [1, n] \ {i}. We may assume that i = 1.
Then |x2 + . . .+xn| ≤ max{|x2|, . . . , |xn|} < |x1|, and therefore 0 = |x1 +(x2 + . . .+xn)| = |x1|,
a contradiction.

2. Consider an associated absolute value and apply 1. �

nichtarch Theorem 4.1.4. Let K be a field and F ⊂ K its prime ring.
1. A map | · | : K → R≥0 is a non-archimedean absolute value of K if and only if it satisfies

(A1), (A2) and
(A3′) For all x ∈ K, if |x| ≤ 1, then |1 + x| ≤ 1.

2. Let | · | : K → R≥0 be an absolute value. Then the following assertions are equivalent :
(a) (K, | · |) is non-archimedean.
(b) |x| ≤ 1 for all x ∈ F .
(c) |F | is bounded.

In particular, if char(K) 6= 0, then every absolute value of K is non-archimedean.

Proof. 1. If | · | is a non-archimedean absolute value, x ∈ K and |x| ≤ 1, then it follows
that |1 + x| ≤ max{|1|, |x|} ≤ 1. Conversely, suppose that | · | : K → R≥0 satisfies (A1),
(A2) and (A3′). We must prove that |x + y| ≤ max{|x|, |y|} ≤ |x| + |y| for all x, y ∈ K.
We may assume that x, y ∈ K× and |x| ≤ |y|. Then |xy−1| = |x| |y|−1 ≤ 1 and therefore
|x+ y| = |y|(1 + |xy−1|) ≤ |y| ≤ |x|+ |y|.

2. (a) ⇒ (b) If x ∈ F , then there exists some n ∈ N0 such that x = ±n 1F , and thus it
suffices to prove that |n 1F | ≤ 1 for all n ∈ N. We use induction on n. For n = 0, there is
nothing to do. If n ≥ 0 and |n 1F | ≤ 1, then |(n+ 1)1F | = |n1F + 1F | ≤ 1 by 1.

(b) ⇒ (c) Obvious.
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(c) ⇒ (a) Let B ∈ R be such that |z| ≤ B for all z ∈ F , x, y ∈ K and n ∈ N. Then

|x+ y|n = |(x+ y)n| =
∣∣∣ n∑
i=0

(
n

i

)
xiyn−i

∣∣∣ ≤ n∑
i=0

∣∣∣(n
i

)
1K

∣∣∣ |x|i|y|n−i ≤ (n+ 1)Bmax{|x|, |y|}n ,

and therefore |x+y| ≤ n
√

(n+ 1)B max{|x|, |y|}. For n→∞ we get |x+y| ≤ max{|x|, |y|}. �

Remarks and Definitions 4.1.5. Let (K, | · |) be a valued field. We define

d = d|·| : K×K → R≥0 by d(x, y) = |x− y| for all x, y ∈ K .

Then d is a metric on K. The topology, defined by d, is called the | · |-topology. For a ∈ K and
ε ∈ R>0 we consider the open ε-ball Bε(a) = B

|·|
ε (a) = {x ∈ K | |x−a| < ε} = a+Bε(0). Then

{Bε(a) | ε ∈ R>0 } is a fundamental system of open neighborhoods of a in the | · |-topology.
If (xn)n≥0 is a sequence in K and x ∈ K, then (xn)n≥0 converges to x in the | · |-topology

if (|xn − x|)n≥0 → 0, and in this case we write

(xn)n≥0
|·|→ x or | · |- lim

n→∞
xn = x .

Endowed with the | · |-topology, K is a topological field, and | · | : K → R≥0 is continuous. In
particular, for all sequences (xn)n≥0, (yn)n≥0 in K and x, y ∈ K the following assertions hold :

• If (xn)n≥0
|·|→ x and (yn)n≥0

|·|→ y, then (xn ± yn)n≥0
|·|→ x± y and (xnyn)n≥0

|·|→ xy.

• If (xn)n≥0
|·|→ x and x 6= 0, then there exists some m ≥ 0 such that xn 6= 0 for all

n ≥ m, and (x−1
n )n≥m

|·|→ x−1.

• If (xn)n≥0
|·|→ x, then (|xn|)n≥0 → |x|.

Proofs are as in elementary analysis.
If ϕ : (K, | · |) → (K ′, | · |′) is a value homomorphism of valued fields, then ϕ : K → ϕ(K) is

a topological map.
Two absolute values | · |1 and | · |2 of a field K are called equivalent, |·1 ∼ | · |2 if they induce

the same topology.

equivalent Theorem 4.1.6. Let K be a field.
1. Let |·|1, |·|2 : K → R≥0 be absolute values. Then the following assertions are equivalent :

(a) | · |1 ∼ | · |2.
(b) For all x ∈ K, |x|1 < 1 if and only if |x|2 < 1.
(c) There exists some s ∈ R>0 such that | · |2 = | · |s1.

2. Let | · | : K → R≥0 be an absolute value and s ∈ (0, 1). Then | · |s is also an absolute
value.

3. Let v : K → Z ∪ {∞} be a valuation. For i ∈ {1, 2}, let ρi ∈ (0, 1) and | · |i = | · |v,ρi.
Then

| · |2 = | · |s1 , where s =
log ρ2

log ρ1
.

In particular, any two absolute values associated with a valuation are equivalent. Con-
versely, equivalent discrete absolute values have the same associated valuation.
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4. Let K0 ⊂ K be a subfield and | · |1, | · |2 : K → R≥0 absolute values of K such that
| · |1 �K0 = | · |2 �K0 is an absolute value of K0. Then | · |1 ∼ | · |2 implies | · |1 = | · |2.

Proof. (a) ⇒ (b) If x ∈ K and i ∈ {1, 2}, then |x|i < 1 if and only if (|xn|i)n≥0 → 0, and

this holds if and only if (xn)n≥0
|·|i→ 0. However, if | · |1 ∼ | · |2, then (xn)n≥0

|·|1→ 0 if and only if

(xn)n≥0
|·|2→ 0.

(b) ⇒ (c) If x ∈ K× and |x|1 = 1, then also |x|2 = 1. Indeed, otherwise it follows that
either |x|2 > 1 or |x−1|2 > 1, hence |x|1 > 1 or |x−1|1 > 1, but never |x|1 = 1.

We set S = {x ∈ K× | |x|1 > 1}. It suffices to prove that there exists some s ∈ R>0 such
that |x|2 = |x|s1 for all x ∈ S. Indeed, if x ∈ K× and |x|1 < 1, then x−1 ∈ S, and therefore
|x|2 = |x−1|−1

2 = (|x−1|s1)−1 = |x|s1, and if |x|1 = 1, then |x|2 = 1 and thus also |x|2 = |x|s1.
Hence it follows that |x|2 = |x|s1 for all x ∈ K.

We shall prove : For all x, y ∈ S and r ∈ Q, we have
log |x|1
log |y|1

< r if and only if
log |x|2
log |y|2

< r . (A)

Suppose that (A) holds. Then we obtain, for all x, y ∈ S :

log |x|1
log |y|1

=
log |x|2
log |y|2

, hence
log |x|2
log |x|1

=
log |y|2
log |y|1

= s ∈ R>0 .

Consequently, it follows that log |x|2 = s log |x|1 and thus |x|2 = |x|s1 for all x ∈ S.
For the proof of (A) suppose that x, y ∈ S and r = m

n ∈ Q, where m ∈ Z and n ∈ N. Then
we obtain, for i ∈ {1, 2},

log |x|i
log |y|i

< r =
m

n
⇐⇒ log |xn|i < log |ym|i ⇐⇒ log

∣∣∣ xn
ym

∣∣∣
i
< 0 ⇐⇒

∣∣∣ xn
ym

∣∣∣
i
< 1 .

By (b), we have ∣∣∣ xn
ym

∣∣∣
1
< 1 if and only if

∣∣∣ xn
ym

∣∣∣
2
< 1 ,

hence (A) holds, and we are done.
(c) ⇒ (a) Obvious.
2. Obviously, | · |s satisfies (A1) and (A2). Thus it remains to prove (A3) and it suffices

to do this for a, b ∈ K×. Thus let a, b ∈ K× and set α = (|a|s + |b|s)1/s ∈ R>0. Then

|a|
α
≤ 1 ,

|b|
α
≤ 1 , and therefore 1 =

( |a|
α

)s
+

( |b|
α

)s
≥ |a|

α
+
|b|
α
.

Hence it follows that |a|+ |b| ≤ α, and consequently |a+ b|s ≤ (|a|+ |b|)s ≤ αs = |a|s + |b|s.
3. For all x ∈ K, we have |x|2 = ρ

v(x)
2 = ρ

sv(x)
1 = |x|s1. Assume now that | · |1 and | · |2 are

equivalent absolute values of K, let s ∈ R>0 be such that | · |2 = | · |s1, and |K×|1 = 〈ρ〉. Then
|K×|2 = 〈ρs〉, and for all x ∈ K we obtain

v2(x) =
log |x|2
log ρs

=
s log |x|1
s log ρ

=
log |x|1
log ρ

= v1(x) ,

and therefore v1 = v2 is a valuation associated with both | · |1 and | · |2.
4. By assumption, there exists some x ∈ K0 such that |x|1 = |x|2 > 1. If | · |1 ∼ | · |2, then

| · |2 = | · |s1 for some s ∈ R>0, and |x|s1 = |x|2 = |x|1 implies s = 1. �
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wat Theorem 4.1.7 (Weak Approximation Theorem). Let K be a field, r ∈ N, and suppose
that | · |1, . . . , | · |r are pairwise not equivalent absolute values of K.

1. There exists some z ∈ K such that |z|1 > 1 and |z|i < 1 for all i ∈ [2, r].
2. Let (x1, . . . , xr) ∈ Kr.

(a) For every ε ∈ R>0, there exists some x ∈ K such that |x−xi|i < ε for all i ∈ [1, r].

(b) There exists a sequence (x(n))n≥0 in K such that (x(n))n≥0
|·|i→ xi for all i ∈ [1, r].

Proof. 1. By induction on r. For r = 1, there is nothing to do.
r = 2 : By Theorem

equivalent
4.1.6, there exist α, β ∈ K such that |α|1 < 1, |α|2 ≥ 1, |β|2 < 1 and

|β|1 ≥ 1. Then it follows that z = α−1β ∈ K, |z|1 > 1 and |z|2 < 1.
r ≥ 3 , r − 1 → r : By the induction hypothesis, there exist x, y ∈ K satisfying |x|1 > 1,

|x|i < 1 for all i ∈ [2, r − 1], |y|1 > 1 and |y|r < 1.
CASE 1 : |x|r ≤ 1. For n ≥ 1, we set zn = xny ∈ K. Then (|zn|1)n≥1 = (|x|n1 |y|1)n≥1 →∞,

(|zn|i)n≥1 = (|x|ni |y|i)n≥1 → 0 for all i ∈ [2, r − 1], and |zn|r = |x|nr |y|r < 1 for all n ≥ 1.
Therefore, for n� 1, z = zn has the desired properties.

CASE 2 : |x|r > 1. For n ≥ 1, we set

zn =
xny

1 + xn
and obtain |zn|1 =

∣∣∣ xny

1 + xn

∣∣∣
1

=
|y|1

|1 + x−n|1
≥ |y|1

1 + |x|−n1

.

Hence (|zn|1)n≥1 → |y|1 > 1, and therefore |zn|1 > 1 for n� 1. Since

|zn|r =
∣∣∣ xny

1 + xn

∣∣∣
r

=
|y|r

|1 + x−n|r
≤ |y|r

1− |x|−nr
and

( |y|r
1 + |x|−nr

)
n≥1

→ |y|r < 1 ,

it follows that |zn|r < 1 for n� 1. For i ∈ [2, r − 1], we get

|zn|i =
∣∣∣ xny

1 + xn

∣∣∣
i
≤ |x|ni |y|i

1− |x|ni
and

( |x|ni |y|i
1− |x|ni

)
n≥1

→ 0 ,

and therefore |zn|i < 1 for n� 1. Hence again, for n� 1, z = zn has the desired properties.
2. For every i ∈ [1, r], 1. implies the existence of some zi ∈ K such that |zi|i > 1 and

|zi|j < 1 for all j ∈ [1, r] \ {i}. For n ≥ 1, let

y
(n)
i =

zni
1 + zni

, hence
(
y

(n)
i

)
n≥1

|·|i→ 1 and
(
y

(n)
i

)
n≥1

|·|j→ 0 for all j ∈ [1, r] \ {i} .

Then we set

x(n) =
r∑
j=1

y
(n)
j xj and obtain (x(n))n≥1

|·|i→ xi for all i ∈ [1, r].

In particular, it follows that |x(n)− xi|i < ε for all sufficiently large n ∈ N and all i ∈ [1, r]. �

nichtarch1 Theorem 4.1.8. Let (K, | · |) be a non-archimedean valued field.
1. If R is a Dedekind domain, K = q(R) and |x| ≤ 1 for all x ∈ R, then | · | = | · |p,ρ for

some p ∈ P(R) and ρ ∈ (0, 1).
2. If K is an algebraic number field, then | · | ∼ | · |p for some p ∈ P(OK).
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Proof. 1. We set p = {x ∈ R | |x| < 1}, and we assert that p ∈ P(R). Obviously,
R \ p = {x ∈ R• | |x| = 1} is multiplicatively closed, hence p is a prime ideal, and since |z| 6= 1
for some z ∈ K×, there exists some x ∈ R• such that |x| < 1. Hence p 6= {0}, p ∈ P(R), and
if π ∈ p \ p2, then ρ = |π| ∈ (0, 1) and vp(π) = 1. If x ∈ K×, then x = πvp(x)u, where u ∈ R×p
and thus u = rs−1 for some r, s ∈ R \ p. Hence it follows that |x| = |π|vp(x) = |x|p,ρ, and thus
| · | = | · |p,ρ as asserted.

2. By 1., it suffices to prove that |x| ≤ 1 for all x ∈ OK . Assume to the contrary that |x| > 1
for some x ∈ OK , and let xd+ad−1x

d−1 + . . .+a1x+a0 = 0 be an integral equation for x, where
d ∈ N and a0, . . . , ad−1 ∈ Z. By Theorem

nichtarch
4.1.4, we obtain |ai| ≤ 1 for all i ∈ [0, d − 1], and

therefore |x|d = |ad−1x
d−1+. . .+a1x+a0| ≤ max{|x|i | i ∈ [0, d−1]} < |x|d, a contradiction. �

valueq Theorem 4.1.9. Let ‖ · ‖ : Q → R≥0 be an absolute value.

1. If ‖ · ‖ is non-archimedean, then ‖ · ‖ ∼ | · |p for some prime p ∈ P.

2. If ‖ · ‖ is archimedean, then there exists some s ∈ (0, 1] such that ‖ · ‖ = | · |s∞.

Proof. 1. By Theorem
nichtarch1
4.1.8.2.

2. By Theorem
nichtarch
4.1.4 there exists some m ∈ N such that ‖m‖ > 1. Let now k, n ∈ N be

arbitrary, n ≥ 2, and let the n-adic digit expansion of mk be given by

mk = a0 + a1n+ . . .+ asn
s , where s ∈ N0 , a0, . . . , as ∈ [0, n− 1] and as 6= 0 .

Then ns ≤ mk, hence s log n ≤ k logm, and since ‖ai‖ = ‖1 + . . .+ 1‖ ≤ ai < n for all i ∈ [0, s],
we obtain

‖m‖k = ‖mk‖ ≤
s∑
i=0

‖ai‖ ‖n‖i < (s+ 1)n max{1, ‖n‖s}

≤
(k logm

log n
+ 1

)
n max

{
1, ‖n‖(k logm)/ logn

}
.

Hence

‖m‖ ≤ k

√
kn

( logm
log n

+
1
k

)
max

{
1, ‖n‖logm/ logn

}
, and, as k →∞, ‖m‖ ≤ ‖n‖logm/ logn ,

and therefore

‖n‖ > 1 and
log ‖m‖
logm

≤ log ‖n‖
log n

.

In particular, we may interchange m and n. Hence we obtain

log ‖m‖
logm

=
log ‖n‖
log n

for all m, n ∈ N≥2 . and we set s =
log ‖m‖
logm

∈ R>0 .

Then it follows that ‖n‖ = ns = |n|s∞ for all n ∈ N, and thus also ‖x‖ = |x|s∞ for all x ∈ Q.
Since 2s = |2|s∞ = ‖2‖ ≤ ‖1‖+ ‖1‖ = 2, we finally get s ≤ 1. �
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4.2. Completions

Definition 4.2.1. Let (K, | · |) be a valued field.
1. A sequence (xn)n≥0 in K is called a (| · |)-Cauchy sequence if, for all ε ∈ R>0, there

exists some n0 ≥ 0 such that |xm − xn| < ε for all m, n ≥ n0.
2. (K, | · |) is called complete if every Cauchy sequence in K is convergent.
3. A completion of (K, | · |) is a complete valued field (K ′, | · |′) such that

• K ⊂ K ′ is a subfield, and | · |′ � K = | · |.
• K is dense in K ′ (every element of K ′ is the | · |′-limit of a sequence in K ).

Remarks 4.2.2. Let (K, | · |) be a valued field.
1. Every convergent sequence is a Cauchy sequence. [ Proof : As in elementary analysis ].
2. If (xn)n≥0 is a Cauchy sequence in K, then (|xn|)n≥0 is a convergent sequence in R.

[ Proof : By Cauchy’s convergence criterion, since
∣∣|xn| − |xm|

∣∣ ≤ |xn − xm| for all
m, n ≥ 0 ].

3. Let | · |′ be an absolute value of K which is equivalent to | · |. Then a sequence in K is a
| · |′-Cauchy sequence if and only if it is a | · |-Cauchy sequence, and (K, | · |) is complete
if and only if (K, | · |′) is complete. [ Proof : Obvious ].

(R, | · |∞) and (C, | · |∞) are complete archimedean valued fields.

completion Theorem 4.2.3 (Completion Theorem). Let (K, | · |) be a valued field.
1. (K, | · |) has a completion.
2. Let (K∗, |·|∗) be a complete valued field, f : (K, |·|) → (K∗, |·|∗) a value homomorphism

and (K ′, | · |′) a completion of (K, | · |). Then there exists a unique value homomorphism
f ′ : (K ′, | · |′) → (K∗, | · |∗) such that f ′ |K = f .

3. Let (K1, | · |1) be another valued field and ϕ : (K, | · |) → (K1, | · |1) a value isomorphism.
Let (K ′, | · |′) be a completion of (K, | · |) and (K ′

1, | · |′1) a completion of (K1, | · |1). Then
there exists a unique value isomorphism ϕ′ : (K ′, | · |′) → (K ′

1, | · |′1) such that ϕ′ |K = ϕ.
In particular, if (K ′, | · |′) and (K ′′, | · |′′) are completions of K, then there exists a

unique value isomorphism φ : (K ′, | · |′) → (K ′′, | · |′′) such that φ |K = idK .
4. Let (K∗, |·|∗) be a complete valued field such that K ⊂ K∗ is a subfield and |·|∗ � K = |·|.

Let K ⊂ K∗ be the closure of K in K∗. Then (K, | · |∗ � K) is a completion of (K, | · |).
In particular, K ⊂ K∗ is closed if and only if (K, | · |) is complete.

5. Let (K ′, | · |′) be a completion of (K, | · |) and s ∈ (0, 1). Then (K ′, | · |′s) is a completion
of (K, | · |s).

Proof. 1. Let CS be the set of all Cauchy sequences and ZS the set of all sequences
converging to 0 in K. For two sequences x = (xn)n≥0 , y = (yn)n≥0 and � ∈ {+,−, ·}, we
define x�y = (xn � yn)n≥0. For a ∈ K, we denote by c(a) = (a)n≥0 the constant sequence with
value a.

I. (CS,+, ·) is a local ring with maximal ideal ZS, and c : K → CS is a ring monomorphism.
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Proof of I. It is easily checked that CS is a commutative ring, c : K → CS is a ring
homomorphism and ZS ⊂ CS is an ideal. In order to show that ZS ⊂ CS is a maximal ideal,
we prove that, for all x ∈ CS \ ZS, there exists some y ∈ CS such that xy ∈ c(1) + ZS.

Thus let x = (xn)n≥0 ∈ CS \ ZS. Then there exists some η ∈ R>0 such that, for all k ≥ 0
there is some n ≥ k such that |xn| ≥ η. We define y = (yn)n≥0, where yn = x−1

n if xn 6= 0, and
yn = 0 if xn = 0. We must prove that y ∈ CS and xn 6= 0 for all n � 1. Let ε ∈ R>0, and
choose some ε∗ ∈ (0, η) such that ε∗(η − ε∗)−2 < ε. As x ∈ CS, there exists some n1 ≥ 0 such
that |xm−xn| < ε∗ for all n ≥ m ≥ n1. Let n0 ≥ n1 be such that |xn0 | ≥ η. For all n ≥ m ≥ n0

we obtain |xn| ≥ |xn0 | − |xn0 − xn| > η − ε∗ > 0 and

|yn − ym| =
∣∣∣ 1
xn

− 1
xm

∣∣∣ =
|xn − xm|
|xnxm|

<
ε∗

(η − ε∗)2
< ε . �[I.]

Now we define K∗ = CS/ZS, j : K → K∗ by j(x) = c(x) + ZS, and | · |∗ : K∗ → R≥0 by

|(xn)n≥0 + ZS|∗ = lim
n→∞

|xn| for all (xn)n≥0 ∈ CS .

It is easily checked that this definition does not depend on the representing Cauchy sequence
(xn)n≥0, | · |∗ is an absolute value and j : (K, | · |) → (K∗, | · |∗) is a value homomorphism.

II. If (xn)n≥0 is a Cauchy sequence in K, then (j(xn))n≥0
|·|∗→ (xk)k≥0 + ZS. In particular,

j(K) is dense in K∗.
Proof of II. Let (xn)n≥0 be a Cauchy sequence in K and ε ∈ R>0. Then there exists some

n0 ≥ 0 such that |xn − xk| ≤ ε for all n, k ≥ n0. Now we obtain, for all n ≥ n0,∣∣j(xn)− (
(xk)k≥0 + ZS

)∣∣∗ = |(xn − xk)k≥0 + ZS|∗ = lim
k→∞

|xn − xk| ≤ ε, ,

and therefore (j(xn))n≥0
|·|∗→ (xk)k≥0 + ZS. �[II.]

III. (K∗, | · |∗) is complete.
Proof of III. Let (x(n))n≥0 be a | · |∗-Cauchy sequence in K∗. For n ∈ N, let yn ∈ K be

such that |x(n) − j(yn)|∗ < 1
n (by II.). For all m ≥ n ≥ 0, we obtain

|yn − ym| = |j(yn − ym)|∗ = |j(yn)− j(ym)|∗

≤ |x(n) − x(m)|∗ + |x(n) − j(yn)|∗ + |x(m) − j(ym)|∗ < |x(n) − x(m)|∗ +
1
n

+
1
n
,

and since (x(n))n≥0 is a Cauchy sequence, it follows that (yn)n≥0 ∈ CS, and therefore

y = (yn)n≥0 + ZS = | · |∗- lim
n→∞

j(yn) ∈ K∗ .

Since |x(n) − y|∗ ≤ |x(n) − j(yn)|∗ + |j(yn)− y|∗, it follows that (x(n) |·|
∗
→ y. �[III.]

By the Exchange Lemma, there exists a valued field (K ′, | · |′) and a value isomorphism
j′ : (K ′, | · |′) → (K∗, | · |∗) such that K ⊂ K ′ and j′ |K = j. By II. and III. (K∗, | · |∗) is a
completion of (j(K), | · |∗ � j(K)), and therefore (K ′, | · |′) is a completion of (K, | · |).

2. Uniqueness : Let f ′ : (K ′, | · |′) → (K∗, | · |∗) be a value homomorphism such that

f ′ |K = f . Let x′ ∈ K ′ and (xn)n≥0 a sequence in K such that (xn)n≥0
|·|′→ x′. Then

f ′(x′) = | · |∗- lim
n→∞

f ′(xn) = | · |∗- lim
n→∞

f(xn) ,

and thus f ′ is uniquely determined by f .
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Existence : For x′ ∈ K ′, let (xn)n≥0 be a sequence in K such that (xn)n≥0
|·|′→ x′. We

assert that the sequence (f(xn))n≥0 converges in K∗, and that the limit only depends on x′.
Indeed, for m ≥ n ≥ 0, we obtain |f(xn)− f(xm)|∗ = |f(xn − xm)|∗ = |xn − xm| = |xn − xm|′,
and as (xn)n≥0 is a Cauchy sequence in K ′, it follows that (f(xn)n≥0 is a Cauchy sequence in

K∗ and thus convergent. If (x′n)n≥0 is another sequence in K such that (x′n)n≥0
|·|′→ x′, then

(xn − x′n)n≥0
|·|′→ 0, and therefore (f(xn)− f(x′n))n≥0 = (f(xn − x′n))n≥0

|·|∗→ 0.
For x′ ∈ K ′ as above, we define

f ′(x′) = | · |∗- lim
n→∞

f(xn) ∈ K∗ .

If x ∈ K, we use the constant sequence (x)n≥0 to define f ′(x), and we obtain f ′(x) = f(x).
Hence f ′ |K = f . If x′, y′ ∈ K ′, we consider sequences (xn)n≥0 , (yn)n≥0 in K such that

(xn)n≥0
|·|′→ x′ and (yn)n≥0

|·|′→ y′. Then (f(xn))n≥0
|·|∗→ f ′(x′), (f(yn))n≥0

|·|∗→ f ′(y′), and if

� ∈ {+, ·}, then (xn � yn)n≥0
|·|′→ x′ � y′, and therefore

f ′(x′ � y′) = | · |∗- lim
n→∞

f(xn � yn) = | · |∗- lim
n→∞

(
f(xn) � f(yn)

)
= | · |∗- lim

n→∞
f(xn) � | · |∗- lim

n→∞
f(yn) = f ′(x′) � f ′(y′) .

Hence f ′ is a field homomorphism, and since

|f ′(x′)|∗ = lim
n→∞

|f(xn)|∗ = lim
n→∞

|xn| = lim
n→∞

|xn|′ = |x′|′ ,

it follows that f ′ is a value homomorphism.

3. By 2., there exist unique value homomorphisms ϕ′ : (K ′, | · |′) → (K ′
1, | · |′1) such that

ϕ′ |K = ϕ, and ϕ′1 : (K ′
1, | · |′1) → (K ′, | · |′) such that ϕ′1 |K1 = ϕ−1, and we must prove that ϕ′

is an isomorphism. But ϕ′1◦ϕ′ : (K ′, | · |′) → (K ′, | · |′) and ϕ′◦ϕ′1 : (K ′
1, | · |′1) → (K ′

1, | · |′1) are
value homomorphisms such that ϕ′1◦ϕ′ |K = idK = idK′ |K and ϕ′◦ϕ′1 |K1 = idK1 = idK′

1
|K1.

By the uniqueness in 2. it follows that ϕ′1◦ϕ′ = idK′ and ϕ′◦ϕ′1 = idK′
1
. In particular, ϕ′ is an

isomorphism.

4. It suffices to prove that every | · |∗-Cauchy sequence in K converges in K. Thus let
(xn)n≥0 be a | · |∗-Cauchy sequence in K. Since (K∗, | · |∗) is complete, there exists some x ∈ K∗

such that (xn)n≥0
|·|∗→ x, and thus x ∈ K.

5. By Theorem
equivalent
4.1.6, | · |s and | · |′s are absolute values, | · | ∼ | · |s and | · |′ ∼ | · |′s. Hence

the assertion follows.

Remarks and Definitions 4.2.4. Let (K, | · |) be a valued field and V a K-vector space.

1. A ( | · |-compatible) norm on V is a map ‖ · ‖ : V → R≥0 such that the following
properties hold for all u, v ∈ V and λ ∈ K,:

(N1) ‖u‖ = 0 if and only if u = 0.

(N2) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
(N3) ‖λu‖ = |λ| ‖u‖.
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2. Let ‖ · ‖ : V → R≥0 be a norm. The map V ×V → R≥0, defined by (u, v) 7→ ‖u− v‖, is
a metric and defines a topology on V , called the ‖ · ‖-topology. For a ∈ V and ε ∈ R>0,
we define the open ε-ball of a with respect to ‖ · ‖ by

B‖·‖
ε (a) = {u ∈ V | ‖u− a‖ < ε} = a+B‖·‖

ε (0) .

Then {B‖·‖
ε (a) | ε ∈ R>0} is a fundamental system of open neighborhoods of a. A

sequence (un)n≥0 in V converges to u ∈ V in the ‖ · ‖-topology if (‖un − u‖)n≥0 → 0,
and in this case we write

(un)n≥0
‖·‖→ u or ‖ · ‖- lim

n→∞
un = u .

A sequence (un)n≥0 in V is called a ‖ · ‖-Cauchy sequence if for every ε ∈ R>0 there
exists some n0 ≥ 0 such that ‖un − um‖ < ε for all m ≥ n ≥ n0.
Every convergent sequence in V is a ‖·‖-Cauchy sequence, and V is called ‖·‖-complete,
if every ‖ · ‖-Cauchy sequence converges.

3. Two norms ‖ · ‖1 and ‖ · ‖2 on V are called equivalent if they induce the same topology.
Obviously, ‖ · ‖1 and ‖ · ‖2 are equivalent if and only if there exist C1, C2 ∈ R>0 such
that ‖u‖2 ≤ C1‖u‖1 and ‖u‖1 ≤ C2‖u‖2 for all u ∈ V .
If ‖ · ‖1 and ‖ · ‖2 on V are equivalent norms, then a sequence in V is a ‖ · ‖1-Cauchy
sequence if and only if it is a ‖ · ‖2-Cauchy sequence, and V is ‖ · ‖1-complete if and only
if it is ‖ · ‖2-complete.

normequivalence Theorem 4.2.5 (Norm Equivalence Theorem). Let (K, | · |) be a complete valued field and
V a finite-dimensional K-vector space. Then any two | · |-compatible norms on V are equivalent,
and V is complete with respect to each of them.

Proof. We consider first the case V = Kp for some p ∈ N, and define the maximum
norm ‖ · ‖0 = ‖ · ‖(p)

0 : Kp → R≥0 by ‖((x1, . . . , xp)‖0 = max{|x1|, . . . , |xp|}. Then ‖ · ‖0 is a
| · |-compatible norm on Kp, and

B‖·‖0
ε (a) =

p∏
i=1

B|·|
ε (ai) for each a = (a1, . . . , ap) ∈ Kp and ε ∈ R>0 .

Hence the ‖ · ‖0-topology on Kp is the product topology of (K, | · |). In particular, a sequence
(x(n))n≥0 = ((x(n)

1 , . . . , x
(n)
p )n≥0 converges to x = (x1, . . . , xp) in the ‖ · ‖0-topology if and only

if (x(n)
i )n≥0

|·|→ xi for all i ∈ [1, p], and (x(n))n≥0 is a ‖ · ‖0-Cauchy sequence if and only if
(x(n)
i )n≥0 is a Cauchy sequence in (K, | · |) for all i ∈ [1, p]. Hence Kp is ‖ · ‖0-complete. We

prove :
A. Every | · |-compatible norm on Kp is equivalent to ‖ · ‖0.
Proof of A. By induction on p. Let ‖ · ‖ be a | · |-compatible norm on Kp.
p = 1 : Then | · ‖0 = | · | : K → R≥0, and for all a ∈ K we obtain ‖a‖ = |a| ‖1‖ = ‖1‖ ‖a‖0.
p ≥ 2 , p− 1 → p : Let (e1, . . . , ep) be the canonical basis of Kp. If a = (a1, . . . , ap) ∈ Kp,

then

‖a‖ =
∥∥∥ p∑
i=1

aiei

∥∥∥ ≤ p∑
i=1

|ai| ‖ei‖ ≤ ‖a‖0

p∑
i=1

‖ei‖ ,
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and it remains to prove that there exists some C ∈ R>0 such that ‖a‖0 ≤ C ‖a‖ for all
a ∈ Kp. We assume the contrary. Then it follows that, for every n ∈ N, there exists some
a(n) = (a(n)

1 , . . . , a
(n)
p ) ∈ Kp such that ‖a(n)‖0 > n‖a(n)‖. For n ∈ N, let j(n) ∈ [1, p] be such

that ‖a(n)‖0 = |a(n)
j(n)|. Then there exists some j ∈ [1, p] and an infinite set T ⊂ N0 such that

j(n) = j for all n ∈ T . We may assume that j = p and (a(n))n∈T = (a(n))n≥1. Then it follows
that ‖a(n)‖0 = |a(n)

p | > n‖a(n)‖ for all n ≥ 1, we set

b(n) =
1

a
(n)
p

a(n) and obtain ‖b(n)‖0 =
1

|a(n)
p |

‖a(n)‖0 = 1 > n‖b(n)‖ , hence ‖b(n)‖ < 1
n
,

and thus (b(n))n≥1
‖·‖→ 0 ∈ Kp. Note that b(n) = (b(n)

1 , . . . , b
(n)
p−1, 1) for all n ≥ 1.

Now we define π : Kp → Kp−1 by π(x1, . . . , xp) = (x1, . . . , xp−1), ν : Kp−1 → Kp by
ν(x1, . . . , xp−1) = (x1, . . . , xp−1, 0), and ‖ · ‖∗ = ‖ · ‖◦ν : Kp−1 → R≥0. Then ‖x‖∗ = ‖ν(x)‖ for
all x ∈ Kp−1, and ‖ · ‖∗ is a | · |-compatible norm on Kp−1. By the induction hypothesis, ‖ · ‖∗

is equivalent to then maximum norm ‖ · ‖(p−1)
0 of Kp−1, and thus Kp−1 is ‖ · ‖∗-complete.

For all m ≥ n ≥ 1, we obtain (observing that b(n)
p = b

(m)
p = 1 )

‖π(b(n))− π(b(m)‖∗ = ‖π(b(n) − b(m))‖∗ = ‖ν◦π(b(n) − b(m))‖

= ‖b(n) − b(m)‖ ≤ ‖b(n)‖+ ‖b(m)‖ < 1
n

+
1
m
.

It follows that (π(b(n))n≥1 is a ‖ · ‖∗-Cauchy sequence in Kp−1, and thus it is convergent, say

(π(b(n))n≥1
‖·‖∗→ b∗ ∈ Kp−1. Since ‖ν◦π(b(n))− ν(b∗‖ = ‖ν(π(b(n))− b∗)‖ = ‖π(b(n))− b∗‖∗, it

follows that (ν◦π(b(n))n≥1
‖·‖→ ν(b∗), and therefore

(b(n))n≥1 =
(
(ν◦π)(b(n)) + ep

)
n≥1

‖·‖→ ν(b∗) + ep 6= 0 , a contradiction. �[A.]

Now we derive the general case. For i ∈ {1, 2}, let ‖ · ‖i be | · |-compatible norms on a
K-vector space V such that dimK(V ) = p ∈ N, let Φ: Kp → V be a K-isomorphism and
‖ · ‖′i = ‖ · ‖i◦Φ: Kp → R≥0. Then ‖ · ‖′1, ‖ · ‖′2 are | · |-compatible norms on Kp, hence they are
equivalent to the maximum norm, and Kp is ‖ · ‖′i-complete. Applying Φ, it follows that ‖ · ‖1

and ‖ · ‖2 are equivalent, and V is ‖ · ‖i-complete. �

fortsetzungeindeutig Theorem 4.2.6. Let (K, | · |0) be a complete valued field and K/K an algebraic extension.

1. There exists at most one absolute value | · | : K → R≥0 such that | · | � K = | · |0.
2. Let K be an algebraic closure of K and | · | : K → R≥0 an absolute value such that
| · | � K = | · |0.
(a) If K ⊂ L ⊂ K be an intermediate field and σ ∈ HomK(L,K). Then |σ(α)| = |α|

for all α ∈ L. In particular, if α and β are conjugate over K, then |α| = |β|.
(b) If α ∈ K and Xd + ad−1X

d−1 + . . .+ a1X + a0 ∈ K[X] is the minimal polynomial
of α over K, then |α| = |a0|1/d0 .
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(c) Let K ⊂ L ⊂ K be an intermediate field and [L :K] = n ∈ N. Then | · |L = | · | � L
is a absolute value of L, (K, | · |L) is complete, and

|α| = n

√
|NL/K(α)|0 for all α ∈ L .

Moreover, NL/K : L→ K and TrL/K : L→ K are continuous.

(d) (Krasner’s Lemma) Let | · | be non-archimedean, α, β ∈ K such that α is separable
over K, and let α = α1, . . . , αn be the conjugates of α over K. If |β−α| < |αi−α|
for all i ∈ [2, n], then α ∈ K(β).

Proof. 1. Let | · |, | · |′ : K → R≥0 be absolute values such that | · | � K = | · |′ � K = | · |0. If
α ∈ K, then | · | � K(α) and | · |′ � K(α) are | · |0-compatible norms on the K-vector space K(α)
and absolute values on field K(α). By Theorem

normequivalence
4.2.5, they are equivalent, and thus | · | = | · |′

by Theorem
equivalent
4.1.6.

2. (a) Let σ ∈ Gal(K/K) be such that σ |L = σ. Then | · |◦σ : K → R≥0 is an absolute value
of K such that | · |◦σ |K = | · |0. By 1., it follows that | · |◦σ = | · |, and thus |σ(α)| = |σ(α)| = |α|
for all α ∈ L.

(b) Let

Xd + ad−1X
d−1 + . . .+ a1X + a0 =

d∏
ν=1

(X − αν) , where α = α1, . . . , αd ∈ K .

For all ν ∈ [1, d], αν and α are conjugate over K, hence |αν | = |α|, and therefore

|a0|0 = |a0| =
d∏

ν=1

|αν | = |α|d .

(c) Obviously, | · |L is an absolute value of K and a | · |0-compatible norm on L, and Theorem
normequivalence
4.2.5 implies that (L, | · |L) is complete. If α ∈ L, Xd + ad−1X

d−1 + . . . + a1X + a0 ∈ K[X]
is the minimal polynomial of α over K and m = [L :K(α)], then n = md and

|NL/K(α)|0 = |am0 |0 = |αm|d = |α|n .

Let H = HomK(L,K) and q the degree of inseparability of L/K. Then

NL/K =
( ∏
σ∈H

σ
)q

and TrL/K = q
∑
σ∈H

σ .

For all σ ∈ H, the map σ : (L, |·|L) → (K, |·|) is a valuation homomorphism and thus continuous.
Therefore NL/K and TrL/K are also continuous.

(d) Assume that |β − α| < |αi − α| for all i ∈ [2, n], but α /∈ K(β). Then K(β) ( K(α, β),
and thus there exists some i ∈ [2, n] such that α and αi are conjugate over K(β). Then β − α
and β−αi are also conjugate over K(β), and therefore |β−α| = |β−αi|. Hence it follows that
|αi − α| = |(β − α)− (β − αi)| ≤ |β − α| < |αi − α|, a contradiction. �

ostrowski Theorem 4.2.7. Let (K, ‖ · ‖) be a complete archimedean valued field. Then there exists a
value isomorphism Φ: (K, ‖ · ‖) → (K, | · |s∞) for some K ∈ {R,C} and s ∈ (0, 1].
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Proof. As ‖ · ‖ is archimedean, it follows by the Theorems
nichtarch
4.1.4 and

valueq
4.1.9, that K has

characteristic 0, hence we may assume that Q ⊂ K, and ‖ · ‖ � Q = | · |s∞ for some s ∈ (0, 1].
By Theorem

completion
4.2.3, (R, | · |s∞) is a completion of (Q, | · |s∞), and thus there exists a value

homomorphism Φ: (R, | · |s∞) → (K, ‖ · ‖). By the Exchange Lemma, we may assume that
R ⊂ K and ‖ · ‖ � R = | · |s∞. If R = K, we are done. Thus suppose that R ( K. Then it suffices
to prove the following assertion.

A. For every ξ ∈ K, there exists a polynomial g ∈ R[X] such that deg(g) = 2 and g(ξ) = 0.

Suppose that A. holds. Then there exists a field isomorphism Φ: K → C, and, again by
the Exchange Lemma, we may assume that K = C. Then | · |s∞ and ‖ · ‖ are absolute values
on K such that | · |s∞ � R = ‖ · ‖ � R, hence | · |s∞ = ‖ · ‖ by Theorem

fortsetzungeindeutig
4.2.6. Hence it really

suffices to prove A.
Proof of A. Let ξ ∈ K. Throughout this proof, we write | · | instead of | · |∞. We shall prove

that there exists some z ∈ C such that ξ is a zero of the polynomial g = X2−(z+z)X+zz ∈ R[X].
Assume the contrary, and define

f : C → R≥0 by f(z) = ‖ξ2 − (z + z)ξ + zz ‖ .
Then f is continuous, f(z) > 0 and

f(z) ≥ ‖zz‖
[
1− ‖ξ‖2

‖zz‖
− ‖ξ‖

∥∥∥z + z

zz

∥∥∥]
= |z|2s

[
1− ‖ξ‖2

|z|2s
− ‖ξ‖

∣∣∣1
z

+
1
z

∣∣∣s] for all z ∈ C .

Hence it follows that

lim
z→∞

f(z) = ∞ , and therefore there exists m = min f(C) ∈ R>0 .

The set S = {z ∈ C | f(z) = m} is bounded and closed, hence compact, and thus there exists
some z0 ∈ S such that |z0| ≥ |z| for all z ∈ S. We fix some ε ∈ (0,m) and consider the
polynomial

gε = X2 − (z0 + z0)X + z0z0 + ε = (X − z1)(X − z2) ∈ R[X] ,
where z1, z2 ∈ C and |z1| ≥ |z2|. Hence |z1|2 ≥ |z1z2| = z0z0 + ε > |z0|2, which implies z1 /∈ S
and therefore f(z1) > m.

For n ∈ N, let Gn = (gε − ε)n − (−ε)n ∈ R[X]. Then deg(Gn) = 2n, G(z1) = 0, and
therefore

Gn =
2n∏
i=1

(X − αi) , here z1 = α1, . . . , α2n ∈ C, and Gn ∈ R[X] implies Gn =
2n∏
i=1

(X − αi) .

Hence we obtain

‖Gn(ξ)‖2 =
2n∏
i=1

‖(ξ − αi)(ξ − αi)‖ =
2n∏
i=1

‖ξ2 − (αi + αi)ξ + αiαi‖ =
2n∏
i=1

f(αi) ≥ f(z1)m2n−1 ,

and, on the other hand,

‖Gn(ξ)‖ ≤ ‖gε(ξ)− ε‖n + εn = ‖ξ2 − (z0 + z0)ξ + z0z0‖n + εn = f(z0)n + εn = mn + εn .

Therefore it follows that
f(z1)
m

≤ ‖Gn(ξ)‖2

m2n
≤ (mn + εn)2

m2n
=

[
1 +

( ε

m

)n]2
, and since lim

n→∞

[
1 +

( ε

m

)n]2
= 1 ,

we conclude f(z1) ≤ m, a contradiction. �
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Corollary 4.2.8. Let K be an algebraic number field, [K : Q] = n = r1 + 2r2 and
Hom(K,C) = {σ1, . . . , σn} such that σj(K) ⊂ R for all j ∈ [1, r1], and σr1+r2+j = σr1+j

for all j ∈ [1, r2]. For j ∈ [1, r1 + r2], let | · |∞,j = | · |∞◦σj (see Example
valuationexamples
4.1.2.4 ). If ‖ · ‖ is an

archimedean absolute value of K, then there is a unique j ∈ [1, r1 + r2] such that ‖ · ‖ ∼ | · |∞,j.

Proof. Uniqueness follows by Example
valuationexamples
4.1.2.4. Thus let ‖ · ‖ be an archimedean absolute

value of K and (K̂, ‖·‖) a completion of (K, ‖·‖). By Theorem
ostrowski
4.2.7 there exists some s ∈ (0, 1]

and either a valuation isomorphism Φ: (K̂, ‖ · ‖) → (R, | · |s∞) or a valuation isomorphism
Φ: (K̂, ‖ · ‖) → (C, | · |s∞). In both cases, it follows that ϕ = Φ |K ∈ Hom(K,C), and thus there
exists some j ∈ [1, r1 + r2] such that ϕ ∈ {σj , σj}. Hence ‖ · ‖ = | · |s∞◦σj = | · |s∞,j ∼ | · |∞,j . �

4.3. Arithmetic of discrete valued fields

discrete1 Theorem and Definition 4.3.1. Let (K, | · |) be a discrete valued field and ρ ∈ (0, 1) such
that |K×| = 〈ρ〉. Let v : K → Z ∪ {∞} be the associated valuation, given by

v(a) =
log |a|
log ρ

and |a| = ρv(a) for all a ∈ K .

We define
Ov = {x ∈ K | v(x) ≥ 0} = {x ∈ K | |x| ≤ 1} = {x ∈ K | |x| < ρ−1} , and

pv = {x ∈ K | v(x) > 0} = {x ∈ K | v(x) ≥ 1} = {x ∈ K | |x| < 1} = {x ∈ K | |x| ≤ ρ}.

Then Ov is a dv-domain, P(Ov) = {pv}, O×
v = {x ∈ K | v(x) = 0} = {x ∈ K | |x| = 1},

and v = vpv : K → Z ∪ {∞}. If {0} 6= a ∈ F(Ov), then there exists some a ∈ a such that
v(a) = min v(a) ∈ Z, and for each such a we have a = aOv.

Ov is called the valuation domain, pv is called the valuation ideal and kv = Ov/pv is
called the residue class field of (K, | · |) or of (K, v). Every π ∈ K satisfying v(π) = 1 [ or,
equivalently, |π| = ρ ] is called a prime element or a uniformizing parameter.

Let π ∈ K be a uniformizing parameter. Then pkv = πkOv = {x ∈ K | v(x) ≥ k} for all
k ∈ Z, and for all k ∈ N, there is a kv-vector space isomorphism

φ : Ov/pkv
∼→ pkv/p

k+1
v , given by φ(x+ pv) = πkx+ pk+1

v for all x ∈ Ov .

Proof. If x, y ∈ Ov, then |x| ≤ 1, |y| ≤ 1, |x − y| ≤ max{|x|, |y|} ≤ 1 and therefore
|xy| = |x| |y| ≤ 1. Hence it follows that {x − y, xy} ⊂ Ov, and therefore Ov ⊂ K is a subring.
By definition, O×

v = {x ∈ O•
v | x−1 ∈ Ov} = {x ∈ K× | |x| ≤ 1, |x|−1 ≤ 1} = {x ∈ K | |x| = 1}.

Since there is an element x ∈ K such that |x| 6= 1, there is some x ∈ K such that |x| > 1, and
thus Ov 6= K.

If x, y ∈ pv and c ∈ Ov, then |x| < 1, |y| < 1, |c| ≤ 1, |x − y| ≤ max{|x|, |y|} < 1 and
|cx| = |c| |x| < 1. Hence it follows that {x−y, cx} ⊂ pv, pv ⊂ Ov is an ideal, and O×

v = Ov \pv.
Therefore Ov is a local domain with maximal ideal pv.

Let {0} 6= a ∈ F(Ov). Then there is some c ∈ O•
v such that ca ⊂ Ov, hence a ⊂ c−1Ov,

and v(a) ⊂ −v(c) + N0 ⊂ Z. Hence there exists some a ∈ a such that v(a) = min v(a), and
clearly aOv ⊂ a. Conversely, if x ∈ a, then v(x) ≥ v(a), hence v(a−1x) = −v(a) + v(x) ≥ 0,
a−1x ∈ Ov and x ∈ aOv. Hence a = aOv. In particular, Ov is a principal ideal domain and
thus a dv-domain with P(Ov) = {pv}.
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Let π ∈ K be a uniformizing parameter. Then 1 = v(π) = min v(pv), hence pv = πOv,
and pkv = πkOv = {x ∈ K | v(x) ≥ k} for all k ∈ Z. If x ∈ K×, then x = πv(x)u for some
u ∈ O×

v , and xOv = πv(x)Ov = p
v(x)
v . By definition, this implies vpv(x) = v(x), and thus

vpv = v : K → Z ∪ {∞}.
For k ∈ N, the map

φ 0 : Ov → pkv/p
k+1
v = πkOv/πk+1Ov , defined by φ0(x) = πkx+ πk+1Ov

is an epimorphism, and Ker(φ0) = {x ∈ Ov | v(πkx) ≥ k + 1} = {x ∈ Ov | v(x) ≥ 1} = pv.
Hence φ0 induces an isomorphism φ as asserted, and obviously φ is an isomorphism of kv-vector
spaces. �

discrete2 Theorem 4.3.2. Let (K, | · |) be a discrete valued field, ρ ∈ (0, 1) such that |K×| = 〈ρ〉,
and v : K → Z ∪ {∞} the associated valuation. In the following, convergence always means
convergence with respect to | · |.

1. Let (xn)n≥0 be a sequence in K and x ∈ K.

(a) (xn)n≥0 → x if and only if (v(xn − x))n≥0 →∞.
(b) If (xn)n≥0 → x and x 6= 0, then v(xn) = v(x) for all n� 1.

(c) (xn)n≥0 is a Cauchy sequence if and only if (xn+1 − xn)n≥0 → 0.
(d) Let (K, | · |) be complete. Then the infinite series∑

n≥0

xn converges in K if and only if (xn)n≥0 → 0 .

Moreover,

(xn)n≥0 → x if and only if x = x0 +
∞∑
n=0

(xn+1 − xn) , and then

x− xk =
∞∑
n=k

(xn+1 − xn) and v(x− xk) ≥ inf{v(xn+1 − xn) | n ≥ k} for all k ≥ 0.

2. For all n ∈ Z, pnv ⊂ K is open and closed. In particular, Ov ⊂ K and O×
v ⊂ K are

both open and closed, and, for every a ∈ K, {a+ pnv | n ∈ N} is a fundamental system
of neighborhoods of a.

Proof. 1. (a) By definition, (xn)n≥0 → x if and only if (|xn−x|)n≥0 = (ρv(xn−x))n≥0 → 0,
and this holds if and only if (v(xn − x))n≥0 →∞.

(b) If (xn)n≥0 → x 6= 0, then v(xn − x) > v(x) for all n � 1 by (a), and therefore
v(xn) = v((xn − x) + x) = v(x) for all n� 1.

(c) If (xn)n≥0 is a Cauchy sequence and ε ∈ R>0, then there exists some n0 ≥ 0 such that
|xm − xn| < ε for all m ≥ n ≥ n0, and in particular |xn+1 − xn| < ε for all n ≥ n0. Hence
(xn+1 − xn)n≥0 → 0.

Conversely, assume that (xn+1 − xn)n≥0 → 0, and let ε ∈ R>0. Then there is some n0 ≥ 0
such that |xn+1 − xn| < ε for all n ≥ n0. If m ≥ n ≥ n0, then

|xm − xn| =
∣∣∣m−1∑
i=n

(xi+1 − xi)
∣∣∣ ≤ max{|xi+1 − xi| | i ∈ [n,m− 1]} < ε ,
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and thus (xn)n≥0 is a Cauchy sequence.
(d) For n ≥ 0, we set

sn =
n−1∑
k=0

xk . By definition,
∑
n≥0

xn converges if and only if (sn)n≥0 converges.

Since (K, | · |) is complete, the sequence (sn)n≥0 converges if and only if it is a Cauchy sequence,
and this holds if and only if (xn)n≥0 = (sn+1 − sn)n≥0 → 0.

By definition, (xn)n≥0 → x if and only if

x = lim
m→∞

xm = lim
m→∞

(
x0 +

m−1∑
n=0

(xn+1 − xn)
)

= x0 +
∞∑
n=0

(xn+1 − xn) .

Assume that his holds. If k ≥ 0, then

x− xk = lim
m→∞

(xm − xk) = lim
m→∞

m−1∑
n=k

(xn+1 − xn) =
∞∑
n=l

(xn+1 − xn) ,

and, for each m ≥ k,

|xm − xk| =
∣∣∣m−1∑
n=k

(xn+1 − xn)
∣∣∣ ≤ max{|xn+1 − xn| | n ∈ [k,m− 1]} ≤ sup{|xn+1 − xn| | n ≥ k} ,

which implies
|x− xk| = lim

m→∞
|xm − xk| ≤ sup{|xn+1 − xn| | n ≥ k} .

2. Since | · | : K → R≥0 is continuous, it follows that Ov = {x ∈ K | |x| ≤ 1} is closed, and
that Ov = {x ∈ K | |x| < ρ−1} is open. Let π ∈ K be a uniformizing parameter and n ∈ Z.
Then the map K → K, x 7→ πnx, is topological. Hence pnv = πnOv is also open and closed.

If a ∈ K and n ∈ N, then a + pnv = {x ∈ K | |x − a| ≤ ρn}, and since (ρn)n≥1 → 0, these
sets are a fundamental system of neighborhoods of a. �

discrete3 Theorem 4.3.3. Let (K, | · |) be a complete discrete valued field, ρ ∈ (0, 1), |K×| = 〈ρ〉,
and v : K → Z ∪ {∞} the associated valuation. Let π ∈ K be a uniformizing parameter and
R ⊂ Ov a set of representatives for kv.

1. Every a ∈ Ov has a unique representation

a =
∞∑
n=0

anπ
n , where an ∈ R for all n ≥ 0 .

2. Every a ∈ K× has a unique representation

a =
∞∑
n=d

anπ
n , where d ∈ Z , an ∈ R for all n ≥ d, and ad /∈ pv .

In this representation, d = v(a).



80 4. VALUATIONS AND LOCAL METHODS

3. If R is endowed with the discrete topology, then the map

Φ: RN0 → Ov , defined by Φ((an)n≥0) =
∞∑
n=0

anπ
n ,

is topological. In particular, if kv is finite, then Ov is compact.

Proof. 1. Since v(anπn) = v(an) +n ≥ n, we obtain (v(anπn))n≥0 →∞, (anπn)n≥0 → 0,
and thus the series converges.

Uniqueness : Suppose that

a =
∞∑
n=0

anπ
n =

∞∑
n=0

a′nπ
n , where an, a

′
n ∈ R, an 6= a′n for some n ≥ 0.

If k = min{n ∈ N0 | an 6= a′n}, then

0 =
∞∑
n=0

(an − a′n)π
n = (ak − a′k)π

k + πk+1c for some c ∈ Ov ,

and since ak − a′k /∈ pv, it follows that v((ak − a′k)π
k) = k < k + 1 ≤ v(πk+1c), a contradiction.

Existence : It suffices to prove :
A. For every n ∈ N0, there exists a unique (n+ 1)-tuple (a0, . . . an) ∈ Rn+1 such that

a−
n∑
ν=0

aνπ
ν ∈ πn+1Ov .

Indeed, if A. holds, then there exists a sequence (an)n≥0 in R such that

a−
n∑
ν=0

aνπ
ν ∈ πn+1Ov for all n ≥ 0 and therefore a = lim

n→∞

n∑
ν=0

aνπ
ν =

∞∑
n=0

anπ
n .

Proof of A. By induction on n. Suppose that n ≥ 0, and let a0, . . . , an−1 ∈ R be such that

a−
n−1∑
ν=0

aνπ
ν = πnc for some c ∈ Ov .

Then there exists a unique an ∈ R such tha c ∈ an + πOv, and we obtain

a−
n∑
ν=0

aνπ
ν = πn(c− an) ∈ πn+1Ov .

2. Uniqueness. If

a =
∞∑
n=d

anπ
n , where d ∈ Z , an ∈ R for all n ≥ d, and ad /∈ pv ,

then a = πdad + πd+1c, where c ∈ Ov, and therefore v(a) = d. Hence d is uniquely determined
by a, and since

π−da =
∞∑
n=0

an+dπ
n ∈ Ov ,

the uniqueness of the sequence (an)n≥d follows by 1.
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Existence. If v(a) = d ∈ Z, then π−da ∈ O×
v , and by 1. it follows that

π−da =
∞∑
n=d

anπ
n−d , where an ∈ R for all n ≥ d,

hence π−da = ad + πc for some c ∈ Ov, and since v(π−da) = 0, it follows that ad /∈ pv.
3. Φ is bijective by 1. Let (an)n≥0 is a sequence in R,

a = Φ((an)n≥0 =
∞∑
n=0

anπ
n , and Um =

m−1∏
j=0

{aj}×
∏
j≥m

R ⊂ RN0 for all m ∈ N .

Then {Um | m ∈ N} is a fundamental system of neighborhoods of (an)n≥0 in RN0 , and
Φ(Um) = a+ pmv for all m ∈ N. By Theorem

discrete2
4.3.2.2, Φ is topological. If kv is finite, then R is

finite, and RN0 is compact by Tychonoff’s Theorem. Hence Ov is compact. �

discrete4 Theorem 4.3.4. Let (K, | · |) be a discrete valued field, ρ ∈ (0, 1) such that |K×| = 〈ρ〉,
v : K → Z ∪ {∞} the associated valuation, and (K ′, | · |′) a completion of (K, | · |).

Then |·|′ is discrete, |K ′×|′ = 〈ρ〉, and if v′ : K ′ → Z∪{∞} denotes the valuation associated
with | · |′, then v′ |K = v, Ov′ = Ov ⊂ K ′, pkv′ = pkv = pkvOv′ and pkv′ ∩K = pkv for all k ∈ Z.
Moreover, for every k ∈ N, there is an isomorphism

j : Ov/pkv
∼→ Ov′/pkv′ , given by j(a+ pkv) = a+ pkv′ for all a ∈ Ov ,

by means of which we will identify these groups in the sequel. In particular, kv = kv′.

Proof. By Theorem
nichtarch
4.1.4, | · |′ is non-archimedean. Since K ⊂ K ′ is dense and | · |′ : K →

R≥0 is continuous, it follows that 〈ρ〉 ∪ {0} = |K| ⊂ |K ′|′ ⊂ |K| = 〈ρ〉 ∪ {0} = 〈ρ〉 ∪ {0}. Hence
| · |′ is discrete, |K ′×|′ = 〈ρ〉, and v′ |K = v.

For k ∈ Z, we obtain pkv′ ∩K = {x ∈ K | v′(x) ≥ k} = {x ∈ K | v(x) ≥ k} = pkv by Theorem
discrete1
4.3.1, and since pkv′ ⊂ K ′ is closed, it follows that pkv ⊂ pkv′ . To prove the reverse inclusion, let

x ∈ pkv′ and (xn)n≥0 a sequence in K such that (xn)n≥0
|·|′→ x. Since pkv′ ⊂ K ′ is open, it follows

that xn ∈ pkv′ ∩K = pkv for all n� 1, and therefore x ∈ pkv . Hence pkv′ = pkv , and, in particular,
Ov′ = Ov.

If k ∈ N, then pkv = Ov ∩ pkv′ , and thus there exists a monomorphism j : Ov/pkv → Ov′/pkv′
such that j(a + pkv) = a + pkv′ for all a ∈ Ov, and we must prove that j is surjective. Thus let

x ∈ Ov′ = Ov, and let (xn)n≥0 be a sequence in Ov such that (xn)n≥0
|·|′→ x. Then it follows

that v′(xn − x) ≥ k for all n� 1, and thus xn − x ∈ pkv′ and x+ pkv′ = j(xn + pkv). �

dedekindvalue Theorem and Definition 4.3.5. Let R be a Dedekind domain, K = q(R), p ∈ P(R) and
vp : K → Z∪{∞} the p-adic valuation. Then vp = vpRp, Ovp = {x ∈ K | vp(x) ≥ 0} = Rp and
pvp = {x ∈ K | vp(x) > 0} = pRp.

Let ρ ∈ (0, 1), | · |p,ρ an absolute associated with vp, and (Kp, | · |′) a completion of
(K, | · |p,ρ). Then (Kp, | · |′) is a complete discrete valued field, and if v̂p : Kp → Z∪{∞} denotes
the associated discrete valuation, then Kp and v̂p do not depend on ρ.
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The field Kp is called the p-adic completion of K. We denote its valuation domain and
valuation ideal by

R̂p = Ov̂p
= {x ∈ Kp | v̂p(x) ≥ 0} and p̂ = pv̂p

= {x ∈ Kp | v̂p(x) > 0} .
Then v̂p = vp̂, and vp̂ |K = vp.

For all k ∈ Z, we have pk ⊂ pkRp = p̂k∩K ⊂ p̂k = pkR̂p = pk ⊂ R̂p, and R = R̂p. If k ∈ N,
then pk = pkRp ∩ R = p̂k ∩ R, and the inclusion maps R ↪→ Rp ↪→ R̂p induce isomorphisms
R/p

∼→ Rp/pRp
∼→ R̂p/p̂.

By means of the above isomorphisms, we shall identify the residue class fields and obtain
R/p = Rp/pRp = kvp = kv̂p

= R̂p/p̂. We also write vp instead of v̂p.

Proof. By Theorem
dv
2.6.6 we have vp = vpRp , Ovp = {x ∈ K | vp(x) ≥ 0} = Rp, and thus

also pvp = {x ∈ K | vp(x) > 0} = pRp.
Next we prove that Kp and v̂p do not depend on ρ. Indeed, suppose that 0 < ρ1 < ρ2 < 1.

By Theorem
equivalent
4.1.6 it follows that

| · |p,ρ2 = | · |sp,ρ1 , where s =
log ρ2

log ρ1
∈ (0, 1) .

If (Kp, | · |′p,ρ1) is a completion of (K, | · |p,ρ1), then Theorem
completion
4.2.3.5 implies that (Kp, | · |′sp,ρ1)

is a completion of (K, | · |p,ρ2). Since | · |′p,ρ1 ∼ | · |′sp,ρ1 , these two absolute values induce the same
valuation. Hence Kp and v̂p do not depend on ρ, v̂p = vp̂ by Theorem

discrete1
4.3.1, and v̂p |K = vp by

Theorem
discrete4
4.3.4.

If k ∈ Z, then Theorem
discrete4
4.3.4 implies pkRp = p̂k∩K and p̂k = pkv̂p

= pkRp ⊃ pk. It remains

to prove that pkRp ⊂ pk ⊂ Kp. Thus let z = s−1x ∈ pkRp, where x ∈ pk and s ∈ R \ p. If
n ∈ N, then pn + sR = R, and thus there exist un ∈ pn and tn ∈ R such that 1 = un + stn.
Since v̂p(z − xtn) = v̂p(z(1 − stn)) = v̂p(z) + v̂p(un) ≥ k + n, it follows that (xtn)n≥1 → z in
Kp, and since xtn ∈ pk for all n ≥ 1, we obtain z ∈ pk. For k = 0, we obtain R = R̂p.

If k ∈ N, then p̂k ∩ Rp = pkRp by Theorem
discrete4
4.3.4, and thus p̂k ∩ R = pkRp ∩ R = pk by

Theorem
localizationisok
2.6.4. By the same Theorems, the inclusion maps R ↪→ Rp ↪→ R̂p induce isomorphisms

R/p
∼→ Rp/pRp

∼→ R̂p/p̂. �

Definition and Remarks 4.3.6. Let p ∈ P be a prime. The completion (Qp, | · |p) of
(Q, | · |p) is called the p-adic number field. Its valuation domain Zp = {x ∈ Qp | vp(x) ≥ 0} is
called the domain of p-adic integers.

Z ⊂ Z(p) ⊂ Zp are dense subrings, Fp = Z/pZ = Z(p)/pZ(p) = Zp/pZp according to
Theorem and Definition

dedekindvalue
4.3.5. Hence [0, p− 1] is a system of representatives of Fp = kvp in Zp.

In particular, Zp is compact, and every x ∈ Zp has a unique representation

x =
∞∑
n=0

anp
n , where an ∈ [0, p− 1] for all n ≥ 0 .

hensel Theorem 4.3.7 (Hensel’s Lemma). Let (K, | · |) be a complete discrete valued field. Let
v : K → Z ∪ {∞} the associated valuation,

Ov[X] → kv[X] , h 7→ h = h+ pv[X]



4.3. ARITHMETIC OF DISCRETE VALUED FIELDS 83

the natural residue class map and f ∈ Ov[X].

1. Assume that f = ϕψ 6= 0, where ϕ, ψ ∈ kv[X] and (ϕ,ψ) = 1. Then there exist
g, h ∈ Ov[X] such that f = gh, g = ϕ, h = ψ, deg(g) = deg(ϕ), and if ϕ is monic,
then g is also monic.

2. Let α ∈ kv be such that f(α) = 0 and f ′(α) 6= 0. Then there exists some a ∈ Ov such
that f(a) = 0 and a = α.

3. Let f be monic and f = ϕ1 · . . . · ϕr, where r ∈ N, ϕ1, . . . , ϕr ∈ kv[X] are monic, and
(ϕi, ϕj) = 1 for all i, j ∈ [1, r] such that i 6= j. Then there exist monic polynomials
g1, . . . , gr ∈ Ov[X] such that f = g1 · . . . · gr, and gi = ϕi for all i ∈ [1, r].

Proof. 1. Let π ∈ K be a uniformizing parameter, m = deg(ϕ), n = deg(ψ) and
d = deg(f). Then m, n ∈ N0, and d ≥ m+ n. We construct recursively sequences (gk)k≥0 and
(hk)k≥0 in Ov[X] having the following properties for all k ≥ 0 :

1) deg(gk) = m, deg(hk) ≤ d−m, gk = ϕ, hk = ψ, and if ϕ is monic, then gk is monic.
2) f − gkhk ∈ πk+1Ov[X].
3) If k ≥ 1, then {gk − gk−1, hk − hk−1} ⊂ πkOv[X].

Let g0, h0 ∈ Ov[X] be such that deg(g0) = m, deg(h0) = n, g0 = ϕ, h0 = ψ, and g0 is
monic if ϕ is monic. Then f − g0h0 = f − ϕψ = 0, and thus f − g0h0 ∈ πOv[X].

Suppose now that k ≥ 0, and there exist g0, h0, . . . , gk, hk ∈ Ov[X] such that 1), 2) and
3) hold, and set P = π−k−1(f − gkhk) ∈ Ov[X]. We shall prove :

(∗) There exist α, β ∈ kv[X] such that αϕ+ βψ = P , deg(α) ≤ d−m and deg(β) < m.
Proof of (∗). Since (ϕ,ψ) = 1, there exist α′, β′ ∈ kv[X] such that α′ϕ + β′ψ = P . By

division with remainder, we find some ρ ∈ kv[X] such that deg(β′ − ρϕ) < m = deg(ϕ), and if
α = α′ + ρψ and β = β′ − ρϕ, then αϕ+ βψ = P , deg(β) < m,

deg(α) +m = deg(αϕ) = deg(P − βψ) ≤ max{deg(P ), deg(β) + deg(ψ)}
≤ max{deg(f), deg(gk) + deg(hk), deg(β) + deg(ψ)}
≤ max{d, m+ (d−m), m− 1 + n} = d , and therefore deg(α) ≤ d−m. �(∗)

Let A, B ∈ Ov[X] be such that A = α, B = β, deg(A) = deg(α) and deg(B) = deg(β), and
define

gk+1 = gk + πk+1B , hk+1 = hk + πk+1A ∈ Ov[X] .

Then gk+1 = gk = ϕ, hk+1 = hk = ψ, deg(hk+1) ≤ max{deg(hk), deg(A)} ≤ d−m, and since
deg(B) < m = deg(gk), it follows that deg(gk+1) = m, and if ϕ is monic, then gk and thus also
gk+1 is monic. By definition, gk+1 − gk ∈ πk+1Ov, hk+1 − hk ∈ πk+1Ov, and

f − gk+1hk+1 = f − gkhk − πk+1(Agk +Bhk + πk+1AB) = πk+1(P −Agk −Bhk − πk+1AB) .

Since P −Agk −Bhk − πk+1AB = P−αϕ−βψ = 0, it follows that f−gk+1hk+1 ∈ πk+2Ov[X].
Hence the sequences (gk)k≥0 and (hk)k≥0 are constructed.

For k ≥ 0, we set

gk =
m∑
i=0

ak,iX
i and hk =

d−m∑
i=0

bk,iX
i .



84 4. VALUATIONS AND LOCAL METHODS

By construction, we obtain ak,i− ak−1,i ∈ πkOv and thus v(ak,i− ak−1,i) ≥ k for all k ≥ 1 and
i ∈ [0,m]; and bk,i− bk−1,i ∈ πkOv and thus v(bk,i− bk−1,i) ≥ k for all k ≥ 1 and i ∈ [0, d−m].
Hence the sequences (ak,i)k≥0 and (bk,i)k≥0 are Cauchy sequences in Ov and thus convergent
in Ov, since (K, | · |) is complete and Ov ⊂ K is closed. We set

ai = lim
k→∞

ak,i for all i ∈ [0,m], and bi = lim
k→∞

bk,i for all i ∈ [0, d−m],

g =
m∑
i=0

aiX
i and h =

d−m∑
i=0

biX
i ∈ Ov[X] .

By Theorem
discrete2
4.3.2, we obtain v(ai− ak,i) ≥ inf{v(aj+1,i− aj,i | j ≥ k} ≥ k+ 1 for all k ≥ 0 and

i ∈ [0,m]; and v(bi − bk,i) ≥ inf{v(bj+1,i − bj,i | j ≥ k} ≥ k + 1 for all k ≥ 0 and i ∈ [0, d−m].
Therefore it follows that g − gk ∈ πk+1Ov[X] and h− hk ∈ πk+1Ov[X].

For all k ≥ 0, ak,m is the leading coefficient of gk = ϕ, hence ak,m 6= 0, ak,m ∈ O×
v , and

since O×
v ⊂ K is closed, we obtain am ∈ O×

v , and thus deg(g) = m = deg(ϕ). If ϕ is monic,
then ak,m = 1 for all k ≥ 0, hence am = 1 and g is monic. Finally, we obtain

f − gh = (f − gkhk)− gk(h− hk)− h(g − gk) ∈ πk+1Ov[X] for all k ≥ 0 ,

and therefore f = gh.
2. By assumption, α is a simple zero of f . Hence f = (X − α)ψ, where ψ ∈ kv[X] and

ψ(α) 6= 0. Hence (X − α, ψ) = 1, and by 1., applied with ϕ = X − α, there exist some a ∈ Ov
and h ∈ Ov[X] such that a = α, h = ψ and f = (X − a)h. In particular, f(a) = 0.

3. By induction on r. For r = 1, there is nothing to do.
r ≥ 2 , r − 1 → r : Since (ϕ1 · . . . · ϕr−1, ϕr) = 1, by 1., there exist g, gr ∈ Ov[X] such that

f = ggr, g = ϕ1 · . . . · ϕr−1, gr = ϕr, and gr is monic. Hence g is monic, and by the induction
hypothesis, there exist monic polynomials g1, . . . , gr−1 ∈ Ov[X] such that g = g1 · . . . · gr−1 and
gi = ϕi for all i ∈ [1, r − 1]. �

Theorem 4.3.8. Let (K, | · |) be a complete discrete valued field, v : K → Z ∪ {∞} the
associated valuation and |kv| = q <∞. Then |µq−1(Ov)| = q − 1.

Proof. Let Ov[X] → kv[X], h 7→ h be the residue class map. Then

Xq−1 − 1 =
∏
α∈k×v

(X − α) ∈ kv[X] ,

and by Theorem
hensel
4.3.7.3, the polynomial Xq−1 − 1 splits into distinct linear factors in Ov[X].

Hence |µq−1(Ov)| = q − 1. �

henselirreducibility Theorem 4.3.9. Let (K, |·|) be a complete discrete valued field and f ∈ K[X] irreducible. If
n ∈ N and f = anX

n+an−1X
n−1+ . . .+a1X+a0, then max{|ai| | i ∈ [0, n]} = max{|a0|, |an|}.

In particular, if f is monic and O is the valuation domain of (K, | · |), then a0 ∈ O implies
f ∈ O[X].

Proof. Let r ∈ [0, n] be minimal such that |ar| = min{|a0|, . . . , |an|}, and assume that,
contrary to our assertion, max{|a0|, |an|} < |ar|. Then a−1

r f = bnX
n + . . .+ b1X + b0 ∈ Ov[X]

is irreducible, |bj | < 1 for all j ∈ [0, r − 1], |br| = 1, 0 < r < n, and the residue class
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polynomial a−1
r f ∈ kv[X] splits in the form a−1

r f = Xrψ, where ψ ∈ kv[X], deg(ψ) = n−r and
ψ(0) = br 6= 0. By Theorem

hensel
4.3.7, applied with ϕ = Xr, it follows that a−1

r f is reducible. �

Without proof, we state the following refinement of Hensel’s Lemma.

henselore Theorem 4.3.10 (Lemma of Hensel-Ore). Let (K, | · |) be a complete discrete valued field,
v : K → Z ∪ {∞} the associated valuation and π ∈ K a uniformizing parameter.

Let f, G, H ∈ Ov[X] be monic and f − GH ∈ πv(∆(f))+1Ov[X]. Then there exist monic
polynomials g, h ∈ Ov[X] such that f = gh, g −G ∈ πθOv[X] and h −H ∈ πθOv[X], where
θ = max{v(∆(g)), v(∆(h))}+ 1.

Theorem 4.3.11 (Squares in Qp).
1. Let p ∈ P \ {2} be an odd prime, and a = pku ∈ Q×

p , where k = vp(a) ∈ Z and u ∈ Z×p .
Then a ∈ Q×2

p if and only if k ≡ 0 mod 2 and u = u+ pZ ∈ F×2
p . In particular :

• There is an isomorphism ϑ : Q×
p /Q×2

p
∼→ Z/2Z×F×p /F×2

p
∼= C2

2 such that, for
a ∈ Q×

p as above, ϑ(aQ×2
p ) = (a+ 2Z, uF×2

p ).
• If a ∈ Z \ pZ, then a ∈ Q×2

p if and only if a is a quadratic residue modulo p.

2. Let a = 2ku ∈ Q×
2 , where k = v2(a) ∈ Z and u ∈ Z×2 . Then a ∈ Q×2

2 if and only if
k ≡ 0 mod 2 and u ≡ 1 mod 8Z2. In particular :
• There is an isomorphism ϑ : Q×

2 /Q
×2
2

∼→ Z/2Z×(Z/8Z)× ∼= C3
2 such that, for

a ∈ Q×
p as above, ϑ(aQ×2

p ) = (a+ 2Z, u+ 8Z2).

• If a ∈ Z \ 2Z, then a ∈ Q×2
2 if and only if a ≡ 1 mod 8.

Proof. 1. If a = pku ∈ Q×2
p , then obviously k ≡ 0 mod 2 and u ∈ F×2

p . For the converse,
it suffices to prove that u ∈ F×2

p implies u ∈ Z2
p. Thus assume that u = ξ2 for some ξ ∈ Fp.

Then ξ is a simple zero of the residue class polynomial X2 − u, and by Theorem
hensel
4.3.7, there

exists some x ∈ Z2 such that x2 = u and x = ξ. Note that this argument fails for p = 2, since
X2 − u ∈ F2[X] is not separable.

Let ϑ0 : Q×
p → Z/2Z×F×p /F×2

p be defined by ϑ0(pku) = (k + 2Z, uF×2
p ) for k ∈ Z and

u ∈ Z×p . Then ϑ0 is an epimorphism, and, as we have just proved, Ker(ϑ0) = Q×2
p , and

therefore ϑ0 induces an isomorphism ϑ : Q×
p /Q×2

p
∼→ Z/2Z×F×p /F×2

p as asserted. Since F×p is
cyclic of order p− 1, it follows that F×p /F×2

p
∼= C2.

If a ∈ Z \ pZ ⊂ Z×p , then a+ pZ ∈ F×2
p if and only if a is a quadratic residue modulo p.

2. We might use the Lemma of Hensel-Ore. but we give a direct proof. If a = 2ku ∈ Q×2
2 ,

then obviously k ≡ 0 mod 2 and u ≡ 1 mod 8Z2, since (Z2/8Z2)× = (Z/8Z)× ∼= C2
2. For the

converse, it suffices to prove that u ≡ 1 mod 8Z2 implies u ∈ Z2
2.

Thus let u ∈ 1 + 8Z2, and construct recursively a sequence (xn)n≥0 in Z2, such that

xn+1 − xn ∈ 2n+2Z2 and x2
n − u ∈ 2n+3Z2 for all n ≥ 0.

We set x0 = 1. Suppose that n ≥ 0 and let xn ∈ Z2 be such that x2
n = u + 2n+3z for some

z ∈ Z2. We set xn+1 = xn+2n+2z and obtain x2
n+1 = u+2n+3(1+xn)z+22n+4z2 ∈ u+2n+4Z2,

since 1+xn ∈ 2Z2. The sequence (xn)n≥0 is a Cauchy sequence in Z2, and if (xn)n≥2 → x ∈ Z2,
then x2 = u.

Let ϑ0 : Q×
2 → Z/2Z×(Z2/8Z2)× be defined by ϑ0(2ku) = (k + 2Z, u + 8Z2) for k ∈ Z

and u ∈ Z×p . Then ϑ0 is an epimorphism, and, as we have just proved, Ker(ϑ0) = Q×2
2 , and
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therefore ϑ0 induces an isomorphism ϑ : Q×
2 /Q

×2
2

∼→ Z/2Z×(Z/8Z)× as asserted (note that
(Z2/8Z2)× = (Z/8Z)× ∼= C2

2). �

4.4. Extension of absolute values (complete case)

completeextension Theorem 4.4.1. Let (K, | · |) be a complete valued field.

1. Let L/K be a finite extension and n = [L :K]. Then there is a unique absolute value
| · |L of L such that | · |L � K = | · |.

(a) (L, | · |L) is complete, and |x| = n

√
|NL/K(x)| for all x ∈ L.

(b) Let (K, |·|) be discrete. Then (L, |·|L) is also discrete. If O is the valuation domain
of K, then clL(OK) is the valuation domain of L, and every finitely generated OK-
submodule M ⊂ L is closed.

2. Let K be an algebraic closure of K. Then | · | has a unique extension to an absolute
value of K.

Proof. CASE 1 : (K, | · |) is archimedean.
By Theorem

ostrowski
4.2.7 we may assume that (K, | · |) = (R, | · |s∞) or (K, | · |) = (C, | · |s∞) for

some s ∈ (0, 1]. If K = C, there is nothing to do. If K = R, then K = C, and if z ∈ C, then
|z| = |z|s∞ =

√
|zz|s∞ =

√
|NC/R(z)|s∞.

CASE 2 : (K, | · |) is non-archimedean. We prove the Theorem only if (K, | · |) is discrete.

1. Let O be the valuation domain of (K, | · |), L/K a finite extension and [L :K] = n. We
define | · |L : L→ R≥0 by

|x|L = n

√
|NL/K(x)| for all x ∈ L .

Then | · |L � K = | · |, |x|L = 0 if and only if x = 0, |xy|L = |x|L|y|L for all x, y ∈ L, and
|L×|L ⊂ n

√
|K×| ⊂ R is discrete.

Next we prove that |x|L ≤ 1 implies |1 + x|L ≤ 1 and x ∈ cl(O) for all x ∈ L. Thus let
x ∈ L, f = Xd + ad−1X

d−1 + . . . + a1X + a0 ∈ K[X] the minimal polynomial of x over K
and d = [L :K(x)]. Then |x|L = n

√
|NL/K(x)| = n

√
|a0|d, and if |x|L ≤ 1, then |a0| ≤ 1, and

as f is irreducible, it follows that f ∈ O[X] by Theorem
henselirreducibility
4.3.9. Hence x ∈ clL(O), and since

f(X − 1) ∈ O[X] is the minimal polynomial of x+ 1 over K, we obtain

|x+ 1|L = n

√
|NL/K(x+ 1)| = n

√
|f(−1)|d ≤ 1 .

Hence | · |L is a discrete absolute value of L by Theorem
nichtarch
4.1.4, and if O′ denotes the valuation

domain of L, then O′ ⊂ cl(O). Since O′ is integrally closed, it follows that O′ = cl(O). By
Theorem

fortsetzungeindeutig
4.2.6, ||̇L is the unique extension of | · | to L, and (L, | · |L) is complete.

Let now M ⊂ L be a finitely generated O-submodule. Since O is a principal ideal domain
and M is torsion-free, it follows that M is free. Let (u1, . . . , um) be an O-basis of M , and
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V = KM ⊂ L. Then | · |L � V : V → R≥0 is a | · |-compatible norm on V . If V carries the
| · |L-topology and Km carries the product topology, then the map

Φ: Km → V , defined by Φ(a1, . . . , am) =
m∑
j=1

ajuj ,

is a topological isomorphism, and as O ⊂ K is closed, it follows that M = Φ(Om) ⊂ L is closed.
2. Let K ⊂ L ⊂ L′ ⊂ K be intermediate fields such that [L′ :K] < ∞. By Theorem

fortsetzungeindeutig
4.2.6

it follows that | · |L′ � L = | · |L, and therefore there exists a unique function | · |′ : K → R≥0

such that | · |′ � L = | · |L for all intermediate fields L such that [L : K] < ∞. If x, y ∈ K
and L = K(x, y), then [L : K] < ∞. Hence we obtain |x|′ = |x|L = 0 if and only if x = 0,
|xy|′ = |xy|L = |x|L|y|L = |x|′|y|′ and |x + y| = |x + y|L ≤ max{|x|L, |y|L} = max{|x|′, |y|′}.
Therefore | · |′ is an absolute value of K such that | · |′ � K = | · |, and uniqueness follows by
Theorem

fortsetzungeindeutig
4.2.6. �

localfield Definition 4.4.2. For a discrete valued complete field K = (K, | · |) we denote by

• vK : K → Z ∪∞ the associated valuation;
• OK = OvK the valuation domain;
• pK = pvK the valuation ideal;
• kK = kvK = OK/pK the residue class field.

For a finite extension L/K we denote by | · | : L → R≥0 the extension of | · | to L, we refer
to L/K as a finite extension of complete discrete valued fields with absolute value | · | and we
denote by

OL[X] → kL , h→ h

the residue class map.

localextensions Theorem and Definition 4.4.3. Let L/K a finite extension of discrete valued fields with
absolute value | · | and [L :K] = n.

1. OL = clL(OK) and pL ∩K = pL ∩ OK = pK ,
We call e(L/K) = e(pL/pK) the ramification index and f(L/K) = f(pL/pK) the
residue class degree of L/K. By definition,

pKOL = p
e(L/K)
L and f(L/K) = [kL :kK ] .

The extension L/K is called
• unramified if e(L/K) = 1 and kL/kK is separable, and ramified otherwise;
• tamely ramified if char(kK) - e(L/K) and kL/kK is separable, and wildly ramified

otherwise;
• fully ramified if e(L/K) = n.

By definition, L/K is unramified [ ramified, tamely ramified, wildly ramified ] if and
only if pL/pK has this property ( see Definition

decompositionbehavior
2.4.13 ).

2. Let e = e(L/K) and f = f(L/K).
(a) ef ≤ n, and equality holds if and only if OL is a finitely generated OK-module. In

particular, if L/K is separable, then ef = n.
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(b) (|L×| : |K×|) = e, vL |K = evK , e |n, and vK ◦NL/K = n
e vL. In particular, we

have the commutative diagrams

L×
vL−−−−→ Z

incl

x x·e
K× vK−−−−→ Z

and

L×
vL−−−−→ Z

NL/K

y y·ne
K× vK−−−−→ Z

.

Proof. 1. By Theorem
completeextension
4.4.1, OL = clL(OK), and since P(OL) = {pL} and P(OK) =

{pK}, it follows tha pL ∩K = pL ∩ OL ∩K = pL ∩ OK = pK .
2. (a) By Theorem

dedekindextension1
2.7.1 it follows that ef ≤ n, and equality holds if and only if OL is a

finitely generated OK-module.
(b) Let πK be a uniformizing parameter of K and πL a uniformizing parameter of L. Then

pK = πKOK , pL = πLOL, and since πKOL = πeLOL, it follows that πK = πeLu for some
u ∈ O×

L , and |πK | = |πL|e. Hence (|L×| : |K×|) = (〈|πL|〉 :〈|πL|e〉) = e, and vL(πK) = e.
If a ∈ K×, then a = π

vK(a)
K ε, where ε ∈ O×

K ⊂ O×
L , and thus vL(a) = vK(a)vL(πK) = evK(a).

Hence vL |K = e vK . Since πnK = NL/K(πK) = NL/K(πL)eNL/K(u) and NL/K(u) ∈ O×
K , it

follows that n = vK(πnK) = e vK(NL/K(πL)), and therefore e |n. If x ∈ L×, then x = π
vL(x)
L w

for some w ∈ O×
L , hence NL/K(x) = NL/K(πL)vL(x)NL/K(w), and since NL/K(w) ∈ O×

K , we
obtain

vK(NL/K(x)) = vL(x)vK(NL/K(πL)) =
n

e
vL(x) , and therefore vK ◦NL/K =

n

e
vL . �

localextensions1 Theorem 4.4.4. Let L/K a finite extension of discrete valued fields.
1. Let b, π ∈ OL be such that kL = kK(b ) and vL(π) = 1. Then OL = OK [b, π].
2. If kL/kK is separable, then there exists some x ∈ OL such then OL = OK [x].

Proof. 1. Let f = [kL :kK ]. Then

kL =
f−1∑
i=0

kKb
i
, and we set M =

f−1∑
i=0

OKbi .

Then M contains a set of representatives of kL in OL, and therefore every x ∈ OL has a
representation

x =
∞∑
n=0

(f−1∑
i=0

cn,ib
i
)
πn , where cn,i ∈ OK for all n ≥ 0 and i ∈ [0, f − 1].

In particular, it follows that OK [b, π] ⊂ OL is dense. Since b and π are integral over OK ,
OK [b, π] is a finitely generated OK-module, hence closed in L, and therefore OK [b, π] = OL.

2. Let b ∈ OL be such that kL = kK(b ), and let g ∈ OK [X] be monic such that g ∈ kK [X]
is the minimal polynomial of b over kK . Then g is separable, and therefore g′(b) = g′(b ) 6= 0.
Let p ∈ L be a uniformizing parameter of L. Then g(b + p) ≡ g(b) + pg′(b)mod p2

L, and
g(b) = g(b+ p) = g(b ) = 0 ∈ kK . Hence g(b) /∈ p2

L or g(b+ p) /∈ p2
L, and we set

x =

{
b if g(b) /∈ p2

L ,

b+ p if g(b) ∈ p2
L .
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Then vL(g(x)) = 1, and by 1. we obtain OL = OK [x, g(x)] = OK [x]. �

Definition 4.4.5. Let K be a discrete valued field and d ∈ N. A polynomial

g = Xd + ad−1X
d−1 + . . .+ a1X + a0 ∈ K[X]

is called an Eisenstein polynomial if v(a0) = 1 and v(ai) ≥ 1 for all i ∈ [1, d− 1].

eisenstein Theorem 4.4.6. Let L/K be a finite extension of complete discrete valued fields, and let
n = [L :K].

1. Let L = K(α), and let g ∈ OK [X] be an Eisenstein polynomial such that g(α) = 0.
Then g is irreducible, L/K is fully ramified, and vL(α) = 1.

2. Let L/K be fully ramified and π ∈ L a uniformizing parameter. Then OL = OK [π], and
the minimal polynomial of π over K is an Eisenstein polynomial.

3. Let L/K be fully and tamely ramified and n = [L :K]. Then there exists a uniformizing
parameter π ∈ L such that πn ∈ K. In particular, L = K( n

√
t ) for some uniformizing

parameter t ∈ K.

Proof. 1. If g = Xd + ad−1X
d−1 + . . . + a1X + a0 ∈ K[X], then d ≥ n ≥ e = e(L/K),

vL(ai) ≥ e for all i ∈ [0, d−1], and dvL(α) = vL(αd) ≥ min{vL(aiαi) | i ∈ [0, d−1] } ≥ e. Hence
vL(α) ≥ 1, vL(aiαi) ≥ e + 1 > e = vL(a0) for all i ∈ [1, d − 1], and therefore d ≤ dvL(α) = e.
Hence d = e = n, g is irreducible, L/K is fully ramified and vL(α) = 1.

2. Let | · | : K → R≥0 be an absolute value of K, d = [K(π) :K], m = [L :K(π)] and
g = Xd + ad−1X

d−1 + . . . + a1X + a0 ∈ K[X] the minimal polynomial of π over K. Then
dm = n = e(L/K), and Theorem

localextensions
4.4.3 implies 1 = vL(π) = vK(NL/K(π)) = vK(am0 ) = m.

Hence L = K(π), vK(a0) = 1, and by Theorem
henselirreducibility
4.3.9 we obtain |ai| ≤ |a0| < 1 and thus

vK(ai) ≥ 1 for all i ∈ [1, d]. Hence g is an Eisenstein polynomial, and since f(L/K) = 1, we
obtain OL = OK [π] by Theorem

localextensions1
4.4.4 (applied with b = 1 ).

3. By assumption, e(L/K) = n, f(L/K) = 1, and char(kK) - n, which implies that
1Kn ∈ O×

K . Let | · | : K → R≥0 be an absolute value of K, K ⊃ K an algebraic closure of
K and | · |K → R≥0 the extension of | · |. Let πK be a uniformizing parameter of K, πL a
uniformizing parameter of L, and πnL = πKu, where u ∈ O×

L . Since kL = kK , there is some
u0 ∈ O×

K such that γ = u− u0 ∈ pL, hence πnL − πKu0 = πKγ ∈ p2
L and |πKγ| < |πL|.

The polynomial g = Xn − πKu0 ∈ K[X] is a separable Eisenstein polynomial, hence irre-
ducible, and we set

g =
n∏
i=1

(X − αi) ∈ K[X] .

Then αni = πKu0, and therefore |αi| = |πK |1/n = |πL| for all i ∈ [1, n]. Since

|g(πL)| = |πKγ| =
n∏
i=1

|πL − αi| < |πL| ,

There exists some i ∈ [1, n] such that |πL − αi| < |πL|, say |πL − α1| < |πL|. Then we obtain,
observing that |nx| = |x| for all x ∈ K,

|g′(α1)| = |nαn−1
1 | = |α1|n−1 =

n∏
i=2

|α1 − αi| ≤
n∏
i=2

max{|α1|, |αi|} = |α1|n−1 .
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Hence |α1 − αi| = |α1| for all i ∈ [2, n], and therefore |πL − α1| < |πL| = |α1| = |αi − α1|.
Since α1, . . . , αn are the conjugates of α over K, Krasner’s Lemma (Theorem

fortsetzungeindeutig
4.2.6) implies

α1 ∈ K(πL) = L αn1 = πKu0 ∈ K, and vL(α1) = vL(πL) = 1. Hence the assertion follows with
π = α1. �

unramified1 Theorem 4.4.7. Let K be a complete discrete valued field.
1. Let L/K be a finite separable unramified extension, [L : K] = n, x ∈ OL such that

kL = kK(x ) and g ∈ OK [X] the minimal polynomial of x over K. Then OL = OK [x],
and g ∈ kK [X] is the minimal polynomial of x over kK . In particular, g is separable.

2. Let g ∈ OK [X] be monic such that g ∈ kK [X] is irreducible and separable, and suppose
that L = K(x), where g(x) = 0. Then L/K is unramified, and kL = kK(x ).

3. Let k′ ⊃ kK be a finite separable extension. Then there exists an up to K-isomorphisms
unique finite unramified extension M/K such that there is a kK-isomorphism kM

∼→ k′.

Proof. 1. Let ψ ∈ kK [X] be the minimal polynomial of x over kK . Then ψ | g, and
n ≥ deg(g) ≥ deg(ψ) = [kL :kK ] = f(L/K) = n. Hence deg(g) = deg(ψ), and therefore g = ψ.
By Theorem

localextensions1
4.4.4.1 (with πL = πK ∈ OK ) it follows that OL = OK [x].

2. Let n = deg(g) = [L : K]. Then n = deg(g ) = [kK(x) : kK ] ≤ [kL : kK ] ≤ n. Hence
kL = kK(x ) and g is the minimal polynomial of x over kK . Hence kL/kK is separable, and L/K
is unramified.

3. Let k′ = kK(α) and g ∈ OK [X] a monic polynomial such that g ∈ kK [X] is the minimal
polynomial of α over kK . Then g is irreducible, and g is separable. Let M = K(x), where
g(x) = 0. By 2., M/K is unramified, and kM = kK(x ). Since g(x ) = 0, there exists a
kK-isomorphism ω : kM → k′ such that ω(x ) = α.

It remains to prove the uniqueness. Thus let M ′/K be an unramified finite extension,
ω′ : kM ′ → k′ a kK-isomorphism and α′ ∈ kM ′ such that ω′(α′) = α. Then g(α′) = 0, and by
Hensel’s Lemma there exists some x′ ∈M ′ such that g(x′) = 0 and x′ = α′. Hence there exists
a K-isomorphism ϕ : M →M ′ such that ϕ(x) = x′. �

unramified2 Theorem 4.4.8. Let L/K be a finite extension of complete discrete valued fields, and let
kK ⊂ k′ ⊂ kL be an intermediate field such that k′/kK is separable. Then there exists a unique
intermediate field K ⊂M ⊂ L such that M/K is unramified and kM = k′.

In particular : The assignment M 7→ kM defines a bijective map from the set of all inter-
mediate fields K ⊂ M ⊂ L such that M/K is unramified onto the set of all intermediate field
kK ⊂ k′ ⊂ kL such that k′/kK is separable.

Proof. Let k′ = kK(α) ⊂ kL and g ∈ OK [X] a monic polynomial such that g ∈ kK [X] is
the minimal polynomial of α over kK . Then g is irreducible and g is separable. By Hensel’s
Lemma, there exists some x ∈ OL such that g(x) = 0 and x = α. If M = K(x) ⊂ L, then M/K
is unramified, and kM = kK(α) = k′.

It remains to prove the uniqueness. Thus let K ⊂M ′ ⊂ L be an intermediate field such that
M ′/K is unramified and kM ′ = k′. Again by Hensel’s Lemma, there exists some x′ ∈ OM ′ such
that g(x′) = 0 and x′ = α. Then M ′ = K(x′), and we assert that x = x′. Assume the contrary.
Then x 6= x′, hence (X−x)(X−x′) | g, and (X−α)2 | g, contradicting the separability of g. �
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inertiafield Theorem and Definition 4.4.9. Let L/K be a finite extension of complete discrete valued
fields.

1. Let K ⊂ M ⊂ L be an intermediate field. Then L/K is unramified if and only if L/M
and M/K are both unramified.

2. There exists a unique intermediate field T of L/K with the following property :
If K ⊂ M ⊂ L is any intermediate field, then M/K is unramified if and only if
M ⊂ T .

T is called the inertia field of L/K.
If L/K and kL/kK are both separable, then [T :K] = f(L/K), L/T is fully ramified,

and [L :T ] = e(L/K).

Proof. 1. e(L/K) = e(L/M)e(M/K) = 1 if and only if e(L/M) = e(M/K) = 1, and
kL/kK is separable if and only if kL/kM and kM/kK are both separable.

2. The uniqueness of T is obvious. Thus let k′ be the separable closure of kK in kL. By
Theorem

unramified2
4.4.8 there exists a unique intermediate field K ⊂ T ⊂ L such that T/K is unramified

and kT = k′. If kL/kK is separable, then kT = kL, and [T :K] = [kL :kK ] = f(L/K).
LetK ⊂M ⊂ L be any intermediate field. If M ⊂ T , thenM/K is unramified by 1. IfM/K

is unramified, then kM ⊂ k′ = kT , and by Theorem
unramified2
4.4.8 there exists a unique intermediate

field K ⊂ M ′ ⊂ T such that kM ′ = kM . But then M and M ′ are intermediate fields of L/K
such that M/K and M ′/K are unramified and kM = kM ′ . Hence M = M ′ ⊂ T .

If L/K and kL/kK are both separable, then [L :K] = e(L/K)f(L/K), and thus [L : T ] =
e(L/K) = e(L/T ). �

4.5. Extension of absolute values (general case)

generalextension Remarks and Definitions 4.5.1. Let (K, | · |) be a discrete or archimedean valued field,
L/K a finite separable extension and L = K(α). Let (K̂, | · |) be a completion of (K, | · |), K̂a

an algebraic closure of K̂, and | · | : K̂a → R≥0 the extension of | · | to K̂a.

1. For ϕ ∈ HomK(L, K̂a), we define |·|ϕ = |·|◦ϕ : L→ R≥0. Then |·|ϕ is an absolute value of
L, |x|ϕ = |ϕ(x)| for all x ∈ L, and |·|ϕ � K = |·|. By definition, ϕ : (L, |·|ϕ) → (ϕ(L), |·|)
is a value isomorphism.

ϕ(L) = K(ϕ(α)) ⊂ K̂(ϕ(α)) ⊂ K̂a, (K̂(ϕ(α)) :K̂) <∞, and therefore (K̂(ϕ(α), | · |)
is complete. We assert that ϕ(L) = K(ϕ(α)) ⊂ K̂(ϕ(α)) is dense.

[Proof. If z ∈ K̂(ϕ(α)), then z = c0 + c1ϕ(α) + . . . + cmϕ(α)m, where m ∈ N0 and

cj ∈ K̂ for all j ∈ [0,m]. Let (cj,n)n≥0 be a sequence in K such that (cj,n)n≥0
|·|→ cj

and zn = c0,n + c1,nϕ(α) + . . .+ cm,nϕ(α)m ∈ K(ϕ(α)). Then (zn)n≥0
|·|→ z. ]

Hence (K̂(ϕ(α)), | · |) is a completion of (K(ϕ(α)), | · |) = (ϕ(L), | · |), and we denote
by (Lϕ, | · |ϕ) be a completion of (L, | · |ϕ). Then there exists a unique value isomorphism
ϕ̂ : (Lϕ, | · |ϕ) ∼→ (K̂(ϕ(α)), | · |) such that ϕ̂ |L = ϕ, and, in particular, ϕ̂ |K = idK . If
Kϕ is the topological closure of K in Lϕ, then (Kϕ, |·|ϕ) is a completion of (K, |·|), hence
ϕ̂(Kϕ) = K̂, and we identify these two completions of (K, ·). Then ϕ̂ : Lϕ

∼→ K̂(ϕ(α))
is a K̂-isomorphism. We call the extension Lϕ/K̂ a ( complete ) localization of L/K.
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2. Let ϕ1, ϕ2 ∈ HomK(L, K̂a). Then | · |ϕ1 = | · |ϕ2 if and only if ϕ1(α) and ϕ2(α) are
conjugate over K̂ (then ϕ1 and ϕ2 are called equivalent embeddings of L into K̂a).
[Proof. Assume first that | · |ϕ1 = | · |ϕ2 . Then we may assume that Lϕ1 = Lϕ2 , and
for i ∈ {1, 2} there exist value isomorphisms ϕ̂i : (Lϕi , | · |ϕi)

∼→ (K̂(ϕi(α)), | · |) which
are K̂-isomorphisms satisfying ϕ̂i(α) = αi. Then ϕ̂2 ◦ ϕ̂1

−1 : K̂(ϕ1(α)) ∼→ K̂(ϕ2(α))
is a K̂-isomorphism satisfying ϕ̂2◦ ϕ̂1

−1(ϕ1(α)) = ϕ2(α). Hence ϕ1(α) and ϕ2(α) are
conjugate over K̂.

Let now ϕ1(α) and ϕ2(α) be conjugate over K̂, and let Φ: K̂(ϕ1(α)) ∼→ K̂(ϕ2(α))
be a K̂-isomorphism such that Φ(ϕ1(α)) = ϕ2(α). Then | · |Φ = | · |◦Φ: K̂(ϕ1(α)) → R≥0

is an absolute value of K̂(ϕ1(α)) satisfying | · |Φ � K̂ = | · |, and therefore | · |Φ = | · | by
Theorem

fortsetzungeindeutig
4.2.6. Since Φ◦ϕ1 ∈ HomK(L, K̂a), Φ◦ϕ1 |L = idK and Φ◦ϕ1(α) = ϕ2(α), it

follows that Φ◦ϕ1 = ϕ2, and | · |ϕ2 = | · |◦ϕ2 = | · |◦Φ◦ϕ1 = | · |Φ◦ϕ1 = | · |◦ϕ1 = | · |ϕ1 . ]
3. Let finally ‖ · ‖ : L → R≥0 be an absolute value satisfying ‖ · ‖ � K = | · |. Then there

exists some ϕ ∈ HomK(L, K̂a) such that ‖ · ‖ = | · |ϕ.

[Proof. Let (L′, ‖ · ‖′) be a completion of (L, ‖ · ‖) and K ⊂ L′ the (topological) closure
of K. Then (K, ‖ · ‖′ �K) is a completion of (K, | · |), and L = K(α) ⊂ K(α) ⊂ L̂

is dense. By Theorem
fortsetzungeindeutig
4.2.6, (K(α), ‖ · ‖′ � K(α)) is complete, hence K(α) ⊂ L̂ is

closed, and thus K(α) = L̂. Let ι : (K, ‖ · ‖′ � K) ∼→ (K̂, | · |) be the unique value
isomorphism satisfying ι |K = idK , and let Φ: L̂ = K(α) → K̂a be a homomorphism
such that Φ |K = ι. Then | · |Φ = | · |◦Φ: L̂ → R≥0 is an absolute value of L̂, and
since | · |Φ �K = ‖ · ‖′ �K, it follows that | · |Φ = ‖ · ‖′. If ϕ = Φ |L : L → K̂a, then
ϕ ∈ HomK(L, K̂a) and ‖ · ‖ = ‖ · ‖′ �L = | · |Φ �L = | · |ϕ. ]

generalextension1 Theorem 4.5.2. Let (K, | · |) be a discrete or archimedean valued field and L/K a finite
separable extension. Let (K̂, | · |) be a completion of (K, | · |), K̂a an algebraic closure of K̂, and
| · | : K̂a → R≥0 the extension of | · | to K̂a. For ϕ ∈ HomK(L, K̂a), set | · |ϕ = | · |◦ϕ : L→ R≥0,
and let [ϕ] be the equivalence class of embeddings of L into K̂a.

1. The assignment [ϕ] 7→ |·|ϕ defines a bijective map from the set of all equivalence classes
of embeddings of L into K̂a onto the set of all absolute values of L extending | · |.

2. Let L = K(α), g ∈ K[X] the minimal polynomial of α over K and g = g1 · . . . ·gr, where
r ∈ N and g1, . . . , gr ∈ K̂[x] are monic and irreducible. For i ∈ [1, r], let αi ∈ K̂a be such
that gi(αi) = 0 and ϕi : L → K̂a the unique K-homomorphism satisfying ϕi(α) = αi.
Then {ϕ1, . . . , ϕr} is a complete system of pairwise not equivalent embeddings of L into
K̂a, and | · |ϕ1 , . . . , | · |ϕr are the distinct absolute values of L extending | · |.

If i ∈ [1, r] and (L̂i, | · |ϕi) denotes a completion of (L, | · |ϕi) such that K̂ ⊂ L̂i,
then there exists a unique value isomorphism ϕ̂i : (L̂i, | · |ϕi)

∼→ (K̂(αi), | · |) such that
ϕ̂i | K̂ = id

K̂
and ϕ̂i(α) = αi. It satisfies ϕ̂i |L = ϕi. In particular, L̂i/K̂ is a finite

separable extension.
3. Let | · |1, . . . , | · |r : L → R≥0 be the distinct absolute valued of L extending | · |. For
i ∈ [1, r], let (L̂i, | · |i) be a completion of (L, | · |i), and suppose that K̂ ⊂ L̂i. Then
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| · |1, . . . , | · |r are pairwise not equivalent,

[L :K] =
r∑
i=1

[L̂i :K̂] , and if δ : L →
r∏
i=1

L̂i is defined by δ(x) = (x, . . . , x) ,

then δ(L) is dense in the product space. Moreover, we have

NL/K(x) =
r∏
i=1

N
L̂i/K̂

(x) and TrL/K(x) =
r∑
i=1

Tr
L̂i/K̂

(x) for all x ∈ L .

Proof. 1. By the construction made in
generalextension
4.5.1.

2. By 1. and the construction made in
generalextension
4.5.1, it suffices to prove ϕ1, . . . , ϕr are pairwise not

equivalent, and that every embedding of L into K̂a is equivalent to some ϕi. Since g is separable,
the polynomials g1, . . . , gr are distinct, and therefore α1, . . . , αr are pairwise not conjugate over
K̂. Hence ϕ1, . . . , ϕr are pairwise not equivalent.

If ϕ ∈ HomK(L, K̂a), then g(ϕ(α)) = 0, hence gi(ϕ(α)) = 0 for some i ∈ [1, r], and then
αi = ϕi(α) and ϕ(α) are conjugate over K̂. Hence ϕ is equivalent to ϕi.

3. We maintain the notions of 2. (in particular, | · |i = | · |ϕi ). By Theorem
equivalent
4.1.6, the

absolute values | · |1, . . . , | · |r ar pairwise not equivalent, and

[L :K] = deg(g) =
r∑
i=1

deg(gi) =
r∑
i=1

[K̂(αi) :K̂] =
r∑
i=1

[L̂i :K̂] .

Let

‖ · ‖ :
r∏
i=1

L̂i → R≥0 be defined by ‖(x1, . . . , xr)‖ = max{|x1|1, . . . , |xr|r} .

Then ‖ ·‖ is a | · |-compatible norm and induces the product topology. For the proof that δ(L) is
dense, let x = (x1, . . . , xr) ∈ L̂1×. . .×L̂r and ε ∈ R>0. For every i ∈ [1, r], there is some yi ∈ L
such that |yi − xi|i < ε

2 , and by Theorem
wat
4.1.7, there exists some x ∈ L such that |x− yi|i < ε

2
for all i ∈ [1, r], and therefore |x−xi|i ≤ |x− yi|i + |yi−xi|i < ε, which implies ‖δ(x)−x‖ < ε.

For i ∈ [1, r], let ni = [K̂(αi) :K̂] = [L̂i :K̂] and Hom
K̂

(K̂(αi), K̂a) = {ϕi,1, . . . , ϕi,ni}. Then
Hom

K̂
(L̂i, K̂a) = {ϕi,1◦ϕ̂i, . . . , ϕi,ni◦ϕ̂i}, and HomK(L, K̂a) = {ϕi,ν◦ϕi | i ∈ [1, r], ν ∈ [1, ni] }.

For x ∈ L, this implies

NL/K(x) =
r∏
i=1

ni∏
ν=1

ϕi,ν◦ϕi(x) =
r∏
i=1

ni∏
ν=1

ϕi,ν◦ϕ̂i(x) =
r∏
i=1

N
L̂i/K̂

(x) ,

and similar for the trace. �

dedekindext Theorem and Definition 4.5.3. Let R be a Dedekind domain, K = q(R), L/K a finite
separable extension, S = clL(R), p ∈ P(R), ρ ∈ (0, 1) and | · |p = | · |p,ρ : K → R≥0 be a p-adic
absolute value. Then |x|p = ρvp(x) for all x ∈ K, where vp : K → Z ∪ {∞} denotes the p-adic
valuation.

1. Let P ∈ P(S), P ∩R = p, e = e(P/p), f = f(P/p) and | · |P = | · |P,ρ1/e.

(a) vP |K = e vp : K → Z ∪ {∞}, and | · |P �K = | · |p.
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(b) Let (Kp, | · |p) be a completion of (K, | · |p), let R̂p be its valuation domain, p̂
its valuation ideal and vp : Kp → Z ∪ {∞} its valuation. Let (LP, | · |P) be a
completion of (L, | · |P) such that Kp ⊂ LP, let ŜP be its valuation domain, P̂ its
valuation ideal and vP : LP → Z ∪ {∞} its valuation (see Theorem

dedekindvalue
4.3.5). Then

LP/Kp is a finite separable extension of discrete valued fields with residue class
fields kKp = R/p, kLP

= S/P, e(LP/Kp) = e and f(LP/Kp) = f . Moreover,
ŜP = SR̂p and LP = LKp.

The extension LP/Kp is called the completion of L/K at P/p.
2. Let pS = Pe1

1 · . . . · Per
r , where r ∈ N, P1, . . . ,Pr ∈ P(S) are distinct, and, for all

i ∈ [1, r], ei = e(Pi/p), fi = f(Pi/p), and | · |Pi = | · |Pi,ρ1/ei . Then | · |P1 , . . . , | · |Pr

are precisely the distinct extensions of | · |p to L. For all x ∈ L, we have

NL/K(x) =
r∏
i=1

NLPi
/Kp

(x) and TrL/K(x) =
r∑
i=1

TrLPi
/Kp

(x)

3. Let L = K(α), g ∈ K[X] the minimal polynomial of α over K, and g = g1 ·. . .·gr, where
r ∈ N and g1, . . . , gr ∈ Kp[X] are monic and irreducible. For i ∈ [1, r], let L̂i = K̂(αi),
where gi(αi) = 0. Then pS = Pe1

1 · . . . · Per
r , where P1, . . . ,Pr ∈ P(S) are distinct,

ei = e(L̂i/K̂) and f(Pi/p) = f(L̂i/K̂) for all i ∈ [1, r].

Proof. 1. (a) Let π ∈ R \ p and Π ∈ S \ P. Then vp(π) = vP(Π) = 1, and we obtain
ΠeSP = PeSP = pSP = pRpSP = πSP. Hence it follows that π = Πeu for some u ∈ S×P,
and vP(π) = evP(Π) = e. If x ∈ K×, then x = πvp(x)v for some v ∈ R×p ⊂ S×P, and vP(x) =
vp(x)vP(π) + vP(v) = evp(x). Hence vP |K = e vp. Moreover, |x|P = (ρ1/e)vP(x) = ρvp(x) = |x|p,
and therefore | · |P �K = | · |p.

(b) By Theorem
generalextension1
4.5.2, LP/Kp is a finite separable extension of discrete valued fields.

By Theorem
dedekindvalue
4.3.5, kKp = R̂p/p̂ = R/p and kLP

= ŜP/P̂ = S/P. Hence it follows that
f(LP/Kp) = [kLP

:kKp ] = [S/P :R/p] = f . Moreover, p̂ŜP = pR̂pSŜP = pSŜP = PeŜP = P̂e,
and therefore e(LP/Kp) = e.

As S = ŜP, it follows that SR̂p ⊂ ŜP is dense. S is a finitely generated R-module, hence
SR̂p is a finitely generated R̂p-module, and by Theorem

completeextension
4.4.1, SR̂p ⊂ LP is closed. Hence

SR̂p = SP, and since LP ⊃ LKp ⊃ LR̂p = q(SRp) = q(ŜP) = LP, we obtain LKp = LP.
2. If i, j ∈ [1, r], i 6= j and a ∈ Pi \Pj , then |a|Pi < 1 and |a|Pj = 1, hence | · |Pi 6= | · |Pj .

Let now ‖ · ‖ : L→ R≥0 be an absolute value such that ‖ · ‖�K = | · |p. Then ‖ · ‖ is a discrete
absolute value, and we assert that ‖x‖ ≤ 1 for all x ∈ S.

Indeed, if x ∈ S and xd + ad−1x
d−1 + . . .+ a1x+ a0 = 0 is an integral equation for x over

R, then ‖x‖d = ‖ad−1x
d−1 + . . .+ a1x+ a0‖ ≤ max{|ai|p ‖x‖i | i ∈ [0, d− 1]} ≤ max{1, ‖x‖d−1}

and thus ‖x‖ ≤ 1. By Theorem
nichtarch1
4.1.8, there is some P ∈ P(S) such that ‖ · ‖ = | · |P,θ for some

θ ∈ (0, 1). Since P ∩ R = {c ∈ R | |c|p < 1} = p, it follows that P = Pi for some i ∈ [1, r],
hence ‖ · ‖ ∼ | · |Pi and thus ‖ · ‖ = | · |Pi for some i ∈ [1, r].

The formulas for the norm and the trace follow by Theorem
generalextension1
4.5.2.

3. Obvious by 2. and Theorem
generalextension1
4.5.2. �
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4.6. Different and discriminant

different1 Theorem and Definition 4.6.1. Let R be a Dedekind domain, K = q(R), L/K a finite
separable extension, and S = clL(R).

1. CS/R = {x ∈ L | TrL/K(xS) ⊂ R } is a fractional ideal of S, and S ⊂ CS/R.

CS/R is called Dedekind’ complementary module and DS/R = C−1
S/R ∈ I(S) is called the

different of S/R.
2. Let S be R-free, (u1, . . . , un) an R-basis of S and (u∗1, . . . , u

∗
n) the dual basis of L/K.

Then CS/R = Ru∗1 + . . .+Ru∗n.
3. Let α ∈ S be such that S = R[α], and let g ∈ R[X] be the minimal polynomial of α over
K. Then DS/R = g′(α)S.

Proof. 1. and 2. If x, y ∈ CS/R and c ∈ S. Then TrL/K(cxs) ∈ TrL/K(xS) ⊂ R and
TrL/K((x+ y)s) = TrL/K(xs) + TrL/K(ys) ∈ R for all s ∈ S. Hence cx ∈ S and x+ y ∈ S, and
thus CS/R is an S-module. Since TrL/K(S) ⊂ R, it follows that S ⊂ CS/R.

Let (u1, . . . , un) ∈ Sn be a K-basis of L and (u∗1, . . . , u
∗
n) the dual basis of L. We assert

that CS/R ⊂ Ru∗1 + . . . + Ru∗n. Indeed, if c ∈ CS/R, then c = a1u
∗
1 + . . . + anu

∗
n for some

a1, . . . , an ∈ K. For all i ∈ [1, n], we get

ai =
n∑
ν=1

aνTrL/K(u∗νui) = TrL/K(cui) ∈ R , and therefore c ∈ Ru∗1 + . . .+Ru∗n .

If (u1, . . . , un) be an R-basis of S and c ∈ S, then c = a1u1 + . . .+ anun, where a1, . . . , an ∈ R,
and TrL/K(cu∗i ) = ai ∈ R for all i ∈ [1, r]. Hence {u∗1, . . . , u∗n} ⊂ CS/R, and therefore CS/R =
Ru∗1 + . . .+Ru∗n.

3. Let

g =
n∑
ν=0

aνX
ν , where an = 1 , and

g

X − α
=

n−1∑
ν=0

βνX
ν , where β1, . . . , βn−1 ∈ S .

Then (1, α, . . . , αn−1) is an R-basis of S,( β0

g′(α)
, . . . ,

βn−1

g′(α)

)
is the dual basis of L/K, and CS/R =

1
g′(α)

n−1∑
ν=0

βνR .

We shall prove that (β0, . . . , βn−1) is an R-basis of S. Once this is done, it follows that
g′(α)CS/R = S, and DS/R = g′(α)S. Since g(α) = 0, we obtain

g =
n∑
ν=0

aν(Xν − αν) = (X − α)
n∑
ν=1

aν

ν−1∑
j=0

αν−1−jXj = (X − α)
n−1∑
j=0

( n∑
ν=j+1

aνα
ν−1−j

)
Xj ,

and consequently βj = aj+1 + aj+2α+ . . .+ anα
n−1−j for all j ∈ [0, n− 1]. Observing an = 1,

this yields to the matrix equation
βn−1

βn−2
...
β0

 =


1 0 . . . 0

an−1 1 . . . 0
...

...
. . .

...
a1 a2 . . . 1




1
α
...

αn−1

 = A


1
α
...

αn−1

 , where A ∈ GLn(R) .
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Hence (β0, . . . , βn−1) is an R-basis of S. �

Definition 4.6.2. Let R be a Dedekind domain, K = q(R), L/K a finite separable exten-
sion, and S = clL(R).

1. The ideal norm NS/R : F(S) → F(R) is the unique group homomorphism satisfying
NS/R(P) = pf if P ∈ P(S), p = P ∩ R and f = f(P/p) [ note that F(S) is the free
abelian group with basis P(S) ].
If R = Z, K = Q and L is an algebraic number field, then NOL/Z(P) = N(P)Z for all
P ∈ P(S), and therefore NOL/Z(A) = N(A)Z for all A ∈ F(S) (see Theorem

absolutenorm
3.2.7).

2. The relative discriminant dS/R ∈ I(R) is defined by dS/R = NS/R(DS/R).

different2 Theorem 4.6.3. Let R be a Dedekind domain, K = q(R), L/K a finite separable extension,
[L :L] = n, and S = clL(R).

1. If a ∈ F(R), then NS/R(aS) = an.

2. If z ∈ L×, then NS/R(zS) = NL/K(z)R.
3. Let p ∈ P(R).

(a) NSp/Rp
(ASp) = NS/R(A)Rp for all A ∈ F(S).

(b) DSp/Rp
= DS/RSp, dSp/Rp

= dS/RRp, and

vp(dS/R) =
∑
P | p

f(P/p)vP(DS/R) ,

where the sum runs over all P ∈ P(S) such that P ∩R = p.
4. If S is R-free with basis (u1, . . . , un), then dS/R = ∆L/K(u1, . . . , un)R.
5. If α ∈ S is such that S = R[α] and g ∈ R[X] is the minimal polynomial of α over R,

then dS/R = ∆(g)R.

Proof. 1. Since the assignments a 7→ NS/R(aS) and a 7→ an define homomorphisms
F(R) → F(R), it suffices to prove that NS/R(pS) = pn for all p ∈ P(R). Thus let p ∈ P(R) and
pS = Pe1

1 · . . . ·Per
r , where r ∈ N, P1, . . . ,Pr ∈ P(S) are distinct and e1, . . . , er ∈ N. Then

NS/R(pS) =
r∏
i=1

NS/R(Pi)ei =
r∏
i=1

peif(Pi/p) = pn , since
r∑
i=1

eif(Pi/p) = n .

2. Let z ∈ L×. We note that

zS =
∏

P∈P(S)

PvP(z) =
∏

p∈P(R)

∏
P | p

PvP(z) and NS/R(zS) =
∏

p∈P(R)

∏
P | p

pf(P/p)vP(z) .

For p ∈ P(R) and P | p we consider the completion LP/Kp at P/p (see Theorem
dedekindext
4.5.3). Then

f(P/p) = f(LP/Kp), and Theorem
localextensions
4.4.3 implies vp◦NLP/Kp

= f(P/p)vP. Hence∑
P | p

f(P/p)vP(z) =
∑
P | p

vp(NLP/Kp
(z)) = vp

(∏
P | p

NLP/Kp
(z)

)
= vp(NL/K(z)) ,
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and we obtain

NS/R(zS) =
∏

p∈P(R)

p
∑

P | p f(P/p)vP(z) =
∏

p∈P(R)

pvp(NL/K(z)) = NL/K(z)R .

3. (a) As the assignments A 7→ NSp/Rp
(ASp) and A 7→ NS/R(A)Rp define homomorphisms

F(S) → F(Rp), it suffices to prove that NSp/Rp
(QSp) = NS/R(Q)Rp for all Q ∈ P(S). Thus let

Q ∈ P(S), Q ∩R = q and f = f(Q/q).
If q 6= p, then QSp = Sp, hence NSp/Rp

(QSp) = Rp, and NS/R(Q)Rp = qfRp = Rp.
If q = p, then PSp ∩ Rp = pRp and f = f(PSp/pRp) by Theorem

dedekindextension1
2.7.1. Hence we obtain

NSp/Rp
(PSp) = (pRp)f = pfRp = NS/R(P)Rp.

(b) We first deal with the different. Since the assignment A 7→ ARp = ASp defines a
group homomorphism F(S) → F(Sp), it suffices to prove that CSp/Rp

= CS/RSp, for then
DSp/Rp

= C−1
Sp/Rp

= C−1
S/RSp = DS/RSp.

CSp/Rp
⊂ CS/RSp : Let z ∈ CSp/Rp

. Since S is a finitely generated R-module, there exist
some m ∈ N and u1, . . . , um ∈ S such that S = R〈u1, . . . , um〉. Then Sp = Rp〈u1, . . . , um〉,
and therefore TrL/K(zuj) ∈ Rp, say TrL/K(zuj) = s−1cj for all j ∈ [1,m], where cj ∈ R and
s ∈ R \ p. Thus we obtain TrL/K(szuj) = cj ∈ R for all j ∈ [1,m], hence TrL/K(szS) ⊂ R,
sz ∈ CS/R and z ∈ (CS/R)p = CS/RSp.

CS/RSp ⊂ CSp/Rp
: Let s−1z ∈ CS/RSp = (CS/R)p, where z ∈ CS/R and s ∈ R \ p. If

x = t−1c ∈ Sp, where c ∈ S and t ∈ R \ p, then TrL/K(s−1zt−1c) = (st)−1TrL/K(zc) ∈ Rp.
Hence TrL/K(s−1zSp) ⊂ Rp, and therefore s−1z ∈ CSp/Rp

.

Now we consider the discriminant. Obviously,

dSp/Rp
= NSp/Rp

(DSp/Rp
) = NSp/Rp

(DS/RSp) = NS/R(DS/R)Rp = dS/RRp .

For the evaluation of vp(dS/R), we set

DS/R =
∏
P | p

PvP(DS/R)A , where A ∈ I(S) and vP(A) = 0 for all P | p .

Then

dS/R = NS/R(DS/R) =
∏
P | p

pf(P/p)vP(DS/R)NS/R(A) ,

and the assertion follows since vp(NS/R(A)) = 0.

4. Let (u1, . . . , un) be an R-basis of S and (u∗1, . . . , u
∗
n) the dual basis of L/K. It suffices to

prove that dS/RRp = ∆L/K(u1, . . . , un)Rp for all p ∈ P(R).
Thus let p ∈ P(R). Then Sp is a semilocal Dedekind domain, hence a principal ideal

domain, and (u1, . . . , un) is an Rp-basis of Sp. Hence CSp/Rp
= Rp〈u∗1, . . . , u∗n〉, and there exists

some β ∈ L× such that CSp/Rp
= βSp = Rp〈βu1, . . . βun〉. Let T ∈ GLn(Rp) be such that

(βu1, . . . , βun) = (u∗1, . . . , u
∗
n)T . Then

∆L/K(βu1, . . . , βun) = NL/K(β)2∆L/K(u1, . . . , un)

= ∆L/K(u∗1, . . . , u
∗
n) det(T ) = ∆L/K(u1, . . . , un)−1 det(T ) ,
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hence ∆L/K(u1, . . . , un)2 = NL/K(β)−2 det(T ), and therefore

∆L/K(u1, . . . , un)Rp = NL/K(β)−1Rp = NSp/Rp
(β−1Sp) = NSp/Rp

(DSp/Rp
) = dSp/Rp

= dS/R/Rp .

5. If S = R[α] and g ∈ R[X] is the minimal polynomial of α over K, then DS/R = g′(α)S,
and therefore dS/R = NS/R(g′(α)S) = NL/K(g′(α))R = ∆(g)R. �

different3 Theorem 4.6.4. Let R be a Dedekind domain, K = q(R), K ⊂ M ⊂ L finite separable
extension fields, S = clL(R) and T = clM (R) [ then T = S ∩M and S = clL(T ) ]. Then

DS/R = (DT/RS)DS/T , NS/R = NT/R◦NS/T and dS/R = NT/R(dS/T )d[L:M ]
T/R .

Proof. 1. We prove first that CS/R = (CT/RS)CS/T . Since the assignment B 7→ BS
defines a group homomorphism F(T ) → F(S), this implies

DS/R = C−1
S/R = (CT/RS)−1C−1

S/T = (C−1
T/RS)C−1

S/T = (DT/RS)DS/T .

CS/R ⊂ (CT/RS)CS/T : Let x ∈ CS/R. Then

R ⊃ TrL/K(xS) = TrL/K(xST ) = TrM/K(TrL/M (xS)T ) implies TrL/M (xS) ⊂ CT/R ,

T = C−1
T/RCT/R ⊃ C−1

T/RTrL/M (xS) = TrL/M (xC−1
T/RS) implies xC−1

T/R ⊂ CS/T , and therefore
x ∈ CT/RCS/T = (CT/RS)CS/T .

(CT/RS)CS/T ⊂ CS/R : Let x ∈ CT/R and z ∈ CS/T . Then

TrL/K(xzS) = TrM/K(xTrL/M (zS)) ⊂ TrM/K(xT ) ⊂ R implies xz ∈ CS/R ,

and therefore (CT/RS)CS/T = Z〈{xz | x ∈ CT/R, z ∈ CS/T }〉 ⊂ CS/R.
2. Since NS/R and NT/R◦NS/T are homomorphisms F(S) → F(R), it suffices to prove that

NS/R(P) = NT/R◦NS/T (P) for all P ∈ P(S). Thus let P ∈ P(S), q = P ∩ T and p = P ∩R.
Then p = q ∩R, and NT/R◦NS/T (P) = NT/R(qf(P/q)) = pf(q/p)f(P/q) = pf(P/p) = NS/R(P).

3. By 1. and 2, we obtain

dS/R = NS/R(DS/R) = NS/R(DT/RS)NS/R(DS/T )

= NT/R(NS/T (DT/RS))NT/R(NS/T (DS/T ) = NT/R(D[L:M ]
T/R )NT/R(dS/T )

= d
[L:M ]
T/R NT/R(dS/T ) . �

different4 Theorem 4.6.5. Let R be a Dedekind domain, K = q(R), L/K a finite separable extension
and S = clL(R).

1. If P ∈ P(S) and P ∩R = p, then DS/RŜP = D
ŜP/R̂p

.

2. If p ∈ P(R), then

NS/R(A)R̂p =
∏
P | p

N
ŜP/Rp

(AŜP) for all A ∈ F(S), and dS/RR̂p =
∏
P | p

d
ŜP/R̂p

,

where the products run over all P ∈ P(S) such that P | p.
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Proof. 1. Let P ∈ P(S) and p = P ∩ R. Then DS/RSp = DSp/Rp
, and ŜP = (Ŝp)PSp .

Hence it suffices to prove the formula for Rp instead of R, and we may assume that R = Rp is
a dv-domain.

Suppose that pS = Pe1
1 · . . . ·Per

r , where r ∈ N, P = P1, . . . ,Pr ∈ P(S) are distinct and
e1, . . . , er ∈ N. Then P(S) = {P1, . . . ,Pr}. Let |·|p : K → R≥0 be a p-adic absolute value of K,
and for i ∈ [1, r] let | · |Pi : L→ R≥0 be the Pi-adic absolute value of L such that | · |Pi �K = | · |p
(see Theorem

dedekindext
4.5.3). Let (Kp, | · |p) be a completion of (K, | · |) and (LPi , | · |Pi) a completion

of (L, | · |Pi) such that Kp ⊂ LPi . Then the map TrLPi
/Kp

: LPi → Kp is continuous,

TrL/K(x) =
r∑
i=1

TrLPi
/Kp

(x) for all x ∈ L ,

and the image of the diagonal embedding δ : L → LP1× . . .×LPr is dense. In particular, for

every (y1, . . . , yr) ∈ LP1×. . .×LPr there is a sequence (xn)n≥0 in L such that (xn)n≥0

|·|Pi→ yi
for all i ∈ [1, r].

After these preparations we come to the actual proof. It suffices to show that CS/R is
a dense subset of C

ŜP/R̂p
. Indeed, since C

ŜP/R̂p
∈ F(ŜP), it follows that C

ŜP/R̂p
⊂ LP is

closed, and we obtain C
ŜP/R̂p

⊂ CS/R = CS/RŜP ⊂ C
ŜP/R̂p

, hence C
ŜP/R̂p

= CS/RŜP, and

D
ŜP/R̂p

= C−1

ŜP/R̂p
= (CS/RŜP)−1 = C−1

S/RŜP = DS/RŜP.

CS/R ⊂ C
ŜP/R̂p

: Let x ∈ CS/R. We must prove that TrLP/Kp
(xy) ∈ R̂p for all y ∈ ŜP.

Thus suppose that y ∈ ŜP, and let (yn)n≥0 be a sequence in L such that (yn)n≥0
|·|P→ y and

(yn)n≥0

|·|Pj→ 0 for all j ∈ [2, r]. For all i ∈ [1, r], ŜPi ⊂ LPi is open, and thus we obtain
yn ∈ ŜPi ∩L = SPi for all n� 1. Hence it follows that yn ∈ SP1 ∩ . . .∩SPr = S for all n� 1.
Now

TrL/K(xyn) = TrLP/Kp
(xyn) +

r∑
j=2

TrLPj
/Kp

(xyn) ∈ R = Rp for all n� 1,

(TrLP/Kp
(xyn))n≥0

|·|p→ TrLP/Kp
(xy) and (TrLPj

/Kp
(xyn))n≥0

|·|p→ 0 for all j ∈ [2, r], and therefore

TrLP/Kp
(xy) = | · |p- lim

n→∞
TrLP/Kp

(xyn) ∈ R = R̂p .

C
ŜP/R̂p

⊂ CS/R : Let x ∈ C
ŜP/R̂p

and (xn)n≥0 a sequence in L such that (xn)n≥0
|·|P→ x and

(xn)n≥0

|·|Pj→ 0 for all j ∈ [2, r]. Let u1, . . . , um ∈ S be such that S = R〈u1, . . . , um〉. Then it
follows that ŜP = SR̂p =

R̂p
〈u1, . . . , um〉 (inside LP), and therefore

TrL/K(xnuµ) = TrLP/Kp
(xnuµ) +

r∑
j=2

TrLPj
/Kp

(xnuµ) for all n ≥ 0 and µ ∈ [1,m].

Since (TrLPj
/Kp

(xnuµ))n≥0
|·|p→ 0 for all j ∈ [2, r] and (TrLP/Kp

(xnuµ))n≥0
|·|p→ TrLP/Kp

(xuµ),

it follows that ((TrL/K(xnuµ))n≥0
|·|p→ TrLP/Kp

(xuµ) ∈ R̂p for all µ ∈ [1,m]. Since R̂p ⊂ Kp
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is open, it follows that TrL/K(xnuµ) ∈ R̂p ∩ K = Rp = R for all n � 1 and all µ ∈ [1,m],
which implies that TrL/K(xnS) ⊂ R and thus xn ∈ CS/R for all n� 1. Consequently, we obtain
x ∈ CS/R.

2. Let p ∈ P(R) and A ∈ F(S). Since Sp is a principal ideal domain, we obtain ASp = xSp

for some x ∈ L and, by Theorem
different2
4.6.3,

NS/R(A)R̂p = NS/R(A)RpR̂p = NSp/Rp
(xSp)R̂p = NL/K(x)R̂p

=
∏
P | p

NLP/Kp
(x)R̂p =

∏
P | p

N
ŜP/R̂p

(xŜP) =
∏
P | p

N
ŜP/R̂p

(AŜP) .

Hence we obtain

dS/RR̂p = NS/R(DS/R)R̂p =
∏
P | p

N
ŜP/R̂p

(DS/RŜP) =
∏
P | p

N
ŜP/R̂p

(D
ŜP/R̂p

) =
∏
P | p

d
ŜP/R̂p

. �

differentvalue Theorem 4.6.6. Let R be a Dedekind domain, K = q(R), L/K a finite separable extension,
S = clL(R), P ∈ P(S), p = P ∩ R, and e = e(P/p). Assume that the residue class extension
R/p ⊂ S/P is separable. Then vP(DS/R) ≥ e−1, and equality holds if and only if char(R/p) - e.

In particular, P/p is ramified if and only if vP(DS/R) > 0, and p is ramified in L if and
only if vp(dS/R) > 0.

Proof. We consider the local completion LP/Kp (see Theorem
dedekindext
4.5.3 ). Since kKp = R/p,

kLP
= S/P, vP(DS/R) = vP(DS/RŜP) = vP(D

ŜP/R̂p
) and e = e(LP/Kp), the subsequent local

result Theorem
localdifferent
4.6.7 implies vP(DS/R) ≥ e−1, and equality holds if and only if char(R/p) - e.

P/p is ramified if and only if e = 1, and this holds if and only if vP(DS/R) = 0. Hence
p is ramified in L if and only if vP′(DS/R) > 0 for some P′ ∈ P(S) such that P′ | p, and by
Theorem

different2
4.6.3 this hold if and only if vp(dS/R) > 0. �

localdifferent Theorem 4.6.7. Let L/K be a finite separable extension of discrete valued complete fields
with valuation domains OK and OL = clL(OK). Keep all notations of Definition

localfield
4.4.2 and

Theorem
localextensions
4.4.3., and assume that e = e(L/K) and kL/kK is separable.

Then vL(DOL/OK
) ≥ e− 1, and equality holds if and only if char(R/p) - e.

Proof. CASE 1 : L/K is unramified. By Theorem
unramified1
4.4.7, there exists some α ∈ OL such

that OL = OK [α], and if g ∈ OK [X] denotes the minimal polynomial of α over K, then the
residue class polynomial g ∈ kK [X] is separable. In particular, g′(α) = g ′(α) 6= 0, hence
g′(α) ∈ O×

L , and DOL/OK
= g′(α)OL = OL.

CASE 2 : L/K is fully ramified. By Theorem
eisenstein
4.4.6, [L : K] = e, sOL = OK [π], where

π ∈ K, vL(π) = 1, and the minimal polynomial g ∈ OK [X] of π over K is an Eisenstein
polynomial. Suppose that g = Xe + ae−1X

e−1 + . . . + a1X + a0, where vK(a0) = 1 and
vK(ai) ≥ 1 for all i ∈ [1, e− 1]. Then

g′(π) = eπe−1 +
e∑
i=1

iaiπ
i−1 , and DOL/OK

= g′(π)OL .
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For all i ∈ [1, e− 1] we have vL(iaiπi−1) = evK(iai) + i− 1 ≥ e, and since

vL(eπe−1) = vL(e1K) + e− 1 =

{
e− 1 if char(kK) - e ,
≥ e if char(kK) | e ,

we obtain vL(g′(π)) = e− 1 if char(kK) - e, and vL(g′(π)) ≥ e if char(kK) | e.
GENERAL CASE : By Theorem

inertiafield
4.4.9, there exists an intermediate field K ⊂ T ⊂ L such

that T/K is unramified, L/T is fully ramified and [L : T ] = e. By Theorem
different3
4.6.4 we obtain

DOL/OK
= DOT /OK

DOL/OT
= DOL/OT

, and the assertion follows by CASE 2. �

Corollary 4.6.8. Let R be a Dedekind domain, K = q(R), L/K a finite separable extension,
S = clL(R), and suppose that all residue class fields R/p for p ∈ P(R) are perfect. Then
p ∈ P(R) ramifies in L if and only if vp(dS/R) > 0. In particular, only finitely many p ∈ P(R)
ramify in L.

Proof. Obvious by Theorem
differentvalue
4.6.6. �

Definition 4.6.9. Let L/K be a finite extension of algebraic number fields of of discrete
valued complete fields. Then we call

DL/K = DOL/OK
the different of L/K and dL/K = dOL/OK

the discriminant of L/K.

Theorem 4.6.10. Let K be an algebraic number field.
1. dK/Q = ∆KZ.
2. Let p ∈ P be a prime. Then p ramifies in K if and only if p |∆K .
3. At least one and at most finitely many primes ramify in K.

Proof. 1. By Theorem
different2
4.6.3.4, observing Definition

integralbasis
2.2.1.

2. By Theorem
differentvalue
4.6.6.

3. By 2. and Theorem
hermite
3.2.4. �





CHAPTER 5

Exercises

1. Let K ⊂ L, M ⊂ K be fields, and suppose that K/K is algebraic.
a) If L/K is normal, then LM/M is normal.
b) If L/K and M/K are normal, then LM/K and L ∩M/K are normal.
c) Assume that K ⊂ L ⊂ M . If M/K is normal, then M/L is normal. If M/L and L/K

are both normal, then M/K need not be normal (give an example where [M :K] = 4 ).

2. The sequences (un)n≥1 and (vn)n≥1 in R are recursively defined by

u1 = −2 , v1 = 0 , un+1 =
√

2 + un , vn+1 =
√

2− un .

For all n ∈ N, the number ζ = 1
2(un + ivn) is a primitive 2n-th root of unity.

3. Show that Q(5) = Q(
√
−10− 2

√
5 ), Q(6) = Q(

√
−3) and Q(8) = Q(

√
−1,

√
2). Deter-

mine the splitting field L and its degree [L :Q] for the following polynomials :
a) X4 − 2; b) X4 + 4; c) X5 − 5 d) X10 − 5; e) X8 − 3; f) X8 − 2.

4. Let K be a field and n ∈ N.
a) µ∗n(K) 6= ∅ ⇐⇒ |µn(K)| = n ⇐⇒ |µ∗n(K)| = ϕ(n).
b) If µ∗n(K) 6= ∅, then Xn − 1 ∈ K[X] is separable and char(K) - n.
c) If char(K) = p > 0 and n = pdm, where d ∈ N0, m ∈ N and p - m, then µn(K) = µm(K).
d) Let p be a prime, and let f ∈ N be minimal such that pf ≡ 1 mod n. Then f |ϕ(n), and

Fpf is the splitting field of Xn − 1 over Fp.
5. The Möbius function µ : N → C is defined by

µ(n) =

{
(−1)r if n = p1 · . . . · pr , where r ∈ N0 and p1, . . . pr are distinct primes,

0 if there exists a prime p such that p2 |n.

a) If n ∈ N, then∑
d|n

µ(d) =

{
1 if n = 1 ,
0 if n > 1 . [Hint : First do the case where n is a prime power ]

b) Let F, f : N → C be functions. Then :

F (n) =
∑
d|n

f(d) for all n ∈ N ⇐⇒ f(n) =
∑
d|n

µ(d)F
(n
d

)
for all n ∈ N.

c) For all n ∈ N,

n =
∑
d|n

ϕ(d) ,
ϕ(n)
n

=
∑
d|n

µ(d)
d

and Φn =
∏
d|n

(Xn/d − 1)µ(d) .

103
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5. Let q be a prime power. For n ∈ N, let Fq(n) be the set of all monic irreducible
polynomials f ∈ Fq[X] such that deg(f) = n, and ψq(n) = |Fq(n)|.

a) If f ∈ Fq[X], then f |Xqn −X if and only if deg(f) |n, and

Xqn −X =
∏
d|n

∏
f∈Fq(n)

f .

b) Let µ denote the Möbius function. Then, for all n ∈ N,

qn =
∑
d|n

dψq(d) and ψq(n) =
1
n

∑
d|n

µ(d)qn/d .

6. Let K be a field and Λ the set of all irreducible monic irreducible polynomials f ∈
K[X]\K. Let X = (Xf )f∈Λ be a family of indeterminates indexed by Λ, K[X] the polynomial
ring and a = K[X]〈{f(Xf ) | f ∈ Λ}〉 / K[X]. Then a 6= K[X], and if m / K[X] is a maximal
ideal such that a ⊂ m, then K = K[X]/m is a field, and there is a (natural) monomorphism
K → K. If we identify K with its image in K, then K ⊃ K is an extension field, and every
f ∈ K[X] \K has a zero in K.

7. Let K/K be an algebraic field extension such that every polynomial f ∈ K[X] \K has a
zero in K. Then K is an algebraic closure of K (first do the separable case and use the Primitive
Element Theorem). Together with 6. this gives a new proof for the existence of an algebraic
closure (did you use Zorn’s Lemma?).

8. a) A finite separable field extension has only finitely many intermediate fields. This is
not true for inseparable extensions.

b) Let L ⊂ C be a subfield. If L/Q is normal, then either L ⊂ R or L0 = L∩R is a subfield
such that [L :L0] = 2.

9. Let m, n ∈ N, d = gcd(m,n) and e = lcm(m,n). Then Q(e) = Q(m)Q(n) and Q(d) =
Q(m) ∩Q(n). Hint: Use Galois theory and the formula

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

10. Let K be a field and n ∈ N such that char(K) - n and µ∗n(K) 6= ∅. If a, b ∈ K×, then
K( n

√
a) = K( n

√
b) if and only if b = ajcn for some c ∈ K× and j ∈ [0, n−1] such that (j, n) = 1.

Hint : Use the canonical monomorphisms Gal(K( n
√
a)/K) → µn(K) and Gal(K( n

√
b)/K) →

µn(K).
11. Let K = Q(3) = Q(

√
−3), θ ∈ C, θ3 = z ∈ K× \K×3 and N = K(θ) [N = K( 3

√
z)

for short ]. Then N/K is cyclic, [N :K] = 3 and [N :Q] = 6.
a) N/Q is galois if and only if z = zjb3 for some j ∈ {1, 2} and b ∈ K× (use Exercise 10).

In fact, N/Q is cyclic if j = 2, and Gal(N/Q) ∼= S3 if j = 1. Then either N ∩ R = Q(θ + θ), or
j = 1 and N ∩ R = Q(θ2).

b) Let L/Q be a cyclic extension and [L : Q] = 3. Then there exists some α ∈ Z[
√
−3 ]

such that L = Q( 3
√
α2α + 3

√
αα2 ). Conclude that L/Q is a cyclic extension of degree 3 if and

only if there exist a, b, m ∈ Z such that m = a2 + 3b2, mab 6= 0, and L is the splitting field of
X3− 3mX +2ma. Hint: If L is the splitting field of a polynomial X3 + pX + q, then [L :Q] = 3
if and only if −4p3 − 27q2 ∈ Q×2.
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12. Let p be a prime and L the splitting field of X4− p (over Q). Determine Gal(L/Q) and
all intermediate fields of L/Q.

13. Let K be an algebraic number field, [K :Q] = n, and for f ∈ N, set OK,f = Z + fOK .
Then OK,f is an order in K, and (OK :OK,f ) = fn−1.

Assume now that n = 2 and ω = ∆K+
√

∆K
2 .

a) (1, fω) is a basis of OK,f , and ∆(OK,f ) = Df2.
b) If R ⊂ K is any order and (OK :R) = f , then R = OK,f .

14. Let K = Q(α), where α is a zero of the (irreducible!) polynomial X3 − X − 4. Then
(1, α, α+α2

2 ) is an integral basis of K. Hint: It suffices to prove that α+α2

2 ∈ OK (why?)

15. Let K be an algebraic number field, M ⊂ OK a complete module and D = ∆(M).
Then D ∈ Z, and D ≡ 0 or 1 mod 4 (in particular, this holds for D = ∆K). Hint: The defining
determinant is of the form (P −N)2.

16. a) Let F ⊂ K ⊂ L be fields such that char(K) 6= 2, [L : K] = [K : F ] = 2, and
L = K(

√
α ) for some α ∈ K×. Then L/F is galois if and only if NK/F (α) ∈ K×2, and L/F is

cyclic if and only if NK/F (α) ∈ K×2 \ F×2.
b) Let F ⊂ K be fields such that char(K) 6= 2 and K = F (

√
D ) for some D ∈ F \ F×.

Then K can be embedded into a field L such that L/F is cyclic of degree 4 if and only if D is
the sum of two squares in F . Discuss the consequences for quadratic number fields.

17. Let K be a field, n ∈ N and a ∈ K×. Then the polynomial Xn − a is irreducible over
K if and only if the following conditions are fulfilled :

• a /∈ Kp for all primes p dividing n;
• a /∈ −4K4 if 4 |n

(Theorem of Capelli).

18. Let p be an odd prime. Determine an integral basis of Q(ζp + ζ−1
p ).

19. An algebraic number field K is called a pure cubic field if K = Q( 3
√
m) for some

m ∈ Q \Q3. If K is a pure cubic field, then there exist unique integers a, b ∈ N such that ab is
squarefree, m = ab2 and K = Q( 3

√
m). If it is in this form and θ = 3

√
m, then :

• If m 6≡ ±1 mod 9, then
(
1, θ, θ

2

b

)
is an integral basis of K, and ∆K = −27(ab)2.

• If m ≡ e mod 9, where e ∈ {±1}, then
(
1, θ

2

b ,
1+eθ+θ2

3

)
is an integral basis of K, and

∆K = −3(ab)2.

19. Let p ∈ P \ 2 be an odd prime.
a) If p 6= 3, then 3 is a quadratic residue modulo p if and only if p ≡ ±1 mod 12, and −3 is

a quadratic residue modulo p if and only if p ≡ 1 mod 3.
b) Do the same for 5 instead of 3.
20. Let m ∈ N, m = 2epe11 · . . . · per

r ≥ 2, where r, e ∈ N0, p1, . . . , pr ∈ P \ {2} are distinct
odd primes, and e1, . . . , er ∈ N. If a ∈ Z and (a,m) = 1, then a is a quadratic residue modulo m
(that is, the congruence x2 ≡ a mod m is solvable) if and only if the following conditions hold :

•
(
a
pi

)
= 1 for all i ∈ [1, r].

• a ≡ 1 mod 4 if e = 2.
• a ≡ 1 mod 8 if e ≥ 3.
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21. Let m ∈ N, m ≥ 3 and K = Q(ζm). Then 1− ζm ∈ O×
K if and only if m is not a prime

power.

22. Let R be a domain. An element u ∈ R• \ R× is called an atom if, for all a, b ∈ R,
u = ab implies a ∈ R× or b ∈ R×. R is called atomic if every a ∈ R• \ R× is a product of
atoms.

a) u ∈ R• \R× is an atom if and only if the principal ideal uR is maximal among principal
ideals.

b) Suppose that R satisfies the ascending chain condition for principal ideals (ACCP). Then
R is atomic. In particular, every noetherian domain is atomic.

c) The domain Z = clC(Z) is not atomic (hence not noetherian), but every finitely generated
ideal of Z is invertible (a domain with this property is called a Prüfer domain ).

d) Let R be a Dedekind domain, write its class group C(R) additively, and let a ∈ I(R), say
a = p1 · . . . · pr, where r ∈ N and p1, . . . , pr ∈ P(R). Then a is a principal ideal if and only if
[p1]+[p2]+ . . .+[pr] = 0 (in this case, [p1][p2] · . . . · [pr] is called a zero sum sequence ). Moreover,
a is the principal ideal generated by an atom if and only if [p1][p2] · . . . · [pr] is a minimal zero-sum
sequence (that means, no proper subsum equals zero).

23. Let R be a Dedekind domain.
a) Let r ∈ N, p1, . . . , pr ∈ P(R) distinct and e1, . . . , er ∈ N0. Then there exists some a ∈ R

such that vpi(a) = ei for all i ∈ [1, r]. Hint : If p ∈ P(R), π ∈ p \ p2, e ∈ N0, a ∈ R and a ≡ πe

mod pe+1, then a ∈ pe \ pe+1.
b) Let a ∈ I(R). In every ideal class of R there exists an ideal c such that a + c = R.
c) If a ∈ I(R), then R/a is a principal ideal ring, and a = R〈a, b〉 for some a, b ∈ a.

24. Let K = Q(
√
d) ⊂ C, where d ∈ {−1, −2, −3, −7, −11}. Then OK is factorial. Prove

that for every x ∈ K×, there exists some q ∈ OK such that |x−q| < 1, and thus OK is euclidean.
25. a) Let R be an atomic domain (see 22.), and suppose that every a ∈ R• \ R× is a

product of atoms in an essentially unique way (what means this precisely?) Then R is factorial.
b) Let d ∈ Z, d < 0, and suppose that Z[

√
d] is factorial. Then d = −1, d = −2 or d = −p

for some prime p ≡ 3 mod 4.

26. Let R be a Dedekind domain, p ∈ P(R), K = q(R) and L/K a finite separable field
extension.

a) Let K ⊂ L1, L2 ⊂ L be intermediate fields such that L = L1L2. If p splits completely in
L1 and in L2 then it also splits completely in L.

b) Let K ⊂ L1 ⊂ L be an intermediate field such that L/K is the normal closure of L1/K.
If p splits completely in L1, then it splits completely in L.

27. The Fibonacci sequence (Fn)n≥0 is recursively defined by F0 = 0, F1 = 1 and Fn =
Fn−1 + Fn−2 for all n ≥ 2. Then

Fn =
1√
5

[(1 +
√

5
2

)n
−

(1−
√

5
2

)n]
for all n ≥ 0 , and Fp ≡

(p
5
)

mod p

for all primes p ∈ P \ {2, 5}. Calculate in the field F25.
28. Sums of two squares. Use that OQ(i) = Z[i] is factorial.
a) Let n ∈ N. Then n = a2 + b2 for some a, b ∈ Z if and only if 2 | vp(n) for all primes p ≡ 3

mod 4. Moreover, n = a2 + b2 for some a, b ∈ Z such that (a, b) = 1 if and only if 4 - n and no
prime p ≡ 3 mod 4 divides n.
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b) If r = m
n ∈ Q, where m, n ∈ N and (m,n) = 1, then r is the sum of two rational squares

if and only if both m and n are the sums of two integral squares. In particular, a positive integer
is the sum of two rational squares if and only if it is the sum of two integral squares.

c) If r ∈ Q is the sum of two rational squares, then there are infinitely many (x, y) ∈ Q2

such that r = x2 + y2.
d) Let n ∈ N, r(n) = |{(a, b) ∈ Z2 | n = a2 + b2}|, and define χ(n) = (−1)(n−1)/2 if 2 - n,

and χ(n) = 0 if 2 |n. Then

r(n) = |{(a, b) ∈ Z2 | a2 + b2 = n} = 4
∑

1≤d|n
d odd

χ(d) = 4(A−B) ,

where A = |{d ∈ N | d |n , d ≡ 1 mod 4}| and B = |{d ∈ N | d |n , d ≡ 3 mod 4}|. In
particular, if p ≡ 1mod 4 is a prime, then p has a ”unique” representation as sum of two
squares. Hints : Set n = 2km, m = pe11 · . . . · per

r , where k, r ∈ N0, p1, . . . , pr are distinct odd
primes, and e1, . . . , er ∈ N0. Then

r(n) = 4 |{a / Z[i] | (Z[i] :a) = n}| = 4
r∏
i=1

|{a / Z[i] | (Z[i] :a) = pei
i }| ,

for an odd prime power pe we have |{a / Z[i] | (Z[i] :a) = pe}| =
∑e

ν=0 χ(pν).

29. For i ∈ {1, 2, 3}, let Ki = Q(θi), where θ3
1 − 18θ1 − 6 = 0, θ3

2 − 36θ2 − 78 = 0, and
θ3
3 − 54θ3 − 150 = 0. In all cases, (1, θi, θ2

i ) is an integral basis, and ∆Ki = 22356 (use the
Eisenstein criterion). However, the fields are distinct (indeed, 5 splits only in K3, and 11 splits
in K1, but not in K2).

30. The Dirichlet field. Let K = Q(
√
d1,

√
d2), where d1, d2 ∈ Z \ {1} are squarefree and

distinct. Then K/Q is a galois algebraic number field of degree 4 with three quadratic subfields
K1, K2,K3. A rational prime p splits in K in one of the following 4 ways.

I. pOK = p1p2p3p4, where f(pi/p) = 1 (p splits completely).
II. pOK = p1p2, where f(pi/p) = 2 (p has inert divisors).

III. pOK = p2
1p

2
2, where f(pi/p) = 1 (p splits ramified).

IV. pOK = p4, where f(p/p) = 1 (p ramifies completely)

If p splits in K1 and K2, then p also splits in K3, and p splits completely in K. If p splits in K1

and is inert in K2, then p is also inert in K3 and has inert divisors in K. If p splits in K1 and
ramifies in K2, then p also ramifies in K3 and splits ramified in K. If p ramifies in K1, K2 and
K3, then p = 2 and p ramifies completely in K.

31. The domains OQ(
√

2) = Z[
√

2] and OQ(
√
−2) = Z[

√
−2] are factorial [for Z[

√
−2] see

Exercise 24, for Z[
√

2] use that for every x ∈ Q(
√

2) there exists some q ∈ Z[
√

2] such that
|NQ(

√
2)/Q(x− q)| < 1 ].

A prime p splits in Q(
√

2) if and only if p = x2 − 2y2 for some x, y ∈ Z, and then it follows
that p ≡ ±1 mod 8. A prime p splits in Q(

√
−2) if and only if p = x2+2y2 for some x, y ∈ Z, and

then it follows that p ≡ 1 or 3 mod 8. Now apply Exercise 30 to the field Q(8) = Q(
√

2,
√
−1),

and deduce that (2
p

)
= (−1)(p

2−1)/8 .
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Observe that p splits in Q(
√
−1) if and only if p ≡ 1 mod 4, and that p splits completely in Q(8)

if and only if p ≡ 1 mod 8.

32. Let K be a galois algebraic number field and G = Gal(K/Q). For P ∈ P(OK) set
GP = {σ ∈ G | σP = P}. Then GP ⊂ G is a subgroup, called the decomposition group of P,
and its fixed field KP = KGP is called the decomposition field of P.

a) Let p ∈ P, P ∩ Z = pZ, and G =
⊎r
i=1 σiGP. Then {σiP | i ∈ [1, r]} is the set of all

prime ideals of OK lying above p, and GσiP = σiGPσ
−1
i for all i ∈ [1, r]. (Hint: G operates

transitively on the set of all P | p). In particular, |GP| = e(P/p)f(P/p), and if q = P ∩ KP,
then P is the only prime ideal lying above q, and e(q/p) = f(q/p) = 1.

b) Let K/Q be cyclic of even degree [K :Q] = 2d and K0 the only quadratic subfield of K.
Let p ∈ P and P ∈ P(OK) such that P | p. Then the following assertions are equivalent : (i)
2 | (G :GP); (ii) K0 ⊂ KP; (iii) p splits in K0; (iv) pOK is the product of an even number of
prime ideals.

c) A structural proof of the Quadratic Reciprocity Law. Let p and q be distinct odd primes,
q∗ = (−1)(q−1)/2q, K = Q(q) the q-th cyclotomic field, K0 = Q(

√
q∗) ⊂ K, and P ∈ OK such

that P | p. Apply b) and the decomposition law for cyclotomic fields to show that(p
q

)
= 1

[
⇐⇒ p(q−1)/2 ≡ 1 mod q

]
⇐⇒

(q∗
p

)
= 1 .

33. Let ∆ ∈ N be not a square and ∆ ≡ 0 or 1 mod 4.
a) Let v0 be the smallest v ∈ N such that ∆v2 +4e is a square for some e ∈ {±1}. If ∆ > 5,

u0 ∈ N, e0 ∈ {±1} and ∆v2
0 + 4e0 = u2

0, then ε∆ = u0+v0
√

∆
2 is the fundamental unit of O∆,

and NQ(
√

∆/Q(ε∆) = e0. What is special for ∆ = 5?
b) Let n ∈ N, s ∈ {±1}, D = n2 + s, ∆ = D if D ≡ 1 mod 4, and ∆ = 4D if D 6≡ 1

mod 4. Then ε∆ = n+
√
D.

c) Let ∆ ≡ 1 mod 4 and ε∆ = u+v
√

∆
2 , where u, v ∈ Z and u ≡ v mod 2 [ in fact, a) implies

that u, v ∈ N; also note that O4∆ = Z[
√

∆] ⊂ Z
[

1+
√

∆
2

]
= O∆ ]. Then ε4∆ = ε∆ if u ≡ v ≡ 0

mod 2, and ε4∆ = ε3∆ if u ≡ v ≡ 1 mod 2. If ∆ ≡ 5 mod 8, then ε4∆ = ε∆.
d) If NQ(

√
∆)/Q(ε∆) = −1, then no prime p ≡ 3 mod 4 divides ∆.

34. Determine all integral solutions of the diophantine equation 3x2 − 4y2 = 11. Hint:
Determine the fundamental unit of O48 = Z[

√
12] and all solutions (u, y) ∈ Z2 of the norm

equation NQ(
√

3)/Q(u+ y
√

12) = 33.

35. Let K be a quadratic number field and Gal(K/Q) = 〈τ〉.
a) τ(R) = R for every order R ⊂ K. In particular, τ(OK) = OK , and if a ∈ I(OK), then

τ(a) ∈ I(OK), and a τ(a) = N(a)OK .
b) An ideal a ∈ I(OK) is called ambiguous if τ(a) = a [ equivalently, a2 = N(a)OK ]. Let

p1, . . . , pt be the prime divisors of ∆K and piOK = p2
i for all i ∈ [1, t]. Then an ideal a ∈ I(OK)

is ambiguous if and only if a = api1 · . . . · pir for some a ∈ N, r ∈ N0 and 1 ≤ i1 < . . . < ir ≤ t.
c) Let ε ∈ O×

K , NK/Q(ε) = 1 and α = 1 + ε. Then α2 = NK/Q(α)ε, and αO∆ is an
ambiguous ideal. Deduce that NK/Q(ε∆) = −1 if ∆K is a prime.

36. a) If K = Q(
√

6), then hK = 1, and if If K = Q(
√
−6), then hK = 2. Determine (in

both cases) the prime ideal factorization of 6OK .
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b) Let K = Q(
√

2,
√
−3). Then ∆K = 242 (it is a compositum of fields with coprime

discriminants), hK = 1 (though Q(
√
−6) ⊂ K), and O×

K = 〈1 +
√

2, 1+
√
−3

2 〉.
c) hQ(

√
−23) = 3, hQ(

√
−14) = hQ(

√
−21) = 4, CQ(

√
−14) cylic, and CQ(

√
−21) is not cyclic.

37. Let R be a Dedekind domain. K = q(R), S ⊂ P(R) a finite subset, S′ = P(R) \ S,
and RS = {x ∈ K | vp(x) ≥ 0 for all p ∈ S′}. Then RS is a Dedekind domain,

RS =
⋂

p∈S′
Rp =

(
R \

⋃
p∈S

p
)−1

R , and there is a (natural) exact sequence

1 → R× → (RS)× →
∏
p∈S

K×/R×p → C(R) → C(RS) → 1 .

In particular, letK be an algebraic number field with r1 real and r2 pairs of complex embeddings,
and R = OK . In this case, (OS

K)× is called the S-unit group and C(RS) is called the S-class
group of K. By the exact sequence it follows that C(OS

K) is finite and (OS
K)× ∼= µ(K)×

Z|S|+r1+r2−1.

38. Let (K, v) be a discrete valued field, Uv = O×
v , and for n ∈ N set Unv = 1 + pnv .

a) There exist (natural) isomorphisms Uv/U1
v

∼→ k×v and Unv /U
n+1
v

∼→ kv for all n ∈ N.
b) If K ⊂ Q, p ∈ P is a prime and v(p) = e ∈ N, then v |Q = evp : Q → Z ∪ {∞} (where

vp denotes the p-adic valuation). The infinite series

e(x) =
∞∑
n=0

xn

n!
converges for all x ∈ K satisfying v(x) >

e

p− 1
,

and for those x we have v(e(x)− 1) = v(x).
Prove first : If n ∈ N and n = a0 + a1p + . . . + arp

r, where r ∈ N0 and a0, . . . , ar ∈ [0, p − 1],
then

vp(n!) =
n− (a0 + . . .+ ar)

p− 1
and v

(xn
n!

)
≥ n

(
v(x)− e

p− 1

)
.

39. (Power series rings) Let R be a commutative ring and R∗ the set of all sequences
f = (fn)n≥0 in R, endowed with an addition and multiplication defined by

(fn)n≥0 + (gn)n≥0 = (fn + gn)n≥0 and (fn)n≥0 · (gn)n≥0 =
( n∑
j=0

fjgn−j

)
n≥0

.

Then R∗ is a commutative ring, and the map ι : R → R∗, defined by ι(c) = (c, 0, 0, . . .) for
c ∈ R, is a ring monomorphism.

We identify R with ι(R) ⊂ R∗, set t = (0, 1, 0, 0, . . .) ∈ R∗, and write the elements f =
(fn)n≥0 in the form

f =
∞∑
n=0

fnt
n .

Then we call R∗ = R [[t]] the power series ring in t over R. It contains the polynomial ring R[t]
as a subring.

a) R [[t]]× = {f ∈ R [[t]] | f0 ∈ R×}.
b) For f ∈ R [[t]], we call ord(f) = inf{n ∈ N0 | fn 6= 0} ∈ N0 ∪ {∞} the order of f .

Then ord(f + g) ≥ min{ord(f), ord(g)}, with equality if ord(f) 6= ord(g), and ord(fg) ≥
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ord(f) + ord(g), with equality if R is a domain. In particular, if R is a domain, then R [[t]] is a
domain.

c) Let ρ ∈ (0, 1) be a real number. For f, g ∈ R [[t]], we set d(f, g) = ρord(f−g). Then d is a
metric on R [[t]]. For f ∈ R [[t]] and n ∈ N, we set Bn(f) = f + tnR [[t]]. Then {Bn(f) | n ∈ N} is
a fundamental system of neighborhoods of f (in particular, the topology does not depend on ρ).
Addition and multiplication on R are continuous, and R [[t]] = R[t]. If (gn)n≥0 is any sequence
in R [[t]] such that (ord(gn))n≥0 → ∞ and f ∈ R [[t]], then the series

∑∞
n=0 fngn converges. In

particular, if g ∈ R [[t]], and ord(g) ≥ 1, then f(g) ∈ R [[t]].
d) If char(R) = p is a prime, then

fp =
∞∑
n=0

fpnt
np for all f ∈ R [[t]].

e) Let R be a field. Then R((t)) = q(R [[t]]) is called the field of formal Laurent series over
R. Its elements have a unique representation

h =
∞∑

n=−∞
hnt

n , where hn ∈ K and hn = 0 for almost all n < 0 .

The function ord has a unique extension to a valuation ord: F ((t)) → Z∪{∞}, and (F ((t)), ord)
is a complete discrete valued field with valuation domain R [[t]].

40. Let K be a field of characteristic 0. For formal Laurant series f ∈ K((t)) define its
derivative f ′ ∈ K((t)) as usual and give algebraic proofs of all differentiation rules including
the chain rule (you may assume the corresponding rules for polynomials). Define the formal
exponential and the formal logarithm by

E(t) =
∞∑
n=0

1
n!
tn and L(t) =

∞∑
n=1

(−1)n−1

n
tn

and prove E′(t) = E(t), L′(t) = (1 + t)−1, E(L(t)) = 1 + t and L(E(t)− 1) = t.

41. Let F be a field and K = F (t) a rational function field. Then there is a unique
valuation v∞ : K → Z ∪ {∞} such that v∞(f) = −deg(f) for all f ∈ F [t]. For every monic
irreducible polynomial p ∈ F [t], let vp be the pK[t]-adic valuation of K. Then {vp | p ∈
F [t] monic and irreducible } ∪ {v∞} is the set of all valuations v : K → Z ∪ ∞} such that
v |F× = 0. If p ∈ F [t] is a monic irreducible polynomial and kp denotes the residue class field
of (K, vp), then dimF (kp) = deg(p).

If u = t−1, then v∞ = vuF [u], (F ((t)), ord) is the completion of (K, vt), and (F ((u)), ord) is
the completion of (K, v∞).

42. Let K be a field. Then K(t) ⊂ K((t)). The following Theorem of Hankel characterizes
K(t) ∩ K [[t]]. For f ∈ K [[t]] and n, s ∈ N0, set Ds

n = det(fn+i+j)i, j∈[0,s] ∈ Ms+1(K). Then
f ∈ K(t) if and only if there exists some s ∈ N0 such that Ds

n = 0 for all n� 1.

Hint: One direction is easy. For the other one, use a determinant relation due to Sylvester :
For A = (ai, j)i,j∈[1,n], set A◦ = (ai,j)i,j∈[2,n−1], and let αi,j = (−1)i+j det(aν,µ)(ν,µ) 6=(i,j) be the
coefficient of ai,j in the determinant expansion of A. Then

det(A) det(A◦) = (α1,1αn,n − αn,1α1,n) .
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Deduce Ds
nD

s−2
n+2 = Ds−1

n+2D
s−1
n − (Ds−1

n+1)
2. Now prove that there exists a smallest s such that,

for some n0 ≥ 0, Ds
n = 0 for all n ≥ n0 and Ds−1

n 6= 0 for all n ≥ n0 + 1. Finally determinate
the coefficients of a polynomial of degree s in the denominator of f from a system of linear
equations.

43. Let p ∈ P be a prime and z ∈ Q×
p . Then z has a unique p-adic expansion

z =
∞∑
n=d

anp
n , where an ∈ [0, p− 1] for all n ≥ d and ad 6= 0 .

In this expansion, d = vp(z). The sequence (an)n≥0 is ultimately periodic if and only if z ∈ Q.

Calculate the p-adic expansion of 2 and of −2, and the 5-adic expansion of 2
3 .

44. Let Z [[t]] be the power series ring and p ∈ P a prime. Then there is a natural isomorphism
Z [[t]]/(t− p)Z [[t]] ∼→ Zp.

45. Let p, q ∈ P be primes and Φ: Qp → Qq and isomorphism. Then p = q and Φ = idQp .
46. Let (K, v) be a complete discrete valued field, f ∈ Ov[X], r ∈ N and a ∈ Ov such that

v(f(a)) ≥ 2r− 1 and v(f ′(a)) = r− 1. Then there exists some b ∈ Ov such that f(b) = 0 and
v(b − a) ≥ r. Hint : Construct a sequence (bν)ν≥0 recursively by b0 = a, v(bν − bν+1) ≥ r + ν
and v(f(bν)) ≥ 2r + ν − 1. Observe that f(u+ v) ≡ f(u) + vf ′(u) mod v2Ov.

Use the above result to prove :
a) If a ∈ Z×2 , then a ∈ Z×2

2 if and only if a ≡ 1 mod 8.
b) If a ∈ Z×3 , then a ∈ Z×3

3 if and only if a ≡ ±1 mod 9.
c) Let (K, v) be a above and m ∈ N such that char(K) - m. Then there exists some r ∈ N

such that {a ∈ Ov | a ≡ 1 mod prv} ⊂ O×m
v .

47. Let p ∈ P be a prime, Qp an algebraic closure of Qp and | · |p : Qp → R≥0 the extension
of the p-adic valuation. Then | · |p : Qp → R≥0 is a non-archimedean non-discrete absolute
value,and (Qp, | · |p) is not complete.

Hints : Assume the contrary. For n ∈ N, let ζn ∈ Qp be a primitive n-th root of unity. Then

α =
∞∑
n=1
p-n

ζnp
n ∈ Qp , and for m ∈ N such that p - m, set αm = p−m

(
α−

m−1∑
n=0
p-n

ζnp
n
)
.

Then αm ∈ K = Qp(α), and the residue class field of K contains infinitely many roots of unity.
[ The completion Cp of Qp is algebraically closed, but this is more involved ].

48. Every complete discrete valued field is uncountable.

49. Let (K, | · |) be a discrete valued complete field, K ⊃ K and algebraic closure, α ∈ K
separable over K, n ∈ N and P = Xn + an−1X

n−1 + . . . + a1X + a0 ∈ K[X] the minimal
polynomial of α over K. Then there exists some ε ∈ R>0 with the following property :

If Q = Xn + bn−1X
n−1 + . . .+ b1X + b0 ∈ K[X] and |aν − bν | < ε for all ν ∈ [0, n− 1], then

there exists some β ∈ K such that Q(β) = 0 and K(α) = K(β). Hint: Krasner’s Lemma.

50. Let p be a prime number. For n ∈ N, let Q(n)
p = Qp(ζn), where ζn is a primitive n-th

root of unity. Suppose that n = pkm, where k ∈ N0, m ∈ N and p - m. Let f ∈ N be minimal
such that pf ≡ 1 mod m.
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a) (Q(m)
p : Qp) = f = f(Q(m)

p /Qp), e(Q(m)
p /Qp) = 1, and OQ(m)

p
= Zp[ζm] (use Hensel’s

Lemma).
b) (Q(pk)

p :Qp) = pk−1(p − 1) = e(Q(pk)
p /Qp), f(Q(pk)

p /Qp) = 1, and O
Q(pk)

p

= Zp[ζpk ] (use

an Eisenstein polynomial).
c) Q(n)

p = Q(m)
p Q(pk)

p , Q(m)
p ∩Q(pk)

p = Qp, (Q(n)
p :Qp) = pk−1(p− 1)f , and OQ(n)

p
= Zp[ζn].

51. Let (K, v) be a complete discrete valued field, |kK | = q < ∞, K ⊃ K an algebraic
closure and n ∈ N. Then there exists a unique field L such that K ⊂ L ⊂ K, [L :K] = n and
L/K is unramified. Explicitly, L = K(qn−1) is the field of (qn−1)-th roots of unity over K, and
L/K is cyclic.

52. Recall Exercise 39e).
a) Let R be an algebraically closed field, K = R((t)) the Laurent series field and L/K a

finite extension of degree n. Then L = R((t1/n)).

b) Let (K, v) be a discrete valued complete field with residue class field kK . Assume that
kK has a separating transcendence basis over its prime field, and char(K) = char(kK). Then
K ∼= kK((t1/n)). Hint: Let F be a common prime field of K and kK , (τi)i∈I a separating
transcendence basis of kK/F , and (ti)i∈I a system of representatives in OK . Let R be a maximal
field such that F ({ti | i ∈ I}) ⊂ R ⊂ OK (Zorn’s Lemma). Then OK = R [[t]] for some t ∈ OK .

53. Let K be a discrete valued complete field and K ⊂ L, M ⊂ K finite extensions.
a) If L/K is unramified, then LM/M is unramified.
b) If L/K and M/K are unramified, then LM/K is unramified.
c) If L/K is separable and T is the inertia field of L/K, then L/T is fully ramified. If L/K

is galois, then T/K and kL/kK are also galois, and there is a natural isomorphism Gal(T/K) ∼→
Gal(kL/kK).

d) If L/K separable, then e(LM/M) ≤ e(L/K).

54. Let K be an algebraic number field, p ∈ P(OK), and let K ⊂ L, M ⊂ Q be algebraic
number fields.

a) Let q ∈ P(OM ) be such that q | p. If p splits completely in L, then q splits completely in
LM .

b) If p splits completely in L and in M , then p splits completely in LM ,
c) If M/K is the normal closure of L/K and p splits completely in L, then p splits completely

in M ,

Hint: Consider the complete localizations at p.

55. Let (K, | · |0) be a discrete valued field, L/K a finite galois extension, G = Gal(L/K),
| · | an absolute value of L and | · | � K = | · |0. Let (K̂, | · |0) be a completion of (K, | · |0) and
(L̂, | · |) a completion of (L, | · |) such that K̂ ⊂ L̂. For σ ∈ G, set | · |σ = | · |◦σ : L → R≥0.
Then {| · |σ | σ ∈ G} is the set of all absolute values of L extending | · |0, L̂/K̂ is galois, and if
G0 = {σ ∈ G | | · |σ = | · |}, then there is an isomorphism Gal(L̂/K̂) ∼→ G0, given by τ 7→ τ |L.

56. Let l, p ∈ P be primes, l 6= p, c ∈ Q \Ql and K = Q( l
√
c ) ⊂ C. Then there exists some

a ∈ Z \ Z l such that vp(a) ∈ [0, l − 1] and K = Q( l
√
a ). We set a = a+ pZ ∈ Fp.

a) If p | a, then pOK = pl for some p ∈ P(OK).
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b) Suppose that p - a and p ≡ 1 mod l. If a /∈ Flp, then pOK ∈ P(OK), and if a ∈ Flp, then
pOK = p1 ˙. . . · pl, where p1, . . . , pl ∈ OK are distinct, and f(pi/p) = 1 for all i ∈ [1, l].

c) Suppose that p - a, p 6≡ 1 mod l, and let f ∈ N be minimal such that pf ≡ 1 mod l. Then
pOK = p0p1 · . . . · pr, where r ∈ N, l = 1 + fr, p0, . . . pr ∈ P(OK) are distinct, f(p0/p) = 1,
and f(pi/p) = f for all i ∈ [1, r].
Hint: Factorize the polynomial X l − a over Fp and then (by means of Hensel’s Lemma) X l − a
over Qp.


