In [1]:
# !pip install dependent_bterms tqdm
In [2]:
import dependent_bterms as dbt
In [3]:
%display typeset
In [4]:
N = 10000

var('t m j')
assume(m > 0, j+1 > 0, (j, 'integer'))

Example: On a conjecture of Bóna and DeJonge¶

We are investigating the inequality $$ F(n) = \sum_{k=1}^{n} k \sigma(k) (k^2 - 3n + 2) (2k^2 - n) \binom{2n}{n-k} < 0 $$ for all $n \geq 5$.

Manual check for $n \leq N$¶

We verify that the inequality holds for all $5 \leq n \leq N$ directly.

In [5]:
@parallel(ncpus=16)
def F(n):
    return sum(k*sigma(k)*(k**2 - 3*n + 2)*(2*k**2 - n)*binomial(2*n, n-k) for k in srange(1, n + 1))
In [6]:
%%time

from tqdm.notebook import tqdm

all(
    result < 0
    for (args, result) in tqdm(F(srange(5, N+1)), total=int(N-5))
)
  0%|          | 0/9995 [00:00<?, ?it/s]
CPU times: user 5.23 s, sys: 54.6 s, total: 59.8 s
Wall time: 11min 43s
Out[6]:
\(\displaystyle \mathrm{True}\)

For $n > N$ we determine asymptotic expansions with explicit error bounds, as outlined in Section 4.

Rigorous asymptotic error bounds¶

In [7]:
CC = ComplexBallField(100)
In [8]:
# bound for sigma(n)

A = ceil(100 * (exp(euler_gamma) + 0.6483 / log(log(N))))/100
A, A.n()
Out[8]:
\(\displaystyle \left(\frac{52}{25}, 2.08000000000000\right)\)
In [9]:
all(sigma(kk) <= A*kk*log(log(N)) for kk in srange(1, N+1))
Out[9]:
\(\displaystyle \mathrm{True}\)

Tail error, summation range $k \geq n/2$¶

In [10]:
tail_error_end = A * log(log(m)) * m^7 * exp(-m/4)
tail_error_end
Out[10]:
\(\displaystyle \frac{52}{25} \, m^{7} e^{\left(-\frac{1}{4} \, m\right)} \log\left(\log\left(m\right)\right)\)
In [11]:
plot(tail_error_end, m, N/2, 2*N) + plot(m^2/8 - m/24, m, N/2, 2*N, color="red")
Out[11]:
In [12]:
tail_error_end(m=CC(N))
Out[12]:
\(\displaystyle \verb|[8.4776499289197084254484893395e-1058|\verb| |\verb|+/-|\verb| |\verb|6.04e-1087]|\)

Numerically, the tail error in this region is already extremely small.

Tail error, summation range $k\in [n^{\alpha}, n/2]$.¶

In [13]:
alpha = 7/10
assert N^(2*alpha - 1) >= 3  # requirement in Section 4.2

AR, n, k = dbt.AsymptoticRingWithDependentVariable('n^QQ', 'k', 0, alpha, bterm_round_to=4, default_prec=7)
In [14]:
tail_error_mid = AR.B(4*A * (
        n^(6*alpha)
        + n/(2*n^alpha) * (6*n^3 + 6*n^(2 + 2*alpha)
                           + 3*n^(1 + 4*alpha) + n^(6*alpha))
    ),
    valid_from=N
)
tail_error_mid  # times log(log(n)) * exp(-n^(2*alpha - 1))
/home/behackl/git/papers/bona-dejonge-conjecture/code/dependent_bterms/dependent_bterms/structures.py:381: FutureWarning: This class/method/function is marked as experimental. It, its functionality or its interface might change without a formal deprecation.
See https://github.com/sagemath/sage/issues/31922 for details.
  super().__init__(
Out[14]:
\(\displaystyle B_{n \ge 10000}\left(\frac{25073}{5000} n^{\frac{9}{2}}\right)\)
In [15]:
tail_error_mid_bterm = next(tail_error_mid.summands.elements())
tail_error_mid_sym = AR.create_summand(
    'exact',
    coefficient=tail_error_mid_bterm.coefficient,
    growth=tail_error_mid_bterm.growth
).subs(n=m) * log(log(m)) * exp(-m^(2*alpha - 1))
tail_error_mid_sym
Out[15]:
\(\displaystyle \frac{25073}{5000} \, m^{\frac{9}{2}} e^{\left(-m^{\frac{2}{5}}\right)} \log\left(\log\left(m\right)\right)\)
In [16]:
plot(tail_error_mid_sym, m, N/2, 2*N) + plot(m^2/8 - m/24, m, N/2, 2*N, color="red")
Out[16]:

Again, the error is comparatively small from $N \geq 5000$ on.

In [17]:
tail_error_mid_sym(m=CC(N))
Out[17]:
\(\displaystyle \verb|[57.1581890925334258090495056|\verb| |\verb|+/-|\verb| |\verb|3.55e-26]|\)

Summand approximations¶

In [18]:
R = 9

First we determine the expansion error, $$ \frac{2}{R n^R (1 - k^2/n^2)} \bigg( k^R + \frac{k^{R+1}}{R+1} \bigg) $$

In [19]:
sum_error = dbt.taylor_with_explicit_error(lambda t: 1/(1 - t), k^2/n^2, valid_from=N) * AR.B(2 / (R * n^R) * (k^R + k^(R+1)/(R+1)), valid_from=N)
sum_error
Out[19]:
\(\displaystyle B_{n \ge 10000}\left(\left({\left| \frac{239}{10000} \, k^{10} + \frac{2223}{10000} \, k^{9} \right|}\right) n^{-9}\right)\)

The exact part of the sum is given by $$ -\sum_{j=1}^k \sum_{\substack{r=1\\ r \text{odd}}}^R \frac{2j^r}{r n^r} $$

In [20]:
sum_expansion = -2*sum([sum(j^r, j, 1, k) / (r * n^r) for r in srange(1, R, 2)])
sum_expansion += k^2/n  # remove the asymptotic main term, it remains an exponential
sum_expansion += sum_error
sum_expansion
Out[20]:
\(\displaystyle \left(-\frac{1}{6} \, k^{4} - \frac{1}{3} \, k^{3} - \frac{1}{6} \, k^{2}\right) n^{-3} - k n^{-1} + \left(-\frac{1}{15} \, k^{6} - \frac{1}{5} \, k^{5} - \frac{1}{6} \, k^{4} + \frac{1}{30} \, k^{2}\right) n^{-5} + \left(-\frac{1}{28} \, k^{8} - \frac{1}{7} \, k^{7} - \frac{1}{6} \, k^{6} + \frac{1}{12} \, k^{4} - \frac{1}{42} \, k^{2}\right) n^{-7} + B_{n \ge 10000}\left(\left({\left| \frac{239}{10000} \, k^{10} + \frac{2223}{10000} \, k^{9} \right|}\right) n^{-9}\right)\)
In [21]:
# check magnitude of B-term
dbt.simplify_expansion(sum_expansion, simplify_bterm_growth=True)
Out[21]:
\(\displaystyle -\frac{1}{6} \, k^{4} n^{-3} - k n^{-1} - \frac{1}{15} \, k^{6} n^{-5} + \left(-\frac{1}{3} \, k^{3} - \frac{1}{6} \, k^{2}\right) n^{-3} - \frac{1}{28} \, k^{8} n^{-7} - \frac{1}{5} \, k^{5} n^{-5} + B_{n \ge 10000}\left(\frac{541}{5000} n^{-2}\right)\)
In [22]:
%%time
# need to find correct order of Taylor expansion. check collapsed B-term growth after calculations!

S_nk_and_error = dbt.taylor_with_explicit_error(exp, sum_expansion, order=6, valid_from=N)
S_nk_and_error *= dbt.taylor_with_explicit_error(lambda t: 1/(1-t), k/n, order=6, valid_from=N)
S_nk_and_error = dbt.simplify_expansion(S_nk_and_error)
S_nk_and_error
CPU times: user 4min 7s, sys: 1.88 s, total: 4min 9s
Wall time: 3min 52s
Out[22]:
\(\displaystyle 1 + \left(-\frac{1}{6} \, k^{4} - \frac{1}{3} \, k^{3}\right) n^{-3} + \frac{1}{72} \, k^{8} n^{-6} + \frac{1}{2} \, k^{2} n^{-2} - \frac{1}{1296} \, k^{12} n^{-9} - \frac{3}{20} \, k^{6} n^{-5} + \frac{1}{31104} \, k^{16} n^{-12} + \frac{1}{3} \, k^{3} n^{-3} + \frac{13}{720} \, k^{10} n^{-8} - \frac{1}{933120} \, k^{20} n^{-15} + \frac{3}{8} \, k^{4} n^{-4} - \frac{17}{12960} \, k^{14} n^{-11} + B_{n \ge 10000}\left(\frac{1}{10000} \, {\left| k^{24} \right|} n^{-18}\right) + B_{n \ge 10000}\left(\frac{9}{10000} \, {\left| k^{21} \right|} n^{-16}\right) - \frac{221}{1680} \, k^{8} n^{-7} + B_{n \ge 10000}\left(\frac{119}{10000} \, {\left| k^{18} \right|} n^{-14}\right) + B_{n \ge 10000}\left(\frac{116}{625} \, {\left| k^{15} \right|} n^{-12}\right) - \frac{1}{6} \, k^{2} n^{-3} + B_{n \ge 10000}\left(\frac{3217}{2500} \, {\left| k^{12} \right|} n^{-10}\right) + B_{n \ge 10000}\left(\left({\left| \frac{48257}{10000} \, k^{9} + \frac{4653}{1250} \, k^{8} + \frac{2787}{1250} \, k^{7} + \frac{1}{10000} \, k^{6} + \frac{1279}{5000} \, k^{5} + \frac{1}{10000} \, k^{4} + \frac{239}{5000} \, k^{3} \right|}\right) n^{-8}\right) + B_{n \ge 10000}\left(\frac{55039}{2500} \, {\left| k^{6} \right|} n^{-6}\right) + \left(-\frac{1}{4} \, k^{4} + \frac{1}{30} \, k^{2}\right) n^{-5} + \frac{7}{7776} \, k^{14} n^{-12} + \frac{53}{360} \, k^{8} n^{-8} - \frac{1}{20736} \, k^{18} n^{-15} - \frac{107}{4320} \, k^{12} n^{-11} + \frac{1}{81} \, k^{9} n^{-9} + \left(-\frac{5}{16} \, k^{6} + \frac{1}{10} \, k^{4} - \frac{1}{42} \, k^{2}\right) n^{-7} + \frac{7}{3888} \, k^{13} n^{-12} + \frac{7}{60} \, k^{7} n^{-8} - \frac{1}{7776} \, k^{17} n^{-15} + \frac{1}{72} \, k^{4} n^{-6} - \frac{121}{3240} \, k^{11} n^{-11} + \frac{1}{144} \, k^{8} n^{-9} + \frac{35}{15552} \, k^{12} n^{-12} + \left(\frac{7}{240} \, k^{6} - \frac{1}{90} \, k^{5} - \frac{1}{180} \, k^{4}\right) n^{-8} - \frac{7}{31104} \, k^{16} n^{-15} + \left(-\frac{1}{32} \, k^{10} - \frac{1}{80} \, k^{9}\right) n^{-11} + \frac{7}{3888} \, k^{11} n^{-12} - \frac{7}{25920} \, k^{15} n^{-15} - \frac{1}{1296} \, k^{6} n^{-9} + \frac{7}{7776} \, k^{10} n^{-12} - \frac{7}{31104} \, k^{14} n^{-15} + \left(\frac{1}{12960} \, k^{8} + \frac{1}{540} \, k^{7} + \frac{1}{2160} \, k^{6}\right) n^{-11} + \left(\frac{1}{3888} \, k^{9} + \frac{1}{31104} \, k^{8}\right) n^{-12} + \left(-\frac{1}{7776} \, k^{13} - \frac{1}{20736} \, k^{12} - \frac{1}{93312} \, k^{11} - \frac{1}{933120} \, k^{10}\right) n^{-15}\)
In [23]:
S_nk_and_error_collapsed = dbt.simplify_expansion(S_nk_and_error, simplify_bterm_growth=True)
S_nk_and_error_collapsed
Out[23]:
\(\displaystyle 1 + \left(-\frac{1}{6} \, k^{4} - \frac{1}{3} \, k^{3}\right) n^{-3} + \frac{1}{72} \, k^{8} n^{-6} + \frac{1}{2} \, k^{2} n^{-2} - \frac{1}{1296} \, k^{12} n^{-9} - \frac{3}{20} \, k^{6} n^{-5} + \frac{1}{31104} \, k^{16} n^{-12} + \frac{1}{3} \, k^{3} n^{-3} + \frac{13}{720} \, k^{10} n^{-8} - \frac{1}{933120} \, k^{20} n^{-15} + B_{n \ge 10000}\left(\frac{1469}{2500} n^{-\frac{6}{5}}\right)\)
In [24]:
S_nk = AR.zero()
for summand in S_nk_and_error.summands:
    if summand.is_exact():
        S_nk += AR(summand)
S_nk
Out[24]:
\(\displaystyle 1 + \left(-\frac{1}{6} \, k^{4} - \frac{1}{3} \, k^{3} - \frac{1}{6} \, k^{2}\right) n^{-3} + \frac{1}{72} \, k^{8} n^{-6} + \frac{1}{2} \, k^{2} n^{-2} - \frac{1}{1296} \, k^{12} n^{-9} + \left(-\frac{3}{20} \, k^{6} - \frac{1}{4} \, k^{4} + \frac{1}{30} \, k^{2}\right) n^{-5} + \frac{1}{31104} \, k^{16} n^{-12} + \frac{1}{3} \, k^{3} n^{-3} + \frac{13}{720} \, k^{10} n^{-8} - \frac{1}{933120} \, k^{20} n^{-15} + \frac{3}{8} \, k^{4} n^{-4} - \frac{17}{12960} \, k^{14} n^{-11} + \left(-\frac{221}{1680} \, k^{8} - \frac{5}{16} \, k^{6} + \frac{1}{10} \, k^{4} - \frac{1}{42} \, k^{2}\right) n^{-7} + \frac{7}{7776} \, k^{14} n^{-12} + \left(\frac{53}{360} \, k^{8} + \frac{7}{60} \, k^{7}\right) n^{-8} - \frac{1}{20736} \, k^{18} n^{-15} - \frac{107}{4320} \, k^{12} n^{-11} + \frac{1}{81} \, k^{9} n^{-9} + \frac{7}{3888} \, k^{13} n^{-12} - \frac{1}{7776} \, k^{17} n^{-15} + \frac{1}{72} \, k^{4} n^{-6} - \frac{121}{3240} \, k^{11} n^{-11} + \frac{1}{144} \, k^{8} n^{-9} + \frac{35}{15552} \, k^{12} n^{-12} + \left(\frac{7}{240} \, k^{6} - \frac{1}{90} \, k^{5} - \frac{1}{180} \, k^{4}\right) n^{-8} - \frac{7}{31104} \, k^{16} n^{-15} + \left(-\frac{1}{32} \, k^{10} - \frac{1}{80} \, k^{9}\right) n^{-11} + \frac{7}{3888} \, k^{11} n^{-12} - \frac{7}{25920} \, k^{15} n^{-15} - \frac{1}{1296} \, k^{6} n^{-9} + \frac{7}{7776} \, k^{10} n^{-12} - \frac{7}{31104} \, k^{14} n^{-15} + \left(\frac{1}{12960} \, k^{8} + \frac{1}{540} \, k^{7} + \frac{1}{2160} \, k^{6}\right) n^{-11} + \left(\frac{1}{3888} \, k^{9} + \frac{1}{31104} \, k^{8}\right) n^{-12} + \left(-\frac{1}{7776} \, k^{13} - \frac{1}{20736} \, k^{12} - \frac{1}{93312} \, k^{11} - \frac{1}{933120} \, k^{10}\right) n^{-15}\)
In [25]:
expansion_error = dbt.simplify_expansion(S_nk_and_error.error_part() * (2*k^4 + 3*n^2) * k^2)
expansion_error
Out[25]:
\(\displaystyle B_{n \ge 10000}\left(\frac{1}{5000} \, {\left| k^{30} \right|} n^{-18}\right) + B_{n \ge 10000}\left(\frac{9}{5000} \, {\left| k^{27} \right|} n^{-16}\right) + B_{n \ge 10000}\left(\frac{119}{5000} \, {\left| k^{24} \right|} n^{-14}\right) + B_{n \ge 10000}\left(\frac{232}{625} \, {\left| k^{21} \right|} n^{-12}\right) + B_{n \ge 10000}\left(\frac{3217}{1250} \, {\left| k^{18} \right|} n^{-10}\right) + B_{n \ge 10000}\left(\frac{48257}{5000} \, {\left| k^{15} \right|} n^{-8}\right) + B_{n \ge 10000}\left(\left({\left| \frac{440833}{10000} \, k^{12} + \frac{36193}{2500} \, k^{11} + \frac{111673}{10000} \, k^{10} + \frac{66889}{10000} \, k^{9} + \frac{3}{10000} \, k^{8} + \frac{3837}{5000} \, k^{7} + \frac{3}{10000} \, k^{6} + \frac{717}{5000} \, k^{5} \right|}\right) n^{-6}\right) + B_{n \ge 10000}\left(\frac{165117}{2500} \, {\left| k^{8} \right|} n^{-4}\right)\)
In [26]:
# we determine the integral bound symbolically:

f(t) = t^j * exp(-t^2/m)
t_0 = sqrt(j * m / 2)

integral_bound = f(t_0) + integrate(f(t), t, 0, oo)
integral_bound
Out[26]:
\(\displaystyle \left(\sqrt{\frac{1}{2}} \sqrt{j m}\right)^{j} e^{\left(-\frac{1}{2} \, j\right)} + \frac{1}{2} \, m^{\frac{1}{2} \, j + \frac{1}{2}} \Gamma\left(\frac{1}{2} \, j + \frac{1}{2}\right)\)
In [27]:
error_after_summation = AR.zero()

for summand in expansion_error.summands:
    with assuming(k > 0):
        coef = summand.coefficient.simplify()
    for c, p in coef.coefficients(k):
        error_after_summation += c * AR.B(dbt.evaluate(integral_bound, m=n, j=p) * n^(summand.growth.exponent), valid_from=N)

error_after_summation *= A
error_after_summation # times log(log(n)).
Out[27]:
\(\displaystyle B_{n \ge 10000}\left(\frac{146718899}{10000} n^{\frac{1}{2}}\right)\)
In [28]:
error_after_summation_bterm = next(error_after_summation.summands.elements())
error_after_summation_sym = AR.create_summand(
    'exact',
    coefficient=error_after_summation_bterm.coefficient,
    growth=error_after_summation_bterm.growth
).subs(n=m) * log(log(m))
error_after_summation_sym
Out[28]:
\(\displaystyle \frac{146718899}{10000} \, \sqrt{m} \log\left(\log\left(m\right)\right)\)
In [29]:
# not negligible, but still clearly dominated by main term.
plot(error_after_summation_sym, m, N/2, 2*N) + plot(m^2/8 - m/24, m, N/2, 2*N, color="red")
Out[29]:

Completion of the sum: error for completing the sum over $n^{\alpha} \leq k < n^{3/4}$¶

In [30]:
# the lazy way of plugging in k = n^(3/4): switch to
# the corresponding asymptotic ring.
AR_34, n_34, k = dbt.AsymptoticRingWithDependentVariable('n^QQ', 'k', 0, 3/4, bterm_round_to=3, default_prec=10)
In [31]:
AR_34(S_nk).O()  # good!
Out[31]:
\(\displaystyle O\!\left(1\right)\)
In [32]:
C_2 = dbt.expansion_upper_bound(AR_34(S_nk), numeric=True)  # <-- C2
C_2, C_2.n()
Out[32]:
\(\displaystyle \left(\frac{4758671}{1088640}, 4.37120719429747\right)\)
In [33]:
# symbolic integration, then back to produce a B-term.
tails_error_until_n34 = dbt.evaluate((
    m^(3/4) * (f(m^(alpha))(j=5) + integrate(abs(f(t)(j=5)), t, m^alpha, m^(3/4)))
    ).subs({
        exp(-sqrt(m)): -1,  # this is a bit delicate, but correct.
        exp(-m^(2/5)): 1,
    }),
    m=n
).B(valid_from=N)
tails_error_until_n34 *= 2*A
tails_error_until_n34 # times exp(-n^(2/5)) * log(log(n))
Out[33]:
\(\displaystyle B_{n \ge 10000}\left(\frac{12553}{5000} n^{\frac{19}{4}}\right)\)
In [34]:
tails_error_until_n34_bterm = next(tails_error_until_n34.summands.elements())
tails_error_until_n34_sym = AR_34.create_summand(
    'exact',
    coefficient=tails_error_until_n34_bterm.coefficient,
    growth=tails_error_until_n34_bterm.growth,
).subs(n=m) * log(log(m)) * exp(-m^(2/5))
tails_error_until_n34_sym
Out[34]:
\(\displaystyle \frac{12553}{5000} \, m^{\frac{19}{4}} e^{\left(-m^{\frac{2}{5}}\right)} \log\left(\log\left(m\right)\right)\)
In [35]:
# this error is negligible too!
(
    plot(tails_error_until_n34_sym, m, N/2, 2*N) 
    + plot(m^2/8 - m/24, m, N/2, 2*N, color="red")
)
Out[35]:
In [ ]:
 

Completion of the sum: error for completing the sum over $k \geq n^{3/4}$¶

In [36]:
AR(dbt.expansion_upper_bound(
    dbt.evaluate((S_nk.subs(n=m) * m^15 / k^20).expand()(k=m^3/4), m=n),
    numeric=True,
    valid_from=N
)).B(valid_from=N)
Out[36]:
\(\displaystyle B_{n \ge 10000}\left(\frac{1}{10000}\right)\)
In [37]:
assert N^(3/4) > sqrt(27*N/2)
In [38]:
tails_error_after_n34 = (
    2 * m^(-15) / 10000 * (f(m^(3/4))(j=27) + integrate(f(t)(j=27), t, m^(3/4), oo))
).expand()
tails_error_after_n34 = dbt.evaluate((tails_error_after_n34 * exp(sqrt(m))).expand(), m=n).B(valid_from=N)
tails_error_after_n34  # times exp(-n^(1/2))
Out[38]:
\(\displaystyle B_{n \ge 10000}\left(\frac{3}{2000} n^{\frac{11}{2}}\right)\)
In [39]:
tails_error_after_n34_bterm = next(tails_error_after_n34.summands.elements())
tails_error_after_n34_sym = AR.create_summand(
    'exact',
    coefficient=tails_error_after_n34_bterm.coefficient,
    growth=tails_error_after_n34_bterm.growth,
).subs(n=m) * exp(-m^(1/2))
tails_error_after_n34_sym
Out[39]:
\(\displaystyle \frac{3}{2000} \, m^{\frac{11}{2}} e^{\left(-\sqrt{m}\right)}\)
In [40]:
# this error is negligible too!
(
    plot(tails_error_after_n34_sym, m, N/2, 2*N) 
    + plot(m^2/8 - m/24, m, N/2, 2*N, color="red")
)
Out[40]:

Mellin transform¶

In [41]:
mellin_summands = (k * S_nk * (k^2 - 3*n + 2) * (2*k^2 - n)).map_coefficients(lambda t: t.expand())
mellin_summands
Out[41]:
\(\displaystyle 2 \, k^{5} + \left(-\frac{1}{3} \, k^{9} - \frac{2}{3} \, k^{8} - \frac{1}{3} \, k^{7}\right) n^{-3} - 7 \, k^{3} n + \frac{1}{36} \, k^{13} n^{-6} + \left(\frac{13}{6} \, k^{7} + \frac{7}{3} \, k^{6} + \frac{7}{6} \, k^{5}\right) n^{-2} - \frac{1}{648} \, k^{17} n^{-9} + 3 \, k n^{2} + \left(-\frac{143}{360} \, k^{11} - \frac{1}{2} \, k^{9} + \frac{1}{15} \, k^{7}\right) n^{-5} + \frac{1}{15552} \, k^{21} n^{-12} + \frac{2}{3} \, k^{8} n^{-3} + \left(-4 \, k^{5} - k^{4} - \frac{1}{2} \, k^{3}\right) n^{-1} + \frac{269}{6480} \, k^{15} n^{-8} - \frac{1}{466560} \, k^{25} n^{-15} + \left(\frac{221}{120} \, k^{9} + \frac{7}{4} \, k^{7} - \frac{7}{30} \, k^{5}\right) n^{-4} - \frac{443}{155520} \, k^{19} n^{-11} - \frac{7}{3} \, k^{6} n^{-2} + \frac{11}{2} \, k^{3} + \left(-\frac{1481}{3780} \, k^{13} - \frac{5}{8} \, k^{11} + \frac{1}{5} \, k^{9} - \frac{1}{21} \, k^{7}\right) n^{-7} + \frac{7}{933120} \, k^{23} n^{-14} + \left(-\frac{449}{120} \, k^{7} - \frac{4}{3} \, k^{6} - \frac{17}{12} \, k^{5} + \frac{1}{10} \, k^{3}\right) n^{-3} + \frac{481}{51840} \, k^{17} n^{-10} + k^{4} n^{-1} - 2 \, k n + \left(\frac{371}{360} \, k^{11} + \frac{35}{16} \, k^{9} - \frac{7}{10} \, k^{7} + \frac{1}{6} \, k^{5}\right) n^{-6} - \frac{1}{311040} \, k^{21} n^{-13} + \left(\frac{83}{24} \, k^{5} + \frac{2}{3} \, k^{4} + \frac{1}{3} \, k^{3}\right) n^{-2} - \frac{91}{12960} \, k^{15} n^{-9} + \left(-\frac{5153}{5040} \, k^{9} - \frac{31}{16} \, k^{7} + \frac{13}{30} \, k^{5} - \frac{1}{14} \, k^{3}\right) n^{-5} + \frac{5}{2592} \, k^{19} n^{-12} + \frac{4}{3} \, k^{6} n^{-3} - k^{3} n^{-1} + \left(\frac{1193}{3240} \, k^{13} + \frac{7}{30} \, k^{12}\right) n^{-8} - \frac{47}{466560} \, k^{23} n^{-15} + \left(\frac{9}{5} \, k^{7} + \frac{1}{2} \, k^{5} - \frac{1}{15} \, k^{3}\right) n^{-4} - \frac{317}{5184} \, k^{17} n^{-11} - \frac{2}{3} \, k^{4} n^{-2} + \frac{2}{81} \, k^{14} n^{-9} + \left(-\frac{223}{140} \, k^{11} - \frac{49}{60} \, k^{10} - \frac{5}{4} \, k^{9} + \frac{2}{5} \, k^{7} - \frac{2}{21} \, k^{5}\right) n^{-7} + \frac{317}{933120} \, k^{21} n^{-14} + \frac{7}{1944} \, k^{18} n^{-12} - \frac{3}{4} \, k^{5} n^{-3} + \frac{193}{1080} \, k^{15} n^{-10} - \frac{7}{81} \, k^{12} n^{-8} - \frac{1}{3888} \, k^{22} n^{-15} + \left(\frac{923}{1260} \, k^{9} + \frac{7}{20} \, k^{8} + \frac{5}{8} \, k^{7} - \frac{1}{5} \, k^{5} + \frac{1}{21} \, k^{3}\right) n^{-6} - \frac{1}{6912} \, k^{19} n^{-13} - \frac{1697}{19440} \, k^{16} n^{-11} - \frac{29}{480} \, k^{13} n^{-9} + \frac{1}{27} \, k^{10} n^{-7} + \frac{7}{7776} \, k^{20} n^{-14} - \frac{7}{72} \, k^{7} n^{-5} + \frac{7}{864} \, k^{17} n^{-12} + \frac{1729}{6480} \, k^{14} n^{-10} + \left(\frac{431}{720} \, k^{11} + \frac{4}{9} \, k^{10} - \frac{1}{90} \, k^{9}\right) n^{-8} - \frac{5}{7776} \, k^{21} n^{-15} - \frac{1}{2592} \, k^{18} n^{-13} + \frac{1}{24} \, k^{5} n^{-4} + \left(-\frac{4643}{25920} \, k^{15} - \frac{1}{40} \, k^{14}\right) n^{-11} - \frac{203}{3240} \, k^{12} n^{-9} + \left(-\frac{43}{90} \, k^{9} - \frac{7}{45} \, k^{8} + \frac{7}{180} \, k^{7}\right) n^{-7} + \frac{13}{7776} \, k^{19} n^{-14} + \frac{7}{648} \, k^{16} n^{-12} + \left(\frac{7129}{25920} \, k^{13} + \frac{7}{80} \, k^{12}\right) n^{-10} - \frac{2}{81} \, k^{10} n^{-8} - \frac{41}{38880} \, k^{20} n^{-15} + \left(\frac{103}{720} \, k^{7} - \frac{1}{30} \, k^{6} - \frac{1}{60} \, k^{5}\right) n^{-6} - \frac{7}{10368} \, k^{17} n^{-13} - \frac{1073}{6480} \, k^{14} n^{-11} + \left(-\frac{175}{2592} \, k^{11} - \frac{3}{80} \, k^{10}\right) n^{-9} + \frac{167}{77760} \, k^{18} n^{-14} - \frac{1}{36} \, k^{5} n^{-5} + \frac{7}{648} \, k^{15} n^{-12} + \frac{173}{2160} \, k^{12} n^{-10} + \left(\frac{701}{6480} \, k^{9} - \frac{2}{45} \, k^{8} - \frac{1}{45} \, k^{7}\right) n^{-8} - \frac{7}{5184} \, k^{19} n^{-15} - \frac{7}{8640} \, k^{16} n^{-13} + \left(-\frac{293}{2160} \, k^{13} - \frac{5}{108} \, k^{12} + \frac{1}{1080} \, k^{11}\right) n^{-11} + \left(-\frac{131}{2160} \, k^{7} + \frac{1}{45} \, k^{6} + \frac{1}{90} \, k^{5}\right) n^{-7} + \frac{7}{3456} \, k^{17} n^{-14} + \left(\frac{5}{648} \, k^{14} + \frac{1}{15552} \, k^{13}\right) n^{-12} + \left(\frac{419}{6480} \, k^{11} + \frac{13}{1080} \, k^{10} - \frac{7}{2160} \, k^{9}\right) n^{-10} + \left(-\frac{13}{9720} \, k^{18} - \frac{1}{10368} \, k^{17} - \frac{1}{46656} \, k^{16} - \frac{1}{466560} \, k^{15}\right) n^{-15} - \frac{7}{10368} \, k^{15} n^{-13} + \left(-\frac{7}{1296} \, k^{12} - \frac{7}{31104} \, k^{11}\right) n^{-11} + \left(-\frac{37}{12960} \, k^{9} + \frac{1}{180} \, k^{8} + \frac{1}{720} \, k^{7}\right) n^{-9} + \left(\frac{7}{4860} \, k^{16} + \frac{7}{20736} \, k^{15} + \frac{7}{93312} \, k^{14} + \frac{7}{933120} \, k^{13}\right) n^{-14} + \frac{7}{1944} \, k^{13} n^{-12} + \left(\frac{1}{1296} \, k^{10} + \frac{1}{10368} \, k^{9}\right) n^{-10} + \frac{1}{648} \, k^{7} n^{-8} - \frac{7}{7776} \, k^{17} n^{-15} + \left(-\frac{1}{2592} \, k^{14} - \frac{1}{6912} \, k^{13} - \frac{1}{31104} \, k^{12} - \frac{1}{311040} \, k^{11}\right) n^{-13} + \left(-\frac{29}{19440} \, k^{11} + \frac{1}{135} \, k^{10} + \frac{1}{540} \, k^{9}\right) n^{-11} + \frac{7}{15552} \, k^{15} n^{-14} + \left(\frac{1}{972} \, k^{12} + \frac{1}{7776} \, k^{11}\right) n^{-12} + \left(-\frac{1}{6480} \, k^{9} - \frac{1}{270} \, k^{8} - \frac{1}{1080} \, k^{7}\right) n^{-10} + \left(-\frac{1}{1944} \, k^{16} - \frac{1}{5184} \, k^{15} - \frac{1}{23328} \, k^{14} - \frac{1}{233280} \, k^{13}\right) n^{-15} + \left(-\frac{1}{1944} \, k^{10} - \frac{1}{15552} \, k^{9}\right) n^{-11} + \left(\frac{1}{3888} \, k^{14} + \frac{1}{10368} \, k^{13} + \frac{1}{46656} \, k^{12} + \frac{1}{466560} \, k^{11}\right) n^{-14}\)
In [42]:
var('t s')

def mellin_transform_from_summand(k_exp, n_exp):
    a = k_exp
    b = n_exp
    return zeta(2*s - 2*b - a - 1) * zeta(2*s - 2*b - a) * gamma(s - b) * t^(-s)
In [43]:
mellin_transform = 0

for summand in mellin_summands.summands:
    for coef, k_pow in summand.coefficient.coefficients(k):
        mellin_transform += coef * mellin_transform_from_summand(k_exp=k_pow, n_exp=summand.growth.exponent)

mellin_transform
Out[43]:
\(\displaystyle -\frac{\Gamma\left(s + 15\right) \zeta(2 \, s + 17) \zeta(2 \, s + 16)}{233280 \, t^{s}} + \frac{\Gamma\left(s + 14\right) \zeta(2 \, s + 17) \zeta(2 \, s + 16)}{466560 \, t^{s}} - \frac{\Gamma\left(s + 15\right) \zeta(2 \, s + 16) \zeta(2 \, s + 15)}{23328 \, t^{s}} + \frac{\Gamma\left(s + 14\right) \zeta(2 \, s + 16) \zeta(2 \, s + 15)}{46656 \, t^{s}} - \frac{91 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 15) \zeta(2 \, s + 14)}{466560 \, t^{s}} + \frac{97 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 15) \zeta(2 \, s + 14)}{933120 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 15) \zeta(2 \, s + 14)}{311040 \, t^{s}} - \frac{25 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 14) \zeta(2 \, s + 13)}{46656 \, t^{s}} + \frac{31 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 14) \zeta(2 \, s + 13)}{93312 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 14) \zeta(2 \, s + 13)}{31104 \, t^{s}} - \frac{31 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 13) \zeta(2 \, s + 12)}{31104 \, t^{s}} + \frac{49 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 13) \zeta(2 \, s + 12)}{62208 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 13) \zeta(2 \, s + 12)}{6912 \, t^{s}} + \frac{\Gamma\left(s + 12\right) \zeta(2 \, s + 13) \zeta(2 \, s + 12)}{7776 \, t^{s}} + \frac{139 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 13) \zeta(2 \, s + 12)}{77760 \, t^{s}} - \frac{\Gamma\left(s + 10\right) \zeta(2 \, s + 13) \zeta(2 \, s + 12)}{1080 \, t^{s}} - \frac{13 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 12) \zeta(2 \, s + 11)}{9720 \, t^{s}} + \frac{7 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 12) \zeta(2 \, s + 11)}{4860 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 12) \zeta(2 \, s + 11)}{2592 \, t^{s}} + \frac{\Gamma\left(s + 12\right) \zeta(2 \, s + 12) \zeta(2 \, s + 11)}{972 \, t^{s}} + \frac{67 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 12) \zeta(2 \, s + 11)}{9720 \, t^{s}} - \frac{\Gamma\left(s + 10\right) \zeta(2 \, s + 12) \zeta(2 \, s + 11)}{270 \, t^{s}} - \frac{7 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{5184 \, t^{s}} + \frac{7 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{3456 \, t^{s}} - \frac{7 \, \Gamma\left(s + 13\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{10368 \, t^{s}} + \frac{19 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{5184 \, t^{s}} - \frac{41 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{51840 \, t^{s}} - \frac{19 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{5760 \, t^{s}} + \frac{\Gamma\left(s + 9\right) \zeta(2 \, s + 11) \zeta(2 \, s + 10)}{720 \, t^{s}} - \frac{41 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{38880 \, t^{s}} + \frac{167 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{77760 \, t^{s}} - \frac{7 \, \Gamma\left(s + 13\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{8640 \, t^{s}} + \frac{5 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{648 \, t^{s}} - \frac{67 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{1296 \, t^{s}} + \frac{83 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{6480 \, t^{s}} + \frac{\Gamma\left(s + 9\right) \zeta(2 \, s + 10) \zeta(2 \, s + 9)}{180 \, t^{s}} - \frac{5 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{7776 \, t^{s}} + \frac{13 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{7776 \, t^{s}} - \frac{7 \, \Gamma\left(s + 13\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{10368 \, t^{s}} + \frac{7 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{648 \, t^{s}} - \frac{293 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{2160 \, t^{s}} + \frac{419 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{6480 \, t^{s}} - \frac{37 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{12960 \, t^{s}} - \frac{67 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{3240 \, t^{s}} - \frac{53 \, \Gamma\left(s + 7\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{630 \, t^{s}} + \frac{\Gamma\left(s + 6\right) \zeta(2 \, s + 9) \zeta(2 \, s + 8)}{21 \, t^{s}} - \frac{\Gamma\left(s + 15\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{3888 \, t^{s}} + \frac{7 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{7776 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{2592 \, t^{s}} + \frac{7 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{648 \, t^{s}} - \frac{247 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{1296 \, t^{s}} + \frac{181 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{1080 \, t^{s}} - \frac{3 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{80 \, t^{s}} - \frac{2 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{45 \, t^{s}} + \frac{\Gamma\left(s + 7\right) \zeta(2 \, s + 8) \zeta(2 \, s + 7)}{45 \, t^{s}} - \frac{47 \, \Gamma\left(s + 15\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{466560 \, t^{s}} + \frac{317 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{933120 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{6912 \, t^{s}} + \frac{7 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{864 \, t^{s}} - \frac{4643 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{25920 \, t^{s}} + \frac{7129 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{25920 \, t^{s}} - \frac{175 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{2592 \, t^{s}} + \frac{629 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{6480 \, t^{s}} + \frac{4999 \, \Gamma\left(s + 7\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{15120 \, t^{s}} - \frac{\Gamma\left(s + 6\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{20 \, t^{s}} - \frac{\Gamma\left(s + 5\right) \zeta(2 \, s + 7) \zeta(2 \, s + 6)}{14 \, t^{s}} + \frac{7 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{1944 \, t^{s}} - \frac{1697 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{19440 \, t^{s}} + \frac{1729 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{6480 \, t^{s}} - \frac{203 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{3240 \, t^{s}} + \frac{34 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{81 \, t^{s}} - \frac{7 \, \Gamma\left(s + 7\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{45 \, t^{s}} - \frac{\Gamma\left(s + 6\right) \zeta(2 \, s + 6) \zeta(2 \, s + 5)}{30 \, t^{s}} - \frac{\Gamma\left(s + 15\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{466560 \, t^{s}} + \frac{7 \, \Gamma\left(s + 14\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{933120 \, t^{s}} - \frac{\Gamma\left(s + 13\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{311040 \, t^{s}} + \frac{5 \, \Gamma\left(s + 12\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{2592 \, t^{s}} - \frac{317 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{5184 \, t^{s}} + \frac{193 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{1080 \, t^{s}} - \frac{29 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{480 \, t^{s}} + \frac{431 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{720 \, t^{s}} - \frac{55 \, \Gamma\left(s + 7\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{36 \, t^{s}} + \frac{49 \, \Gamma\left(s + 6\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{720 \, t^{s}} + \frac{73 \, \Gamma\left(s + 5\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{180 \, t^{s}} - \frac{\Gamma\left(s + 4\right) \zeta(2 \, s + 5) \zeta(2 \, s + 4)}{15 \, t^{s}} + \frac{2 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 4) \zeta(2 \, s + 3)}{81 \, t^{s}} + \frac{119 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 4) \zeta(2 \, s + 3)}{810 \, t^{s}} - \frac{421 \, \Gamma\left(s + 7\right) \zeta(2 \, s + 4) \zeta(2 \, s + 3)}{540 \, t^{s}} + \frac{7 \, \Gamma\left(s + 6\right) \zeta(2 \, s + 4) \zeta(2 \, s + 3)}{20 \, t^{s}} + \frac{\Gamma\left(s + 12\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{15552 \, t^{s}} - \frac{443 \, \Gamma\left(s + 11\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{155520 \, t^{s}} + \frac{481 \, \Gamma\left(s + 10\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{51840 \, t^{s}} - \frac{91 \, \Gamma\left(s + 9\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{12960 \, t^{s}} + \frac{1193 \, \Gamma\left(s + 8\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{3240 \, t^{s}} - \frac{621 \, \Gamma\left(s + 7\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{280 \, t^{s}} + \frac{14717 \, \Gamma\left(s + 6\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{5040 \, t^{s}} - \frac{1417 \, \Gamma\left(s + 5\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{720 \, t^{s}} + \frac{37 \, \Gamma\left(s + 4\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{120 \, t^{s}} + \frac{\Gamma\left(s + 3\right) \zeta(2 \, s + 3) \zeta(2 \, s + 2)}{10 \, t^{s}} - \frac{\Gamma\left(s + 9\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{648 \, t^{s}} + \frac{269 \, \Gamma\left(s + 8\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{6480 \, t^{s}} - \frac{1481 \, \Gamma\left(s + 7\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{3780 \, t^{s}} + \frac{371 \, \Gamma\left(s + 6\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{360 \, t^{s}} - \frac{7673 \, \Gamma\left(s + 5\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{5040 \, t^{s}} + \frac{71 \, \Gamma\left(s + 4\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{20 \, t^{s}} - \frac{13 \, \Gamma\left(s + 3\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{6 \, t^{s}} + \frac{\Gamma\left(s + 2\right) \zeta(2 \, s) \zeta(2 \, s + 1)}{3 \, t^{s}} + \frac{\Gamma\left(s + 6\right) \zeta(2 \, s - 1) \zeta(2 \, s - 2)}{36 \, t^{s}} - \frac{143 \, \Gamma\left(s + 5\right) \zeta(2 \, s - 1) \zeta(2 \, s - 2)}{360 \, t^{s}} + \frac{221 \, \Gamma\left(s + 4\right) \zeta(2 \, s - 1) \zeta(2 \, s - 2)}{120 \, t^{s}} - \frac{163 \, \Gamma\left(s + 3\right) \zeta(2 \, s - 1) \zeta(2 \, s - 2)}{40 \, t^{s}} + \frac{37 \, \Gamma\left(s + 2\right) \zeta(2 \, s - 1) \zeta(2 \, s - 2)}{8 \, t^{s}} - \frac{3 \, \Gamma\left(s + 1\right) \zeta(2 \, s - 1) \zeta(2 \, s - 2)}{2 \, t^{s}} - \frac{\Gamma\left(s + 3\right) \zeta(2 \, s - 3) \zeta(2 \, s - 4)}{3 \, t^{s}} + \frac{13 \, \Gamma\left(s + 2\right) \zeta(2 \, s - 3) \zeta(2 \, s - 4)}{6 \, t^{s}} - \frac{4 \, \Gamma\left(s + 1\right) \zeta(2 \, s - 3) \zeta(2 \, s - 4)}{t^{s}} - \frac{2 \, \Gamma\left(s - 1\right) \zeta(2 \, s - 3) \zeta(2 \, s - 4)}{t^{s}} + \frac{11 \, \Gamma\left(s\right) \zeta(2 \, s - 3) \zeta(2 \, s - 4)}{2 \, t^{s}} - \frac{7 \, \Gamma\left(s - 1\right) \zeta(2 \, s - 5) \zeta(2 \, s - 6)}{t^{s}} + \frac{3 \, \Gamma\left(s - 2\right) \zeta(2 \, s - 5) \zeta(2 \, s - 6)}{t^{s}} + \frac{2 \, \Gamma\left(s\right) \zeta(2 \, s - 5) \zeta(2 \, s - 6)}{t^{s}}\)
In [44]:
# there are no residues at half-integers >= 5/2:
all(mellin_transform.residue(s==nm) == 0 for nm in srange(5/2, 30, 1/2))
Out[44]:
\(\displaystyle \mathrm{True}\)
In [45]:
main_asy = sum([
    mellin_transform.residue(s==res)
    for res in [2, 3/2, 1]
])
main_asy = dbt.evaluate(main_asy, t=1/n)
main_asy
Out[45]:
\(\displaystyle -\frac{1}{8} n^{2} + \frac{1}{24} n\)

Integral errors¶

In [46]:
zeta_fct = zeta(s).operator()
gamma_fct = gamma(s).operator()

def zeta_bound(sgm):
    if sgm >= 3/2:
        return ceil(zeta(3/2)*10^5)/10^5
    if sgm <= -1/2:
        return (
            ceil(
                2^(sgm + 1/2) * pi^(sgm - 1/2) * zeta(3/2)
                * exp(1/600) * (abs(1 - sgm - I*100)/100)^(1/2 - sgm)
                * 10^5
            ) / 10^5
            * t^(1/2 - sgm)
        )
    if sgm == 1/2:
        return 618/1000 * t^(1/2)
    
def gamma_bound(sgm):
    if sgm > 0:
        return (
            ceil(
                (2*pi)^(1/2) * exp(1/600)
                * (abs(sgm + 100*I)/100)^(max(sgm-1/2, 0))
                * 10^5
            ) / 10^5
            * t^(max(sgm-1/2, 0)) * exp(-pi/2 * t)
        )
    if sgm < 0:
        offset = 0
        while sgm + offset < 0:
            offset += 1
        return t^(-offset) * gamma_bound(sgm + offset)
In [47]:
%%time

integral_error = 0

for smd in mellin_transform.expand().operands():
    offset = 0
    sigma = 3/4
    while smd.residue(s==sigma - offset - 1/4) == 0:
        offset += 1/2  # shift as far to the left as long as there are no new residues
        if offset >= 100:  # some summands actually have no residues, trivial zeros of zeta cancel them.
            offset = 0
            break
    smd *= t^s
    smd = smd(s=sigma - offset + I*t)
    integral_contribution = CC.integral(
        lambda x, _: fast_callable(abs(smd), vars=[t])(x),
        -100, 100  # integral over Re(s) = sigma - offset, central part
    )
    
    # estimates for integral where |t| >= 100
    error_bound = 1
    for fct in smd.operands():
        if fct.operator() is None:
            error_bound *= abs(fct)
        if fct.operator() is not None:
            [arg] = fct.operands()
            if fct.operator() is zeta_fct:
                error_bound *= zeta_bound(arg(t=0))
            if fct.operator() is gamma_fct:
                error_bound *= gamma_bound(arg(t=0))
    [[err_t_coef, err_t_pow]] = error_bound.coefficients(t)
    integral_error_bound = 2 * CC(
        err_t_coef(t=0) 
        * CC((2/pi)^(err_t_pow + 1)) 
        * CC(err_t_pow + 1).gamma_inc(CC(50*pi))
    )
    integral_contribution += integral_error_bound
    integral_error += AR.B(abs(integral_contribution).upper() * n^(sigma - offset), valid_from=N)

integral_error /= 2*pi
integral_error
CPU times: user 1min 58s, sys: 21.4 ms, total: 1min 58s
Wall time: 1min 58s
Out[47]:
\(\displaystyle B_{n \ge 10000}\left(\frac{406531}{100} n^{\frac{3}{4}}\right)\)
In [48]:
integral_error_bterm = next(integral_error.summands.elements())
integral_error_sym = AR.create_summand(
    'exact',
    coefficient=integral_error_bterm.coefficient,
    growth=integral_error_bterm.growth,
).subs(n=m)
integral_error_sym
Out[48]:
\(\displaystyle \frac{406531}{100} \, m^{\frac{3}{4}}\)
In [49]:
# again, the error is not negligible. it is still well dominated by the main term, however.
plot(integral_error_sym, m, N/2, 2*N) + plot(m^2/8 - m/24, m, N/2, 2*N, color='red')
Out[49]:
In [50]:
# ratio of error term to main term at n=N
(integral_error_sym(m=N) / (N^2/8 - N/24)).n()
Out[50]:
\(\displaystyle 0.325235641188040\)
In [ ]:
 

Accumulated Error¶

In [51]:
errors = [
    tail_error_end,
    tail_error_mid_sym,
    error_after_summation_sym,
    tails_error_until_n34_sym,
    tails_error_after_n34_sym,
    integral_error_sym,
]
total_error = sum(errors)
total_error
Out[51]:
\(\displaystyle \frac{52}{25} \, m^{7} e^{\left(-\frac{1}{4} \, m\right)} \log\left(\log\left(m\right)\right) + \frac{12553}{5000} \, m^{\frac{19}{4}} e^{\left(-m^{\frac{2}{5}}\right)} \log\left(\log\left(m\right)\right) + \frac{3}{2000} \, m^{\frac{11}{2}} e^{\left(-\sqrt{m}\right)} + \frac{25073}{5000} \, m^{\frac{9}{2}} e^{\left(-m^{\frac{2}{5}}\right)} \log\left(\log\left(m\right)\right) + \frac{146718899}{10000} \, \sqrt{m} \log\left(\log\left(m\right)\right) + \frac{406531}{100} \, m^{\frac{3}{4}}\)
In [52]:
# crude estimates for n >= N:
assert log(log(N)) <= N^(1/10)
assert N > ((71/10) / (1/4)) # n^(71/10) * exp(-n/4) is decreasing
assert N > (97/20 / (2/5))^(5/2)  # n^(97/20) * exp(-n^(2/5)) is decreasing
assert N > (23/5 / (2/5))^(5/2)  # n^(23/5) * exp(-n^(2/5)) is decreasing
assert N > (11/2 / (1/2))^(2/1)  # n^(11/2) * exp(-n^(1/2)) is decreasing

total_error_estimate = 0
for err in errors:
    err = err.subs({log(log(m)): m^(1/10)})
    if exp in [op.operator() for op in err.operands()]:
        err = err(m=N)
        total_error_estimate += AR(err)
    else:
        total_error_estimate += dbt.evaluate(err, m=n)

total_error_estimate.B(valid_from=N)
Out[52]:
\(\displaystyle B_{n \ge 10000}\left(\frac{38755553}{5000} n^{\frac{3}{4}}\right)\)
In [53]:
bool(38755553/5000 * N^(3/4) < N^2/8 - N/24)
Out[53]:
\(\displaystyle \mathrm{True}\)
In [54]:
((38755553/5000 * N^(3/4)) / (N^2/8 - N/24)).n()
Out[54]:
\(\displaystyle 0.620109518317277\)
In [55]:
plot(total_error, m, N/2, 2*N) + plot(m^2/8 - m/24, m, N/2, 2*N, color='red')
Out[55]:
In [56]:
plot(total_error / (m^2/8 - m/24), m, N/2, 2*N) + plot(1, m, N/2, 2*N, linestyle='dashed', color='black')
Out[56]:
In [ ]: