
Parallelization Improvements

Gundolf Haase

Karl-Franzens University Graz

Graz, Dec 2024

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 1 / 20



What we knew

Computation to communication ratio decreases faster then necessary

Many multigrid levels are bad because of
▶ Communication pattern
▶ Efficiency

What we’re looking at with Scalasca

General computation to communication ratio

On each multigrid level
▶ Communication amount (bytes)
▶ MPI-Timings
▶ Computational load
▶ Many more

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 2 / 20



Performance bottleneck: Communication

Solving a 8 · 105 system on 32 CPU-cores with PT

Accumulated MPI-Times of communicator::accumulate() inside the
AMG preconditioner

Level pre-smoother post-smoother sum computation ratio

0 0.15 0.89 1.04 2.42 2.32
1 0.57 0.35 0.92 1.03 1.11
2 0.42 0.15 0.57 0.44 0.77
3 0.26 0.09 0.35 0.19 0.54
4 0.14 0.11 0.25 0.14 0.56
5 0.20 0.21 0.41 0.16 0.39
6 0.27 0.27 0.54 0.12 0.22
7 0.27 0.27 0.54 0.0 0.0

8 (direct) 0.27 0.04 0.14

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 3 / 20



Performance bottleneck: Vector Assembling and
Communication

Not caused by hardware!!

Problems

Unbalanced vector accumulation (arithmetics and memory access)

Poor computation to communication ratio on coarser MG levels

No direct solver on GPUs → problem even worse!

Solutions

New communicator
▶ Distribute boundary nodes equally for accumulation (2×)
▶ Reorder equation systems (shared nodes first)
▶ Asynchronously send shared data once computed

Improve computation-to-communication ratio
▶ Hierarchic DD methods
▶ System blocking on coarse MG levels

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 4 / 20



Performance bottleneck: Vector Assembling and
Communication

Not caused by hardware!!

Problems

Unbalanced vector accumulation (arithmetics and memory access)

Poor computation to communication ratio on coarser MG levels

No direct solver on GPUs → problem even worse!

Solutions

New communicator
▶ Distribute boundary nodes equally for accumulation (2×)
▶ Reorder equation systems (shared nodes first)
▶ Asynchronously send shared data once computed

Improve computation-to-communication ratio
▶ Hierarchic DD methods
▶ System blocking on coarse MG levels

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 4 / 20



A straight-forward approach (old) to accumulation

When accumulating a vector v each communicator has to

1 Gather values at the indices Bs from vs and store them in an
appropriate buffer.

2 Send and receive values to and from his neighbours.

3 Add up the received values and stored them back in vs at Bs .

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 5 / 20



Parallelization Problems

Quadratic communication complexity w.r.t shared node multiplicity

Shared node multiplicity: Number of processes sharing a node.

Multiplicity largely increases on coarse grids and high parallelization.

Number of communications: c = (m − 1)m = O(m2)

Poor load-balancing when filling communication buffers and accumulating
shared nodes values → poor MPI performance.

The number of elements per subdomain are usually well-balanced, the
boundary sizes are not.

Memory access when filling buffers has poor caching properties.

Synchronous kernels get desynchronized just before communication.

Synchronous parallel behavior is key for optimal MPI performance.

Accumulated values might be globally inconsistent.
→ parallelization error (not spd anymore, convergence breaks).

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 6 / 20



Owner-Master concept for nodes

We have to distinguish between the owner of a node and its master.

Definition

Every process sharing one node is an owner of this shared node.

Definition

The master of a shared node has to be a unique process that handles all
communication-related tasks for that node.

The master should be one of the owners for optimal performance.

Every process (= communicator) is the owner of an unbalanced set of
nodes, and master owns a different balanced set of nodes.

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 7 / 20



A detailed look on better balanced accumulation

When accumulating a vector v each communicator has to

1 Gather values at the indices Bs from vs and store them in an
appropriate buffer (unbalanced).

2 Send owned shared node values values to the masters (unbalanced)
and receive values of shared nodes he is master of (balanced).

3 Accumulate the values (balanced).

4 Send accumulated values back to owners (balanced) and receive
values for owned shared nodes from masters (unbalanced).

5 Store received values back into vs (unbalanced).

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 8 / 20



Illustration of master-owner concept

unbalanced distribution balanced distribution

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 9 / 20



Accumulation intermediate

Problems solved:
1 Communication complexity

▶ Number of communications: c = 2(m − 1) = O(m).

2 Balanced accumulation

3 Value of each accumulated shared node identical on all owners.

4 Drawback: Now, communication is needed in intergrid transfer.

Still unsolved:

1 Unbalanced filling of MPI buffers

2 Memory access when filling buffers has bad caching properties.

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 10 / 20



System reordering

Reorder local node set in such a way, that no filling of MPI buffers is
required:

All shared nodes at beginning of local range.

Ordered after the process they need to be sent to.

p0 p1 p2 p3

166 201494 232 111 15 190 5 10 211383 2217127 18 25 2824 26 27 31 3430 32 3329

166 20149423 2 111 1519 0 5 10 21138 3 221712 718 2528 2426 27 31 3430 32 3329

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 11 / 20



System reordering

No need for separate MPI buffers.

No need for unbalanced, cache-inefficient filling of buffers.

Greatly reduces impact of the unbalanced boundary sizes.

Does not effect computation kernels.

Greatly simplifies other algorithms:
▶ Extraction and accumulation of boundary matrix.
▶ Overlapping of arithmetics and communication in Jacobi-smoother on

GPUs.

Reordering of matrices etc. neccessary (only once).

viscious remark: That was already available in TransCG in 1990.

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 12 / 20



Benchmark configuration

Elliptic part of Bidomain-Equations (car-
diac potential):

−∇ · (σ̄i + σ̄e)∇ϕe = b

TBunnyC geometry: Simplified rabbit
heart (CARP):

862,515 Nodes

5,082,272 Elements

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 13 / 20



Application performance

1 solution, 24 iterations

Mephisto cluster: 10 Xeon X5650 CPUs, 60 cores at 2.67GHz

Impl.1: Straight-forward algorithm

Impl.2: Reordered local systems and communicator with
master-owner concept

Impl. 1 [sec] Impl. 2 [sec]
Cores Com setup Solve Scale Com setup Solve Scale

4 0.026 1.42 1.0 0.071 1.43 1.0
12 0.012 0.70 0.68 0.031 0.62 0.76
48 0.144 0.44 0.26 0.160 0.30 0.40

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 14 / 20



Profiling with Scalasca

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 15 / 20



Profiling

Scalasca1 profile of CG-AMG solve.

Times are global sums.

New communicator reduces imbalancies significantly.

Impl. 1 [sec] Impl. 2 [sec]
Cores MPI Imbalance MPI Imbalance

4 1.8 1.3 0.5 0.3
12 3.6 2.1 1.0 0.2
48 32.3 5.5 13.3 0.4

1http://www.scalasca.org/
Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 16 / 20



Coarse grid parallelization

Even with the new communicator the elliptic solver is only efficient up to
256 CPU-cores (7 Mill. DoF).

⇐= worse ratio arithmetics to communication on coarser levels.

=⇒ Use less cores for each coarser levels.

We assemble coarse data from blocksize neigbouring subdomains onto
one process.

Finest grid data τ0 are distributed onto p0 ≡ p cores.

Coarser data τk are distributed onto pk = pk−1/blocksize cores
k = 1, . . . , ℓ.

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 17 / 20



Results on curie
Oxford heart with 6.9 Mill. D.o.F.s.

200 time steps in simulation; elliptic solver part
Impl. 3: New comm. + blocked coarse grids (blocksize = 4)

curie: 5040× 2× 8 cores (Intel E5-2680) and 64 GB; Infiniband

Impl. 2 [sec] Impl. 3 [sec]
Cores time Eff. time Eff. overall Eff. DOFs/p [k]

32 481.1 1.00 1.00 216
64 254.6 0.95 108
128 142.3 0.85 197.0 1.00 0.61 54
192 107.3 0.75 36
256 95.5 0.63 102.8 0.96 0.58 27
320 88.3 0.55 82.0 0.96 0.59 21
512 103.5 0.29 61.9 0.80 0.49 13
768 47.5 0.69 0.42 9

1024 69.5 0.35 0.22 7

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 18 / 20



Summary: Hybrid Parallelization in the Solvers

Equally balanced domain interfaces improve scalability.
▶ new load balancing of interface nodes [A. Neic, M. Liebmann]
▶ eliminates inconsistent round-off errors

Reordering of unknowns avoids buffers for communication.
=⇒ 3 × faster data exchange than standard

Redistribution of Algebraic Multigrid Hierarchy
▶ coarse-grid domain redistribution (blocking)
▶ inactive compute cores on coarser grids
▶ less MPI communication

Two–layer data distribution in the Toolbox for OpenMP + MPI

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 19 / 20



Improvements in strong scalability

Blocking of coarse grids (g=2) + hybrid OpenMP/MPI

6.9 Mill. dofs, elliptic part of bidomain equations,
200 solves (5 ms), 6500 AMG-PCG iterations

blocking pays off for nprocs > 128.

hybrid OpenMP/MPI pays off for nprocs > 512.

varies slightly with available hardware

Gundolf Haase (KFU Graz) Parallel Improvements Graz, Dec 2024 20 / 20


	Load balanced interfaces
	Performance bottlenecks
	Proposing a better Communicator Layout
	Benchmarks
	Improving coarse grid performance


