\qquad
Status:
Friday $10^{\text {th }}$ February, 2023, 13:35
gundolf.haase@uni-graz.at

Summation of specified numbers:

Write a function with input parameter n that adds all those positive integers less or equal n which are a multiples of 3 or of 5 (including or!).

- The easiest approach uses a for-loop.
- Test your function in the main function with various parameters:
$-n=15$ results in 60.
- $n=1001$ results in 234168 .
$-n=1432987$ results in 479139074204 .
- Derive a formula for calculating the required sum without executing a loop. Implement it in a second function and test it.
- Compare the run time of your two functions by using the chrond ${ }^{1}$ functions for time measurement. Run each function at least 1000 times to get some measurable timings.

Hints: cout, cin, endl, for, auto, std::chrono::high_resolution_clock::now(), std::chrono::duration<double>, std::chrono::duration_cast<...>(...)

Mathematical hints (for the lecturer):

We consider integers from $[1, n]$.

- How many numbers $3 \cdot k$ are in that interval $[1, n]$? Obviously, we have $n_{3}:=\left\lfloor\frac{n}{3}\right\rfloor$ (function floor) and the sum of all these numbers is

$$
s_{3}=3 \cdot \frac{n_{3}\left(n_{3}+1\right)}{2}
$$

- Similarly, we get for numbers $5 \cdot k \in[1, n]$ the sum formula

$$
s_{5}=5 \cdot \frac{n_{5}\left(n_{5}+1\right)}{2} \quad \text { with } \quad n_{5}:=\left\lfloor\frac{n}{5}\right\rfloor
$$

- Adding the two sum will be wrong because numbers $3 \cdot 5 \cot k$ are counted twice, i.e. we have to correct it with

$$
s_{15}=3 \cdot 5 \cdot \frac{n_{15}\left(n_{15}+1\right)}{2} \quad \text { with } \quad n_{15}:=\left\lfloor\frac{n}{3 \cdot 5}\right\rfloor
$$

Finally we achieve the formula

$$
s_{3 \mid 5}=3 \cdot \frac{n_{3}\left(n_{3}+1\right)}{2}+5 \cdot \frac{n_{5}\left(n_{5}+1\right)}{2}-3 \cdot 5 \cdot \frac{n_{15}\left(n_{15}+1\right)}{2}
$$

[^0]
[^0]: ${ }^{1}$ http://www.cplusplus.com/reference/chrono/high_resolution_clock/now/

