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ABSTRACT

In this article, we focus on numerical algorithms for which,
in practice, parallelism and accuracy do not cohabit well. In
order to increase parallelism, expressions are reparsed im-
plicitly using mathematical laws like associativity and this
reduces the accuracy. Our approach consists in performing
an exhaustive study: we generate all the algorithms equiv-
alent to the original one and compatible with our relaxed
time constraint. Next we compute the worst errors which
may arise during their evaluation, for several relevant sets
of data. Our main conclusion is that relaxing very slightly
the time constraints by choosing algorithms whose critical
paths are a bit longer than the optimal makes it possible to
strongly optimize the accuracy. We extend these results to
the case of bounded parallelism and to accurate sum algo-
rithms that use compensation techniques.

1. INTRODUCTION
Symbolic-numeric algorithms have to manage the a priori

conflicting numerical accuracy and computing time. Per-
formances and accuracy of basic numerical algorithms for
scientific computing have been widely studied, as for exam-
ple the central problem of summing floating point values –
see the numerous references in [5] or more recently in [11,
16, 15]. Parallelism is commonly used to speedup these im-
plementations. However as already noticed by J. Demmel
[2], in practice parallelism and accuracy do not cohabit well.
To exploit the parallelism within an expression, this one is
reparsed implicitly using mathematical laws like associativ-
ity. The new expression is then more balanced to benefit
for as much parallelism as possible. In our scope, such re-
writing should yield algorithms that sum n numbers in a
logarithmic time O(log n). The point is that the numerical
accuracy of some algorithms is strongly sensitive to repars-
ing. In IEEE754 floating-point arithmetic, additions are not
associative and, in general, most algebraic laws like associa-
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tivity and distributivity do not hold any longer.As a conse-
quence, while increasing the parallelism of some expression
its numerical accuracy may decrease, and conversely, im-
proving the accuracy of some computation may reduce its
parallelism.
In this article, we address the following question:.How can

we improve the accuracy of numerical algorithms if we relax
slightly the performance constraints? More precisely, we ex-
amine how accurate can be algorithms which are k times less
efficient than the optimal one or with a constant overhead
with respect to the optimal one, e.g., for the summation of
n values, in k log n or k + log n for a constant parameter k.

For example, let us consider the sum

s =
N
∑

i=1

ai, with ai =
1

2i
, 1 ≤ i ≤ N (1)

Two extreme algorithms compute s as

s1:=
(

. . . ((a1 + a2) + a3) + . . . aN−1

)

+ aN (2)

and, assuming N = 2k,
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(3)
Clearly, the sum s1 is computed sequentially while s2 corre-
sponds to a reduction which can be computed in logarithmic
time. However we have in double precision for N = 10,

s = 0.9990234375 s1 = 0.99902343 s2 = 0.99609375

and it happens that s1 is far more precise than s2.
Our approach consists in performing an exhaustive study.

First we generate all the algorithms equivalent to the orig-
inal one and compatible with our relaxed time constraint.
Then we compute the worst errors which may arise dur-
ing their evaluation for several relevant sets of data. Our
main conclusion is that relaxing very slightly the time con-
straints by choosing algorithms whose critical paths are a bit
longer than the optimal one makes it possible to strongly
optimize the accuracy. This matter of fact is illustrated
using various datasets, most of them being ill-conditioned.
We extend these results to the case of bounded parallelism
and to compensated algorithms. For bounded parallelism
we show that more accurate algorithms whose critical path



is not optimal can be executed in as many cycles as optimal
algorithms, e.g., on VLIW architectures. Concerning com-
pensation, we show that elaborated summation algorithms
can be discovered automatically by inserting systematically
compensations and then reparsing the resulting expression.

This article is organized as follows. Section 2 gives an
overview of summation algorithms. Section 3 presents our
main results concerning the time versus precision compro-
mise. Section 4 describes how we generate exhaustively
the summation algorithms of interest and Section 5 intro-
duces further examples involving larger sums, accuracy ver-
sus bounded parallelism and compensated sums. Finally,
some perspectives and concluding remarks are given in Sec-
tion 6.

2. BACKGROUND
In floating-point arithmetic accuracy is a critical matter,

as well for scientific computing than to critical embedded
systems [9, 10, 3, 7, 6, 4]. Famous examples alas illustrate
that bad accuracy can cause human damages and money
loses. If accuracy is critical so is parallelism but usually
these two domains are considered separately. While focusing
on summation, this section compares the most well-known
algorithms with respect to their accuracy and parallelism
characteristics.

In next Subsection 2.1 we recall background material on
summation algorithms [5, 11] and we explain how we mea-
sure the errors terms in Subsection 2.2.

2.1 Summation Algorithms
Summation in floating-point arithmetic is a very rich re-

search domain. There are various algorithms that improve
accuracy of a sum of two or more terms and similarly, there
are many parallel summation algorithms.

2.1.1 Two Extreme Algorithms for Parallelism

+

+ +

+

+

+

O(log(n)) O(n)

Basically, there are two extreme algorithms with respect
to parallelism properties to compute the sum of (n+1) terms.
The first following algorithm is fully sequential whereas the
second one benefits from the maximum degree of parallelism.

• Algorithm 1 is the extreme sequential algorithm. It
computes a sum in O(n) operations successively sum-
ming the n + 1 floating-point numbers (see Equation
2).

• Pairwise summation Algorithm 2 is the most parallel
algorithm. It computes a sum in O(log(n)) successive
stages (see Equation 3).

Mixing Algorithm 1 and Algorithm 2 gives many algo-
rithms of parallelism degrees between those two extreme
ones.

Algorithm 1 Sum: Summation of n + 1 Floating-Point
Numbers
Input: p is (a vector of) n+ 1 floating-point numbers
Output: sn is the sum of p

s0 ← p0
for i = 1 to n do

si ← si−1 ⊕ pi
end for

Algorithm 2 SumPara: Parallel Summation of n + 1
Floating-Point Numbers

Input: p[l : r] is (a vector of) n+ 1 floating-point numbers
Output: the sum of p

m← ⌊(l + r)/2⌋
if l = r then

return pl
else

return SumPara(p[l : m]) ⊕ SumPara(p[m+ 1 : r])
end if

2.1.2 Merging Parallelism and Accuracy

It is well known that these two extreme algorithms does
not verify the same worst case error bound [5]. Nevertheless
to improve the accuracy of one computed sum, it is classic
to sort the terms according to some of their characteristics
(increasingly, decreasingly, negative or positive sort, etc.).
Summation accuracy varies with the order of the inputs.

Increase or decrease orders of the absolute values of the
operands are the two first choices for the simplest Algorithm
1. If the inputs are both negative and positive, the decrease
order is better, otherwise other orders are equivalent. If all
the inputs are of the same sign, the increase order is more
interesting than others [5]. More dynamic inserting meth-
ods consist to sort the inputs (in a given order), to sum the
first two numbers and to insert the result within the inputs
conserving the initial order. Such sorting is more difficult
to implement while conserving the parallelism level of Algo-
rithm 2.

2.1.3 More Accuracy with Compensation

A well known and efficient techniques to improve accuracy
is compensation which uses following error-free transforma-
tions [11].

Algorithm 3 computes the sum of two floating-point num-
ber x = a⊕ b and the absolute error y due to the IEEE754
arithmetic [1].

Algorithm 3 TwoSum, Result and Absolute Error in Sum-
mation of Two Floating-Point Numbers (Introduced by
Knuth)

Input: a and b, two floating-point numbers
Output: x = a⊕ b and y the absolute error on x

x← a⊕ b
z ← x⊖ a
tmp1← x⊖ z
tmp2← a⊖ tmp1
tmp1← b⊖ z
y ← tmp2⊕ tmp1

When |a| ≥ |b| next Algorithm 4 is faster than Algorithm



3. Of course it will be necessary to check this condition to
apply it. The overcost of such practice on modern computing
environments is not so clear [15, 8]. In both cases the key
point is the error-free transformation x+ y = a+ b.

Algorithm 4 FastTwoSum, Result and Absolute Error in
Summation of Two Floating-Point Numbers

Input: a and b two floating-point numbers such that |a| ≥
|b|

Output: x = a⊕ b and y the absolute error on x
x← a⊕ b
tmp← a⊖ bx
y ← tmp⊕ b

To improve the accuracy of Algorithm 1, next VecSum Al-
gorithm applies this error-free transformation. Then Algo-
rithm 6 uses this error-free vector transformation and yields
a twice more accurate summation algorithm [11]. Hence
Sum2 computes every rounding error y and add it together
before compensating the classic Sum computed result, i.e., Sum
Algorithm applies twice, once to the n+1 summand and then
to the n error terms, the compensated summation being the
last addition between these two values.

Algorithm 5 VecSum, Error-Free Vector Transformation
of n+ 1 Floating-Point Numbers [11]

Input: p is (a vector of) n+ 1 floating-point numbers
Output: pn is the approximate sum of p, p[0 : n − 1] is (a

vector of) the generated errors
for i = 1 to n do

[pi, pi−1]← TwoSum(pi, pi−1)
end for

Algorithm 6 Sum2, Compensated Summation of n + 1
Floating-Point Numbers

Input: p is (a vector of) n+ 1 floating-point numbers
Output: s the sum of p

p← V ecSum(p)
e← Sum(p[1 : n− 1])
s← p0 ⊕ e

These error-free transformations have been used differ-
ently within several other accurate summation algorithm.
Previous Sum2 was also considered by [12]. A slight varia-
tion is the famous Kahan compensated summation: in Al-
gorithm 7, every rounding error e is added to the next sum-
mand (the compensating step) before adding it to the pre-
vious partial sum.

It exists many other algorithms for accurate summation
that use these error-free transformations, as for example
Priest double-compensated summation [13] or the recursive
SumK algorithms of [11] or also the very fast AccSum and
PrecSum of [15]. We do not detail these more.

2.2 Measuring the Error Terms
Let x and y be two real numbers approximated by floating-

point numbers x̂ and ŷ such that x = x̂+ ǫx and y = ŷ + ǫy
for some error terms ǫx ∈ R and ǫy ∈ R. Let us consider
the sum S = x+ y. In floating-point arithmetic this sum is
approximated by

Ŝ = x̂⊕ ŷ

Algorithm 7 SumComp, Compensated Summation of n
Floating-Point Numbers (Kahan)

Input: p is (a vector of) n+ 1 floating-point numbers
Output: s the sum of input numbers

s← p0
s← 0
for i = 1 to n do

tmp← s
y ← pi ⊕ e
s← tmp⊕ y
tmp2← tmp⊖ s
e← tmp2⊕ y

end for

where ⊕ denotes the floating-point addition. We write the
difference ǫS between S and Ŝ as in [17],

ǫS = S − Ŝ = ǫx + ǫy + ǫ+, (4)

where ǫ+ denotes the roundoff error introduced by the op-
eration x̂⊕ ŷ itself.
In the rest of this article, we use intervals x, y, . . . instead

of floating-point numbers x̂, ŷ, . . . as well as for the error
terms ǫx, ǫy, . . . for the next two different reasons.

(i) Our long-term objective is to perform program trans-
formations at compile-time [10] to improve the numer-
ical accuracy of mathematical expressions. It comes
out that our transformations have to improve the ac-
curacy of any dataset or, at least, of a wide range of
datasets. So we consider inputs belonging to intervals.

(ii) The error terms are real numbers, not necessarily rep-
resentable by floating-point numbers as ǫS in Equation
(4). We approximate them by intervals, using round-
ing modes towards outside.

An interval x with related interval error ǫx denotes all the
floating-point numbers x̂ ∈ x with a related error ǫx ∈ ǫx.
This means that the pair (x, ǫx) represents the set of exact
results

X = {x ∈ R : x = x̂+ ǫx, x̂ ∈ x, ǫx ∈ ǫx}

Let x and y be two sets of floating-point numbers with error
terms belonging to the intervals ǫx ⊆ R and ǫy ⊆ R. We
have

S = x⊕I y (5)

where ⊕I is the sum of intervals with the same rounding
mode than ⊕ (generally to the nearsest) and

ǫS = ǫx ⊕O ǫy ⊕O ǫ+ (6)

where ⊕O denotes the sum of intervals with rounding mode
towards outside. In addition ǫ+ denotes the roundoff error
introduced by the operation x̂ ⊕I ŷ. Let ulp(x) denote the
function which computes the unit in the last place of x [5],
i.e., the weight of the least significant digit of x and let
S = [S, S]. We bound ǫ+ by the interval [−u, u] with

u =
1

2
max(ulp(|S|), ulp(|S|)).

Using the notations of equations (4), (5) and (6), it follows
that for all x̂ ∈ x, ǫx ∈ ǫx, ŷ ∈ y, ǫy ∈ ǫy

S ∈ S and ǫS ∈ ǫS.



3. NUMERICAL ACCURACY OF NON-TIME-

OPTIMAL ALGORITHMS
The aim of this section is to show how we can improve

accuracy while relaxing the time constraints. In Subsection
3.1, we illustrate our approach using as an example a sum of
random values. We generalize our results to some significant
sets of data in Subsection 3.2.

3.1 The general approach and a first example
In order to evaluate the algorithms to compute one sum

expression, associativity and distributivity are only needed
hereafter. Basically, while in exact arithmetic all the algo-
rithms are numerically equivalent, in floating-point arith-
metic the story is not the same. Indeed, many things may
arise like absorption, rounding errors, overflow, etc. and
then floating-point algorithms return various different re-
sults.

One mathematical expression yields a huge amount of
evaluation schemes. We propose to analyse this huge set of
algorithms with respect to accuracy and parallelism. First
we search the most accurate algorithms among all levels of
parallelism, and then we search among them the ones with
the best degrees of parallelism. We aim at finding the more
interesting ratio between accuracy and parallelism.

In this section, we use random data defined as interval
[a, a]. We measure the interval that represents the max-
imum error bound [e, e] applying the previously described
error model. Let ai = [ai, ai], 1 ≤ i ≤ n. This means
that for all a1 ∈ ai, . . . , an ∈ an, the error on Σn

1ai belongs
to [e, e]. We focus the maximum error which is defined as
max(|e|, |e|).

Each dot of Figure 1 shows the absolute error of every
algorithms, i.e., every parsing of the summing expression
with six terms. X-axis represents the algorithms and Y-axis
represents the maximal absolute error. It is not a surprise
that errors are not uniformly distributed and that the er-
rors belong to a small number of stages. Figure 2 shows
the distribution of the errors for the different stages of a ten
terms summation. The proportion of algorithms with very
few small or very large errors is small. Most of the algo-
rithms present an average accuracy between small and large
errors. We guess that it will be difficult to find the best
accurate algorithms (as well as the worst one), most having
an average accuracy.

It exists 46,607,400 different algorithms for an expression
of ten terms. Among this huge set, many of them are se-
quential or almost sequential. So we propose to restrict the
search to a certain level of parallelism. Let n be the num-
ber of additions and k a constant chosen arbitrarily e.g., her
k = 2. We restrict our search of accurate algorithms within
three included sets: algorithms having a computing tree of
height smaller or equal to log(n)+1, log(n)+k and k×log(n).
Using these restrictions, there are 27,102,600 algorithms of
level k× log(n), 13,041,000 algorithms of level log(n)+k and
2,268,000 algorithms of level log(n) + 1.

Results are given in Figure 3 and in Table 1. We observe
that the highest level of parallelism, the level log(n) + 1,
does not allow us to compute the most accurate results.
Nevertheless if we use a less high but still raisonable level of
parallelism, e.g., levels O(log(n)+k) or O(k.log(n)), we can

Figure 1: Maximum errors among each algorithms
for a six terms summation.

Figure 2: Error repartition when summing ten
terms.

compute accurate results.
The more the level of parallelism, the harder to find the

more accurate algorithms among all of them. In Tables 2
and 3 we observe that the level log(n) + k presents a pro-
portion of accurate algorithms (stages with small numbers)
than the higher parallelism level k × log(n). Moreover the
most accurate algorithms within the first set are less accu-
rate than the ones of the second set — see Figure 3.

Parallelism Best Error Percent
no parallelism 2.2737367544323210e−13 0.006

log(n) 4.5474735088646421e−13 0.007
log(n) + k 2.2737367544323210e−13 0.006
k.log(n) 2.2737367544323210e−13 0.007

Table 1: Error value and average on level paral-
lelism.

3.2 Larger experiments
We study a more representative sets of data using various

kinds of values chosen as well-known error-prone problems,



Figure 3: Error repartition with three different degrees of parallelism.

Stage Example of expression %
1 (i+(f + g))+ ((c+ d)+ ((h+ j)+ (e+

(a+ b))))

0.006

2 (i+(f + g))+ (j+((c+ d)+ ((e+h)+

(a+ b))))

0.024

3 (i+(f + g))+ (j+((e+(a+h))+ (b+

(c+ d))))

0.001

...
...

...
141 (j+((c+ g)+ (b+h)))+ (e+(a+(d+

(f + i))))

0.001

142 (j+(h+(g+(c+ e))))+ (b+(a+(d+

(f + i))))

0.005

143 (j+(h+(e+(c+ g))))+ (b+(a+(d+

(f + i))))

0.002

Table 2: Accuracy stages at the parallelism level
O(log(n)+k) (stages with small numbers are the left-
most maximum errors).

Stage Example of expression %
1 (i+(f + g))+ ((c+ d)+ ((h+ j)+ (e+

(a+ b))))

0.008

2 (i+ (f + g)) + (j + ((c+ d) + (h+ (e+

(a+ b)))))

0.039

3 (i+(f + g))+ (j+((e+(a+h))+ (b+

(c+ d))))

0.004

...
...

...
171 (j + (g+ (b+ h))) + (e+ (c+ (a+ (d+

(f + i)))))

0.007

172 (j + (h+ (e+ g))) + (c+ (b+ (a+ (d+

(f + i)))))

0.015

173 (j + (h+ (c+ g))) + (e+ (b+ (a+ (d+

(f + i)))))

0.001

Table 3: Accuracy stages at the parallelism level
O(k.log(n)) (stages with small numbers are the left-
most maximum errors).

i.e., ill-conditioned set of summands. The condition number
for computing s =

∑N

i=1
xi, is defined as following,

cond(s) =

∑N

i=1
|(xi)|

|s|
.

The larger this number, the more ill-conditioned the sum-
mation, the less accurate the result.
Summation suffes from the two following problems.

• Absorption arises when adding a small and a large
values. The smallest values are absorbed by the largest
ones. In our context : 1016 ⊕ 10−16 = 1016. In general
absorption is not so dangerous while adding values of
the same sign: its condition number equals roughly
one. Nevertheless a large amount of small errors cu-
mulates for large summations — this was the case in
the well known Patriot Missile failure [18].

• Cancellation arises when absorption appears within
data with different sign. In this case, the condition
number can be arbitrarily large. We will call such case
as summation with ill-conditioned data. In our context
an example is : (1016 ⊕ 10−16)⊖ 1016 = 0.

We introduce 9 datasets to generate different types of ab-
sorptions and cancellations. These two problems are clear to
with scalar values. So we first use intervals with small varia-
tions around such scalar values. Every dataset is composed
of ten samples that share the same numerical characteris-
tics. We recall that these experiments are limited to ten
summands. In the following, we say that a floating-point
value is a small, medium or large when it is, respectively, of
the order of 10−16, 1 and 1016. This is justified in double
precision IEEE754 arithmetic.

• Dataset 1. Positive sign, 20% of large values among
small values. There are absorptions and accurate algo-
rithms should first sum the smallest terms (increasing
order).

• Dataset 2. Negative sign, 20% of large values among
small values. Results should be the same as in Dataset
1.

• Dataset 3. Positive sign, 20% of large values among
small and medium values. Results should be algo-
rithms which sum in increase order.

• Dataset 4. Negative sign, 20% of large values among
small and medium values. Results should be equivalent
to the results of Dataset 3.



• Dataset 5. Both signs, 20% of large values that can-
cel, among small values. The accurate algorithms should
sum the two largest values first. In a more general
case, the best algorithms should sum in decrease or-
der of absolute values. It is a classic ill-conditioned
summation.

• Dataset 6. Both signs, few small values and same pro-
portion of large and medium values. Only large values
cancel. The best algorithms should sum in decrease
order of absolute values.

• Dataset 7. Both signs, few small values and same
proportion of large and medium values. Large and
medium values are ill-conditioned. Results should be
the same than in Dataset 6.

• Dataset 8. Both signs, few small values and same pro-
portion of large and medium values. Only medium val-
ues cancel. Results should be the same than in Dataset
6.

• Dataset 9. In order to simulate data encounter in em-
bedded systems, this dataset is composed of intervals
defined by [0.4, 1.6]. This is representative of values
send by a a sensor to an accumulator. This dataset is
well-conditioned.

Example of data generated for Dataset 1:
a = [2.667032062476577e16, 3.332967937523422e16]
b = [1.778021374984385e−16, 2.221978625015614e−16]
c = . . . etc.

Figure 4 shows the proportion of optimal algorithms, i.e., the
one which returns the smallest error with each dataset for
the corresponding level of parallelism. Each proportion is
the average value for the ten samples within each dataset.
Parallelism degrees areO(log(n)+1), O(log(n)+k), O(k.log(n))
and O(n), as defined in Subsection 3.1.

Figure 4: Proportion of the optimal algorithm (av-
erage on 10 datasets).

Firstly, we can observe that the proportion of optimal al-
gorithms is tiny: the average of optimal algorithms which
respect to the best accuracy is less than one percent ex-
cept for the well-conditionned Dataset 9. Results in Table 1

match those displayed in Figure 4. In most cases, among all
the levels of parallelism, the highest degree in O(log(n)+ 1)
is not able to keep the most accurate algorithms, particu-
larly when there is absorption (percentage equals zero and
no bar is ploted). We observe that the more the level of
parallelism, the harder to find a good algorithm. But if we
relax the time constraint, i.e., the parallelism, it is easier to
get an optimal algorithm.

For example, results of Dataset 1 show that if we limit the
algorithms to all the algorithms of complexity O(log(n)+1)
there are no algorithm with the best error. If the level of
parallelism is not so good, for example O(log(n) + k) or
O(k.log(n)) there are algorithms with the best errors.

Results in Figure 4 show that for Dataset 9, the proportion
of optimal algorithms with the highest degree of parallelism
is larger than the ones with less parallelism. In this case of
well-conditionned summation, it reflects that whereas there
are less algorithms of this parallelism level, these ones do not
particularly suffer from inaccuracy. For well-conditionned
summation, it seems that the more parallel, the easier to
find an optimal algorithm.

4. GENERATION OF THE ALGORITHMS
In this section, we describe how our tool generates all the

algorithms. Our program, written in C++, builds all the
reparsing of an expression. In the case of summation, the
combinatory is huge, so it is very important to reduce the
reparsing to the minimum.
The combinatory of summation is important, this was

often studied but no general solution exists. For example
CGPE [14] computes equivalent polynomial expressions but
it is not exhaustive.

Intuitively, to generate all the expressions for a sum of n
terms we process as follows.

• Step 1 : Generate all the parsing using the associativity
of summation ((a+ b) + c = a+ (b+ c)). The number
of parsing is given by the Catalan Number Cn:

Cn =
(2n)!

n! (n+ 1)!

• Step 2 : Generate all the permutations for all expres-
sion found in Step 1 using the commutativity of sum-
mation (a+ b = b+ a). There is n! ways to permute n
terms in a sum.

So the total number of equivalent expressions for a n terms
summation is

Cn · n!. (7)

Figure 5 shows this firts combinatory result.
Our tool finds all the equivalent expressions of an expres-

sion but only generates the different equivalent expressions.
For example, a+ (b+ c) is equivalent to a+ (c+ b) but it is
not different because it corresponds to the same algorithm.
In Subsection 4.1, we present how we generate the struc-
turally different trees and, Subsection 4.2, how we generate
the permutations.

Table 4 and Figure 5 represent the number of algorithms
generated for n terms as n grows.



Terms All expressions Different expressions
5 1680 120
10 1.76432e+10 4.66074e+07

15 3.4973e+18 3.16028e+14

20 4.29958e+27 1.37333e+22

Table 4: Number of terms and expressions.

Figure 5: Number of trees when summing n terms.

4.1 Exhaustive Generation of Structurally Dif-
ferent Trees

We represent one algorithm with one binary tree. Nodes
are sum operators and leaves are values. We describe how
to generate all structurally different trees. It is a recursive
method defined as follows.

• We know that the number of terms is n ≥ 1. An
expression is composed of one term at least.

• A leaf x has only one representation, it is a tree of one

term represented like this: 1 .

x

Then the number of structures for one term trivially
reduces to one.

• Expression x1 + x2 is a tree of two terms 2 . It has
the following structural representation.

+

1 1

With two terms we can create only one tree. So again
the number of structures for two terms equals 1.

+

x1 x2

• Recursively, we apply the same rules. For a tree of n
terms, we generate all the different structural trees for
all the possible combinations of sub-trees, i.e., forall
i ∈ [1, n − 1], two sub-trees with, respectivelly, i and
(n − i) terms. Because summation is commutative, it
is sufficient to generate these (i;n− i)-sub-trees for all
i ∈ [1, ⌊n

2
⌋]. This is represented as it follows.

∀i ∈ [1, ⌊n
2
⌋],

+

i n− i

• So, for n terms, we generate the following numbers of
structurally different trees,

Struct(1) = Struct(2) = 1, (8)

Struct(n) =

⌊n

2
⌋

∑

i=1

Struct(n− 1) · Struct(i). (9)

4.2 Exhaustive Generation of Permutations
To generate only different permutations, the leaves are

related to the tree structure. For example, we do not wish
to have the following two permutations,

a+ (d+ (b+ c)) and a+ ((c+ b) + d).

+

x4 +

x3 +

x2 x1

Indeed these expressions have the same accuracy and the
same degree of parallelism.

In order to generate all the permutations, we use a similar
algorithm as in the previous subsection.

• Firstly, we know that for an expression of one term,
we generate only one permutation. Perm(1) = 1.

• Using our permutation restriction, it is sufficient to
generate one permutation for an expression of two terms;
so again Perm(2) = 1.

• Permutations is related to the tree structure and we
count it with the following recursive relation,

Perm(1) = 1, (10)

Perm(n) =

⌈n

2
⌉

∑

i=1

Ci
n · Perm(n− 1) · Perm(i) (11)

5. FURTHER EXAMPLES
In this section, we present results for larger or more so-

phisticated examples. Subsection 5.1 introduces a sum of
twenty terms, Subsection 5.2 focuses on compensation and
we discuss about bounded parallelism in the last Subsection
5.3



5.1 An Example Over More Terms
We now consider a sum of 20 terms. We chose a dataset

where all the values belong to the interval [0.4, 1.6]. Again
this is representative, for example, of what may happen in
an embedded system when accumulating values provided by
a sensor, like a sinusoidal signal.

Critical path Average of optimal algorithms (%)
log(n) + 1 54.08

k = 2 k = 3
log(n) + k 19.75 12.41
k.log(n) 5.26 4.15

n 4.13

Table 5: Proportion of optimal algorithms.

We can see that the results in Table 5 are similar to the
results of Dataset 9. We obtain the same repartition of op-
timal algorithms with ten or twenty terms. This confirms
that the sum length does not govern the accuracy – at least
while overflow does not appear.

In this case, we show that for a sum of identical intervals,
the more parallelism, the easier to find an algorithm which
preserves the maximum accuracy.

5.2 Compensated Summation
Now we present an example to illustrate one of the core

motivation of this work. The question is the following.
Starting from the simplest sum expression, are we able to
automatically generate a compensated summation algorithm
that improves its evaluation ? Here we describe how to in-
troduce one level of compensation as in the algorithms pre-
sented in Section 2.

To improve the accuracy of expression E, we compute an
expression Ecmp.

For intervals X and Y , we introduce the function C(X,Y )
which computes the compensation of X⊕Y (see section 2.1).

For example, for three terms we have :
E = (X ⊕ Y )⊕ Z
Ecmp =

[

((X ⊕ Y )⊕ C(X,Y ))⊕ Z
]

⊕ C(X + Y, Z)

Ecmp is the expression we obtain automatically by system-
atically compensing the original sums. It could be generated
by a compiler. To illustrate this, we present an example with
a summation of five terms ((((a + b) + c) + d) + e). Terms
are defined as follows,

a = −9.5212224350e−18

b = −2.4091577979e−17

c = 3.6620086288e+03

d = −4.9241247828e+16

e = 1.4245601293e+04

As before we can identify the two followings cases. The
maximal accuracy which can be obtained is given by the al-
gorithm (((a + b) + c) + e) + d. It generates the absolute
error ∆ = 4.0000000000020472513. We observe that this
algorithm is Algorithm 1 at Section 2 with increase order.

The maximal accuracy given by the maximal level of par-
allelism is obtained by the algorithm ((a+ c) + (b+ e)) + d.
In this case, the absolute error is

δnocomp = 4.0000000000029558578

.
When applying compensation on this algorithm, we obtain

the following algorithm :

(f + (g + (h+ i))) + (d+ ((b+ e) + (a+ c))),

with :

f = C(a, c) = −9.5212224350000e−18

g = C(b, e) = −2.4091577978999e−17

h = C(f, g) = −1.8189894035458e−12

i = C(h, d) = 3.6099218000017

Now we measure the improved absolute error δcomp =
4.0000000000000008881. It appears that this algorithm found
with the application of compensation is actually the Sum2
algorith –Algorithm 6 at Section 2. This results illustrates
that we can automatically find algorithms existing in the
bibliography and that the transformation improves the ac-
curacy.

5.3 Bounded Parallelism
Section 3 showed that in the case of maximum parallelism,

maximum accuracy is not possible (or very difficult) to have.
The fastest algorithms (O(log(n) + 1) are rarely the most
accurate but by relaxing the time constraint, it becomes
possible to find an optimally accurate algorithm.
This subsection is motivated by the following fact. In pro-

cessor architectures, parallelism is bounded. So it is possible
to execute an algorithm less parallel in the same execution
time as the fastest one (or in a very closed time). We show
here two examples to illustrate this. Firstly we use a pro-
cessor which executes two sums per cycle and secondly one
which executes four sums per cycle.

For an expression of ten terms :

• 2 sums/cycle:

The execution of the fastest algorithm (log(n) + 1) of
the expression does not provide the maximum accu-
racy. It takes five cycles to compute the expression as
the next figure exhibits it.

a b c d e f g h i j

+ +

+ +

++

++

+

1

2

3

4

5

Now we take another algorithm, with less parallelism
but that provides the maximum accuracy (See Line 1,
Table 2, Subsection 3.1). In bounded parallelism this
algorithm takes the same time than the more parallel
one as we show it hereafter.
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• 4 sums/cycle:

Again, execution of the fastest algorithm (log(n) + 1)
of this expression, do not have the maximum accuracy.
It takes four cycles to compute the expression.

a b c d e f g h i j

+ + + +

+++

+

+

1

2

3

4

We take two other algorithms, both with less paral-
lelism but with the maximum accuracy. The first al-
gorithm is described at Line 1, Table 2, Subsection 3.1.
It takes one more cycle than the most parallel one.

a b c de f gh ij

+ + ++

+ +

+

+

+

1

2

3

4

5

The second algorithm is in k.log(n); it corresponds to
Line 2, Table 3, Subsection 3.1). This one takes two
more cycles than the most parallel one.
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This confirms our claim that in current architectures, we
can improve accuracy without slowering too much the exe-
cution.

6. CONCLUSION AND PERSPECTIVES
We have presented our first steps towards the development

of a tool that aims to automatically improve the accuracy of
numerical expressions evaluated in floating point arithmetic.
Since we target to embed such tool within compiler, intro-
ducing more accuracy should not jeopardize the improve-
ment of running-time performances provided by the opti-
mization steps. This motivates to study the simultaneous
improvement of accuracy and timing. Of course we exhibit
that a trade-off is necessary to generate optimal transformed
algorithms. We validated the presented tool with summa-
tion algorithms; these are simple but significant problems
in our application scope. We have shown that this trade-
off can be automaticaly reached, and the corresponding al-
gorithm generated, for data belonging to intervals – and
not only scalars. These intervals included ill-conditioned
summations. In the last section, we have shown that we
can automatically generates more accurate algorithms that
use compensation techniques. Compared to the fastest algo-
rithms, the overcost of these automaticaly generated more
accurate algorithms may be reasonable in practice. Our
main conclusion is that relaxing very slightly the time con-
straints by choosing algorithms whose critical paths are a
bit longer than the optimal makes it possible to strongly op-
timize the accuracy.

Next step needs to increase the complexity of the case
study both performing more operations and different ones.
One of the main problem to tackle is the combinatory of
the possible transformations. Brute force transformation
should be replaced using more sophisticated transformations
as, e.g., the error-free ones we introduced to recover the
compensated algorithms. Another point to explore is how
to develop significant datasets corresponding to any data in-
tervals provided by the user of the expression to transform.
A further step will be to transform any expression up to a
prescribed accuracy and to formally certified it. Such facil-
ity is for example necessary to apply such tool for symbolic-
numeric algorithms. In this scope, this project plans to use
static analysis and abstract interpretation as in [10].
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[12] Michèle Pichat. Correction d’une somme en
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