Programming C++

Project Kahan	
Status:	24. Jänner 2019, 16:11
Supervisor: Prof.Dr. G. Haase,	gundolf.haase@uni-graz.at

Kahan summation:

Numerical computation by floating point numbers in the computer cause roundoff errors due to the limited precision available. Summing large and small numbers togeher might result in non neglectable final error.

The Kahan summation¹ is one approach to compensate this error.

- 1. Start with the skalar product code (tar^2) . and extend it with a new function Kahan_skalar that performs the summation therein according to Kahan.
- 2. Calculate the sum

$$s_n := \sum_{k=1}^n \frac{1}{k^2}$$

for increasing n and compare the difference of the results from the two functions.

• Use compiler option -O1, not option -O2 or higher for the Kahan_skalar.

3. We know that $s_n \to \frac{\pi^2}{6}$ for $n \to \infty$. Compare the two results with this value for $n \to \infty$.

Hints: #include <cmath>, M_PI

¹https://en.wikipedia.org/wiki/Kahan_summation_algorithm

²https://imsc.uni-graz.at/haasegu/Lectures/Math2CPP/Codes/seq/skalar_stl.tar