Scripting GPUs with PyOpenCL

Andreas Klöckner

Division of Applied Mathematics Brown University

Scipy 2010 · June 29, 2010

Thanks

- Tim Warburton (Rice)
- Jan Hesthaven (Brown)
- David Garcia
- Nicolas Pinto (MIT)
- PyOpenCL, PyCUDA contributors
- Nvidia Corporation

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCL
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

- 1 Intro: GPUs, OpenCL
 - What and Why?
 - Bird's eye view of OpenCL
- 2 GPU Programming with PyOpenCL
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

- 1 Intro: GPUs, OpenCL
 - What and Why?
 - Bird's eye view of OpenCL
- 2 GPU Programming with PyOpenCL
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

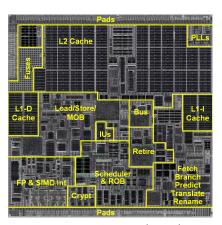
GPU Computing?

- Design target for CPUs:
 - Make a single thread very fast
 - Hide latency through large caches
 - Predict, speculate

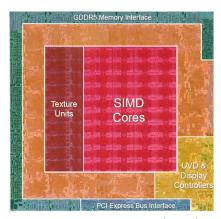
GPU Computing?

- Design target for CPUs:
 - Make a single thread very fast
 - Hide latency through large caches
 - Predict, speculate
- GPU Computing takes a different approach:
 - Throughput matters single threads do not
 - Hide latency through parallelism
 - Let programmer deal with "raw" storage hierarchy

GPU-CPU Bird's Eye Comparison



Floorplan: VIA Isaiah (2008) 65 nm, 4 SP ops at a time, 1 MiB L2.



Floorplan: AMD RV770 (2008)
55 nm, 800 SP ops
at a time.

GPU Architecture (e.g. Nvidia GT200)

- 1 GPU = 30 SIMD cores
- 1 SIMD core: 32 × 32 PCs, HW Sched + 1 ID (1/4 clock) + 8 SP + 1 DP + 16 KiB Shared + 32 KiB Reg
- Device ↔ RAM: **140 GB/s**
- Device ↔ Host: 6 GB/s
- User manages memory hierarchy

GPU Programming: Gains and Losses

Gains	Losses
 Memory Bandwidth (140 GB/s vs. 12 GB/s) Compute Bandwidth (Peak: 1 TF/s vs. 50 GF/s, Real: 200 GF/s vs. 10 GF/s) ○ Data-parallel programming 	

GPU Programming: Gains and Losses

Gains

- ◆ Memory Bandwidth (140 GB/s vs. 12 GB/s)
- Compute Bandwidth (Peak: 1 TF/s vs. 50 GF/s,

Real: 200 GF/s vs. 10 GF/s)

Data-parallel programming

Losses

- Tuning hardware-specific
- Data size

 Alg. design
- Cheap branches (i.e. ifs)
- Fine-grained malloc *)
- Recursion *)
- Function pointers *)

*) Possibly less problematic soon.

- 1 Intro: GPUs, OpenCL
 - What and Why?
 - Bird's eye view of OpenCL
- 2 GPU Programming with PyOpenCL
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

What is OpenCL?

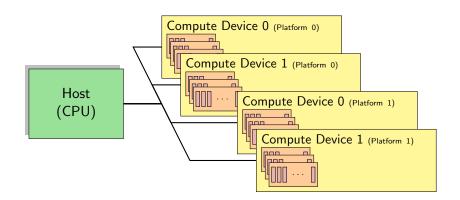
OpenCL (Open Computing Language) is an open, royalty-free standard for general purpose parallel programming across CPUs, GPUs and other processors. [OpenCL 1.1 spec]

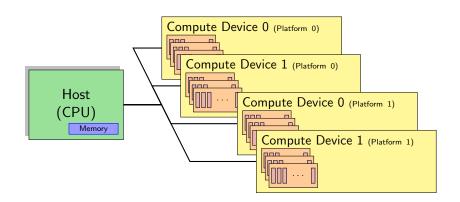
- Vendor-neutral, unlike Nvidia CUDA
 - though rather similar to it

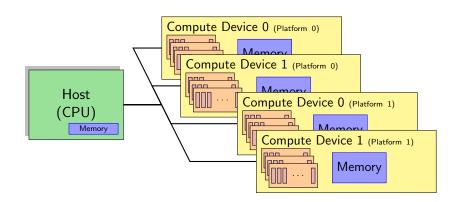
Defines:

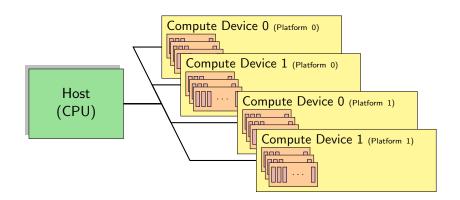
- Host-side programming interface (library)
- Device-side programming language (!)

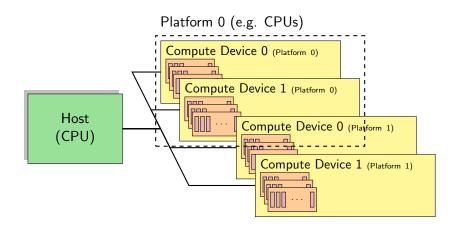
Host (CPU)

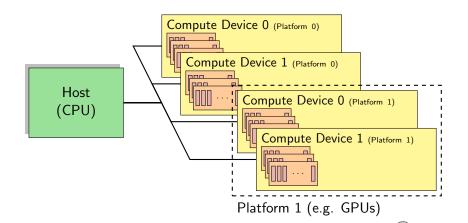




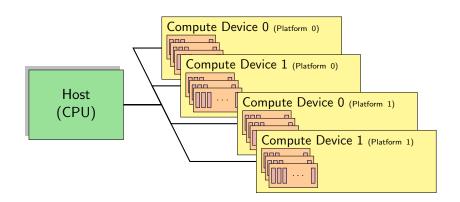


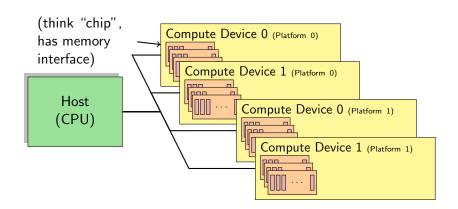


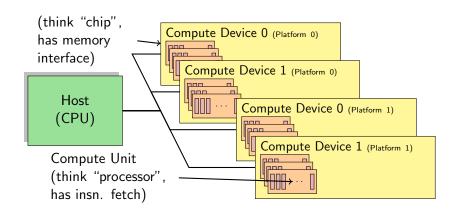


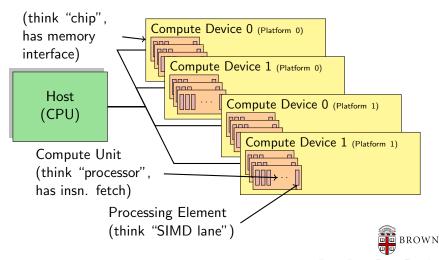


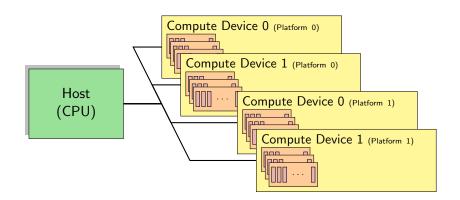
BROWN

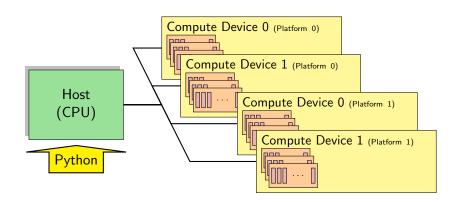


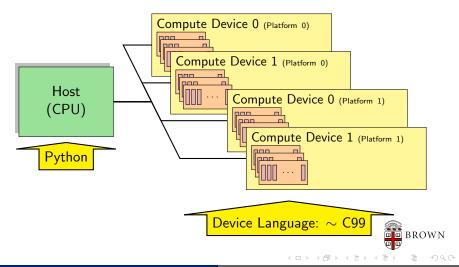




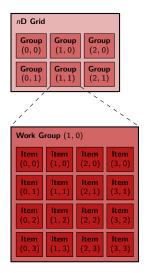






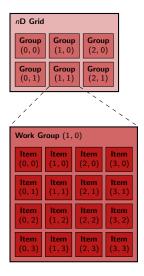


OpenCL: Execution Model



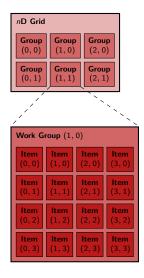
- Two-tiered Parallelism
 - Grid = $N_x \times N_y \times N_z$ work groups
 - Work group = $S_x \times S_y \times S_z$ work items
 - Total: $\prod_{i \in \{x,y,z\}} S_i N_i$ work items

OpenCL: Execution Model



- Two-tiered Parallelism
 - Grid = $N_x \times N_v \times N_z$ work groups
 - Work group = $S_x \times S_v \times S_z$ work items
 - Total: $\prod_{i \in \{x,y,z\}} S_i N_i$ work items
- Comm/Sync only within work group
 - Work group maps to compute unit

OpenCL: Execution Model



- Two-tiered Parallelism
 - Grid = $N_x \times N_v \times N_z$ work groups
 - Work group = $S_x \times S_v \times S_z$ work items
 - Total: $\prod_{i \in \{x,y,z\}} S_i N_i$ work items
- Comm/Sync only within work group
 - Work group maps to compute unit
- Grid/Group \approx outer loops in an algorithm
- Device Language:
 get_{global,group,local}_{id,size}
 (axis)

Why do Scripting for OpenCL?

- Compute Devices are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 - ightarrow complement each other

Why do Scripting for OpenCL?

- Compute Devices are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 - \rightarrow complement each other
- CPU: largely restricted to control tasks ($\sim 1000/\text{sec}$)
 - Scripting fast enough

Why do Scripting for OpenCL?

- Compute Devices are everything that scripting languages are not.
 - Highly parallel
 - Very architecture-sensitive
 - Built for maximum FP/memory throughput
 - \rightarrow complement each other
- CPU: largely restricted to control tasks ($\sim 1000/\text{sec}$)
 - Scripting fast enough
- Python + OpenCL = PyOpenCL

Questions?

?

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCL
 - First Contact
 - A more Detailed Look
 - Dealing with Space: Memory
 - Dealing with Time: Synchronization
 - What PyOpenCL brings to the Table
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCL
 - First Contact
 - A more Detailed Look
 - Dealing with Space: Memory
 - Dealing with Time: Synchronization
 - What PyOpenCL brings to the Table
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions


```
import pyopencl as cl, numpy
 3
    a = numpy.random.rand(256**3).astype(numpy.float32)
 4
 5
    ctx = cl. create\_some\_context()
 6
    queue = cl.CommandQueue(ctx)
 8
    a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
    cl. engueue_write_buffer (queue, a_dev, a)
10
11
    prg = cl. Program(ctx, """
12
         __kernel void twice( __global float *a)
        \{ a[get\_global\_id (0)] *= 2; \}
13
14
        """ ). build ()
15
16
    prg.twice(queue, a.shape, (1,), a_dev)
```

```
import pyopencl as cl, numpy
 3
    a = numpy.random.rand(256**3).astype(numpy.float32)
 4
 5
    ctx = cl. create\_some\_context()
 6
    queue = cl.CommandQueue(ctx)
 8
    a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
    cl. engueue_write_buffer (queue, a_dev, a)
10
11
    prg = cl. Program(ctx, """
         __kernel void twice( __global float *a)
12
                                                       Compute kernel
        { a[get\_global\_id(0)] *= 2; }
13
14
        """). build()
15
16
    prg.twice(queue, a.shape, (1,), a_dev)
```

Dive into PyOpenCL: Getting Results

```
8
    a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
    cl . enqueue_write_buffer (queue, a_dev, a)
10
11
    prg = cl. Program(ctx, """
12
         __kernel void twice( __global float *a)
        \{ a[get\_global\_id (0)] *= 2; \}
13
14
        """ ). build ()
15
16
    prg.twice(queue, a.shape, (1,), a_dev)
17
18
     result = numpy.empty_like(a)
    cl . enqueue_read_buffer (queue, a_dev, result ). wait()
19
    import numpy.linalg as la
20
21
     assert la.norm(result -2*a) == 0
```

Dive into PyOpenCL: Grouping

```
8
    a_dev = cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=a.nbytes)
    cl . enqueue_write_buffer (queue, a_dev, a)
10
11
    prg = cl. Program(ctx, """
12
         __kernel void twice( __global float *a)
        { a[get_local_id (0)+ get_local_size (0)*get_group_id (0)] *= 2; }
13
        """). build()
14
15
16
    prg.twice(queue, a.shape, (256,), a_dev)
17
18
     result = numpy.empty_like(a)
    cl . enqueue_read_buffer (queue, a_dev, result ). wait()
19
    import numpy.linalg as la
20
21
     assert la.norm(result -2*a) == 0
```

Log into your assigned machine:

- 1 ssh NAME@haamster.rice.edu
- 2 ssh teramite or ssh slate

In your home directory, find "1-intro/intro.py".

Try running it (on the right GPU).

http://tiker.net/tmp/scipy10-pyopencl-tut.tar.gz

Thinking about GPU programming

Log into your assigned machine:

- ssh NAME@haamster.rice.edu
- 2 ssh teramite or ssh slate

In your home directory, find "1-intro/intro.pv". Try running it (on the right GPU).

http://tiker.net/tmp/scipy10-pyopencl-tut.tar.gz

Thinking about GPU programming

$$1$$
 ... compute $c_i = a_i b_i$?

Getting your feet wet

Log into your assigned machine:

- 1 ssh NAME@haamster.rice.edu
- 2 ssh teramite or ssh slate

In your home directory, find "1-intro/intro.py". Try running it (on the right GPU).

http://tiker.net/tmp/scipy10-pyopencl-tut.tar.gz

Thinking about GPU programming

- 1 ... compute $c_i = a_i b_i$?
- 2 ... use groups of 16×16 work items?

Getting your feet wet

Log into your assigned machine:

- 1 ssh NAME@haamster.rice.edu
- 2 ssh teramite or ssh slate

In your home directory, find "1-intro/intro.py". Try running it (on the right GPU).

http://tiker.net/tmp/scipy10-pyopencl-tut.tar.gz

Thinking about GPU programming

- 1 ... compute $c_i = a_i b_i$?
- 2 ... use groups of 16×16 work items?
- 3 ... benchmark 1 work item per group against 256 work items per group? (Use time.time() and .wait().)

Outline

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCL
 - First Contact
 - A more Detailed Look
 - Dealing with Space: Memory
 - Dealing with Time: Synchronization
 - What PyOpenCL brings to the Table
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

Contexts

 $\begin{array}{lll} {\sf context} &= {\sf cl}.\,{\sf Context}({\sf devices} {=} {\sf None} \mid [{\sf dev1},\,{\sf dev2}],\,\,{\sf dev_type} {=} {\sf None}) \\ {\sf context} &= {\sf cl}.\,{\sf create_some_context}(\,\,{\sf interactive} = {\sf True}) \end{array}$

- Spans one or more Devices
- Create from device type or list of devices
 - See docs for cl.Platform, cl.Device
- dev_type: *DEFAULT*, ALL, CPU, GPU
- Needed to...
 - ...allocate Memory Objects
 - ... create and build Programs
 - ...host Command Queues
 - ...execute Grids

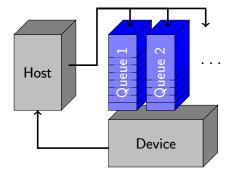
Command Queues and Events

```
queue = cl. CommandQueue(context, device=None,
  properties = None | [(prop, value ),...])
```

- Attached to single device
- event = enqueue_XXX(queue, ..., wait_for=[evt1. evt2])
- event.wait()
- Command in queue implicitly waits for previous command's completion

OpenCL: Command Queues

- Host and Device run asynchronously
- Host submits to queue:
 - Computations
 - Memory Transfers
 - Sync primitives
 -
- Host can wait for drained queue
- Multiple Queues:Can overlapCompute + Transfer




```
✓ OK
```

```
\label{eq:alpha} $$a = \underset{\mbox{\sc numpy.random.rand}}{\text{\sc numpy.random.rand}} (256**3).$$ a_dev = ${\tt cl.Buffer}(ctx, \ \c l.mem_flags.READ_WRITE, size=a.nbytes)$$ ${\tt cl.enqueue\_write\_buffer}(queue, a_dev, a)$
```

✓ OK

```
\label{eq:alpha} \begin{split} & = \underset{\mbox{\sc numpy.random.rand}}{\text{\sc numpy.random.rand}} (256**3).\mbox{\sc stype}(\mbox{\sc numpy.float32}) \\ & = _{\mbox{\sc cl.}} \mbox{\sc Buffer}(\mbox{\sc ct.} \mbox{\sc mem\_flags.READ\_WRITE}, \mbox{\sc size} = a.nbytes) \\ & = _{\mbox{\sc cl.}} \mbox{\sc cl.} \mbox{\sc enqueue\_write\_buffer} (\mbox{\sc queue}, \ a\_dev, \ a) \end{split}
```

* Crash

✓ OK

```
\label{eq:alpha_state} \begin{split} & = \underset{\mbox{numpy.random.rand}}{\text{numpy.random.rand}} (256**3).\text{astype}(\underset{\mbox{numpy.float32}}{\text{numpy.float32}}) \\ & = \underset{\mbox{cl. enqueue\_write\_buffer}}{\text{cl. enqueue\_write\_buffer}} (\underset{\mbox{queue, a\_dev, a}}{\text{cl. enqueue\_write\_buffer}} (\underset{\mbox{queue, a\_dev, a}}{\text{cl. enqueue\_write\_buffer}}) \end{split}
```

* Crash

```
\label{eq:a_dev} $$ a_dev = \mbox{cl. Buffer(ctx, cl. mem_flags.READ_WRITE, size=256**3*4)} $$ cl. enqueue_write_buffer (queue, a_dev, numpy.random.rand(256**3).astype(numpy.float32)) $$
```

✓ OK

```
\label{eq:a_dev} $$a\_dev = \mbox{cl. Buffer(ctx, cl.mem_flags.READ_WRITE, size=256**3*4)}$$ cl. enqueue_write_buffer (queue, a_dev, numpy.random.rand(256**3).astype(numpy.float32), is_blocking = True)
```

✓ OK (usually!)

```
\label{eq:alpha} \begin{split} & = \underset{\mbox{numpy.random.rand}}{\text{numpy.random.rand}} (256**3). \\ & \text{a\_dev} = \underset{\mbox{cl.}}{\text{cl.}} \text{Buffer}(\text{ctx}, \underset{\mbox{cl.}}{\text{cl.}} \text{mem\_flags.READ\_WRITE}, \ \text{size} = \text{a.nbytes}) \\ & \text{cl.} \ \text{enqueue\_write\_buffer} \left( \text{queue}, \ \text{a\_dev}, \ \text{a} \right) \end{split}
```

* Crash

✓ OK

```
\label{eq:a_dev} $$ a_dev = \mbox{cl. Buffer(ctx, cl. mem_flags.READ_WRITE, size=256**3*4)} $$ cl. enqueue_write_buffer (queue, a_dev, numpy.random.rand(256**3).astype(numpy.float32), is_blocking = True) $$
```

buf = cl. Buffer(context, flags, size=0, hostbuf=None)

- Chunk of device memory
- No type information: "Bag of bytes"
- Specify hostbuf or size (or both)
- hostbuf: Needs Python Buffer Interface e.g. numpy.ndarray, str.
- flags:
 - READ_ONLY/WRITE_ONLY/READ_WRITE
 - {ALLOC, COPY, USE}_HOST_PTR

Memory Objects: Buffers

buf = cl. Buffer(context, flags, size = 0, hostbuf = None)

- Passed to device code as pointers
 (e.g. float *, int *)
- enqueue_{read,write}_buffer(
 queue, buf, hostbuf)
- Can be mapped into host address space: cl.MemoryMap.

prg = cl. Program(context, src)

- src: OpenCL device code
 - Derivative of C99
 - Functions with __kernel attribute can be invoked from host
- kernel = prg.kernel_name
- * kernel(queue, (G_x, G_y, G_z) , (S_x, S_y, S_z) , arg, ..., wait_for=None)

(Note: local_size used to be keyword argument.)

Program Objects

$$kernel \, \big(\mathsf{queue}, \, \, \big(\mathsf{Gx}, \mathsf{Gy}, \mathsf{Gz} \big), \, \, \big(\mathsf{Sx}, \mathsf{Sy}, \mathsf{Sz} \big), \, \, \mathsf{arg} \, , \, \, \, \ldots, \, \, \, \, \mathsf{wait_for} \, = \, \mathsf{None} \big)$$

arg may be:

- None (a NULL pointer)
- numpy sized scalars: numpy.int64,numpy.float32,...
- Anything with buffer interface: numpy.ndarray, str
- Buffer Objects
- Also: cl.Image, cl.Sampler, cl.LocalMemory

obrain objects

 $kernel \, \big(\mathsf{queue}, \, \, \big(\mathsf{Gx}, \mathsf{Gy}, \mathsf{Gz} \big), \, \, \big(\mathsf{Sx}, \mathsf{Sy}, \mathsf{Sz} \big), \, \, \mathsf{arg} \,, \, \, \, \ldots, \, \, \, \, \mathsf{wait_for} \, = \, \mathsf{None} \big)$

Explicitly sized scalars:

***** Annoying, error-prone.

Better:

kernel.set_scalar_arg_dtypes([
 numpy.int32, None,
 numpy.float32])

Use None for non-scalars.

Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

Implicit SIMD: Groups of work items are scheduled together.

Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

Implicit SIMD: Groups of work items are scheduled together.

```
if (get_global_id(0) % 2 == 0)
  do_something();
else
  do_another_thing();
do_the_rest();
```

Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

Implicit SIMD: Groups of work items are scheduled together.

```
if (get\_global\_id(0) \% 2 == 0)
 do_something();
else
 do_another_thing();
do_the_rest():
```


Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

Implicit SIMD: Groups of work items are scheduled together.

```
if (get_global_id(0) % 2 == 0)
   do_something();
else
   do_another_thing();
do_the_rest();
```


Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

Implicit SIMD: Groups of work items are scheduled together.

 \rightarrow "Work Item" \neq "Thread"!

```
if (get\_global\_id(0) \% 2 == 0)
 do_something();
else
 do_another_thing();
```


do_the_rest():

Single-Instruction Multiple-Data in OpenCL

OpenCL exposes two different forms of SIMD computing:

- Explicit: Use (e.g.) float2, ..., float16.
- Implicit: Adjacent work items get mapped to SIMD lanes (implemented in hardware or software)

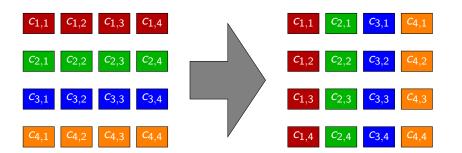
Implicit SIMD: Groups of work items are scheduled together.

```
if (get\_global\_id(0) \% 2 == 0)
 do_something();
else
 do_another_thing();
do_the_rest():
```


Outline

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCL
 - First Contact
 - A more Detailed Look
 - Dealing with Space: Memory
 - Dealing with Time: Synchronization
 - What PyOpenCL brings to the Table
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

Example: Matrix Transpose



Transpose? Simple Enough!

```
self . kernel = cl. Program(ctx,
kernel
void transpose(
  __global float *a_t, __global float *a,
  unsigned a_width, unsigned a_height)
  int read_idx = get_global_id(0) + get_global_id(1) * a_width;
  int write_idx = get_global_id (1) + get_global_id (0) * a_height;
  a_t [ write_idx ] = a[read_idx ];
"""). build (). transpose
```

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

- Floating point throughput?
- Memory bandwidth?
 - Cache sizes?

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

- Floating point throughput?
- Memory bandwidth?
 - Cache sizes?

Benchmark the assumed limiting factor right away.

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Measuring Performance

Writing high-performance Codes

Mindset: What is going to be the limiting factor?

- Floating point throughput?
- Memory bandwidth?
 - Cache sizes?

Benchmark the assumed limiting factor right away.

Evaluate

- Know your peak throughputs (roughly)
- Are you getting close?
- Are you tracking the right limiting factor?

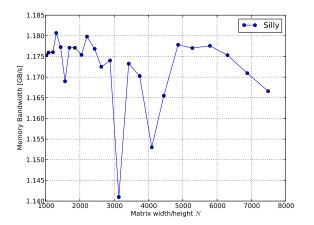
Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Performance: Matrix transpose

Very likely: Bound by memory bandwidth.

Performance: Matrix transpose

Very likely: Bound by memory bandwidth.



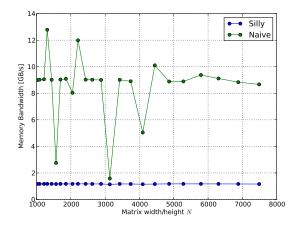
Fantastic! Far slower than CPU. Why?

Intra-device Work Distribution

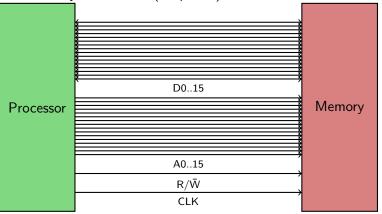
Again: Work Groups

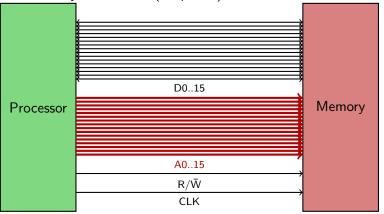
- Work group size matters. A lot.
- Determines work distribution among processors
- Optimal size? Up to experimentation

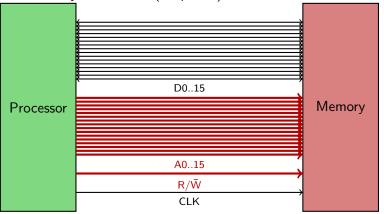
Performance: Matrix transpose

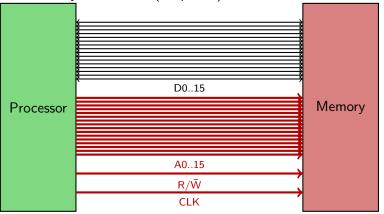


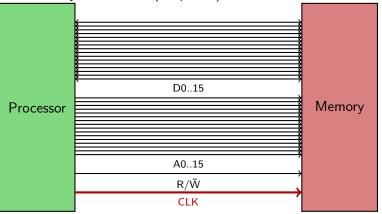
Better. $1.5 \times$ faster than CPU-not great. Why?

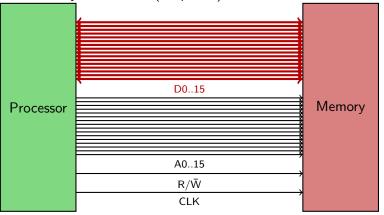








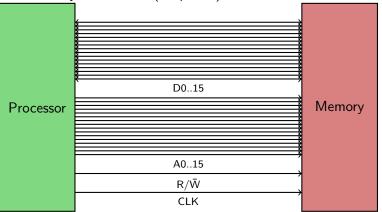




Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Aside: How does computer memory work?

One memory transaction (simplified):



Observation: Access (and addressing) happens in bus-width-size "chunks".

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Memory for Parallel Machines

Problem

Memory chips have only one data bus.

So how can multiple threads read multiple data items from memory simultaneously?

Memory for Parallel Machines

Problem

Memory chips have only one data bus.

So how can multiple threads read multiple data items from memory simultaneously?

Solutions: Parallel Access to Memory

- Split a really wide data bus, but have only one address bus
- Have many "small memories" ("banks") with separate data and address busses, select by address LSB.

```
self . kernel = cl . Program(ctx,
__kernel
void transpose(
  __global float *a_t, __global float *a,
  unsigned a_width, unsigned a_height)
  int read_idx = get_global_id (0) + get_global_id (1) * a_width;
  int write_idx = get_global_id (1) + get_global_id (0) * a_height;
  a_t[write_idx] = a[read_idx];
"""). build (). transpose
```

```
self . kernel = cl . Program(ctx,
__kernel
void transpose(
  __global float *a_t, __global float *a,
  unsigned a_width, unsigned a_height)
  int read_idx = get_global_id (0) + get_global_id (1) * a_width;
  int write_idx = get_global_id (1) + get_global_id (0) * a_height;
  a_t[write_idx] = a[read_idx];
"""). build (). transpose
```

Reading from global mem:

stride: 1

```
self . kernel = cl . Program(ctx,
__kernel
void transpose(
  __global float *a_t, __global float *a,
  unsigned a_width, unsigned a_height)
  int read_idx = get_global_id (0) + get_global_id (1) * a_width;
  int write_idx = get_global_id (1) + get_global_id (0) * a_height;
  a_t[write_idx] = a[read_idx];
"""). build (). transpose
```

Reading from global mem:

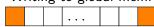
stride: $1 \rightarrow$ one mem.trans.

```
self . kernel = cl . Program(ctx,
__kernel
void transpose(
  __global float *a_t, __global float *a,
  unsigned a_width, unsigned a_height)
  int read_idx = get_global_id (0) + get_global_id (1) * a_width;
  int write_idx = get_global_id (1) + get_global_id (0) * a_height;
  a_t[write_idx] = a[read_idx];
"""). build (). transpose
```

Reading from global mem:

stride: $1 \rightarrow$ one mem.trans.

Writing to global mem:



stride: 16

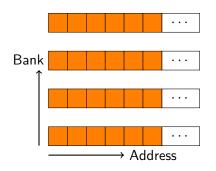
```
self . kernel = cl . Program(ctx,
__kernel
void transpose(
  __global float *a_t, __global float *a,
  unsigned a_width, unsigned a_height)
  int read_idx = get_global_id (0) + get_global_id (1) * a_width;
  int write_idx = get_global_id (1) + get_global_id (0) * a_height;
  a_t[write_idx] = a[read_idx];
"""). build (). transpose
```

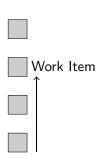
Reading from global mem:

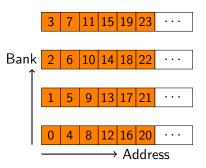
stride: $1 \rightarrow$ one mem.trans.

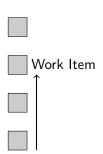
Writing to global mem:

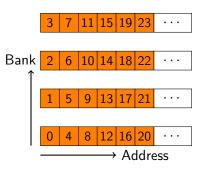
stride: $16 \rightarrow 16$ mem.trans.!

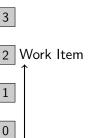


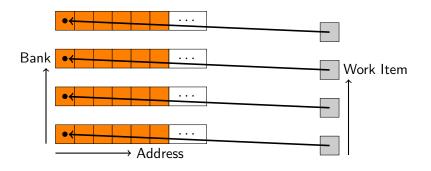




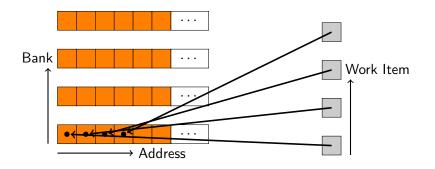








OK: local_variable[get_local_id(0)], (Single cycle)

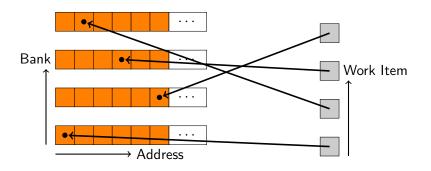


Bad: local_variable[BANK_COUNT*get_local_id(0)]
(BANK_COUNT cycles)

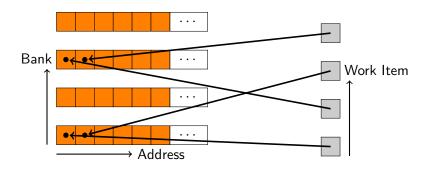
OK: local_variable[(BANK_COUNT+1)*get_local_id(0)] (Single cycle)

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

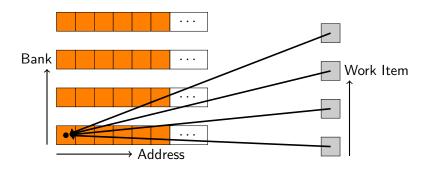
Local Memory: Banking



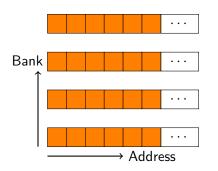
OK: local_variable[ODD_NUMBER*get_local_id(0)] (Single cycle)

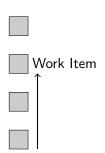


Bad: local_variable[2*get_local_id(0)]
(BANK_COUNT/2 cycles)



OK: local_variable[f(blockIdx)]
(Broadcast-single cycle)





Nvidia hardware has 16 banks. Work item access local memory in groups of 16.

Transpose: Idea

- Global memory dislikes non-unit strides.
- Local memory doesn't mind.

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Transpose: Idea

- Global memory dislikes non-unit strides.
- Local memory doesn't mind.

Idea

- Don't transpose element-by-element.
- Transpose block-by-block instead.

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Transpose: Idea

- Global memory dislikes non-unit strides.
- Local memory doesn't mind.

Idea

- Don't transpose element-by-element.
- Transpose block-by-block instead.
- Read untransposed block from global and write to local
- 2 Read block transposed from local and write to global

Illustration: Blockwise Transpose

$C_{1,1}$	C _{1,2}	C _{1,3}	C _{1,4}	$C_{1,1}^T$	$C_{2,1}^T$	$C_{3,1}^T$	$C_{4,1}^T$
C _{2,1}	C _{2,2}	C _{2,3}	C _{2,4}	$C_{1,2}^{\mathcal{T}}$	$C_{2,2}^T$	$C_{3,2}^T$	$C_{4,2}^T$
C _{3,1}	C _{3,2}	C _{3,3}	C _{3,4}	$C_{1,3}^T$	$C_{2,3}^T$	$C_{3,3}^T$	$C_{4,3}^T$
C _{4,1}	C _{4,2}	C _{4,3}	C _{4,4}	$C_{1,4}^T$	$C_{2,4}^T$	$C_{3,4}^T$	$C_{4,4}^T$

Part 1/3:

```
#define BLOCK_SIZE 16
#define A_BLOCK_STRIDE (BLOCK_SIZE * a_width)
#define A_T_BLOCK_STRIDE (BLOCK_SIZE * a_height)

__kernel void transpose(
__global float *a_t, __global float *a,
unsigned a_width, unsigned a_height)
```

Part 2/3:

```
__local float a_local [BLOCK_SIZE][BLOCK_SIZE];
int base_idx_a
  get_group_id(0) * BLOCK_SIZE +
  get_group_id(1) * A_BLOCK_STRIDE;
int base_idx_a_t =
  get_group_id(1) * BLOCK_SIZE +
  get_group_id(0) * A_T_BLOCK_STRIDE;
int glob_idx_a
  base_idx_a + get_local_id(0)
  + a_width * get_local_id (1);
int glob_idx_a_t =
  base_idx_a_t + get_local_id(0)
 + a_height * get_local_id (1);
```

Part 3/3:

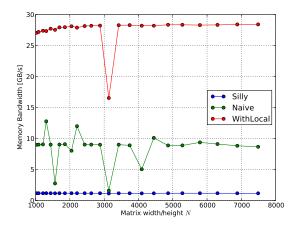
```
a_local [ get_local_id (1)][ get_local_id (0)] = a[glob_idx_a ];
barrier (CLK_LOCAL_MEM_FENCE);
a_t [ glob_idx_a_t ] = a_local [ get_local_id (0)][ get_local_id (1)];
}
```

Launch Code:

```
w, h = shape
return self . kernel (queue, (w, h), (16, 16),
     tgt, src, numpy.uint32(w), numpy.uint32(h))
```

Transpose example is 2-transpose/transpose.py in your home directory. Spot any bank conflicts? Tinker away!

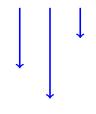
Performance: Matrix transpose

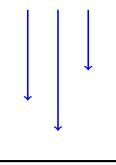


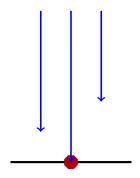
Much better. Not peak, but good enough.

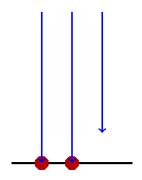
Outline

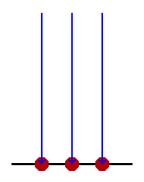
- 2 GPU Programming with PyOpenCL
 - First Contact
 - A more Detailed Look
 - Dealing with Space: Memory
 - Dealing with Time: Synchronization
 - What PyOpenCL brings to the Table

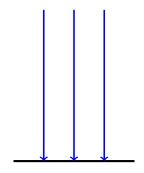


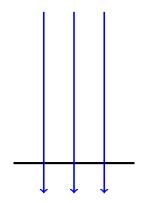






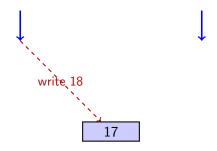


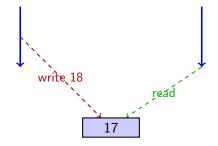


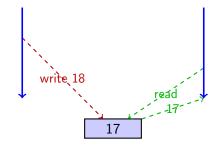


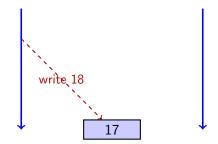
What is a Memory Fence?

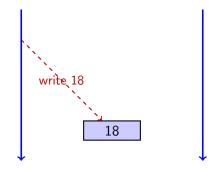
17

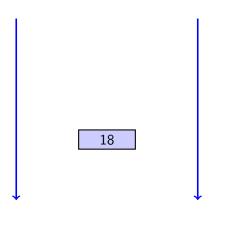


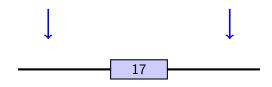


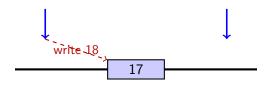


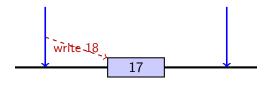


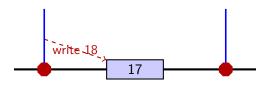


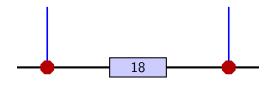


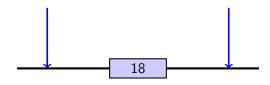


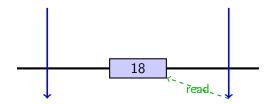


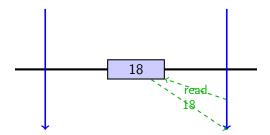












Recap: Concurrency and Synchronization

GPUs have layers of concurrency.

Each layer has its synchronization primitives.

Recap: Concurrency and Synchronization

GPUs have layers of concurrency.

Each layer has its synchronization primitives.

```
Intra-block:
barrier(...),
mem_fence(...)
... =
CLK_{LOCAL,GLOBAL}_MEM_FENCE
```

- Inter-block: Kernel launch
- CPU-GPU: Command queues, Events

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which work groups are executed.

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

Synchronization between Groups

Golden Rule:

Results of the algorithm must be independent of the order in which work groups are executed.

Consequences:

- Work groups may read the same information from global memory.
- But: Two work groups may not validly write different things to the same global memory.
- Kernel launch serves as
 - Global barrier
 - Global memory fence

Outline

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCL
 - First Contact
 - A more Detailed Look
 - Dealing with Space: Memory
 - Dealing with Time: Synchronization
 - What PyOpenCL brings to the Table
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

PyOpenCL Philosophy

- Provide complete access
- Automatically manage resources
- Provide abstractions
- Allow interactive use
- Check for and report errors automatically
- Integrate tightly with numpy

PyOpenCL: Completeness

PyOpenCL exposes all of OpenCL.

For example:

- OpenCL 1.1
- Every GetInfo() query
- Images and Samplers
- Memory Maps
- Profiling and Synchronization
- GL Interop (example in source)

PyOpenCL: Completeness

PyOpenCL supports (nearly) every OS that has an OpenCL implementation.

- Linux
- OS X
- Windows

Automatic Cleanup

- Reachable objects (memory, streams, ...) are never destroyed.
- Once unreachable, released at an unspecified future time.
- Scarce resources (memory) can be explicitly freed. (obj.release())
- Correctly deals with multiple contexts and dependencies.

Intro PyOpenCL Additional Topics Playtime! Conclusions First Contact Details Memory Synchronization PyOpenCL

PyOpenCL: Documentation

PyOpenCL: Vital Information

- http://mathema.tician.de/ software/pyopencl
- Complete documentation
- MIT License (no warranty, free for all use)
- Requires: numpy, Boost C++, Python 2.4+.
- Support via mailing list.

pyopencl.array: Simple Linear Algebra

pyopencl.array.Array:

- Meant to look and feel just like numpy.
 - p.a.to_device(ctx, queue, numpy_array)
 - $numpy_array = ary.get()$
- \blacksquare +, -, *, /, fill, sin, arange, exp, rand, ...
- Mixed types (int32 + float32 = float64)
- print cl_array for debugging.
- Allows access to raw bits
 - Use as kernel arguments, memory maps

Remember your first PyOpenCL program?

Abstraction is good:

```
import numpy
    import pyopencl as cl
    import pyopencl.array as cl_array
 4
 5
    ctx = cl. create\_some\_context()
    queue = cl.CommandQueue(ctx)
 8
    a_gpu = cl_array . to_device (
 9
             ctx, queue, numpy.random.randn(4,4).astype(numpy.float32))
    a_{doubled} = (2*a_{gpu}).get()
10
11
    print a_doubled
12
    print a_gpu
```


pyopencl.elementwise: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

```
n = 10000
a_gpu = cl_array . to_device (
        ctx, queue, numpy.random.randn(n).astype(numpy.float32))
b_gpu = cl_array . to_device (
        ctx, queue, numpy.random.randn(n).astype(numpy.float32))
from pyopencl.elementwise import ElementwiseKernel
lin\_comb = ElementwiseKernel(ctx,
        "float a, float *x, float b, float *y, float *z",
        "z[i] = a*x[i] + b*y[i]")
c_gpu = cl_array . empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
import numpy.linalg as la
assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
```

Questions?

- 3 Additional Topics
 - Code Generation
 - Other GPU Gadgetry
 - GPU Architectures in more Detail.
 - Automatic GPU Programming

- 3 Additional Topics
 - Code Generation
 - Other GPU Gadgetry
 - GPU Architectures in more Detail
 - Automatic GPU Programming

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

- Multicore CPUs
- Various GPU architectures
- Accelerator boards

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

- Multicore CPUs
- Various GPU architectures
- Accelerator boards

Devices differ by

- Memory Types, Latencies, **Bandwidths**
- Vector Widths
- Units of Scheduling

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

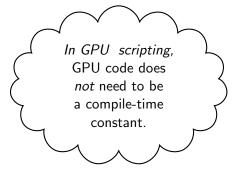
- Multicore CPUs
- Various GPU architectures
- Accelerator boards

Devices differ by

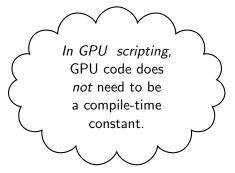
- Memory Types, Latencies, **Bandwidths**
- Vector Widths
- Units of Scheduling

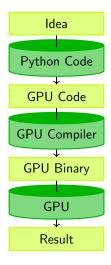
Optimally tuned code will (often) be different for each device

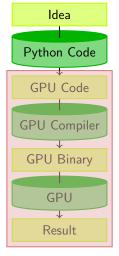
In GPU scripting,
GPU code does
not need to be
a compile-time
constant.



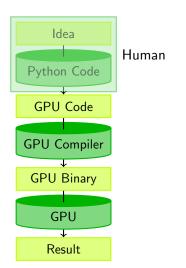
Idea

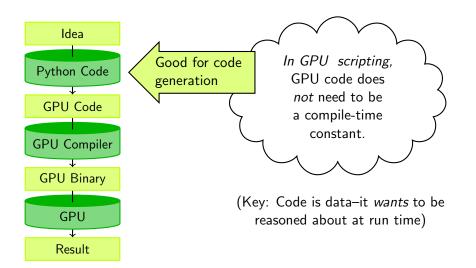


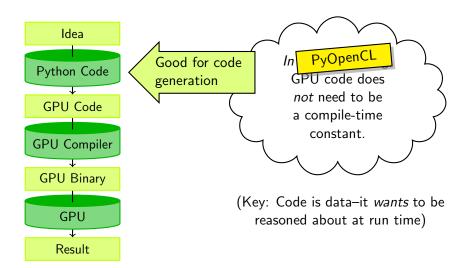




Machine







Machine-generated Code

Why machine-generate code?

- Automated Tuning (cf. ATLAS, FFTW)
- Data types
- Specialize code for given problem
- Constants faster than variables (→ register pressure)
- Loop Unrolling

PyOpenCL: Support for Metaprogramming

Three (main) ways of generating code:

- Simple %-operator substitution
- Use a templating engine (Jinja 2 works very well)
- codepy:
 - Build C syntax trees from Python
 - Generates readable, indented C

Many ways of evaluating code–most important one:

■ Exact device timing via events

RTCG via Templates

```
from jinja2 import Template
tpl = Template("""
    __kernel void twice( __global {{ type_name }} *tgt)
      int idx = get_local_id(0)
        + {{ local_size }} * {{ thread_strides }}
        * get_group_id (0);
      {% for i in range( thread_strides ) %}
          \{\% \text{ set offset } = i* \text{local\_size } \%\}
        tgt[idx + {{ offset }}] *= 2;
      {% endfor %}
rendered_tpl = tpl.render(type_name="float",
     local_size = local_size , thread_strides = thread_strides )
knl = cl. Program(ctx, str(rendered_tpl)). build(). twice
```

RTCG via AST Generation

```
from codepy.cgen import *
from codepy.cgen.opencl import \
        CLKernel, CLGlobal, CLRequiredWorkGroupSize
mod = Module([
    FunctionBody(
        CLKernel(CLRequiredWorkGroupSize((local_size,),
            FunctionDeclaration(Value("void", "twice"),
            arg_decls = [CLGlobal(Pointer(Const(POD(dtype, "tgt"))))]))),
        Block([
             Initializer (POD(numpy.int32, "idx"),
                " get_local_id(0) + %d * get_group_id(0)"
                % ( local_size * thread_strides ))
            1+[
            Statement("tgt[idx+%d] *= 2" % (o*local_size))
            for o in range( thread_strides )]
             ))])
knl = cl. Program(ctx, str(mod)).build(). twice
```

Outline

- 3 Additional Topics
 - Code Generation
 - Other GPU Gadgetry

 - Automatic GPU Programming

Collaborative (inter-block) Global Memory Update:

Collaborative (inter-block) Global Memory Update:

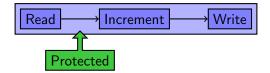
Collaborative (inter-block) Global Memory Update:

Collaborative (inter-block) Global Memory Update:

Atomic Global Memory Update:

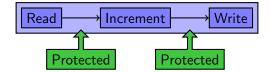
Collaborative (inter-block) Global Memory Update:

Atomic Global Memory Update:



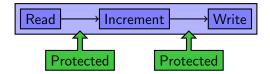
Collaborative (inter-block) Global Memory Update:

Atomic Global Memory Update:



Collaborative (inter-block) Global Memory Update:

Atomic Global Memory Update:



How?

 $atomic_{-} \{add, inc, cmpxchg, \dots \} (int *global, int value);$

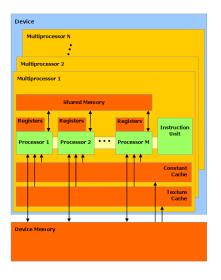
Even more GPU Gadgetry

Available in GPU code:

- Floating point intrinsics
 - native_sin(x), native_cos(x), etc.
 - Very fast
 - Less accurate, limited domains
- Vector types
 - \blacksquare int/float *n* for *n* in 1,2,3,4,8,...
 - Plus functions: load/store/sum/dot
 - Much saner than SSE intrinsics
- Images (r/w through texture units)
 - Can do filtering
 - Has some cache

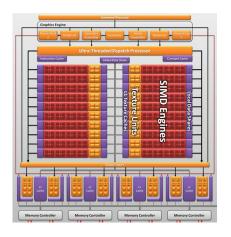
- 3 Additional Topics
 - Code Generation
 - Other GPU Gadgetry
 - GPU Architectures in more Detail
 - Automatic GPU Programming

GPU Architecture (e.g. Nvidia GT200)



- 1 GPU = 30 SIMDs
- 1 SIMD = 1 ID (1/4 clock) + 8 SP + 1 DP + 16 KiB Shared + 32 KiB Reg + HW Sched
- Scalar cores, deep pipeline
- 32 scheduling slots
- DDR3 RAM (140 GB/s)
- PCle2 Host DMA (6 GB/s)
- Limited Caches

GPU Architecture (e.g. ATI RV870)



- 1 GPU = 20 SIMDs + 64 KiB Global Share + 4 × 128 KiB L2
- 1 SIMD = 1 ID + 16×5 SP + 16 DP + 32 KiB Share + HW Sched + 8 KiB L1
- GDDR5 RAM (150 GB/s)
- PCle2 Host DMA (6 GB/s)

- 3 Additional Topics
 - Code Generation
 - Other GPU Gadgetry
 - GPU Architectures in more Detail
 - Automatic GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
 - GPU programming requires complex tradeoffs
 - Tradeoffs require heuristics
 - Heuristics are fragile

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
 - GPU programming requires complex tradeoffs
 - Tradeoffs require heuristics
 - Heuristics are fragile
- Another way: Dumb enumeration
 - Enumerate loop slicings
 - Enumerate prefetch options
 - Choose by running resulting code on actual hardware

Loo.py Example

Empirical GPU loop optimization:

```
a, b, c, i, j, k = [var(s) for s in "abcijk"]
n = 500
k = make_loop_kernel([
    LoopDimension("i", n),
    LoopDimension("j", n),
    LoopDimension("k", n),
    ], [
    (c[i+n*j], a[i+n*k]*b[k+n*j])
])

gen_kwargs = {
    "min_threads": 128,
    "min_blocks": 32,
    }
}
```

 \rightarrow Ideal case: Finds 160 GF/s kernel without human intervention.

Loo.py Status

Limited scope:

- Require input/output separation
- Kernels must be expressible using "loopy" model (i.e. indices decompose into "output" and "reduction")
- Enough for DG, LA, FD, ...

Loo.py Status

- Limited scope:
 - Require input/output separation
 - Kernels must be expressible using "loopy" model (i.e. indices decompose into "output" and "reduction")
 - Enough for DG, LA, FD, ...
- Kernel compilation limits trial rate
- Non-Goal: Peak performance
- Good results currently for dense linear algebra and (some) DG subkernels

?

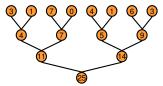
Outline

- 4 Playtime!
 - Fun with Reduction

- 4 Playtime!
 - Fun with Reduction

Parallel Reduction

Tree-based approach used within each thread block

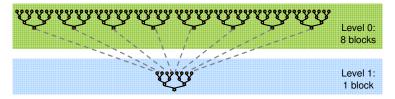


- Need to be able to use multiple thread blocks
 - To process very large arrays
 - To keep all multiprocessors on the GPU busy
 - Each thread block reduces a portion of the array
- But how do we communicate partial results between thread blocks?

Slides by M. Harris (Nvidia Corp.)

Solution: Kernel Decomposition

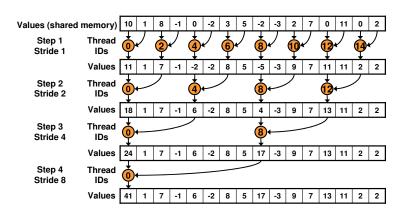
Avoid global sync by decomposing computation into multiple kernel invocations



- In the case of reductions, code for all levels is the same
 - Recursive kernel invocation

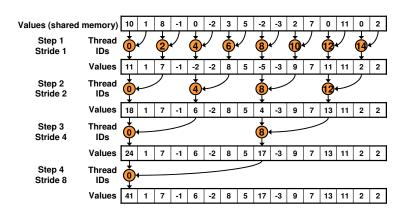
Slides by M. Harris (Nvidia Corp.)

Interleaved Addressing



Slides by M. Harris (Nvidia Corp.)

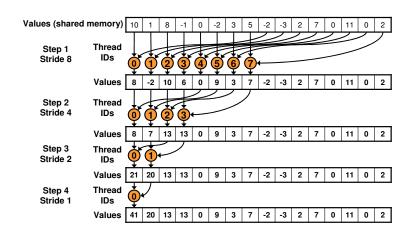
Interleaved Addressing



Issue: Divergence

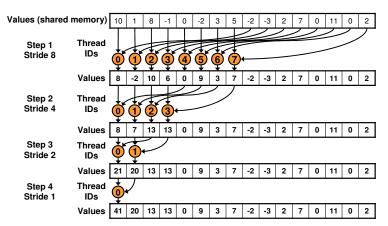
Slides by M. Harris (Nvidia Corp.)

Sequential Addressing



Slides by M. Harris (Nvidia Corp.)

Sequential Addressing



Better!

Slides by M. Harris (Nvidia Corp.)

Reduction: Further Strategies

Further Strategies:

- Exploit SIMD synchronicity
 - Eliminate a few barrier()s
- Amortize cost of index calculation/preparation
 - Not just one item per thread!
- Do as much as possible at compile time
 - Unroll loops
 - Exploit compile-time knowledge of block size, etc.
 - $(\rightarrow \mathsf{metaprogramming} \colon \mathsf{PyCUDA} \; \mathsf{or} \; \mathsf{C} \mathsf{++} \; \mathsf{templates})$

Try for yourself: Performance of GPU Reduction

- In your home directory, find and run 3-reduction/reduction.py.
- 2 Add event-based timing. Compute memory throughput in GiB/s for a number of vector sizes. (e.g. 2^k for $k \in \{12, \ldots, 25\}$)
- 3 Implement and benchmark the improvements discussed previously.
- What else is missing for peak performance? (Google?)

PyOpenCL docs: http://documen.tician.de/pyopencl

These slides: http://tiker.net/tmp/scipy10-pyopencl.pdf

Outline

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCl
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions
 - A Brief Look at PyCUDA
 - Summary

Outline

- 1 Intro: GPUs, OpenCL
- 2 GPU Programming with PyOpenCl
- 3 Additional Topics
- 4 Playtime!
- 5 Conclusions
 - A Brief Look at PyCUDA
 - Summary

$OpenCL \leftrightarrow CUDA: A dictionary$

OpenCL	CUDA
Grid	Grid
Work Group	Block
Work Item	Thread
kernel	global
global	device
local	_shared_
${\tt image} {\it n} {\tt d}_{\tt -} {\sf t}$	texture <type, n,=""></type,>
<pre>barrier(LMF)</pre>	$_{-}$ syncthreads()
get_local_id(012)	threadIdx.xyz
get_group_id(012)	blockIdx.xyz
get_global_id(012)	– (reimplement)

BROWN

$\mathsf{PyOpenCL} \xrightarrow{\longleftrightarrow} \mathsf{PyCUDA} \colon \mathsf{A} \ (\mathsf{rough}) \ \mathsf{dictionary}$

PyOpenCL	PyCUDA
Context	Context
${\tt CommandQueue}$	Stream
Buffer	${ t mem_alloc / DeviceAllocation}$
Program	SourceModule
Kernel	Function
Event (eg. enqueue_marker)	Event

Whetting your appetite

```
import pycuda.driver as cuda
import pycuda.autoinit
import numpy

a = numpy.random.randn(4,4).astype(numpy.float32)
a_gpu = cuda.mem_alloc(a.nbytes)
cuda.memcpy_htod(a_gpu, a)
```

[This is examples/demo.py in the PyCUDA distribution.]

Whetting your appetite

3

5

6

8 9

10 11 12

13

14

15

```
mod = cuda.SourceModule("
    __global__ void twice(float *a)
      int idx = threadIdx.x + threadIdx.y*4;
      a[idx] *= 2;
func = mod.get_function("twice")
func(a_gpu, block=(4,4,1))
a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
```

Whetting your appetite

3

5

6

8 9

10 11

12 13

14 15

```
mod = cuda.SourceModule("
    __global__ void twice(float *a)
      int idx = threadIdx.x + threadIdx.y*4;
      a[idx] *= 2;
                                                 Compute kernel
func = mod.get_function("twice")
func(a_gpu, block=(4,4,1))
a_doubled = numpy.empty_like(a)
cuda.memcpy_dtoh(a_doubled, a_gpu)
print a_doubled
print a
```

Whetting your appetite, Part II

Did somebody say "Abstraction is good"?

Whetting your appetite, Part II

```
import numpy
import pycuda.autoinit
import pycuda.gpuarray as gpuarray

a_gpu = gpuarray.to_gpu(
    numpy.random.randn(4,4).astype(numpy.float32))

a_doubled = (2*a_gpu).get()
print a_doubled
print a_gpu
```


Outline

- 5 Conclusions
 - A Brief Look at PyCUDA
 - Summary

Concluding Remarks

- GPU Computing is maturing.
 Now is a great time to start looking at GPUs.
- First factor of 5-10 is usually easy to reach.
- Second factor of 5-10 is a bit harder
 - Usually involves rethinking the algorithm
- Fun time to be in computational science
- Python makes GPUs even more fun
 - With no compromise in performance
- OpenCL presents a huge opportunity:
 - A JIT compiler in a library
 - CPU backends exist (AMD, Apple)
 - → Like weave/codepy/Cython's pyximport, but un-hacky

Questions?

?

Thank you for your attention!

http://mathema.tician.de/software/pyopencl

▶ image credits

Image Credits

■ Isaiah die shot: VIA Technologies

■ RV770 die shot: AMD Corp.

Nvidia Tesla Architecture: Nvidia Corp.

C870 GPU: Nvidia Corp.Context: sxc.hu/svilen001

■ Queue: sxc.hu/cobrasoft

■ RAM stick: sxc.hu/gobran11

■ CPU: sxc.hu/dimshik

Onions: flickr.com/darwinbell cc

Old Books: flickr.com/ppdigital ©

■ OpenCL Logo: Apple Corp./Ars Technica

■ OS Platforms: flickr.com/aOliN.Tk

■ Floppy disk: flickr.com/ethanhein ⓒ

Adding Machine: flickr.com/thomashawk ©

■ Apples and Oranges: Mike Johnson - TheBusyBrain.com €€

■ Machine: flickr.com/13521837@N00 ©

■ Nvidia Tesla Architecture: Nvidia Corp.

■ RV870 Architecture: AMD Corp.

■ Dictionary: sxc.hu/topfer

