2026_01_15_sage_6

1 of 21

In [6]:

In [7]:

Out[7]:

Generatoren

Generatoren sind ahnlich wie Listen. Sie kénnen allerdings jedes ihrer Elemente nur
einmal ausgeben und sind danach leer. Die Funktion next(g) ruft das nachste
Element des Generators g auf.

Vorteile: Effizienz! Elemente werden erst dann berechnet, wenn sie gebraucht
werden ('lazy evaluation'). Es wird kein Speicher durch nicht mehr oder noch nicht
benotigte Elemente belegt.

Generatoren kdénnen wie Listen erzeugt werden, nur mit runden statt eckigen
Klammern.

g=(1..3)
g

< cython 3 0 11.generator object at 0x71388ef2e320>

next(g)

about:srcdoc

StopIteration Traceback (most recent call las

t)
Cell In[5], line 1
----> 1 next(g)

StopIteration:

Der Generator g ist nun leer und hat keinen Nutzen mehr. Durch ernezte zuweisung
kann er "neu befullt" werden.

g=(1..4)

next(g)

1

Restliche Elemente des Generators als Liste ausgeben:

16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

In [8]: list(g)

out[8]: [2, 3, 4]

In [9]: next(q)

StopIteration Traceback (most recent call las
t)

Cell In[9], line 1

----> 1 next(q)

StopIteration:

Hauptanwendung: Uber Generatoren kann in Schleifen iteriert werden.

In [10]: for i in (1..4):
print(1i)

A WN R

Unendlicher Generator, der alle naturlichen Zahlen ausgibt (naturlich innerhalb
technischer Limits).

In [11]: nn=(1..)

In [12]: next(nn)

Out[1l2]: 1

In [13]: next(nn)

Out[13]: 2

In [14]: for i in nn:

print(i)
if i>10:
break

3

4

5

6

7

8

9

10

11

Die folgende Zelle fuhrt zu einer Endlosschleife. Manueller Abbruch Gber Menu
Kernel -> Interrupt Kernel

In [1: for i in nn:
print(1i)

2 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

In [1: next(nn)

Erschaffung neuer Generatoren aus vorhandenen mittels generator
comprehensions (analog zu list comprehensions).

In [15]: a=(1..5)
In [16]: b=(i"2 for i in a)
In [17]: next(b)
Out[17]: 1
In []:

Achtung: Bei Aufruf des dul3eren Generators b wird intern a aufgerufen. D.h. auch a
zahlt einen Schritt weiter.

In [18]: next(a)
Out[18]: 2
In [19]: next(b)
Out[19]: 9
In [20]: next(b)
Out[20]: 16
In [21]: next(a)
Qut[21]: 5

In [22]: next(b)

StopIteration Traceback (most recent call las
t)

Cell In[22], line 1

----> 1 next(b)

StopIteration:

Programmierung von Generatoren

Komplexere Generatoren lassen sich wie Funktionen programmieren. Das
Schlusselwort yield gibt an, dass an dieser Stelle die Ausfuhrung unterbrochen und
der angegebene Wert zuriickgegeben werden soll. Beim nachsten Aufruf mittels
next() wird die Ausfihrung an genau dieser Stelle fortgesetzt.

In [23]: def abc():

3 of 21 16/01/2026, 13:29

2026_01_15_sage_6

4 of 21

In [24]:
Out[24]:
In [25]:
In [26]:
Out[26]:
In [27]:
Out[27]:
In [28]:
Out[28]:
In [29]:
Out[29]:
In [30]:

yield 'a’

yield 'b'

yield 'c'
abc

<function abc at 0x71388e5c9bcO>

Die Funktion abc enthalt das Schltsselwort yield. Bei Aufruf liefert sie also einen
Generator zuruck.

g=abc()
g
<generator object abc at 0x71388e031a60>

Beim ersten Aufruf wird der Code in obiger Definition von abd() bis zum ersten
yield durchlaufen und dort unterbrochen.

next(g)
Ial

Beim nachsten Aufruf wird der Code von dort weiter bis zum nachsten yield
durchlaufen, und so weiter.

next(g)

lbl

StopIteration Traceback (most recent call las
1)
Cell In[30]1, line 1

----> 1 next(g)

StopIteration:

Generatoren werden Ublicherweise mittels Schleifen definiert. Hier ist ein
Generator, der alle Primzahlzwillinge liefert.

16/0

about:srcdoc

1/2026, 13:29

2026_01_15_sage_6

5o0f 21

In [31]:

In [32]:

In [33]:

Out[33]:

In [34]:

Out[34]:

In [35]:

Out[35]:

In [36]:

def primzw(n=00):
p=3
while p<n:
g=next prime(p)
if g==p+2:
p=q
g=primzw()

next(g)
(3, 5)
next(g)
(5, 7)
next(g)
(11, 13)

Primzahlzwillinge bis 1000:

pp=list(primzw(1000))
pp

about:srcdoc

16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

Out[36]: [(3, 5),

(5, 7),
(11, 13),
(17, 19),
(29, 31),
(41, 43),
(59, o61),
(71, 73),
(101, 103),
(107, 109),
(137, 139),
(149, 151),
(179, 181),
(191, 193),
(197, 199),
(227, 229),
(239, 241),
(269, 271),
(281, 283),
(311, 313),
(347, 349),
(419, 421),
(431, 433),
(461, 463),
(521, 523),
(569, 571),
(599, 601),
(617, 619),
(641, 643),
(659, 661),
(809, 811),
(821, 823),
(827, 829),
(857, 859),
(881, 883)]

Man kann aus gegebenen Generatoren auch neue programmieren. Hier ist ein
Generator, der die ersten n Elemente des gegebenen Generators g liefert.

In [37]: def firstn(g,n):
for i in range(n):
yield next(g)

Die ersten 20 Primzahlzwillinge.

In [38]: list(firstn(primzw(),20))

6 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

Out[381: [(3, 5),
(5, 7),

(11,
(17,
(29,
(41,
(59,
(71,
(101,
(107,
(137,
(149,
(179,
(191,
(197,
(227,
(239,
(269,
(281,
(311,

13),
19),
31),
43),
61),
73),
103),
109),
139),
151),
181),
193),
199),
229),
241),
271),
283),
313)]

Rekursive Generatoren

Generatoren konnen auch rekursiv definiert werden.

Im folgenden Beispiel schreiben wir einen Generator, der die Elemente der n-ten
kartesischen Potenz einer Menge S liefert. Diese kann induktiv definiert werden
durch $57n = S \times SA{n-1}$. Das lasst sich direkt in einen Generator Ubersetzen.

In [39]: def cart(S,n):
if n==0:
yield []
else:
for s in S:
for p in cart(S,n-1):
yield [s]+p

In [40]: list(cart([1,2],4))

Qutl401: [[1, 1, 1, 1],
[1, 1, 1, 21,
[1, 1, 2, 11,
[1, 1, 2, 21,
[1, 2, 1, 11,
[1, 2, 1, 21,
[1, 2, 2, 11,
[1, 2, 2, 21,
[2, 1, 1, 17,
[2, 1, 1, 2],
[2, 1, 2, 11,
[2, 1, 2, 21,
[2, 2, 1, 11,
[2, 2, 1, 2],
[2, 2, 2, 11,
[2, 2, 2, 2]]

In [41]: list(cart([1,2],3))

7 of 21 16/01/2026, 13:29

2026_01_15_sage_6

8 of 21

Out[41]:

In [42]:

Out[42]:

In [43]:

Out[43]:

In [44]:

In [45]:

Out[45]:

(r1, 1, 1J,
[1, 1, 2],
[1, 2, 11,
[1, 2, 21,
[2, 1, 11,
[2, 1, 2],
[2, 2, 11,
[2, 2, 2]]

list(cart([1,21,2))

(e, 11, [1, 21, (2, 11, [2, 2]]

list(cart([1,2]1,1))

[[11, [2]]

about:srcdoc

Hier schreiben wir einen Generator, der alle Permutationen einer Menge S liefert

(hier dargestellt als alle Anordnungen der Elemente von S). Jede Permutation

besteht aus einem Element, das an den Anfang gestellt wird, und einer Permutation

der restlichen Elemente. Daraus ergibt sich folgender rekursiver Generator.

def perm(S):
if S==Set():
yield []
else:
for s in S:
for p in perm(S-{s}):
yield [s]+p

list(perm(Set({1,2,3,4})))

(1, 2, 3, 4],
[1, 2, 4, 31,
[1, 3, 2, 41,
[1, 3, 4, 21,
[1, 4, 2, 31,
[1, 4, 3, 2],
[2, 1, 3, 4],
[2, 1, 4, 3],
[2, 3, 1, 4],
[2, 3, 4, 11,
[2, 4, 1, 31,
[2, 4, 3, 11,
[3, 1, 2, 41,
[3, 1, 4, 21,
[3, 2, 1, 4],
[3, 2, 4, 1],
[3, 4, 1, 2],
[3, 4, 2, 11,
(4, 1, 2, 31,
(4, 1, 3, 21,
[4, 2, 1, 31,
[4, 2, 3, 11,
[4, 3, 1, 2],
[4, 3, 2, 1]1]

~
~

16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

Fehlerquelle: leere Menge als Set vs set vs dict:

In [46]: Set()==set()

Qut[46]: True

In [47]: Set()=={}

Out[47]: False

In [48]: parent({}) # {} gibt das leere dictionary, keine Menge!

Qut[48]: <class 'dict'>

Fehlerbehandlungen: Exceptions

Wir haben schon verschiedene Fehlermeldungen gesehen. Diese sind in Python
eigene Objekte, sogenannte Exceptions. Exceptions kdnnen je nach Art des Fehlers
verschiedenen Klassen angehéren, z.B. NameError, ValueError etc.

NameError Traceback (most recent call las
t)

Cell In[49], line 1

----> 1y

NameError: name 'y' is not defined

In [50]: factorial(-1)

9 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

ValueError Traceback (most recent call las
t)

Cell In[50], line 1

----> 1 factorial(-Integer(1l))

File /opt/sagemath/sage-10.7/src/sage/symbolic/function.pyx:1061, in sag
e.symbolic.function.BuiltinFunction. call ()

1059 res = self. evalf try (*args)

1060 if res is None:

-> 1061 res = super(). call (
1062 *args, coerce=coerce, hold=hold)
1063

File /opt/sagemath/sage-10.7/src/sage/symbolic/function.pyx:558, in sage.s
ymbolic. function.Function. call ()

556
557 from .expression import call registered function
--> 558 return call registered function(self. serial, self. nargs,
args, hold,
559 not symbolic input, SR)
560

File /opt/sagemath/sage-10.7/src/sage/symbolic/pynac function impl.pxi:1,
in sage.symbolic.expression.call registered function()
----> 1 cpdef call registered function(unsigned serial,

2 int nargs,

3 list args,

File /opt/sagemath/sage-10.7/src/sage/symbolic/pynac_ function impl.pxi:49,
in sage.symbolic.expression.call registered function()

47 res = g function evalv(serial, vec, hold)
48 elif nargs ==
---> 49 res = g function evall(serial,
50 (<Expression>args[0]). gobj, hold)

51 elif nargs == 2:

File /opt/sagemath/sage-10.7/src/sage/functions/other.py:1551, in Function
_factorial. eval (self, x)
1549 if isinstance(x, (int, Integer)):

1550 try:

-> 1551 return x.factorial()
1552 except OverflowError:
1553 return

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:4575, in sage.ring
s.integer.Integer.factorial()

4573 nnn

4574 if mpz_sgn(self.value) < 0:
-> 4575 raise ValueError("factorial only defined for nonnegative integ
ers")

4576

4577 if not mpz fits ulong p(self.value):
ValueError: factorial only defined for nonnegative integers

In [51]: 1/0

10 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

ZeroDivisionError Traceback (most recent call las
t)

Cell In[51], line 1

----> 1 Integer(l)/Integer(0)

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:2040, in sage.ring
s.integer.Integer. truediv_ ()
2038 if type(left) is type(right):

2039 if mpz_sgn((<Integer>right).value) ==
-> 2040 raise ZeroDivisionError("rational division by zero")

2041 X = <Rational> Rational. new (Rational)

2042 mpg_div_zz(x.value, (<Integer>left).value, (<Integer>right).va
lue)

ZeroDivisionError: rational division by zero

In [52]: 1/11,2]

TypeError Traceback (most recent call las
1)

Cell In[52], line 1

----> 1 Integer(l)/[Integer(l),Integer(2)]

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:2055, in sage.ring
s.integer.Integer. truediv ()

2053 return y
2054

-> 2055 return coercion model.bin op(left, right, operator.truediv)
2056

2057 cpdef div (self, right):

File /opt/sagemath/sage-10.7/src/sage/structure/coerce.pyx:1288, in sage.s
tructure.coerce.CoercionModel.bin op()

1286 # We should really include the underlying error.
1287 # This causes so much headache.

-> 1288 raise bin op exception(op, X, Yy)
1289

1290 cpdef canonical coercion(self, x, y):

TypeError: unsupported operand parent(s) for /: 'Integer Ring' and '<class
"list'>"

Fehlermeldungen ausgeben

Wir sehen nun, wie man in Python professionell Fehlermeldungen ausgibt.

In [63]: def fac(n):
if n==0:
return 1
return n*fac(n-1)

11 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

In [64]: fac(6)

Out[e4]: 720

In [65]: fac(5)

Out[65]: 120

In [66]: fac(-1)

RecursionError Traceback (most recent call las
t)

Cell In[66], line 1

----> 1 fac(-Integer(l))

Cell In[63], line 4, in fac(n)

2 if n==Integer(0):

3 return Integer(1)
----> 4 return n*fac(n-Integer(1l))

Cell In[63], line 4, in fac(n)

2 if n==Integer(0):

3 return Integer(1)
----> 4 return n*fac(n-Integer(l))

[... skipping similar frames: fac at line 4 (2970 times)]

Cell In[63], line 4, in fac(n)

2 if n==Integer(0):

3 return Integer(1)
----> 4 return n*fac(n-Integer(1l))

Cell In[63], line 2, in fac(n)
1 def fac(n):

ee-> 2 if n==Integer(0):
3 return Integer(1)
4 return n*fac(n-Integer(1))

RecursionError: maximum recursion depth exceeded while calling a Python ob
ject
Hier hat fac(-1) zu einer Endlosrekursion gefuihrt. Um das zu vermeiden, mussen wir
abfragen, ob das Argument negativ ist. Hier zuerst die unprofessionelle Variante,
eine Fehlermeldung als String zurtckzugeben.

In [67]: def fac(n): # unprofessionell
if n<0:
return "n ist negativ"
if n==0:
return 1
return n*fac(n-1)

In [68]: fac(-1)

Qut[68]: 'n ist negativ'

12 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

Nachteil: im weiteren Programmverlauf kann es zu Fehlern oder seltsamem
Verhalten kommen, wenn der zurlickgegebene Wert statt der erwarteten Zahl ein
String ist.

In [69]: m=fac(-1)

In [70]: m"2

TypeError Traceback (most recent call las
t)

Cell In[70], line 1

----> 1 m**Integer(2)

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:2214, in sage.ring
s.integer.Integer. pow ()

2212 return coercion model.bin op(left, right, operator.pow)

2213 # left is a non-Element: do the powering with a Python int
-> 2214 return left ** int(right)

2215

2216 cpdef pow (self, other):
TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
In [71]: m+m
Qut[71]: 'n ist negativn ist negativ'

Hier die professionelle Variante: mit dem SchlUsselwort raise wird eine Exception
der Klasse ValueError erstellt.

In [72]: def fac(n):

if n<0:

raise ValueError('n ist negativ')
if n==0:

return 1

return n*fac(n-1)

Das Ergebnis sieht nun aus wie die Fehlermeldungen der internen Python- oder
Sage-Funktionen, die wir weiter oben gesehen haben.

In [73]: fac(-1)

13 of 21 16/01/2026, 13:29

2026_01_15_sage_6

14 of 21

In [74]:
In [75]:
Out[75]:
In [76]:
Out[76]:
In [77]:

about:srcdoc

ValueError Traceback (most recent call las
t)

Cell In[73], line 1

----> 1 fac(-Integer(l))

Cell In[72], line 3, in fac(n)
1 def fac(n):

2 if n<Integer(0):

---->3 raise ValueError('n ist negativ')
4 if n==Integer(0):
5 return Integer(1l)

ValueError: n ist negativ

Der Vorteil von Exceptions ist, dass diese im umgebenden Code gezielt abgefangen
werden kénnen. Mit try wird versucht, einen Codeblock auszufuhren. Darauf
folgende except-Blocke werden dann ausgefuhrt, wenn im try-Block eine
entsprechende Exception auftritt. Damit kdnnen Fehler gezielt behandelt werden.

Hier als Beispiel eine Funktion, die bei negativen Zahlen n die Faktorielle von $-n$
zuruckgeben soll.

def facl(n):
try:
return fac(n)
except ValueError:
print('failed")
return fac(-n)

facl(6)

720

facl(-3)

failed
6

Achtung: das war nur ein einfaches Besipiel zur Erklarung der Grundfunktionen. Die
Fehlerbehandlung ist hier immer noch unzureichend. Z.B.:

fac(-pi)

16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

ValueError Traceback (most recent call las
t)

Cell In[77], line 1

----> 1 fac(-pi)

Cell In[72], line 3, in fac(n)
1 def fac(n):

2 if n<Integer(0):

---->3 raise ValueError('n ist negativ')
4 if n==Integer(0):
5 return Integer(1l)

ValueError: n ist negativ

In der Definition von fac1(n) gibt es bisher nur einen except-Block fur ValueError.
Andere Exceptions werden nicht abgefangen und kommen daher durch bis zum
Benutzer.

In [78]: facl([1,2])

15 of 21 16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

TypeError Traceback (most recent call las
t)

Cell In[78], line 1

----> 1 facl([Integer(l),Integer(2)1)

Cell In[74]1, line 3, in facl(n)
1 def facl(n):

2 try:

---->3 return fac(n)
4 except ValueError:
5 print('failed')

Cell In[72], line 2, in fac(n)
1 def fac(n):

ee-> 2 if n<Integer(0):
3 raise ValueError('n ist negativ')
4 if n==Integer(0):

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:925, in sage.ring
s.integer.Integer. richcmp_ ()

923 c = mpz _cmp d((<Integer>left).value, d)
924 else:

--> 925 return coercion model.richcmp(left, right, op)
926

927 return rich _to bool sgn(op, c)

File /opt/sagemath/sage-10.7/src/sage/structure/coerce.pyx:2064, in sage.s
tructure.coerce.CoercionModel. richcmp()

2062 raise bin op exception('<="', X, V)
2063 elif op == Py GT:

-> 2064 raise bin op exception('>', x, y)
2065 else:
2066 raise bin op exception('>=', x, y)

TypeError: unsupported operand parent(s) for >: 'Integer Ring' and '<class
"list'>"

Man kann auch mehrere Exceptions abfangen. Mit as kann man die abgefangene
Exception einer Variable zuweisen, um im darauffolgenden Block auf sie
zuzugreifen. except: ohne Angabe einer Klasse fangt alle Exceptions ab.

In [79]: def facl(n):

try:
return fac(n)

except ValueError:
print('failed"')
return fac(-n)

except TypeError as e:
print('sinnloses Argument')
print(e.args)

except:
print('etwas ging schief')

In [81]: facl([1,2])

16 of 21 16/01/2026, 13:29

2026_01_15_sage_6

17 of 21

In [82]:
In [83]:
Out[83]:
In [84]:
Oout[84]:
In [85]:
In [86]:
In [87]:
Out[87]:
In [88]:

sinnloses Argument
("unsupported operand parent(s) for >: 'Integer Ring' and '<class 'lis
tI>III,)

facl(oo)

etwas ging schief

Klassen programmieren

Wir sehen und kurz an, wie man in Python eigene Klassen programmieren kann.
Eine Klasse stellt Funktionen (sogenannte Methoden) bereit, die man mit ihren
Objekten ausfuhren kann.

Wir wollen als Beispiel eine Klasse MaxPlus definieren, die die Max-Plus-Algebra
$(\mathbb{R}\cup -\infty, \oplus,\odot)$ implementiert, also den Halbring mit
Operationen $a\oplus b=\max\{a,b\}$ und $a\odot b = a+b$. Die Operationen sollen
wie gewohnt direkt mit + und * aufgerufen werden.

Intern wird bei a+b die Methode .__add_ () der jeweiligen Klasse aufgerufen.

1+3

Jede Klasse soll zumindest zwei Methoden haben: __init__(), die bei der Erstellung
neuer Objekte der Klasse aufgerufen wird, und __repr_ (), die angibt, wie Objekte
im Output dargestellt werden.

Hier erhalt das Objekt bei der Erstellung ein Attribut .val, in dem der Ubergebene
Wert v (= die Zahl, die das Objekt darstellen soll) gespeichert wird.

Zur Darstellung wird der Wert in eckigen Klammern ausgegeben, um Elemente der
Max-Plus-Algebra von herkdmmlichen Zahlen zu unterscheiden.

class MaxPlus:
def init (self,v):
self.val=v
def repr_ (self):
return f"[{self.val}]"

a=MaxPlus(-1)

[-1]

a.val

about:srcdoc

16/01/2026, 13:29

2026_01_15_sage_6

18 of 21

Out[88]:

In [89]:

In [90]:

Out[90]:

In [91]:

In [92]:

In [93]:

In [94]:

Out[94]:

In [95]:

Out[95]:

In [96]:

Out[96]:

In [97]:

Out[97]:

In [98]:

-1

b=MaxPlus(-3)

[-3]

a+b

about:srcdoc

TypeError Traceback (most recent call las

t)
Cell In[91], line 1
----> 1 a+b

TypeError: unsupported operand type(s) for +: 'MaxPlus' and 'MaxPlus'

Die Operationen Addition und Multiplikation missen wir erst implementieren.

class MaxPlus:
def init (self,v):
self.val=v
def repr_ (self):
return f"[{self.val}]"
def add (self,b):
return MaxPlus(max(self.val,b.val))
def mul (self,b):
return MaxPlus(self.val+b.val)

a=MaxPlus(-1)
b=MaxPlus(-3)

a+b
[-1]
a*b
[-4]
a+MaxPlus(-00)
[-1]
a*MaxPlus(-00)
[-Infinity]

Tatsachlich ist Max-Plus-Algebra in Sage bereits implementiert!

TropicalSemiring?

16/01/2026, 13:29

2026_01_15_sage_6

19 of 21

Init signature: TropicalSemiring(self, x=0, *args, **kwds)
Docstring:

The tropical semiring.

Given an ordered additive semigroup R, we define the tropical
semiring T = R \cup \{+\infty\} by defining tropical addition and
multiplication as follows:

a \oplus b = \min(a, b), \quad \quad a \odot b = a + b.

In particular, note that there are no (tropical) additive inverses
(except for \infty), and every element in R has a (tropical)
multiplicative inverse.

There is an alternative definition where we define T = R \cup
\{-\infty\} and alter tropical addition to be defined by

a \oplus b = \max(a, b).
To use the \max definition, set the argument "use min = False".
Warning:

"zero()" and "one()" refer to the tropical additive and
multiplicative identities respectively. These are **not** the
same as calling "T(0)" and "T(1)" respectively as these are
not the tropical additive and multiplicative identities
respectively.Specifically do not use "sum(...)" as this converts
0 to 0 as a tropical element, which is not the same as "zero()".
Instead use the "sum" method of the tropical semiring:

sage: T = TropicalSemiring(QQ)

sage: sum([T(1l), T(2)]) # This is wrong

0

sage: T.sum([T(1l), T(2)]) # This is correct
1

Be careful about using code that has not been checked for
tropical safety.

INPUT:

* "base" -- the base ordered additive semigroup R

* "use min" -- boolean (default: "True"); if "True", then the
semiring uses a \oplus b = \min(a, b). Otherwise uses a \oplus b
= \max(a, b).

EXAMPLES:

sage: T = TropicalSemiring(QQ)
sage: elt = T(2); elt
2

Recall that tropical addition is the minimum of two elements:

sage: T(3) + T(5)
3

about:srcdoc

16/01/2026, 13:29

2026_01_15_sage_6

20 of 21

In [99]:

Out[99]:

In [100..

In [101..

Out[1l01l..

In [102..

Out[102..

In [103..

Out[103..

In [104..

Tropical multiplication is the addition of two elements:

sage: T(2) * T(3)
5

sage: T(0) * T(-2)
-2

We can also do tropical division and arbitrary tropical

exponentiation:

sage: T(2) / T(1)
1

sage: T(2)~(-3/7)
-6/7

Note that "zero" and "one" are the additive and multiplicative
identities of the tropical semiring. In general, they are **not**
the elements 0 and 1 of R, respectively, even if such elements
exist (e.g., for R = \ZZ), but instead the (tropical) additive and
multiplicative identities +\infty and 0 respectively:

sage: T.zero() + T(3) == T(3)

about:srcdoc

True

sage: T.one() * T(3) == T(3)

True

sage: T.zero() == T(0)

False

sage: T.one() == T(1)

False
Init docstring: Initialize "self".
File: /opt/sagemath/sage-10.7/src/sage/rings/semirings/tropical
semiring.pyx
Type: ClasscallMetaclass
Subclasses:

MP=TropicalSemiring(QQ,use_min=False)
MP

Tropical semiring over Rational Field

a=MP(-1)
b=MP(-3)

a+b

-1

a*b

-4

Achtung: nicht alle Sage-Funktionen verhalten sich wie erwartet:
add([a,b])

0

add?

16/01/2026, 13:29

2026_01_15_sage_6 about:srcdoc

Signature: add(*args, **kwds)

Docstring:

Return the sum of a 'start' value (default: 0) plus an iterable of
numbers

When the iterable is empty, return the start value. This function is
intended specifically for use with numeric values and may reject non-
numeric types.
Init docstring: Initialize self. See help(type(self)) for accurate signat
ure.
File:
Type: builtin function or method

In [105.. O+a

Out[105.. O

Das Problem ist, dass add die Summe standardmal3ig mit $0%$ beginnt, aber $0%
nicht das neutrale Element in MP ist.

In [106.. MP.zero()
Qut[106.. -infinity

In [107.. add([a,b],start=MP.zero())

Out[107.. -1

Andere Moglichkeit, den Startwert zu vermeiden (wenn die Ubergebene Liste sicher
nicht leer ist!):

In [108.. reduce(operator.add,[a,b])

Out[108.. -1

21 of 21 16/01/2026, 13:29

