
Generatoren
Generatoren sind ähnlich wie Listen. Sie können allerdings jedes ihrer Elemente nur
einmal ausgeben und sind danach leer. Die Funktion next(g) ruft das nächste
Element des Generators g auf.

Vorteile: Effizienz! Elemente werden erst dann berechnet, wenn sie gebraucht
werden ('lazy evaluation'). Es wird kein Speicher durch nicht mehr oder noch nicht
benötigte Elemente belegt.

Generatoren können wie Listen erzeugt werden, nur mit runden statt eckigen
Klammern.

g=(1..3)
g

<_cython_3_0_11.generator object at 0x71388ef2e320>

next(g)

1

next(g)

2

next(g)

3

next(g)

--
-
StopIteration Traceback (most recent call las
t)
Cell In[5], line 1
----> 1 next(g)

StopIteration:

Der Generator g ist nun leer und hat keinen Nutzen mehr. Durch ernezte zuweisung
kann er "neu befüllt" werden.

g=(1..4)

next(g)

1

Restliche Elemente des Generators als Liste ausgeben:

In [1]:

Out[1]:

In [2]:

Out[2]:

In [3]:

Out[3]:

In [4]:

Out[4]:

In [5]:

In [6]:

In [7]:

Out[7]:

2026_01_15_sage_6 about:srcdoc

1 of 21 16/01/2026, 13:29

list(g)

[2, 3, 4]

next(g)

--
-
StopIteration Traceback (most recent call las
t)
Cell In[9], line 1
----> 1 next(g)

StopIteration:

Hauptanwendung: über Generatoren kann in Schleifen iteriert werden.

for i in (1..4):
print(i)

1
2
3
4

Unendlicher Generator, der alle natürlichen Zahlen ausgibt (natürlich innerhalb
technischer Limits).

nn=(1..)

next(nn)

1

next(nn)

2

for i in nn:
print(i)
if i>10:

break

3
4
5
6
7
8
9
10
11

Die folgende Zelle führt zu einer Endlosschleife. Manueller Abbruch über Menü
Kernel -> Interrupt Kernel

for i in nn:
print(i)

In [8]:

Out[8]:

In [9]:

In [10]:

In [11]:

In [12]:

Out[12]:

In [13]:

Out[13]:

In [14]:

In []:

2026_01_15_sage_6 about:srcdoc

2 of 21 16/01/2026, 13:29

next(nn)

Erschaffung neuer Generatoren aus vorhandenen mittels generator
comprehensions (analog zu list comprehensions).

a=(1..5)

b=(i^2 for i in a)

next(b)

1

Achtung: Bei Aufruf des äußeren Generators b wird intern a aufgerufen. D.h. auch a
zählt einen Schritt weiter.

next(a)

2

next(b)

9

next(b)

16

next(a)

5

next(b)

--
-
StopIteration Traceback (most recent call las
t)
Cell In[22], line 1
----> 1 next(b)

StopIteration:

Programmierung von Generatoren
Komplexere Generatoren lassen sich wie Funktionen programmieren. Das
Schlüsselwort yield gibt an, dass an dieser Stelle die Ausführung unterbrochen und
der angegebene Wert zurückgegeben werden soll. Beim nächsten Aufruf mittels
next() wird die Ausführung an genau dieser Stelle fortgesetzt.

def abc():

In []:

In [15]:

In [16]:

In [17]:

Out[17]:

In []:

In [18]:

Out[18]:

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

In [23]:

2026_01_15_sage_6 about:srcdoc

3 of 21 16/01/2026, 13:29

yield 'a'
yield 'b'
yield 'c'

abc

<function abc at 0x71388e5c9bc0>

Die Funktion abc enthält das Schlüsselwort yield. Bei Aufruf liefert sie also einen
Generator zurück.

g=abc()

g

<generator object abc at 0x71388e031a60>

Beim ersten Aufruf wird der Code in obiger Definition von abd() bis zum ersten
yield durchlaufen und dort unterbrochen.

next(g)

'a'

Beim nächsten Aufruf wird der Code von dort weiter bis zum nächsten yield
durchlaufen, und so weiter.

next(g)

'b'

next(g)

'c'

next(g)

--
-
StopIteration Traceback (most recent call las
t)
Cell In[30], line 1
----> 1 next(g)

StopIteration:

Generatoren werden üblicherweise mittels Schleifen definiert. Hier ist ein
Generator, der alle Primzahlzwillinge liefert.

In [24]:

Out[24]:

In [25]:

In [26]:

Out[26]:

In [27]:

Out[27]:

In [28]:

Out[28]:

In [29]:

Out[29]:

In [30]:

2026_01_15_sage_6 about:srcdoc

4 of 21 16/01/2026, 13:29

def primzw(n=oo):
p=3
while p<n:

q=next_prime(p)
if q==p+2:

yield (p,q)
p=q

g=primzw()

next(g)

(3, 5)

next(g)

(5, 7)

next(g)

(11, 13)

Primzahlzwillinge bis 1000:

pp=list(primzw(1000))
pp

In [31]:

In [32]:

In [33]:

Out[33]:

In [34]:

Out[34]:

In [35]:

Out[35]:

In [36]:

2026_01_15_sage_6 about:srcdoc

5 of 21 16/01/2026, 13:29

[(3, 5),
 (5, 7),
 (11, 13),
 (17, 19),
 (29, 31),
 (41, 43),
 (59, 61),
 (71, 73),
 (101, 103),
 (107, 109),
 (137, 139),
 (149, 151),
 (179, 181),
 (191, 193),
 (197, 199),
 (227, 229),
 (239, 241),
 (269, 271),
 (281, 283),
 (311, 313),
 (347, 349),
 (419, 421),
 (431, 433),
 (461, 463),
 (521, 523),
 (569, 571),
 (599, 601),
 (617, 619),
 (641, 643),
 (659, 661),
 (809, 811),
 (821, 823),
 (827, 829),
 (857, 859),
 (881, 883)]

Man kann aus gegebenen Generatoren auch neue programmieren. Hier ist ein
Generator, der die ersten n Elemente des gegebenen Generators g liefert.

def firstn(g,n):
for i in range(n):

yield next(g)

Die ersten 20 Primzahlzwillinge.

list(firstn(primzw(),20))

Out[36]:

In [37]:

In [38]:

2026_01_15_sage_6 about:srcdoc

6 of 21 16/01/2026, 13:29

[(3, 5),
 (5, 7),
 (11, 13),
 (17, 19),
 (29, 31),
 (41, 43),
 (59, 61),
 (71, 73),
 (101, 103),
 (107, 109),
 (137, 139),
 (149, 151),
 (179, 181),
 (191, 193),
 (197, 199),
 (227, 229),
 (239, 241),
 (269, 271),
 (281, 283),
 (311, 313)]

Rekursive Generatoren
Generatoren können auch rekursiv definiert werden.

Im folgenden Beispiel schreiben wir einen Generator, der die Elemente der n-ten
kartesischen Potenz einer Menge S liefert. Diese kann induktiv definiert werden
durch $S^n = S \times S^{n-1}$. Das lässt sich direkt in einen Generator übersetzen.

def cart(S,n):
if n==0:

yield []
else:

for s in S:
for p in cart(S,n-1):

yield [s]+p

list(cart([1,2],4))

[[1, 1, 1, 1],
 [1, 1, 1, 2],
 [1, 1, 2, 1],
 [1, 1, 2, 2],
 [1, 2, 1, 1],
 [1, 2, 1, 2],
 [1, 2, 2, 1],
 [1, 2, 2, 2],
 [2, 1, 1, 1],
 [2, 1, 1, 2],
 [2, 1, 2, 1],
 [2, 1, 2, 2],
 [2, 2, 1, 1],
 [2, 2, 1, 2],
 [2, 2, 2, 1],
 [2, 2, 2, 2]]

list(cart([1,2],3))

Out[38]:

In [39]:

In [40]:

Out[40]:

In [41]:

2026_01_15_sage_6 about:srcdoc

7 of 21 16/01/2026, 13:29

[[1, 1, 1],
 [1, 1, 2],
 [1, 2, 1],
 [1, 2, 2],
 [2, 1, 1],
 [2, 1, 2],
 [2, 2, 1],
 [2, 2, 2]]

list(cart([1,2],2))

[[1, 1], [1, 2], [2, 1], [2, 2]]

list(cart([1,2],1))

[[1], [2]]

Hier schreiben wir einen Generator, der alle Permutationen einer Menge S liefert
(hier dargestellt als alle Anordnungen der Elemente von S). Jede Permutation
besteht aus einem Element, das an den Anfang gestellt wird, und einer Permutation
der restlichen Elemente. Daraus ergibt sich folgender rekursiver Generator.

def perm(S):
if S==Set():

yield []
else:

for s in S:
for p in perm(S-{s}):

yield [s]+p

list(perm(Set({1,2,3,4})))

[[1, 2, 3, 4],
 [1, 2, 4, 3],
 [1, 3, 2, 4],
 [1, 3, 4, 2],
 [1, 4, 2, 3],
 [1, 4, 3, 2],
 [2, 1, 3, 4],
 [2, 1, 4, 3],
 [2, 3, 1, 4],
 [2, 3, 4, 1],
 [2, 4, 1, 3],
 [2, 4, 3, 1],
 [3, 1, 2, 4],
 [3, 1, 4, 2],
 [3, 2, 1, 4],
 [3, 2, 4, 1],
 [3, 4, 1, 2],
 [3, 4, 2, 1],
 [4, 1, 2, 3],
 [4, 1, 3, 2],
 [4, 2, 1, 3],
 [4, 2, 3, 1],
 [4, 3, 1, 2],
 [4, 3, 2, 1]]

Out[41]:

In [42]:

Out[42]:

In [43]:

Out[43]:

In [44]:

In [45]:

Out[45]:

2026_01_15_sage_6 about:srcdoc

8 of 21 16/01/2026, 13:29

Fehlerquelle: leere Menge als Set vs set vs dict:

Set()==set()

True

Set()=={}

False

parent({}) # {} gibt das leere dictionary, keine Menge!

<class 'dict'>

Fehlerbehandlungen: Exceptions
Wir haben schon verschiedene Fehlermeldungen gesehen. Diese sind in Python
eigene Objekte, sogenannte Exceptions. Exceptions können je nach Art des Fehlers
verschiedenen Klassen angehören, z.B. NameError, ValueError etc.

y

--
-
NameError Traceback (most recent call las
t)
Cell In[49], line 1
----> 1 y

NameError: name 'y' is not defined

factorial(-1)

In [46]:

Out[46]:

In [47]:

Out[47]:

In [48]:

Out[48]:

In [49]:

In [50]:

2026_01_15_sage_6 about:srcdoc

9 of 21 16/01/2026, 13:29

--
-
ValueError Traceback (most recent call las
t)
Cell In[50], line 1
----> 1 factorial(-Integer(1))

File /opt/sagemath/sage-10.7/src/sage/symbolic/function.pyx:1061, in sag
e.symbolic.function.BuiltinFunction.__call__()
 1059 res = self._evalf_try_(*args)
 1060 if res is None:
-> 1061 res = super().__call__(
 1062 *args, coerce=coerce, hold=hold)
 1063

File /opt/sagemath/sage-10.7/src/sage/symbolic/function.pyx:558, in sage.s
ymbolic.function.Function.__call__()
 556
 557 from .expression import call_registered_function
--> 558 return call_registered_function(self._serial, self._nargs,
args, hold,
 559 not symbolic_input, SR)
 560

File /opt/sagemath/sage-10.7/src/sage/symbolic/pynac_function_impl.pxi:1,
in sage.symbolic.expression.call_registered_function()
----> 1 cpdef call_registered_function(unsigned serial,
 2 int nargs,
 3 list args,

File /opt/sagemath/sage-10.7/src/sage/symbolic/pynac_function_impl.pxi:49,
in sage.symbolic.expression.call_registered_function()
 47 res = g_function_evalv(serial, vec, hold)
 48 elif nargs == 1:
---> 49 res = g_function_eval1(serial,
 50 (<Expression>args[0])._gobj, hold)
 51 elif nargs == 2:

File /opt/sagemath/sage-10.7/src/sage/functions/other.py:1551, in Function
_factorial._eval_(self, x)
 1549 if isinstance(x, (int, Integer)):
 1550 try:
-> 1551 return x.factorial()
 1552 except OverflowError:
 1553 return

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:4575, in sage.ring
s.integer.Integer.factorial()
 4573 """
 4574 if mpz_sgn(self.value) < 0:
-> 4575 raise ValueError("factorial only defined for nonnegative integ
ers")
 4576
 4577 if not mpz_fits_ulong_p(self.value):

ValueError: factorial only defined for nonnegative integers

1/0In [51]:

2026_01_15_sage_6 about:srcdoc

10 of 21 16/01/2026, 13:29

--
-
ZeroDivisionError Traceback (most recent call las
t)
Cell In[51], line 1
----> 1 Integer(1)/Integer(0)

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:2040, in sage.ring
s.integer.Integer.__truediv__()
 2038 if type(left) is type(right):
 2039 if mpz_sgn((<Integer>right).value) == 0:
-> 2040 raise ZeroDivisionError("rational division by zero")
 2041 x = <Rational> Rational.__new__(Rational)
 2042 mpq_div_zz(x.value, (<Integer>left).value, (<Integer>right).va
lue)

ZeroDivisionError: rational division by zero

1/[1,2]

--
-
TypeError Traceback (most recent call las
t)
Cell In[52], line 1
----> 1 Integer(1)/[Integer(1),Integer(2)]

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:2055, in sage.ring
s.integer.Integer.__truediv__()
 2053 return y
 2054
-> 2055 return coercion_model.bin_op(left, right, operator.truediv)
 2056
 2057 cpdef _div_(self, right):

File /opt/sagemath/sage-10.7/src/sage/structure/coerce.pyx:1288, in sage.s
tructure.coerce.CoercionModel.bin_op()
 1286 # We should really include the underlying error.
 1287 # This causes so much headache.
-> 1288 raise bin_op_exception(op, x, y)
 1289
 1290 cpdef canonical_coercion(self, x, y):

TypeError: unsupported operand parent(s) for /: 'Integer Ring' and '<class
'list'>'

Fehlermeldungen ausgeben
Wir sehen nun, wie man in Python professionell Fehlermeldungen ausgibt.

def fac(n):
if n==0:

return 1
return n*fac(n-1)

In [52]:

In [63]:

2026_01_15_sage_6 about:srcdoc

11 of 21 16/01/2026, 13:29

fac(6)

720

fac(5)

120

fac(-1)

--
-
RecursionError Traceback (most recent call las
t)
Cell In[66], line 1
----> 1 fac(-Integer(1))

Cell In[63], line 4, in fac(n)
 2 if n==Integer(0):
 3 return Integer(1)
----> 4 return n*fac(n-Integer(1))

Cell In[63], line 4, in fac(n)
 2 if n==Integer(0):
 3 return Integer(1)
----> 4 return n*fac(n-Integer(1))

[... skipping similar frames: fac at line 4 (2970 times)]

Cell In[63], line 4, in fac(n)
 2 if n==Integer(0):
 3 return Integer(1)
----> 4 return n*fac(n-Integer(1))

Cell In[63], line 2, in fac(n)
 1 def fac(n):
----> 2 if n==Integer(0):
 3 return Integer(1)
 4 return n*fac(n-Integer(1))

RecursionError: maximum recursion depth exceeded while calling a Python ob
ject

Hier hat fac(-1) zu einer Endlosrekursion geführt. Um das zu vermeiden, müssen wir
abfragen, ob das Argument negativ ist. Hier zuerst die unprofessionelle Variante,
eine Fehlermeldung als String zurückzugeben.

def fac(n): # unprofessionell
if n<0:

return "n ist negativ"
if n==0:

return 1
return n*fac(n-1)

fac(-1)

'n ist negativ'

In [64]:

Out[64]:

In [65]:

Out[65]:

In [66]:

In [67]:

In [68]:

Out[68]:

2026_01_15_sage_6 about:srcdoc

12 of 21 16/01/2026, 13:29

Nachteil: im weiteren Programmverlauf kann es zu Fehlern oder seltsamem
Verhalten kommen, wenn der zurückgegebene Wert statt der erwarteten Zahl ein
String ist.

m=fac(-1)

m^2

--
-
TypeError Traceback (most recent call las
t)
Cell In[70], line 1
----> 1 m**Integer(2)

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:2214, in sage.ring
s.integer.Integer.__pow__()
 2212 return coercion_model.bin_op(left, right, operator.pow)
 2213 # left is a non-Element: do the powering with a Python int
-> 2214 return left ** int(right)
 2215
 2216 cpdef _pow_(self, other):

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

m+m

'n ist negativn ist negativ'

Hier die professionelle Variante: mit dem Schlüsselwort raise wird eine Exception
der Klasse ValueError erstellt.

def fac(n):
if n<0:

raise ValueError('n ist negativ')
if n==0:

return 1
return n*fac(n-1)

Das Ergebnis sieht nun aus wie die Fehlermeldungen der internen Python- oder
Sage-Funktionen, die wir weiter oben gesehen haben.

fac(-1)

In [69]:

In [70]:

In [71]:

Out[71]:

In [72]:

In [73]:

2026_01_15_sage_6 about:srcdoc

13 of 21 16/01/2026, 13:29

--
-
ValueError Traceback (most recent call las
t)
Cell In[73], line 1
----> 1 fac(-Integer(1))

Cell In[72], line 3, in fac(n)
 1 def fac(n):
 2 if n<Integer(0):
----> 3 raise ValueError('n ist negativ')
 4 if n==Integer(0):
 5 return Integer(1)

ValueError: n ist negativ

Der Vorteil von Exceptions ist, dass diese im umgebenden Code gezielt abgefangen
werden können. Mit try wird versucht, einen Codeblock auszuführen. Darauf
folgende except-Blöcke werden dann ausgeführt, wenn im try-Block eine
entsprechende Exception auftritt. Damit können Fehler gezielt behandelt werden.

Hier als Beispiel eine Funktion, die bei negativen Zahlen n die Faktorielle von $-n$
zurückgeben soll.

def fac1(n):
try:

return fac(n)
except ValueError:

print('failed')
return fac(-n)

fac1(6)

720

fac1(-3)

failed

6

Achtung: das war nur ein einfaches Besipiel zur Erklärung der Grundfunktionen. Die
Fehlerbehandlung ist hier immer noch unzureichend. Z.B.:

fac(-pi)

In [74]:

In [75]:

Out[75]:

In [76]:

Out[76]:

In [77]:

2026_01_15_sage_6 about:srcdoc

14 of 21 16/01/2026, 13:29

--
-
ValueError Traceback (most recent call las
t)
Cell In[77], line 1
----> 1 fac(-pi)

Cell In[72], line 3, in fac(n)
 1 def fac(n):
 2 if n<Integer(0):
----> 3 raise ValueError('n ist negativ')
 4 if n==Integer(0):
 5 return Integer(1)

ValueError: n ist negativ

In der Definition von fac1(n) gibt es bisher nur einen except-Block für ValueError.
Andere Exceptions werden nicht abgefangen und kommen daher durch bis zum
Benutzer.

fac1([1,2])In [78]:

2026_01_15_sage_6 about:srcdoc

15 of 21 16/01/2026, 13:29

--
-
TypeError Traceback (most recent call las
t)
Cell In[78], line 1
----> 1 fac1([Integer(1),Integer(2)])

Cell In[74], line 3, in fac1(n)
 1 def fac1(n):
 2 try:
----> 3 return fac(n)
 4 except ValueError:
 5 print('failed')

Cell In[72], line 2, in fac(n)
 1 def fac(n):
----> 2 if n<Integer(0):
 3 raise ValueError('n ist negativ')
 4 if n==Integer(0):

File /opt/sagemath/sage-10.7/src/sage/rings/integer.pyx:925, in sage.ring
s.integer.Integer.__richcmp__()
 923 c = mpz_cmp_d((<Integer>left).value, d)
 924 else:
--> 925 return coercion_model.richcmp(left, right, op)
 926
 927 return rich_to_bool_sgn(op, c)

File /opt/sagemath/sage-10.7/src/sage/structure/coerce.pyx:2064, in sage.s
tructure.coerce.CoercionModel.richcmp()
 2062 raise bin_op_exception('<=', x, y)
 2063 elif op == Py_GT:
-> 2064 raise bin_op_exception('>', x, y)
 2065 else:
 2066 raise bin_op_exception('>=', x, y)

TypeError: unsupported operand parent(s) for >: 'Integer Ring' and '<class
'list'>'

Man kann auch mehrere Exceptions abfangen. Mit as kann man die abgefangene
Exception einer Variable zuweisen, um im darauffolgenden Block auf sie
zuzugreifen. except: ohne Angabe einer Klasse fängt alle Exceptions ab.

def fac1(n):
try:

return fac(n)
except ValueError:

print('failed')
return fac(-n)

except TypeError as e:
print('sinnloses Argument')
print(e.args)

except:
print('etwas ging schief')

fac1([1,2])

In [79]:

In [81]:

2026_01_15_sage_6 about:srcdoc

16 of 21 16/01/2026, 13:29

sinnloses Argument
("unsupported operand parent(s) for >: 'Integer Ring' and '<class 'lis
t'>'",)

fac1(oo)

etwas ging schief

Klassen programmieren
Wir sehen und kurz an, wie man in Python eigene Klassen programmieren kann.
Eine Klasse stellt Funktionen (sogenannte Methoden) bereit, die man mit ihren
Objekten ausführen kann.

Wir wollen als Beispiel eine Klasse MaxPlus definieren, die die Max-Plus-Algebra
$(\mathbb{R}\cup -\infty, \oplus,\odot)$ implementiert, also den Halbring mit
Operationen $a\oplus b=\max\{a,b\}$ und $a\odot b = a+b$. Die Operationen sollen
wie gewohnt direkt mit + und * aufgerufen werden.

Intern wird bei a+b die Methode .__add__() der jeweiligen Klasse aufgerufen.

1+3

4

1.__add__(3)

4

Jede Klasse soll zumindest zwei Methoden haben: __init__(), die bei der Erstellung
neuer Objekte der Klasse aufgerufen wird, und __repr__(), die angibt, wie Objekte
im Output dargestellt werden.

Hier erhält das Objekt bei der Erstellung ein Attribut .val, in dem der übergebene
Wert v (= die Zahl, die das Objekt darstellen soll) gespeichert wird.

Zur Darstellung wird der Wert in eckigen Klammern ausgegeben, um Elemente der
Max-Plus-Algebra von herkömmlichen Zahlen zu unterscheiden.

class MaxPlus:
def __init__(self,v):

self.val=v
def __repr__(self):

return f"[{self.val}]"

a=MaxPlus(-1)

a

[-1]

a.val

In [82]:

In [83]:

Out[83]:

In [84]:

Out[84]:

In [85]:

In [86]:

In [87]:

Out[87]:

In [88]:

2026_01_15_sage_6 about:srcdoc

17 of 21 16/01/2026, 13:29

-1

b=MaxPlus(-3)

b

[-3]

a+b

--
-
TypeError Traceback (most recent call las
t)
Cell In[91], line 1
----> 1 a+b

TypeError: unsupported operand type(s) for +: 'MaxPlus' and 'MaxPlus'

Die Operationen Addition und Multiplikation müssen wir erst implementieren.

class MaxPlus:
def __init__(self,v):

self.val=v
def __repr__(self):

return f"[{self.val}]"
def __add__(self,b):

return MaxPlus(max(self.val,b.val))
def __mul__(self,b):

return MaxPlus(self.val+b.val)

a=MaxPlus(-1)
b=MaxPlus(-3)

a+b

[-1]

a*b

[-4]

a+MaxPlus(-oo)

[-1]

a*MaxPlus(-oo)

[-Infinity]

Tatsächlich ist Max-Plus-Algebra in Sage bereits implementiert!

TropicalSemiring?

Out[88]:

In [89]:

In [90]:

Out[90]:

In [91]:

In [92]:

In [93]:

In [94]:

Out[94]:

In [95]:

Out[95]:

In [96]:

Out[96]:

In [97]:

Out[97]:

In [98]:

2026_01_15_sage_6 about:srcdoc

18 of 21 16/01/2026, 13:29

Init signature: TropicalSemiring(self, x=0, *args, **kwds)
Docstring:
 The tropical semiring.

 Given an ordered additive semigroup R, we define the tropical
 semiring T = R \cup \{+\infty\} by defining tropical addition and
 multiplication as follows:

 a \oplus b = \min(a, b), \quad \quad a \odot b = a + b.

 In particular, note that there are no (tropical) additive inverses
 (except for \infty), and every element in R has a (tropical)
 multiplicative inverse.

 There is an alternative definition where we define T = R \cup
 \{-\infty\} and alter tropical addition to be defined by

 a \oplus b = \max(a, b).

 To use the \max definition, set the argument "use_min = False".

 Warning:

 "zero()" and "one()" refer to the tropical additive and
 multiplicative identities respectively. These are **not** the
 same as calling "T(0)" and "T(1)" respectively as these are
 not the tropical additive and multiplicative identities
 respectively.Specifically do not use "sum(...)" as this converts
 0 to 0 as a tropical element, which is not the same as "zero()".
 Instead use the "sum" method of the tropical semiring:

 sage: T = TropicalSemiring(QQ)

 sage: sum([T(1), T(2)]) # This is wrong
 0
 sage: T.sum([T(1), T(2)]) # This is correct
 1

 Be careful about using code that has not been checked for
 tropical safety.

 INPUT:

 * "base" -- the base ordered additive semigroup R

 * "use_min" -- boolean (default: "True"); if "True", then the
 semiring uses a \oplus b = \min(a, b). Otherwise uses a \oplus b
 = \max(a, b).

 EXAMPLES:

 sage: T = TropicalSemiring(QQ)
 sage: elt = T(2); elt
 2

 Recall that tropical addition is the minimum of two elements:

 sage: T(3) + T(5)
 3

2026_01_15_sage_6 about:srcdoc

19 of 21 16/01/2026, 13:29

 Tropical multiplication is the addition of two elements:

 sage: T(2) * T(3)
 5
 sage: T(0) * T(-2)
 -2

 We can also do tropical division and arbitrary tropical
 exponentiation:

 sage: T(2) / T(1)
 1
 sage: T(2)^(-3/7)
 -6/7

 Note that "zero" and "one" are the additive and multiplicative
 identities of the tropical semiring. In general, they are **not**
 the elements 0 and 1 of R, respectively, even if such elements
 exist (e.g., for R = \ZZ), but instead the (tropical) additive and
 multiplicative identities +\infty and 0 respectively:

 sage: T.zero() + T(3) == T(3)
 True
 sage: T.one() * T(3) == T(3)
 True
 sage: T.zero() == T(0)
 False
 sage: T.one() == T(1)
 False
Init docstring: Initialize "self".
File: /opt/sagemath/sage-10.7/src/sage/rings/semirings/tropical_
semiring.pyx
Type: ClasscallMetaclass
Subclasses:

MP=TropicalSemiring(QQ,use_min=False)
MP

Tropical semiring over Rational Field

a=MP(-1)
b=MP(-3)

a+b

-1

a*b

-4

Achtung: nicht alle Sage-Funktionen verhalten sich wie erwartet:

add([a,b])

0

add?

In [99]:

Out[99]:

In [100…

In [101…

Out[101…

In [102…

Out[102…

In [103…

Out[103…

In [104…

2026_01_15_sage_6 about:srcdoc

20 of 21 16/01/2026, 13:29

Signature: add(*args, **kwds)
Docstring:
Return the sum of a 'start' value (default: 0) plus an iterable of
numbers

When the iterable is empty, return the start value. This function is
intended specifically for use with numeric values and may reject non-
numeric types.
Init docstring: Initialize self. See help(type(self)) for accurate signat
ure.
File:
Type: builtin_function_or_method

0+a

0

Das Problem ist, dass add die Summe standardmäßig mit 0 beginnt, aber 0
nicht das neutrale Element in MP ist.

MP.zero()

-infinity

add([a,b],start=MP.zero())

-1

Andere Möglichkeit, den Startwert zu vermeiden (wenn die übergebene Liste sicher
nicht leer ist!):

reduce(operator.add,[a,b])

-1

In [105…

Out[105…

In [106…

Out[106…

In [107…

Out[107…

In [108…

Out[108…

2026_01_15_sage_6 about:srcdoc

21 of 21 16/01/2026, 13:29

