
P 1 1

1 Preliminaries

1.1 MPI

The Message Passing Interface has been introduced in the early 90–ties (i.e., after Rocky V)
and it is still the standard environment for distributed parallel computing. It covers about 140
functions, available in F77, C and C++. Already 6 functions allow to write parallel codes. Most
of the other functions are based on these 6. We will be mainly concerned with the following
functions.

Basic functions MPI Init
MPI Finalize
MPI Send
MPI Recv
MPI Comm rank
MPI Comm size

additional functions MPI Barrier
MPI Bcast
MPI Gather
MPI Scatter
MPI Reduce
MPI Allreduce

Although there exists an MPI–2 standard we restrict ourselfs in the beginning to the MPI–1
standard.

1.2 Online help

First of all the MPI Homepage and especially the overview of the MPI functions should be
consulted. We will refer frequently to these web pages during the course.

The desciption for MPI–functions in C++ (and C/Fortran) can be found here.
We have to distinguish between the MPI standard and its implementations. The most

commenly used implementations are MPICH, LAM and OpenMPI (that is not OpenMP !!).
All three are available as packages under LINUX but only one of them should be used in order
to avoid confusion wrt. paths to executables, libraries and headers. We will refer to the latter
one, see the man pages of OpenMPI.

1.3 Getting started on a (pool of) LINUX-workstations/PCs

First, open a shell and type
mpirun

If MPI is not available then you have to install additional packages (in Ubuntu) via
sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev --no-install-recommends

or install it from the scrach (just for fun). The --no-install-recommends prevents the
removal of slightly incompatible packages as CUDA 6.5. under ubuntu 14.10.

http://www.open-mpi.org/doc/v1.5/man3/MPI_Init.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Finalize.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Send.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Recv.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Comm_rank.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Comm_size.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Barrier.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Bcast.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Gather.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Scatter.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Reduce.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Allreduce.3.php
http://www.mpi-forum.org/docs/mpi-1.3/mpi-report-1.3-2008-05-30.pdf
http://www.mcs.anl.gov/mpi/index.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.open-mpi.org/doc/v1.8/
http://www.mcs.anl.gov/research/projects/mpich2
http://www.lam-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org/doc/v1.8


P 1 2

Check whether the ssh-deamon is running
ps -ax |grep sshd

If not you have to install it too.
In order to avoid the password request for each parallel process started (think of 64 parallel
processes) you have to create secure authentication keys for your account.

ssh-keygen

cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

chmod go-rwx ~/.ssh/authorized_keys

ssh-add

See also my hints.

1.4 Installing the example code

Copy and unpack the provided supporting material for C++
into a folder and unpack it.

http://docs.cs.cf.ac.uk/notes/html/120/node2.html
http://imsc.uni-graz.at/haasegu/Lectures/RO-II/mpich.txt
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/first.template.tgz


P2 3

2 Your first parallel code

E1 Compile the program in first.template and set in the Makefile the variable COMPILER

to COMPILER=GCC_ . Adapt Makefile and ../GCC default.mk to your needs and paths.
Compile and link the code

make

Start the program with 4 processes
mpirun -np 4 first.GCC_

The following MPI functions require a communicator as parameter. This communicator
describes the group of processes which are to be covered by the corresponding MPI func-
tion. By default, all processes are collected in MPI COMM WORLD which is one of the
constants supplied by MPI. We restrict the examples to those global operations. For this
purpose, create special MPI-type variable MPI Comm icomm= MPI COMM WORLD;
which is used as parameter !

E2 Write Your first parallel program by implementing

MPI Init and MPI Finalize,

compile the program and start 4 processes
mpirun -np 4 first.LINUX

E3 Determine the number of your parallel processes and the local process rank by using the
routines

MPI Comm rank and MPI Comm size.
Let the root process (rank=0) write the number of running processes. Start with different
numbers of processes.

E4 The file greetings.cpp includes a routine
Greetings(const MPI::Intracomm& icomm)

that prints the names of the hosts your processes are running on. Call that routine from
your main program and change the routine such that the output is ordered with respect
to the process ranks. Study the routines

MPI Send and MPI Recv
with respect to tags and ranks.

http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/first.template.tgz
http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node65.html
http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node92.html
http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node16.html
http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node169.html
http://www.open-mpi.org/doc/v1.5/man3/MPI_Init.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Finalize.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Comm_rank.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Comm_size.3.php
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/first.template/greetings.cpp
http://www.open-mpi.org/doc/v1.5/man3/MPI_Send.3.php
http://www.open-mpi.org/doc/v1.5/man3/MPI_Recv.3.php


P3 4

3 Synchronized Communication

E5 Write a routine
Send ProcD(to,nin,xin,icomm)

which sends nin Double Precision numbers of the array xin to the process to. Note that
the receiving process to usually has no information about the length of the array it
receives.
Also write a corresponding routine

Recv ProcD(from,nout,xout,maxbuf,icomm)
which receives nout Double Precision numbers of the array xout from the process from.
A priori, the receiving process does not have any information about the length of the
data to be received, i.e., nout is an output parameter. maxbuf stands for the maximum
length of the array xout.

E6 Test the routines from E5 with two processes first. Let process 1 send data and process 0
receive them. Extend the test to more processes.

E7 Combine the routines from E5 to one routine
ExchangeD(yourid,nin,xin,nout,xout,maxbuf,icomm),

which exchanges double precision data between the own process and another pro-

cess yourid. The remaining parameters are the same as in E6 . Test your routines with
two and more processes.

E8 Implement a version of function Exchange that uses synchronous communication.

http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/../Cxx.Solution/accu/html/dexx_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/../Cxx.Solution/accu/html/dexx_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/../Cxx.Solution/accu/html/dexx_8cpp.html
http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/node40.html


P 4 5

4 Global Operations

Let some Double Precision vector u be stored blockwise disjoint, i.e., distributed over all pro-
cesses s (s=0,...,P−1) such that u = (uT0 , . . . , u

T
S )T .

E9 Write a routine

DebugD(nin,xin [,icomm])
that prints nin Double Precision numbers of the array xin. Start the program with
several processes.
=⇒ All processes will write their local vectors, i.e., one has to look carefully for the data
of process s.

Improve the routine DebugD such that process 0 reads the number (from terminal) of
that process which is to write it’s vector. Use

MPI Bcast

to broadcast this information and let the processes react appropriately. If necessary use
MPI Barrier to synchronize the output.

E10 Exchange global minimum and maximum of the vector u ! Use

MPI Gather , MPI Scatter / MPI Bcast and ExchangeD.

How can you reduce the amount communication ?

Hint: Compute, first, local min./max. and afterwards let some process determine the
global quantities.

Alternatively, you can use MPI Allreduce and the operations MPI Minloc/MPI -
Maxloc.

E11 Write a routine for computing the global scalar product

Skalar(n,x,y [,icomm])

of two Double Precision vectors x and y of local length n. Use

MPI Allreduce with the operation MPI SUM.

http://www.open-mpi.org/doc/v1.8/man3/MPI_Bcast.3.php
http://www.open-mpi.org/doc/v1.8/man3/MPI_Barrier.3.php
http://www.open-mpi.org/doc/v1.8/man3/MPI_Gather.3.php
http://www.open-mpi.org/doc/v1.8/man3/MPI_Scatter.3.php
http://www.open-mpi.org/doc/v1.8/man3/MPI_Bcast.3.php
http://www.open-mpi.org/doc/v1.8/man3/MPI_Allreduce.3.php
http://www.open-mpi.org/doc/v1.8/man3/MPI_Reduce.3.php#sect10
http://www.open-mpi.org/doc/v1.8/man3/MPI_Allreduce.3.php


P 5 6

5 Local data exchange

Download the template containing the functions for the setting up the geometry.
Let the unit square [0, 1]2 be partitioned uniformly into procx× procy rectangles Ωi num-

bered row by row. The numbering of the subdomains coincides with the corresponding process-
id’s (ranks).

0 1 procx−1

procx

procx∗(procy−1) procx∗procy−1

South

North

West East

The function

IniGeom(myid,procx,procy,neigh,color)

generates the topological relations corresponding to the domain decomposition defined above.
These information are stored in the integer array neigh[4]. A check–board coloring is defined
in color. Moreover, the function

IniCoord(myid,procx,procy,xl,xr,yb,yt)

can be used to generate the coordinates of the lower left corner (xl, yb) and the upper right
corner (xr, yt) of each subdomain.

E12 Realize a local data exchange of a double precision number between each processor and all
of it’s neighbors (connected by a common edge). Use the routine ExchangeD from E8.

Let each subdomain Ωi be uniformly discretized into nx ∗ ny rectangles generating a trian-
gular mesh (nx, ny are the same for all subdomains !) as depicted in Fig. 1

If we use linear f.e. test functions then each vertex the triangles represents one component of
the solution vector, e.g., the temperatur in this point, and we have nnode := (nx+1)∗ (ny+1)
local unknowns within one subdomain. We propose a locally rowise ordering of the unknowns.
Note, that the global number of unknowns is

N = (procx ∗ nx + 1) ∗ (procy ∗ ny + 1) < procx ∗ procy ∗ nnode) .

The coordinates and the finite element mesh (triangular linear elements) are generated for
each subdomain via:

GetMesh(nx, ny, xl, xr, yb, yt, nnode, xc, nelem, ia)

http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/accu.template.tgz
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/accu.template/html/geom_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/accu.template/html/geom_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/accu.template/html/geom_8cpp.html


P 5 7

This function returns the number of nodes nnode and the number elements nelem together
with the allocated and initialized coordinate vector xc[nnode*2] and the element connectiv-
ity ia[nelem*3].

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 1: 4 subdomains in local numbering with local discretization nx = ny = 4 and global
discretization Nx = Ny = 8.

The function GetBound(ib,nx,ny,w,s)

copies the values of w corresponding to the boundary South(ib=1), East (ib=2), North (ib=3),
West (ib=4) into the auxiliary vector s. Vice versa, the function

AddBound(ib,nx,ny,w,s)

adds the values of s to the components of w corresponding to the nodes on the boundary
South(ib=1), East (ib=2), North (ib=3), West (ib=4). These functions can be used for the
accumulation (summation) of values corresponding to the nodes on the interfaces between two
adjacent subdomains which is a typical and necessary operation.

E13 Write a routine which accumulates a distributed Double Precision vector w. The call of
such a routine could look as follows

VecAccu(nx,ny,w,neigh,color,icomm)

where w is both in- and output vector.

http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/accu.template/html/geom_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/accu.template/html/geom_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/../Cxx.Solution/accu/html/vecaccu_8h.html


P 6 8

6 Iterative Solvers

Download the template containing the functions for matrix generation and sequential solvers.
As model problem, we consider the homogeneous Dirichlet boundary value problem

(u(x) = 0 ∀x ∈ ∂Ω) for the Poisson equation in the unit square Ω := (0, 1)2 in its weak
formulation:

Find u ∈ H1
0(Ω) such that∫

Ω
∇Tu(x)∇v(x) dx =

∫
Ω
f(x)v(x) dx ∀v ∈ H1

0(Ω) . (1)

We use linear finite elements for the discretization and achieve the linear system of equations

K · u = f . (2)

6.1 ω-Jacobi solver

Let us denote the diagonal of matrix K by D = diag(K). Now, we can formulate the ω-Jacobi
iteration

uk+1 = uk + ω ·D−1 · (f −K · uk) , k = 0, 1, 2, . . . . (3)

You will find a sequential version of the Jacobi solver in the directory jacobi/template with
the following functions in addition to the functions from P 5.

The function Get Matrix Pattern(nelem, 3, ia, nnz, id, ik, sk)

generates the pattern (id[nnode+1], ik[nnz]) for a sparse matrix stored in CSR format with
ik[j] as index where row j starts. The number of non-zero elements nnz is determined from
the given discretization with linear triangular elements (nelem, 3, ia[nelem*3]) and the
storage for id[nnode+1], ik[nnz] and sk[nnz] is allocated. Afterwards, the values of the
non-zero elements are calculated and stored in sk[nnz]

GetMatrix (nelem, 3, ia, nnode, xc, nnz, id, ik, sk, f)
such that our matrix K is now represented by id[nnode+1], ik[nnz] and sk[nnz] and the
right hand side f is calculated using the function FunctF(x,y) for describing f(x). Note, that
these two routines are written for general 2d-domains.
The Dirichlet boundary conditions are set in SetU(nx, ny, u). Alternatively, one could use
FunctU(x,y). These b.c. are applied in

ApplyDirichletBC(nx, ny, neigh, u, id, ik, sk, f)
via penalty method.
The solver itself is implemented in

JacobiSolve(nnode, id, ik, sk, f, u )
and uses

GetDiag(nnode, id, ik, sk, dd)
to get the diagonal from matrix K. Matrix-times-vector is realized in

CrsMult(w, u, nnode, id, ik, sk) .

A vector u can be saved in file named name by calling
SaveVector(my rank,name, u, nx, ny, xl, xr, yb, yt, ierr) .

such that

http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template.tgz
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/getmatrix_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/getmatrix_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/userset_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/userset_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/getmatrix_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/jacsolve_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/getmatrix_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/getmatrix_8cpp.html
http://imsc.uni-graz.at/haasegu/Lectures/2015_Chile_HPC/Codes/par/jacobi.template/html/geom_8cpp.html


P 6 9

gnuplot jac.dem

will give an impression of that vector.

E14 Implement a parallel version of the sequential code !


	Preliminaries
	MPI
	Online help
	Getting started on a (pool of) LINUX-workstations/PCs
	Installing the example code

	Your first parallel code
	Synchronized Communication
	Global Operations
	Local data exchange
	Iterative Solvers
	-Jacobi solver


