GPU Computing
with OpenACC Directives

Gundolf Haase, Uni Graz; (orig. Mark Harris, NVIDIA)

A Very Simple Exercise: SAXPY

SAXPY in C SAXPY in Fortran

c saxpy (int n, \ Qoutine saxpy(n, a, x, y) \

float a, real :: x(:), y(:), a
float *x, integer :: n, i
float *restrict y) $lacc kernels

{ do i=1,n

#pragma acc kernels y(i) = a*x(i)+y (i)

for (int i = 0; i < n; ++1i) enddo
y[i] = a*x[i] + yI[i]; $'acc end kernels
} end subroutine saxpy
saxpy (1<<20, 2.0, x, y); call saxpy(2**20, 2.0, x d, y d)

_ AN /

© NVIDIA 2013

Directive Syntax

Fortran

Often paired with a matching end directive
surrounding a structured code block

C

Often followed by a structured code block

kemels: Your first OpenACC Directive

Each loop executed as a separate kernel on the
GPU.

do i=1,n / \
a(i) = 0.0 .
b(i) = 1.0 kernel 1 Kernel:
c(i) = 2.0 A parallel

end do function that runs

on the GPU

do i=1,n _)

a(i) = b(1i) + c(1) kernel 2

end do

Kernels Construct

Fortran

structured block

Clauses

Also, any data clause
(more later)

C tip: the restrict keyword

* Declaration of intent given by the programmer to the compiler

Applied to a pointer, e.q.

float * ptr
Meaning: “for the lifetime of ptr, only it or a value directly derived
from it (such as ptr + 1) will be used to access the object to which it

points”*
* Limits the effects of pointer aliasing

* OpenACC compilers often require restrict to determine
independence
— Otherwise the compiler can’t parallelize loops that access ptr
— Note: if programmer violates the declaration, behavior is
undefined

http://en.wikipedia.org/wiki/Restrict

Complete SAXPY example code

° Tr|v|a| ﬁrst example int main (int argc, char **argv)
— Apply a loop directive int N = 1<<20; // 1 million floats

— Learn compiler commands

if (argec > 1)
N = atoi(argv[1l]);

float *x
float *y

(float*)malloc (N * sizeof(float));
(float*)malloc (N * sizeof(float));

[

*restrjct = 0; i < N; ++i)
@clude <stdlib.h> “| promise y does not

li ” 2.0f;
alias X ; .
void saxpy (int n, 1.0f£;
float a,
float *x,

float *rest’ict y) 3.0£, x, y);

{

#pragma acc kernels
for (int 1 = 0; i < n; ++1i)
y[i] = a * x[i] + y[i];

return O;

}

_ /

© NVIDIA 2013

Compile and run

- C:
pgcc —acc -ta=nvidilia -Minfo=accel -0 saxpy acc saxpy.cC
* Fortran:

pgf90 —-acc -ta=nvidia -Minfo=accel -0 saxpy acc
saxpy.f90
* Compiler output:

pgcc -acc -Minfo=accel -ta=nvidia -o saxpy_acc saxpy.c
saxpy:
8, Generating copyin(x[:n-1])
Generating copy(y[:n-1])
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
9, Loop is parallelizable
Accelerator kernel generated
9, #pragma acc loop worker, vector(256) /* blockIdx.x threadIdx.x */
CC 1.0 : 4 registers; 52 shared, 4 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 8 registers; 4 shared, 64 constant, 0 local memory bytes; 100% occupancy

Example: Jacobi Iteration

s lteratively converges to correct value (e.g. Temperature), by
computing new values at each point from the average of

neighboring points.
—Common, useful algorithm
—Example: Solve Laplace equation in 2D:

A(i,j+1)

CoL . é L. . . Ak+1(111) - 4
A(i-1,3) A(G,) | A(I+1,))

A(i,j-1)

Jacobi Iteration C Code

while (error > tol && iter < iter max) q Iterate until
{ B converged

error=0.0;

for(int § = 1; j < n-1; j++) { <] Iterate across
for(int i = 1; i < m-1; i++) { matrix elements

Calculate new

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + q value from

A[j-1][i] + A[J+1][i]);

neighbors
Compute max
error = max (error, abs(Anew[j][i] - A[Jj]I[i]): q error for
} convergence
}
for(int § = 1; j < n-1; j++) { ~ Swap
for(int i = 1; i < m-1; i++) { <] input/output
A[jl[i] = Anew[]j][i]’ arrays

}
}

iter++;

OpenMP C Code

while (error > tol && iter < iter max) ({

error=0.0;
Parallelize loop

<] across CPU
for(int j = 1; j < n-1; j++) { threads
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[3J-1][1] + A[Jj+1][1]);

error = max(error, abs(Anew[]j][i] - A[Jj]I[i]);
}
} -
Parallelize loop
<] across CPU

for(int j = 1; j < n-1; j++) { threads
for(int i = 1; i < m-1; i++) {
A[j]l[i] = Anew[]][1i];
}
}

iter++;
}

GPU startup overhead

* |If no other GPU process running, GPU driver may be
swapped out
— Linux specific
— Starting it up can take 1-2 seconds

* Two options
— Run nvidia-smi in persistence mode (requires root

permissions)
— Run “nvidia-smi -q -1 30” in the background

* If your running time is off by ~2 seconds from results in

these slides, suspect this
— Nvidia-smi should be running in persistent mode for these

exercises

First Attempt: OpenACC C

while (error > tol && iter < iter max) ({

}

error=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[J-1][1] + A[J+1][1]);

error = max(error, abs(Anew[]j][i] - A[Jj]I[i]);

}
}

for(int j =1; j < n-1; j++) {
for(int 1i = 1; i < m-1; i++) {
A[j][i] = Anew[]][1]:
}
}

iter++;

Execute GPU
kernel for loop
nest

Execute GPU
kernel for loop
nest

First Attempt: Compiler output (C)

pgcc -acc -ta=nvidia -Minfo=accel -o laplace2d_acc laplace2d.c
main:
57, Generating copyin(A[:4095][:4095])
Generating copyout(Anew[1:4094][1:4094])
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
58, Loop is parallelizable
60, Loop is parallelizable
Accelerator kernel generated
58, #pragma acc loop worker, vector(16) /* blockldx.y threadldx.y */
60, #pragma acc loop worker, vector(16) /* blockldx.x threadldx.x */
Cached references to size [18x18] block of ‘A’
CC 1.3 : 17 registers; 2656 shared, 40 constant, 0 local memory bytes; 75% occupancy
CC 2.0 : 18 registers; 2600 shared, 80 constant, 0 local memory bytes; 100% occupancy
64, Max reduction generated for error
69, Generating copyout(A[1:4094][1:4094])
Generating copyin(Anew[1:4094][1:4094])
Generating compute capability 1.3 binary
Generating compute capability 2.0 binary
70, Loop is parallelizable
72, Loop is parallelizable
Accelerator kernel generated
70, #pragma acc loop worker, vector(16) /* blockldx.y threadldx.y */
72, #pragma acc loop worker, vector(16) /* blockldx.x threadldx.x */
CC 1.3 : 8 registers; 48 shared, 8 constant, 0 local memory bytes; 100% occupancy
CC 2.0 : 10 registers; 8 shared, 56 constant, 0 local memory bytes; 100% occupancy

First Attempt: Performance

CPU: Intel Xeon X5680 GPU: NVIDIA Tesla M2070
6 Cores @ 3.33GHz

Execution

CPU 1 OpenMP
thread

CPU 2 OpenMP
threads

CPU 4 OpenMP
threads

CPU 6 OpenMP
threads

OpenACC GPU

Speedup vs. 1 CPU core

Speedup vs. 6 CPU cores

© NVIDIA 2013

Basic Concepts

CPU Transfer data GPU
Memory Memory

Offload computation

For efficiency, decouple data movement and compute off-load

© NVIDIA 2013

Excessive Data Transfers

while (error > tol && iter < iter max)

m

{

error=0.0;

These copies
happen every
iteration of
the outer
while loop!*

for(int j =
for(int 1
Anew[]j] [

error =

}
}

*Note: there are two #pragma acc kernels, so there are 4 copies per while loop iteration!

1; j < n-1; j++) {
=1; i < m-1; i++) {
i] = 0.25 * (A[j][i+1l] + A[3j][i-1] +

A[j-1][1i] + A[j+1][i]):
max (error, abs(Anew[j][i] - A[j]I[1i]):;

Data Management

Data Construct

Fortran

Structured block

General Clauses

Manage data movement. Data regions may be nested.

Data Clauses

Allocates memory on GPU and copies data from host to
GPU when entering region and copies data to the host when exiting
region.

Allocates memory on GPU and copies data from
host to GPU when entering region.

Allocates memory on GPU and copies data to the
host when exiting region.

Allocates memory on GPU but does not copy.

Data is already present on GPU from another
containing data region.

and

Array Shaping
Compiler sometimes cannot determine size of arrays
— Must specify explicitly using data clauses and array “shape”
C

Fortran

Note: data clauses can be used on data, kernels Or parallel

Update Construct

Fortran

Clauses

Used to update existing data after it has changed in its
corresponding copy (e.g. update device copy after host
copy changes)

Move data from GPU to host, or host to GPU.
Data movement can be conditional, and asynchronous.

Second Attempt: OpenACC C

Copy A in at
<] beginning of loop, out
while (error > tol && iter < iter max) ({ at end. Allocate
error=0.0; Anew on accelerator

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j][i-1] +
A[3-1][1] + A[3+1][i]);

error = max (error, abs(Anew[j][i] - A[Jj][i]):
}
}

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[j][i] = Anew[]j][i];
}
}

iter++;

Second Attempt:
CPU: Intel Xeon X5680 Pe rfO rm a nce

6 Cores @ 3.33GHz GPU: NVIDIA Tesla M2070

Execution

CPU 1 OpenMP
thread

CPU 2 OpenMP
threads

CPU 4 OpenMP
threads

CPU 6 OpenMP Speedup vs. 1 CPU core
threads

Ope nACC G PU . Speedup vs. 6 CPU cores

Note: same code runs in 9.78s on NVIDIA Tesla M2090 GPU
© NVIDIA 2013

Further speedups

* OpenACC gives us more detailed control over parallelization
— Via gang, worker, and vector clauses

* By understanding more about OpenACC execution model
and GPU hardware organization, we can get higher speedups
on this code

* By understanding bottlenecks in the code via profiling, we
can reorganize the code for higher performance

Finding Parallelism in your code

(Nested) for loops are best for parallelization
Large loop counts needed to offset GPU/memcpy overhead
Iterations of loops must be independent of each other

— To help compiler: restrict keyword (C), ndependent
clause

Compiler must be able to figure out sizes of data regions
— Can use directives to explicitly control sizes

Pointer arithmetic should be avoided if possible
— Use subscripted arrays, rather than pointer-indexed arrays.

Function calls within accelerated region must be inlineable.

Tips and Tricks

(PGI) Use time option to learn where time is being spent

Eliminate pointer arithmetic

Inline function calls in directives regions
(PGI): or

Use contiguous memory for multi-dimensional arrays
Use data regions to avoid excessive memory transfers

Conditional compilation with OPENACC macro

Hints for data transfer

Memory transfer requires shallow/flat data structures

C-Arrays and C-structures (without pointers) are directly
supported

Transfer of C++ classes,
see Rob Farber's tutorial

The PGI Release notes Version 2014 §2.6.4 explains a clean
solution for transferring classes, similar to a deep copy of
data. New constructors as todev(), fromdev(), updatehost(), updatedev()
have to be implemented.

OpenACC Learning Resources

* OpenACC info, specification, FAQ, samples, and more
— http://openacc.org

* PGl OpenACC resources
— http://www.pgroup.com/resources/accel.htm

Complete OpenACC API

Kernels Construct

Fortran

Structured block

Clauses

Also any data clause

Kernels Construct

Each loop executed as a separate kernel on the GPU.

do i=1,n

a(i) = 0.0

b(i) = 1.0

c(i) = 2.0 kernel 1
end do
do i=1,n

a(i) = b(i) + c(1)

cndl do kernel 2

http://techenablement.com/a-first-transparent-openacc-c-class/
http://www.pgroup.com/doc/pgirn.pdf

Parallel Construct

Fortran
'Sacc parallel [clause ..] C
structured block fpragma acc parallel [clause
!Sacc end parallel -
{ structured block }
Clauses

if(condition)

async (expression)

num gangs (expression) private(list)

num workers (expression) firstprivate(1list)

vector length(expression yreduction(operator:1list)
Also any data clause

© NVIDIA 2013

Parallel Clauses

Controls how many parallel
gangs are created (CUDA gridDim).

Controls how many
workers are created in each gang (CUDA blockDim).

Controls vector length of each
worker (SIMD execution).

A copy of each variable in list is allocated
to each gang.

private variables initialized from
host.

private variables combined
across gangs.

Loop Construct

Fortran

loop

Combined directives

Detailed control of the parallel execution of the
following loop.

Loop Clauses

Applies directive to the following n nested
loops.

Executes the loop sequentially on the GPU.

A copy of each variable in list is created
for each iteration of the loop.

private variables combined
across iterations.

Loop Clauses Inside parallel
Region

Shares iterations across the gangs of the
parallel region.

Shares iterations across the workers of the
gang.
Execute the iterations in SIMD mode.

Loop Clauses Inside kernels Region

Shares iterations across across at
Most num gangs gangs.

Shares iterations across at
most num workers of a single gang.

Execute the iterations in SIMD
mode with maximum vector length.

Specify that the loop iterations are independent.

Other Syntax

Other Directives

construct Cache data in software managed data cache
(CUDA shared memory).

constructMakes the address of device data
available on the host.

directive Waits for asynchronous GPU activity to
complete.

directive Specify that data is to allocated in device
memory for the duration of an implicit data region created
during the execution of a subprogram.

Runtime Library Routines

Fortran C

] " "
use openacc #include "openacc.h

#include "openacc lib.h"

acc_async wait
acc_async wait all
acc_shutdown
acc_on device

acc malloc
acc_free

acc_get num devices
acc_set device type
acc_get device type
acc_set device num
acc_get device num
acc_async_test
acc_async test all

© NVIDIA 2013

Environment and Conditional

Compilation

Specifies which device type to connect
to.

Specifies which device number to
connect to.

Preprocessor directive for conditional compilation.
Set to OpenACC version

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

