#include "vdop.h" #include "geom.h" #include "getmatrix.h" #include "jacsolve.h" #include "userset.h" #include #include #include #include using namespace std; // ##################################################################### // ParMesh const & mesh, void JacobiSolve(CRS_Matrix const &SK, vector const &f, vector &u) { const double omega = 1.0; const int maxiter = 1000; const double tol = 1e-6, // tolerance tol2 = tol * tol; // tolerance^2 int nrows = SK.Nrows(); // number of rows == number of columns assert( nrows == static_cast(f.size()) && f.size() == u.size() ); cout << endl << " Start Jacobi solver for " << nrows << " d.o.f.s" << endl; // Choose initial guess for (int k = 0; k < nrows; ++k) { u[k] = 0.0; // u := 0 } vector dd(nrows); // matrix diagonal vector r(nrows); // residual vector w(nrows); // correction SK.GetDiag(dd); // dd := diag(K) ////DebugVector(dd);{int ijk; cin >> ijk;} // Initial sweep SK.Defect(r, f, u); // r := f - K*u vddiv(w, r, dd); // w := D^{-1}*r const double sigma0 = dscapr(w, r); // s0 := // Iteration sweeps int iter = 0; double sigma = sigma0; while ( sigma > tol2 * sigma0 && maxiter > iter) // relative error //while ( sigma > tol2 && maxiter > iter) // absolute error { ++iter; vdaxpy(u, u, omega, w ); // u := u + om*w SK.Defect(r, f, u); // r := f - K*u vddiv(w, r, dd); // w := D^{-1}*r sigma = dscapr(w, r); // s0 := // cout << "Iteration " << iter << " : " << sqrt(sigma/sigma0) << endl; } cout << "aver. Jacobi rate : " << exp(log(sqrt(sigma / sigma0)) / iter) << " (" << iter << " iter)" << endl; cout << "final error: " << sqrt(sigma / sigma0) << " (rel) " << sqrt(sigma) << " (abs)\n"; return; } void JacobiSmoother(Matrix const &SK, std::vector const &f, std::vector &u, std::vector &r, int nsmooth, double const omega, bool zero) { // ToDO: ensure compatible dimensions int const nnodes = static_cast(u.size()); if (zero) { // assumes initial solution is zero DiagPrecond(SK, f, u, omega); --nsmooth; // first smoothing sweep done } auto const &D = SK.GetDiag(); // accumulated diagonal of matrix @p SK. for (int ns = 1; ns <= nsmooth; ++ns) { SK.Defect(r, f, u); // r := f - K*u #pragma omp parallel for for (int k = 0; k < nnodes; ++k) { // u := u + om*D^{-1}*r u[k] = u[k] + omega * r[k] / D[k]; // MPI: distributed to accumulated vector needed } } return; } void DiagPrecond(Matrix const &SK, std::vector const &r, std::vector &w, double const omega) { // ToDO: ensure compatible dimensions auto const &D = SK.GetDiag(); // accumulated diagonal of matrix @p SK. int const nnodes = static_cast(w.size()); #pragma omp parallel for for (int k = 0; k < nnodes; ++k) { w[k] = omega * r[k] / D[k]; // MPI: distributed to accumulated vector needed } return; } Multigrid::Multigrid(Mesh const &cmesh, int const nlevel) : _meshes(cmesh, nlevel), _SK(), _u(_meshes.size()), _f(_meshes.size()), _d(_meshes.size()), _w(_meshes.size()), _Pc2f() { cout << "\n........................ in Multigrid::Multigrid ..................\n"; // Allocate Memory for matrices/vectors on all levels for (size_t lev = 0; lev < Nlevels(); ++lev) { _SK.push_back( FEM_Matrix(_meshes[lev]) ); // CRS matrix const auto nn = _SK[lev].Nrows(); _u[lev].resize(nn); _f[lev].resize(nn); _d[lev].resize(nn); _w[lev].resize(nn); auto vv = _meshes[lev].GetFathersOfVertices(); cout << vv.size() << endl; } // Intergrid transfer operators //cout << "\n........................ in Multigrid::Multigrid Prolongation ..................\n"; //_Pc2f.push_back( BisectInterpolation(vector(0)) ); // no prolongation to coarsest grid _Pc2f.push_back( BisectIntDirichlet() ); // no prolongation to coarsest grid for (size_t lev = 1; lev < Nlevels(); ++lev) { //cout << lev << endl; //cout << _meshes[lev].GetFathersOfVertices () << endl; _Pc2f.push_back( BisectIntDirichlet( _meshes[lev].GetFathersOfVertices (), _meshes[lev-1].Index_DirichletNodes () ) ); //cout << _Pc2f.back().Nrows() << " " << _Pc2f.back().Ncols() << endl; } cout << "\n..........................................\n"; } Multigrid::~Multigrid() {} void Multigrid::DefineOperators() { for (size_t lev = 0; lev < Nlevels(); ++lev) { DefineOperator(lev); } return; } // GH: Hack void Multigrid::DefineOperator(size_t lev) { _SK[lev].CalculateLaplace(_f[lev]); // fNice() in userset.h if (lev == Nlevels() - 1) { // fine mesh _meshes[lev].SetValues(_u[lev], [](double x, double y) -> double { return x *x * std::sin(2.5 * M_PI * y); } ); } else { _meshes[lev].SetValues(_u[lev], f_zero); } _SK[lev].ApplyDirichletBC(_u[lev], _f[lev]); return; } void Multigrid::JacobiSolve(size_t lev) { assert(lev < Nlevels()); ::JacobiSolve(_SK[lev], _f[lev], _u[lev]); } void Multigrid::MG_Step(size_t lev, int const pre_smooth, bool const bzero, int nu) { assert(lev < Nlevels()); int const post_smooth = pre_smooth; if (lev == 0) { // coarse level JacobiSmoother(_SK[lev], _f[lev], _u[lev], _d[lev], 100, 1.0, false); } else { JacobiSmoother(_SK[lev], _f[lev], _u[lev], _d[lev], pre_smooth, 0.85, bzero); if (nu > 0) { _SK[lev].Defect(_d[lev], _f[lev], _u[lev]); // d := f - K*u _Pc2f[lev].MultT(_d[lev], _f[lev - 1]); // f_H := R*d //DefectRestrict(_SK[lev], _Pc2f[lev], _f[lev - 1], _f[lev], _u[lev]); // f_H := R*(f - K*u) //_meshes[lev-1].Visualize(_f[lev - 1]); // GH: Visualize: f_H should be 0 on Dirichlet B.C. MG_Step(lev - 1, pre_smooth, true, nu); // solve K_H * u_H =f_H with u_H:=0 for (int k = 1; k < nu; ++k) { // W-cycle MG_Step(lev - 1, pre_smooth, false, nu); // solve K_H * u_H =f_H } _Pc2f[lev].Mult(_w[lev], _u[lev - 1]); // w := P*u_H vdaxpy(_u[lev], _u[lev], 1.0, _w[lev] ); // u := u + tau*w } JacobiSmoother(_SK[lev], _f[lev], _u[lev], _d[lev], post_smooth, 0.85, false); } return; } void Multigrid::MG_Solve(int pre_smooth, double eps, int nu) { size_t lev=Nlevels()-1; // fine level // start with zero guess DiagPrecond(_SK[lev], _f[lev], _w[lev], 1.0); // w := D^{-1]*f //double s0 = L2_scapr(_f[lev],_w[lev]); // s_0 := double s0 = dscapr(_f[lev],_w[lev]); // s_0 := double si; bool bzero = true; // start with zero guess int iter = 0; do { MG_Step(lev, pre_smooth, bzero, nu); bzero=false; _SK[lev].Defect(_d[lev], _f[lev], _u[lev]); // d := f - K*u DiagPrecond(_SK[lev], _d[lev], _w[lev], 1.0); // w := D^{-1]*d //si = L2_scapr(_d[lev],_w[lev]); // s_i := si = dscapr(_d[lev],_w[lev]); // s_i := ++iter; } while (si>s0*eps*eps); cout << "\nrel. error: " << sqrt(si/s0) << " ( " << iter << " iter.)" << endl; return; }