# Exercise 2 sheet: PDEs modelling and analysis

#### Lisa Pizzo

October 20, 2025

(A)

#### Given exercise

Model the stationary heat equation in the 1D domain  $\Omega = (0,1)$  without convection and without advection. Assume Dirichlet boundary conditions u(0) = 0 and u(1) = 1 for the unknown solution u(x). Assume a constant heating f(x) = c and a constant heat conductivity  $\lambda(x)$  in the domain.

- Which function spaces are required for u, f and  $\lambda$  in that PDE?
- The solution can be expressed as  $u(x) = u^H(x) + u^f(x)$  with  $u^H(x)$  as homogeneous solution of the PDE with f(x) = 0 and uf(x) as solution of the PDE with zero Dirichlet b.c. u(0) = u(1) = 0. Formulate both PDEs, determine  $u^H(x)$  and  $u^f(x)$  analytically and check correctness of u(x) in the original PDE.

#### **Solution:**

#### 1) Model

The stationary heat equation in one dimension is

$$-(\lambda(x) u'(x))' = f(x), \qquad x \in (0,1),$$

with u(0) = 0, u(1) = 1. With constant  $\lambda$  and constant f = c, this becomes

$$-\lambda u''(x) = c,$$
  $x \in (0,1),$   $u(0) = 0, u(1) = 1.$ 

#### **Function spaces:**

- $\lambda \in L^{\infty}(0,1)$  with  $\lambda(x) \geq \lambda_{\min} > 0$ ,
- $f \in L^2(0,1)$ ,
- weak solution  $u \in H^1(0,1)$  and the strong solution is  $u \in C^2([0,1])$ .

# 2) Decomposition $u = u_H + u_f$

### Homogeneous problem:

$$-\lambda u_H''(x) = 0$$
,  $u_H(0) = 0$ ,  $u_H(1) = 1$ .

Integrate twice:

$$u_H(x) = Ax + B.$$

Boundary conditions yield  $B=0,\,A=1.$  Hence

$$u_H(x) = x$$
.

## Particular problem:

$$-\lambda u_f''(x) = c, \quad u_f(0) = u_f(1) = 0.$$

Then  $u_f''(x) = -\frac{c}{\lambda}$ . Integrating twice:

$$u_f(x) = -\frac{c}{2\lambda}x^2 + Ax + B.$$

Boundary conditions give B=0 and  $A=\frac{c}{2\lambda}.$  Thus

$$u_f(x) = \frac{c}{2\lambda}x(1-x).$$

#### Total solution:

$$u(x) = x + \frac{c}{2\lambda}x(1-x).$$

## Verification.

$$u'(x) = 1 + \frac{c}{2\lambda}(1 - 2x), \quad u''(x) = -\frac{c}{\lambda}.$$

Then  $-\lambda u''(x) = c$  and the boundary conditions hold.

(B)

#### Given exercise

Model the stationary heat equation in the 1D domain  $\Omega = (0,1)$  without convection and without advection. Assume Dirichlet boundary conditions u(0) = 0 and u(1) = 1 for the unknown solution u(x). There are no internal source f(x) = 0 and we have heterogeneous

material 
$$\lambda(x) = \begin{cases} 1 & x \in (0, 0.5) \\ 10 & x \in (0.5, 1) \end{cases}$$
, i.e., the heat conductivity changes.

- Use the strong formulation of the PDE with interface conditions.
- Which function spaces are required for u, f and  $\lambda$  in that PDE?
- Determine the solution u(x) analytically.

## Solution: 1) Strong Formulation

In the two intervals we can consider  $\lambda$  to be constant and hence we end up with  $-\lambda(x)u''(x) = 0$  and hence u''(x) = 0. We need to take care of the interface  $x = \frac{1}{2}$ , there we want

$$u(1/2_{-}) = u(1/2_{+}), \quad \lambda u'(1/2_{-}) = \lambda u'(1/2_{+}).$$

#### **Function spaces:**

- $\lambda(x)$  is a piecewise constant, hence  $\lambda \in L^{\infty}(0,1)$  with  $\lambda(x) \geq \lambda_{\min} > 0$ .
- $f \equiv 0 \in L^2(0,1)$ .
- Weak solution is  $u \in H^1(0,1)$ , u(0) = 0, u(1) = 1 and strong solution is  $u \in C^0([0,1]) \cap C^2((0,0.5) \cup (0.5,1))$  with a continuous flux  $\lambda u'$  across the interface.

#### 2) Piecewise Solution

Let

$$u_1(x) = a_1 x + b_1, \quad x \in [0, 0.5], \qquad u_2(x) = a_2 x + b_2, \quad x \in [0.5, 1].$$

Boundary and interface conditions:

$$\begin{cases} u_1(0) = 0, \\ u_2(1) = 1, \\ u_1(0.5) = u_2(0.5), \\ a_1 = 10a_2. \end{cases}$$

 $u_1(0) = 0 \rightarrow b_1 = 0$  hence  $\frac{1}{2}a_1 = \frac{1}{2}a_2 + b_2 \rightarrow b_2 = \frac{1}{2}(a_1 - a_2)$  and together with  $a_1 = 10a_2$  we have  $b_2 = \frac{9}{2}a_2$ .

$$u_2(1)=1$$
:  $a_2+b_2=1 \to \frac{11}{2}a_2=1 \to a_2=\frac{2}{11} \to a_1=\frac{20}{11}$ . Hence we have  $b_2=\frac{9}{11}$ .

Hence

$$u(x) = \begin{cases} \frac{20}{11}x, & 0 \le x \le 0.5, \\ \frac{2}{11}x + \frac{9}{11}, & 0.5 \le x \le 1. \end{cases}$$

# Verification:

Continuity at  $x = \frac{1}{2}$ : both sides give  $\frac{10}{11}$ . Derivative (flux):  $1 \cdot \frac{20}{11} = 10 \cdot \frac{2}{11} = \frac{20}{11}$ . Boundary conditions: u(0) = 0, u(1) = 1. (C)

Given exercise Solve the Peclet problem

$$-u''(x) + pu'(x) = 0, \quad x \in (0, 1),$$

with u(0) = 0, u(1) = 1, analytically with a constant  $p \in \mathbb{R}$ .

- Hint: Substitute z(x) = u'(x), solve the ODE and incorporate the b.c..
- Visualize (Matlab, python,...) your solution for an increasing p > 0 as well as for a decreasing p < 0.

Solution: 1) Analytical Solution Let z(x) = u'(x). Then

$$-z'(x) + pz(x) = 0 \to z'(x) = pz(x) \to z(x) = Ce^{px}.$$

Integrate, with  $p \neq 0$ 

$$u(x) = \frac{C}{p}e^{px} + D.$$

$$u(0) = 0 \to \frac{C}{p} + D = 0 \to D = -\frac{C}{p}$$
.  $u(1) = 1 \to \frac{C}{p}(e^p - 1) = 1 \to \frac{C}{p} = \frac{1}{e^p - 1}$ . Hence  $u(x) = \frac{e^{px} - 1}{e^p - 1}$ .

If p=0: The equation is  $-u''=0 \to u(x)=Ax+B$ .  $u(0)=0,\ u(1)=1 \to u(x)=x$ . Limit as  $p\to 0$  gives x as expected. Hence

$$u(x) = \begin{cases} \frac{e^{px} - 1}{e^p - 1} & p \neq 0, \\ x & p = 0. \end{cases}$$

## 3) Visualization in Matlab

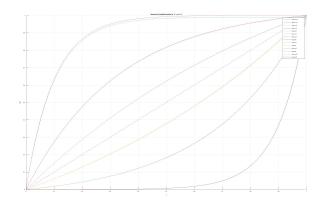


Figure 1: Solution of -u'' + pu' = 0 with u(0) = 0, u(1) = 1 for various p values.