assemble_1D.m Wed Jan 14 20:52:12 2026 1

1l: function [K,F] = assemble_1D (x, lambda, f)

2: N = length(x);

3: K = zeros (N);

4: F = zeros(N,1);

5:

6: for i = 1:N-1

7 h = x(i+1)-x(1);

8: xm = (x(i)+x(i+1l))/2; %mid point evaluation

9: lam = lambda (xm) ;
10: Ke = lam/h * [1 -1; -1 11; %exact Pl stiffness matrix
11: xm = (x(1)+x(i+1))/2;
12: Fe = f(xm)*h/2 * [1;1]; %mid point quadrature for RHS
13: %assembly into global system
14: K(i:i+1,4i:i+1) = K(i:i+1,1i:i+1) + Ke;
15: F(i:i+1l) = F(i:i+1) + Fe;
16: end
17: end

[/L,ITO{M(}\ wly o wl accavag, ol

Mobile User

ExX6A.m

10:
11:
12:
13:
14:
15:

x=0)

16:
17:
18:

19:
20:
21:
22
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
471 :
42
43:
44 .
45:
46:
47 :
48 :

OooJouldWNR

Wed Jan 14 20:52:12 2026 1
clear; clc; close all;
pList = [5, 10, 20, 100];
nlter 9;

figure;

tiledlayout (2, 2)

for ip = l:length(pList)
p = plist (ip);

f = @(x) 2*p"3*x./(p 2*x."2+1)."2; $RHS

lambda = Q@(x) 1; ®DIffusion coefficient
u_exact = @ (x) atan(p*x);
x = linspace(-1,1,10); %initial uniform mesh (includes

for it = l:nlter %adaptive FEM loop

[K,F] = assemble_1D (x,lambda, f); ?%assemble global
stiffness matrix K and load vector F

2Neumann boundary conditions at x=1
F(end) = F(end) + p/(p"2+1);
eDirichlet boundary conditions at x=-1
K(1,:) = 0;

K(1,1) = 1;

F(l) = —atan(p);

u=K\ F;
if it < nlIter % h—-adaptivity loop

eta = flux_jump (x,u, lambda) ;
x = h_adapt (x,eta,0.3);

end
end
u_ex = u_exact(x(:)); % force column vector
err_inf = max(abs(u - u_ex));
nexttile

plot (x,u,’-o’, " LineWidth’,1.5); hold on
plot (x,u_ex, ' —=', ' LineWidth’,1.5)
title(['p = ',num2str(p)])

xlabel ('x"), ylabel('u’)

legend (' FEM’ , 'exact’, ' Location’, "'best’)
grid on

fprintf('p = %d\n’, p);
fprintf ('error = %.3e\n\n’, err_inf);

end

sgtitle (' Exercise 6A: h—adaptivity and exact solution

comp

Mobile User

Ex6A.m Wed Jan 14 20:52:12 2026

Ex6B.m Wed Jan 14 20:52:12 2026 1

1l: clear; clc;

2: lambda = Q@(x) (x < 1/sgrt(2)) + 10*(x >= 1/sqgrt(2)); 9%diff
usion coefficient

3: £ = @(x) 0; ®%homogeneous RHS

4: x = linspace(0,1,6); %coarse initial mesh, doesn’t inclu
de x_m
5: nIter = 6;
6:
7: for it = l:nlter
8: [K,F] = assemble_1D (x,lambda, f); %assemble
9: K(1,:) = 0; K(1,1) =1; F(1l) = 0; % Dirichlet BC at
x=0
10: K(end,:) = 0; K(end,end) = 1; F(end) = 1; % Dirichlet
BC at x=1
11: u = K\F;
12:
13: if it < nlter %h-adaptivity loop
14: eta = flux_jump (x, u, lambda);
15: X = h_adapt(x,eta,0.4);
16: end
17: end
18:
19: figure

20: plot(x,u,’'—-0o’,’ LineWidth’,1.5)

21: xlabel('x"), ylabel('u’)

22: title ('Ex6B, h-—adaptivity with coefficient Jjump’)
23: grid on

Ex6C.m Wed Jan 14 20:52:12 2026 1

1l: clear; clc; close all;
2: p = 7170;
3: Sp=-70;
4: lambda = Q(x) 1; <%constant diffusion
5: £ = @(x) 0; @%homogeneous RHS
6:
7: N = 30; % Initial mesh (uniform)
8: x = linspace(0,1,N)’;
9:
10: nlIter = 8;
11:
12: for it = l:nlIter
13: [K,F] = assemble_1D (x, lambda, f); %assemble
14: for i = l:length(x)-1 $%convection term added manually
15: h = x(i+l) - x(1);
16: Ke_conv = p/2 * [-1 1; -1 11; v
17: K(i:1i+41,i:i+1) = K(i:i+1l,i:i+1) + Ke_convy
18: end
19: K(1,:) = 0; K(1,1) = 1; F(1) = 0; % Dirichlet BC at x=
0
20: K(end,:) = 0; K(end,end) = 1; F(end) = 1; % Dirichlet
BC at x=1
21:
22 u = K\F;
23:
24 : if it < nIter
25: Nn = length(x); %initialize indicator
26: eta = zeros(Nn,1);
27: for j = 2:Nn-1 ?%interior nodes only
28: ul = (u(j)-u(i-1))/(x(j)-x(j-1)); %left deriva
tive
29: ur = (u(j+l)-u(j))/(x(j+1)-x(3)); $%Sright deriv
ative
30: $Jump in convection-diffusion flux
31: Jl = —ul + p*u(3j); L(/& 6
32: Jr = —ur + p*u(j)s 3 :
33: eta(j) = abs(Jdr - JD)s C]
34: end 4;2)
35: X = r_adapt (x, f£ta); x S ouZé/ é{ /(]J
36: end
37: end (/)Qéqéﬁéq Zowﬁéﬂé
38: G é‘%
39: figure

40: plot(x,u, -0’ , LineWidth’,1.5)

4]1: xlabel('x’), ylabel('u’)

42: title(['Ex6C, r—-adaptivity, PAGclet p = ’',num2str(p)])
43: grid on

Mobile User

flux_jump.m Wed Jan 14 20:52:12 2026 1

1: function eta = flux_Jjump (x,u, lambda)

2: N = length(x);

3: eta = zeros(N,1);

4

5: for 3 = 2:N-1

o: ul = (u(j)-u(i-1))/(x(J)-x(j-1)); ¢%left derivative
7 ur = (u(j+l)-u(j))/(x(j+1)-x(3j)); %eright derivative
8: eta(j) = abs (lambda (x(3j))*ur - lambda(x(3j)) *ul); ?%erro

r indicator / T ?

9: end
10: end f =0 t0

ml ('Orbcc(m‘6 VWZ@/‘“[Ckf“‘%

Mobile User

h_adapt.m Wed Jan 14 20:52:12 2026 1

1: function xnew = h_adapt (x,eta,theta) %eta is local error

2: xXnew = x(1);

3: for i = l:length(x)-1

4: if eta(i) > theta*max(eta) %if local error 1is large, 1
nster a midpoint

5: xnew = [xnew, (x(i)+x(i+1l))/21;

6: end

7 xnew = [xnew, x(i+l)1; %if local error 1is small, keep
the element unchanged

8: end

9: xXnew = unique (xnew); J/

10: end

Mobile User

r_adapt.m Wed Jan 14 20:52:12 2026 1

1: function xnew = r_adapt (x,eta_elem)

2: N = length(x);

3: w = abs(eta_elem) + 1le-10; $%error based monitor function
4: s = zeros(N,1); '

5: for i = 2:N T

6: s(i) = s(i-1) +*w<::;); Zcumulative sum
7: end

8: s = s / s(end); % normalize to [0,1]

9: s_new = linspace(0,1,N)"’;
10: xnew = interpl (s, x, s_new, ’'linear’); J/
11: end

Mobile User

