% Parameters N = 501; % number of grid points x = linspace(0,1,N); % grid dx = x(2)-x(1); % grid spacing p_values = [-10, -3, -1, 0, 1, 3, 10]; % Analytical solution function u_analytical = @(x,p) (abs(p) < 1e-12).*x + (abs(p) >= 1e-12).*((exp(p.*x)-1)./(exp(p)-1)); figure; hold on; for k = 1:length(p_values) p = p_values(k); e = ones(N-2,1); % Second derivative: -u'' D2 = spdiags([e -2*e e], -1:1, N-2, N-2)/dx^2; % First derivative: p*u' D1 = spdiags([-e*0.5 e*0.5], [-1 1], N-2, N-2)/dx; L = -D2 + p*D1; % Right-hand side b = zeros(N-2,1); % Incorporate boundary conditions b(1) = b(1) + 0/dx^2; % u(0)=0 b(end) = b(end) + 1/dx^2; % u(1)=1 % Solve linear system u_inner = L\b; u_num = [0; u_inner; 1]; % add boundary values % Plot numerical and analytical solution plot(x, u_num, '--', 'LineWidth', 2, 'DisplayName', sprintf('num, p=%g',p)); plot(x, u_analytical(x,p), '-', 'LineWidth', 2, 'DisplayName', sprintf('ana, p=%g',p)); end xlabel('x'); ylabel('u(x)'); title('Numerical vs Analytical solution of -u'''' + p u'' = 0'); legend show; grid on; hold off;