./accu_template/geom. cpp

Mon Jan 12 07:22:36 2026 1

1: #undef CUTHILL_MCKEE
2: // see: http://1lvm.org/docs/CodingStandards.html#include—-style
3: #include "vdop.h"
4: #ifdef CUTHILL_ MCKEE
5: #include "cuthill_mckee_ordering.h"
6: #endif
7: #include "geom.h"
8:
9: #include <algorithm>
10: #include <array>
11: #include <cassert>
12: #include <cmath>
13: #include <ctime> // contains clock ()
14: #include <fstream>
15: #include <iostream>
16: #include <list>
17: #include <string>
18: #include <vector>
19:
20: using namespace std;
21:
22: Mesh: :Mesh(int ndim, int nvert_e, int ndof_e, int nedge_e)
23: _nelem(0), _nvert_e(nvert_e), _ndof_e(ndof_e), _nnode(0), _ndim(ndim), _ia(0),
_xc(0),
24 _bedges (0), _sdedges(0),
25: _nedge (0), _nedge_e(nedge_e), _edges(0), _eal(), _ebedges(),
26: _dummy (0)
27: |
28: }
29:
30: Mesh:: "Mesh/()
31: {}
32:
33: void Mesh: :SetValues (std::vector<double> &v, const function<double (double, double) >
&func) const
34: {
35: int const nnode = Nnodes(); // number of vertices in mesh
36: assert (nnode == static_cast<int> (v.size()));
37: for (int k = 0; k < nnode; ++k)
38: {
39: v([k] = func(_xc[2 * k], _xc[2 * k + 1]);
40: }
41: }
42
43: void Mesh: :SetBoundaryValues (vector<double> &v, const function<double (double, double
)> &func) const
44 : {
45: auto const idx = Index_BoundaryNodes () ;
46: for (size_t ik = 0; ik < idx.size(); ++ik)
47 : {
48: const int k = idx[ik];
49: v[k] = func(_xc[2 * k], _xc[2 * k + 1]);
50: }
51: }
52:
53: void Mesh: :SetDirchletValues (vector<double> &v, const function<double (double, double
)> &func) const
54:. {
55: auto const idx = Index_DirichletNodes();
56: for (size_t ik = 0; ik < idx.size(); ++ik)
57: {
58: const int k = idx[ik];
59: v[k] = func(_xc[2 * k], _xc[2 * k + 1]);
60: }
61: }
62:
63:

64:

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 2
65: void Mesh: :Debug () const
66: {
67: cout << "\n ############### Debug M E S H ###################\n";
68: cout << "\n ..., Coordinates @ =¢ ..ttt \n"
69: for (int k = 0; k < _nnode; ++k)
70: {
71: cout << k << " "
72 for (int 1 = 0; i < _ndof_e; ++1i)
73: {
74 : cout << _xc[2*k+i] << " ",
75: }
76: cout << endl;
77 }
78: cout << "\n Elements = ..t \n"
79: for (int k = 0; k < _nelem; ++k)
80: {
81: cout << k << " "e.
82: for (int 1 = 0; i < _ndof_e; ++i)
83: cout << _ia[_ndof_e * k + i] << " ";
84: cout << endl;
85: }
86: cout << "\n ..., Boundary (vertices) = \n"
87: cout << " _bedges " << _bedges << endl;
88: return;
89: 1}
90:
91: void Mesh: :DebugEdgeBased () const
92: {
93: cout << "\n ############### Debug M E S H (edge based) #i#i#################\n";
94 : cout << "\n Coordinates @ @ ...t \n";
95: for (int k = 0; k < _nnode; ++k)
96: {
97: cout << k << " " <K< _xc[2 * k] << " " << _xc[2 * k + 1] << endl;
98: }
99:
100: cout << "\n ...l edges = L \n"
101: for (int k = 0; k < _nedge; ++k)
102: {
103: cout << k << " "y
104: for (int i = 0; i < 2; ++i)
105: cout << _edges[2 * k + i] << " ",
106: cout << endl;
107: }
108:
109: cout << "\n ..., Elements (edges) =ccciie... \n";
110: assert (_nedge_e * _nelem == static_cast<int>(_ea.size()));
111: for (int k = 0; k < _nelem; ++k)
112: {
113: cout << k << " "
114: for (int i = 0; i < _nedge_e; ++i)
115: cout << _eal[_nedge_e * k + 1] << " "
116: cout << endl;
117: }
118: cout << "\n ...l Boundary (edges) @c.iiieean.. \n"
119: cout << " _ebedges " << _ebedges << endl;
120:
121: return;
122: }
123:
124: void Mesh: :Write_ascii_matlab (std::string const &fname, std::vector<double> const &v
) const
125: {
126: assert (Nnodes () == static_cast<int>(v.size())); // fits vector length to mesh
information?
127:
128: ofstream fout (fname) ; // open file ASCII mode
129: if (!'fout.is_open())

130: {

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 3

131: cout << "\nFile " << fname << " has not been opened.\n\n" ;

132: assert (fout.is_open() && "File not opened.");

133: }

134:

135: string const DELIMETER(" "); // define the same delimiter as 1in matlab/ascii_
read*.m

136: int const OFFSET (1) ; // convert C-indexing to matlab

137:

138: // Write data: #nodes, #space dimensions, #elements, #vertices per element

139: fout << Nnodes () << DELIMETER << Ndims () << DELIMETER << Nelems () << DELIMETER <
< NverticesElements () << endl;

140:

141: // Write coordinates: x_k, y_k in separate lines

142: assert (Nnodes () *Ndims () == static_cast<int>(_xc.size()));

143: for (int k = 0, kj = 0; k < Nnodes(); ++k)

144: {

145: for (int j = 0; j < Ndims(); ++7j, ++kj)

146: {

147: fout << _xc[kj] << DELIMETER;

148: }

149: fout << endl;

150: }

151:

152: // Write connectivity: ia_k,0, ia_k,1 etc 1n separate lines

153: assert (Nelems () *NverticesElements () == static_cast<int>(_ia.size()));

154: for (int k = 0, kj = 0; k < Nelems(); ++k)

155: {

156: for (int j = 0; Jj < NverticesElements(); ++j, ++k3j)

157: {

158: fout << _ial[kj] + OFFSET << DELIMETER; // C to matlab

159: }

160: fout << endl;

161: }

162:

163: // Write vector

164: for (int k = 0; k < Nnodes(); ++k)

165: {

166: fout << v[k] << endl;

167: }

168:

169: fout.close();

170: return;

171: }

172:

173:

174: void Mesh: :Export_scicomp (std::string const &basename) const

175: {

176: //assert (Nnodes () == static_cast<int>(v.size())); // fits vector length to mes
h information?

177: string const DELIMETER(" "); // define the same delimiter as in matlab/ascii_
read*.m

178: int const OFFSET (0) ;

179: {

180: // Write coordinates into scicomp-file

181: string fname (basename + "_coords.txt");

182: ofstream fout (fname); // open file ASCII mode

183: if (!fout.is_open())

184: {

185: cout << "\nFile " << fname << " has not been opened.\n\n" ;

186: assert (fout.is_open() && "File not opened.");

187: }

188:

189: fout << Nnodes () << endl;

190: // Write coordinates: x_k, y_k in separate lines

191: assert (Nnodes () *Ndims () == static_cast<int>(_xc.size()));

192: for (int k = 0, kj = 0; k < Nnodes(); ++k)

193: {

194: for (int j = 0; j < Ndims(); ++3j, ++kj)

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 4

195: {

196: fout << _xc[kj] << DELIMETER;

197: }

198: fout << endl;

199: }

200: fout.close();

201:

202: }

203:

204: {

205: // Write elements into scicomp-file

206: string fname (basename + "_elements.txt");

207: ofstream fout (fname) ; // open file ASCII mode

208: if (!fout.is_open())

209: {

210: cout << "\nFile " << fname << " has not been opened.\n\n" ;

211: assert (fout.is_open() && "File not opened.");

212: }

213:

214: fout << Nelems () << endl;

215:

216: // Write connectivity: ia_k,0, ia_k,1 etc 1in separate lines

217: assert (Nelems () *NverticesElements () == static_cast<int>(_ia.size()));

218: for (int k = 0, kj = 0; k < Nelems(); ++k)

219: {

220: for (int j = 0; Jj < NverticesElements(); ++j, ++k7j)

221: {

222: fout << _ialkj] + OFFSET << DELIMETER; // C to matlab

223: }

224: fout << endl;

225: }

226: fout.close();

227: }

228:

229: return;

230: }

231:

232: /*

233: manjaro> matlab

234: MATLAB is selecting SOFTWARE OPENGL rendering.

235: /usr/local/MATLAB/R2019a/bin/glnxa64/MATLAB: error while loading shared libraries:
libcrypt.so.1l: cannot open shared object file: No such file or directory

236:

237: SOLUTION: sudo pacman —S libxcrypt—-compat + reboot

238: */

239:

240: void Mesh: :Visualize (vector<double> const &v) const

241: {

242: // define external command

243: const string exec_m("matlab —-nosplash < visualize_results.m"); /
/ Matlab

244 //const string exec_m("octave —--no-window-system —--no-gui visualize_results.m");

// Octave until version 6.3

245:

//const string exec_m("octave ——no—-gui —-—eval visualize results.m"); // Octave s

ince version 6.4

246:

// Octave
247 :
248:
249:
250:
251:

252:
253:
254:
255:
256:

//const string exec_m("flatpak run org.octave.Octave visualize_results.m");

(flatpak) : desktop GH

if

{
}

const string fname ("uv.txt");
Write_ascii_matlab (fname, v);

int ierror = system(exec_m.c_str()); // call ext
ernal command

(ierror != 0)

cout << endl << "Check path to Matlab/octave on your system" << endl;

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 5

257: cout << endl;

258: return;

259: 1}

260:

261: std::vector<int> Mesh::Index_ DirichletNodes () const

262: {

263: //vector<int> idx (_bedges) ; // copy

264: // 2020-01-08

265: // copy only the Dirichlet boundary nodes, not all boundary node
S.

266: vector<int> idx (_bedges.size());

267: size_t cnt=0;

268: for (size_t kb = 0; kb < _bedges.size(); kb+=2)

269: {

270: if (_sdedges.at (kb) <O || _sdedges.at (kb+1) <0) // one neighboring subdomain
is negativ

271: {

272 idx[cnt] = _bedges[kb];

273: ++cnt;

274 : idx[cnt] = _bedges[kb+1];

275: ++cnt;

276: }

277 : }

278: idx.resize(cnt);

279:

280: sort (idx.begin (), idx.end()); // sort

281: idx.erase(unique (idx.begin(), idx.end()), idx.end()); // remove duplicate data

282:

283: return idx;

284: 1}

285:

286: // 2020-01-08

287: std::vector<int> Mesh::Index_BoundaryNodes () const

288: {

289: vector<int> idx (_bedges); // copy

290:

291: sort (idx.begin(), idx.end()); // sort

292: idx.erase(unique (idx.begin(), idx.end()), idx.end()); // remove duplicate data

293:

294 : return idx;

295: }

296:

297: // GH

298: // only correct for simplices

299: wvoid Mesh: :DeriveEdgeFromVertexBased_fast_2 ()

300: {

301: assert (NedgesElements () == 3);

302: assert (NverticesElements () == 3); // 3 vertices, 3 edges per element are assum
ed

303:

304: // Store indices of all elements connected to a vertex

305: vector<vector<int>> vertex2elems (_nnode, vector<int> (0));

306: for (int k = 0; k < Nelems(); ++k)

307: {

308: for (int i = 0; i < 3; ++1i)

309: {

310: vertex2elems[_ia[3 * k + i]].push_back(k);

311: }

312: }

313: size_t max_neigh = 0; // maximal number of elements per vertex

314: for (auto const &v : vertexl2elems)

315: {

316: max_neigh = max(max_neigh, v.size());

317: }

318: //cout << endl << vertexZelems << endl;

319:

320: // assign edges to elements

321: _ea.clear(); // old data still in _ea without clear/()

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 6

322: _ea.resize (NedgeskElements () *Nelems (), -1);

323: // Derive the edges

324: _edges.clear();

325: _nedge = 0;

326:

327: // convert also boundary edges

328: unsigned int mbc (_bedges.size() / 2); // number of boundary edges

329: _ebedges.clear();

330: _ebedges.resize (mbc, -1);

331: vector<bool> bdir (_nnode, false); // vector indicating boundary nodes

332: //for (size_t kb = 0; kb < _bedges.size(); ++kb)

333: 2l

334: //bdir.at (_bedges[kb]) = true;

335: //}

336: // 2020-01-08

337: // GH ToDo: Selection of Dirichlet edges/nodes is still wrong

338: // Problem: _bedges is used externally instead of the local correct bdi
r.

339: for (size_t kb = 0; kb < _bedges.size(); kb+=2)

340: {

341: bool const booldir = _sdedges.at (kb) <0 || _sdedges.at (kb+1) <0; // one neig
hboring subdomain is negativ

342: bdir.at (_bedges[kb]) = booldir;

343: bdir.at (_bedges[kb+1l]) = booldir;

344: }

345:

346: vector<int> vert_visited; // already visisted neighboring vertices o
f k

347: vert_visited.reserve (max_neigh); // avoids multiple (re—)allocations

348: for (int k = 0; k < _nnode; ++k) // vertex k

349: {

350: vert_visited.clear () ;

351: auto const gelems = vertex2elems[k]; // element neighborhood

352: int kedges = static_cast<int>(_edges.size()) / 2; // #edges before vertex k
is investigated

353: //cout << elems << endl;

354: // GH: problem, shared edges appear twice.

355: int nneigh = elems.size();

356: for (int ne = 0; ne < nneigh; ++ne) // iterate through neighborhood

357: {

358: int e = elems[ne]; // neighboring element e

359: //cout << "e = " << e << endl;

360: for (int i = 3 * e + 0; 1 < 3 * e + _nvert_e; ++i) // vertices of elem
ent e

361: {

362: int const vert = _ial[i];

363: //cout << "vert: " << vert << " "<< k << endl;

364: if (vert > k)

365: {

366: int ke = -1;

367: auto const iv = find(vert_visited.cbegin(), vert_visited.cend(),
vert) ;

368: if (iv == vert_visited.cend()) // vertex not yet visited

369: {

370: vert_visited.push_back (vert); // now, vertex vert 1s visite
d

371: _edges.push_back (k) ; // add the new edge k->vert

372: _edges.push_back (vert) ;

373:

374: ke = _nedge;

375: ++_nedge;

376: // Is edge ke also a boundary edge?

377: if (bdir[k] && bdir[vert])

378: {

379: size_t kb = 0;

380: while (kb < _bedges.size() && (! ((_bedges[kb]
bedges[kb + 1] == vert) || (_bedges[kb] == vert && _bedges[kb + 1] == k))))

381: {

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 7

382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:

397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407 :
408:
409:
410:
411:
412:
413:
414:
415:
416:

ed

417 :
418:
419:
420:
421 :
422
423:
424
425:
426:
427 :
428:
429:
430:
431 :
432:
433:
434
435:
436:
437 :
438:
439:
440:

f k

441 :
442 :
443
444
445:
446:

kb += 2;
}
if (kb < _bedges.size())
{
_ebedges[kb / 2] = ke;
}

}
else
{
int offset = iv - vert_visited.cbegin();
ke = kedges + offset;
}
// assign that edge to the edges based connectivity of element e
auto ip = find if(_ea.begin() + 3 * e, _ea.begin() + 3 * (e + 1)

[l (int v) -> bool {return v < 0;});

//cout << ip—_ea.begin()+3*%e << " " << *ip << endl;
assert (ip != _ea.cbegin() + 3 * (e + 1)); // data error !
*ip = ke;
}
}
}
}
assert (Mesh::Check_array_dimensions ());
return;
}
// HG
// GH

// only correct for simplices
void Mesh: :DeriveEdgeFromVertexBased_fast ()
{

assert (NedgesElements ()

== 3);
assert (NverticesElements () ==

3); // 3 vertices, 3 edges per element are assum

// Store indices of all elements connected to a vertex
vector<vector<int>> vertex2elems (_nnode, vector<int>(0));
for (int k = 0; k < Nelems(); ++k)
{

for (int i1 = 0; i < 3; ++1i)

{

vertex2elems[_ia[3 * k + i]].push_back(k);

}

}

size_t max_neigh = 0; // maximal number of elements per vertex
for (auto const &v : vertexl2elems)
{

max_neigh = max(max_neigh, v.size());

}

//cout << endl << vertexZelems << endl;

// assign edges to elements

_ea.clear(); // old data still in _ea without clear()
_ea.resize (NedgesElements () *Nelems (), -1);

// Derive the edges

_edges.clear();

_nedge = 0;

vector<int> vert_visited; // already visisted neighboring vertices o
vert_visited.reserve (max_neigh); // avoids multiple (re-)allocations

for (int k = 0; k < _nnode; ++k) // vertex k

{
vert_visited.clear();
auto const &elems = vertexlelems[k]; // element neighborhood
int kedges = static_cast<int>(_edges.size()) / 2; // #edges before vertex k

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 8

is investigated

447 : //cout << elems << endl;

448: // GH: problem, shared edges appear twice.

449 int nneigh = elems.size();

450: for (int ne = 0; ne < nneigh; ++ne) // iterate through neighborhood

451 : {

452 int e = elems[nel; // neighboring element e

453 //cout << "e = " << e << endl;

454 : for (int 1 = 3 * e + 0; 1 < 3 * e + _nvert_e; ++1) // vertices of elem
ent e

455: {

456: int const vert = _ial[i];

457 : //cout << "vert: " << vert << " "<< k << endl;

458: if (vert > k)

459: {

460: int ke = -1;

461 : auto const iv = find(vert_visited.cbegin(), vert_visited.cend(),
vert) ;

462: if (iv == vert_visited.cend()) // vertex not yet visited

463: {

464 : vert_visited.push_back (vert); // now, vertex vert is visite

465: _edges.push_back (k) ; // add the new edge k—>vert
466: _edges.push_back (vert) ;

467:

468: ke = _nedge;

469: ++_nedge;

470: }

471: else

472 {

473 int offset = iv - vert_visited.cbegin();

474 ke = kedges + offset;

475 }

476: // assign that edge to the edges based connectivity of element e
477 auto ip = find if(_ea.begin() + 3 * e, _ea.begin() + 3 * (e + 1)

478 : [l (int v) -> bool {return v < 0;});
479: //cout << ip—_ea.begin()+3*%e << " " << *ip << endl;
480: assert (ip != _ea.cbegin() + 3 * (e + 1)); // data error !
481: *ip = ke;

482 }

483: }

484 : }

485: }

486:

487: // convert also boundary edges

488: unsigned int mbc (_bedges.size() / 2); // number of boundary edges
489: _ebedges.clear () ;

490: _ebedges.resize (mbc, -1);

491 : for (unsigned int kb = 0; kb < mbc; ++kb)

492 {

493: int const vl = min(_bedges[2 * kb], _bedges[2 * kb + 1]); // vertices
494 : int const v2 = max(_bedges[2 * kb], _bedges[2 * kb + 1]);

495:

496: size_t e = 0;

497 : // ascending vertex indices for each edge e in _edges

498: while (e < _edges.size() && (_edges[e] != vl || _edges[e + 1] != v2))
499: {

500: e += 2; // next edge

501: }

502: assert (e < _edges.size()); // error: no edge found
503: _ebedges[kb] = e / 2; // index of edge

504: }

505:

506:

507: assert (Mesh::Check_array_dimensions ());

508: return;

509: }

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 9

510: // HG

511:

512:

513: #include // pair

514:

515: void Mesh: :DeriveEdgeFromVertexBased_slow ()

516: {

517: assert (NedgesElements () == 3);

518: assert (NverticesElements () == 3); // 3 vertices, 3 edges per element are assum
ed

519:

520: _ea.resize (NedgesElements () *Nelems ()) ;

521: vector< pair<int, int> > edges(0);

522: int nedges = 0;

523:

524: for (int k = 0; k < Nelems(); ++k)

525: {

526: array < int, 3 + 1 > ivert{{ _ia[3 * k], _ial[3 * k + 1], _ial[3 * k + 2], _ia
[3 * kI }};

527:

528: for (int 1 = 0; i < 3; ++1)

529: {

530: pair<int, int> e2; // this edge

531: if (ivert[i] < divert[i + 11]) // guarantee ascending order

532: {

533: e2 = make_pair(ivert[i], ivert[i + 1]);

534: }

535: else

536: {

537: e2 = make_pair(ivert[i + 1], ivert[i]);

538: }

539:

540: int eki(-1); // global index of this edge

541: auto ip = find(edges.cbegin(), edges.cend(), e2);

542: if (ip == edges.cend()) // edge not found ==> add that edge

543: {

544: //cout << "found edge\n";

545: edges.push_back (e2); // add the new edge

546: eki = nedges; // index of this new edge

547: ++nedges;

548:

549: }

550: else

551: {

552: eki = ip - edges.cbegin(); // index of the edge found

553: }

554: _eal[3 * k + 1] = eki; // set edge index in edge based connectiv
ity

555: }

556: }

557:

558: assert (nedges == static_cast<int> (edges.size()));

559: _nedge = nedges; // set the member variable for number of edg
es

560: _edges.resize (2 * nedges); // allocate memory for edge storage

561: for (int k = 0; k < nedges; ++k)

562: {

563: _edges[2 * k] = edges[k].first;

564: _edges[2 * k + 1] = edges[k].second;

565: }

566:

567: // convert also boundary edges

568: unsigned int mbc (_bedges.size () / 2); // number of boundary edges

569: //cout << "AA " << mbc << endl;

570: _ebedges.resize (mbc);

571: for (unsigned int kb = 0; kb < mbc; ++kb)

572: {

573: const auto vvl = make_pair (_bedges[2 * kb], _bedges[2 * kb + 1]); // both

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 10

574: const auto vv2 = make_pair(_bedges([2 * kb + 1], _bedges[2 * kb]); // dire
ctions of edge

575: auto ipl = find(edges.cbegin(), edges.cend(), vvl);

576: if (ipl == edges.cend())

577: {

578: ipl = find(edges.cbegin(), edges.cend(), vv2);

579: assert (ipl != edges.cend()); // stop because inconsistency (bou
ndary edge has to be included in edges)

580: }

581: _ebedges[kb] = ipl - edges.cbegin(); // index of edge

582: }

583:

584: assert (Mesh::Check_array_dimensions ());

585: return;

586: }

587:

588: wvoid Mesh: :DeriveVertexFromEdgeBased ()

589: {

590: assert (NedgesElements () == 3);

591: assert (NverticesElements () == 3); // 3 vertices, 3 edges per element are assum
ed

592:

593: _la.resize (NedgesElements () *Nelems()); // NN

594:

595: for (int k = 0; k < Nelems(); ++k)

596: {

597: //vector<int> ivert (6); // indices of vertices

598: array<int, 6> ivert; // indices of vertices

599: for (int j = 0; j < 3; ++7) // local edges

600: {

601: int const iedg = _eal[3 * k + Jjl; // index of one edge in triangle

602: ivert[2 * j] = _edges[2 * iedg]; // first vertex of edge

603: ivert[2 * j + 1] = _edges[2 * iedg + 1]; // second vertex of edge

604: }

605: sort (ivert.begin (), ivert.end()); // unique indices are needed

606: auto const ip = unique (ivert.begin(), ivert.end());

607: assert(ip — ivert.begin() ==) ;

608: for (int i = 0; 1 < 3; ++1i) // vertex based element connectivity

609: {

610: _ia[3 * k + i] = ivert[i];

611: }

612: }

613:

614: // convert also boundary edges

615: unsigned int mbc (_ebedges.size()); // number of boundary edges

616: _bedges.resize (2 * mbc);

617: for (unsigned int k = 0; k < mbc; ++k)

618: {

619: const auto ke = _ebedges[k]; // edge index

620: _bedges[2 * k] = _edges[2 * ke];

621: _bedges[2 * k + 1] = _edges[2 * ke + 1];

622: }

623:

624:

625: return;

626: }

627:

628: // Member Input: vertices of each element : _ia[_nelem* nvert_e] stores as 1D array

629: // number of vertices per element : _nvert_e

630: // global number of elements: _nelem

631: // global number of vertices: _nnode

632: vector<vector<int>> Mesh: :Node2NodeGraph_2 () const

633: {

634: vector<vector<int>> v2v (_nnode, vector<int> (0)); // stores the vertex to vert
ex connections

635:

636: Y

637: vector<int> cnt (_nnode, 0);

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 11

638:

for (size_t i = 0; i < _ia.size(); ++i) ++cnt([_ialill; // determine number of e

ntries per vertex

639:
640:
641:

0; k < v2v.size(); ++k)

for (size_t k

{

v2v (k] .resize(_nvert_e * cntl[k]); // and allocate the memory

for that vertex

642:
643:
644:
645:
646:
647 :
648:

cnt [k]

I
(@]
~

0; e < _nelem; ++e)

Hh
[o]
]
o
o]
5
[}
1

int const basis = e * _nvert_e; // start of vertex connecti

vity of element e

649:
650:
651:
652:
653:
654:
655:
656:
657:
658:
659:
660:
661:
662:
663:
664:
665:
666:
667:
668:
669:
670:
671:
672:
673:
674:
675:

}

{

for (int k = 0; k < _nvert_e; ++k)
{
int const v = _ia[basis + k];
for (int 1 = 0; 1 < _nvert_e; ++1)
{
v2v[v] [ecnt[v]] = _ial[basis + 1];
++cnt [v];

}

}
// finally cnt[v]==v2v([v].size() has to hold for all v!

// guarantee unique, ascending sorted entries per vertex
for (size_t v = 0; v < v2v.size(); ++v)
{
sort (v2v[v] .begin (), v2v[v].end());
auto ip = unique(v2v([v].begin (), v2v[v].end());
v2v([v] .erase (ip, v2v[v].end());
//v2v[v].shrink_to_fit(); // automatically done when copied at return
}

return v2v;

vector<vector<int>> Mesh: :Node2NodeGraph_1 () const

vector<vector<int>> v2v (_nnode, vector<int>(0)); // stores the vertex to vert

ex connections

676:
677:
678:
679:

for (int e = 0; e < _nelem; ++e)
{

int const basis = e * _nvert_e; // start of vertex connecti

vity of element e

680:
681:
682:
683:
684:
685:
686:
687:
688:
689:
690:
691:
692:
693:
694:
695:
696:
697:
698:
699:
700:

for (int k = 0; k < _nvert_e; ++k)
{
int const v = _ia[basis + k];
for (int 1 = 0; 1 < _nvert_e; ++1)
{
v2v[v] .push_back(_ia[basis + 11);
}
}
}
// guarantee unique, ascending sorted entries per vertex
for (size_t v = 0; v < v2v.size(); ++v)
{
sort (v2v[v] .begin (), v2v[v].end());
auto ip = unique(v2v([v].begin(), v2v[v].end());
v2v([v] .erase (ip, v2v[v].end());
//v2v[v].shrink_to_fit(); // automatically done when copied at return
}

return v2v;

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 12

701:
702:
703:
704 :
705:
706:
707 :
708:
709:
710:
711:
712:
713:
714:
715:
716:
717 :
718:

719:
720:
721 :
722
723
724
725:
726:
727 :
728 :
729:
730:
731:
732
733:

734 :
735:
736:
737:
738:
739:
740:
741:
742
743 :
744 :
745:
746:
747 :
748 :
749:
750:
751:
752:
753:
754 :
755:
756:
757
758:
759:
760:
761:
762 :
763:
764 :
765:
766 :

Mesh: :Mesh (std::string const &fname)
Mesh (2, 3, 3, 3) // two dimensions, 3 vertices, 3 dofs, 3 edges per element
{
ReadVertexBasedMesh (fname) ;
DeriveEdgeFromVertexBased () ; // Generate also the edge based information
//cout << " JJJJJgJgJJgig\n";
//DeriveEdgeFromVertexBased () ;
//cout << " KKKKKKKKKKK\n";
////exit (-1);
}

void Mesh: :ReadVertexBasedMesh (std::string const &fname)
{

ifstream ifs (fname);

if (! (ifs.is_open() && ifs.good()))

{

cerr << "Mesh: :ReadVertexBasedMesh: Error cannot open file " << fname << end

assert (ifs.is_open());

}

int const OFFSET (1); // Matlab to C indexing
cout << "ASCI file " << fname << " opened" << endl;

// Read some mesh constants

int nnode, ndim, nelem, nvert_e;

ifs >> nnode >> ndim >> nelem >> nvert_e;

cout << nnode << " " << ndim << " " << nelem << " " << nvert_e << endl;
assert (ndim == 2 && nvert_e == 3);

// Allocate memory
Resize_Coords (nnode, ndim); // coordinates in 2D [nnode] [ndim]
Resize_Connectivity (nelem, nvert_e); // connectivity matrix [nelem] [nvert

// Read coordinates
auto &xc = GetCoords();
for (int k = 0; k < nnode * ndim; ++k)
{
ifs >> xcl[k];

}

// Read connectivity
auto &ia = GetConnectivity();
for (int k = 0; k < nelem * nvert_e; ++k)
{
ifs >> ialk];
ia[k] —= OFFSET; // Matlab to C indexing
}

// additional read of boundary information (only start/end point)
int nbedges;
ifs >> nbedges;

_bedges.resize (nbedges * 2);
for (int k = 0; k < nbedges * 2; ++k)
{
ifs >> _bedges[k];
_bedges[k] —-= OFFSET; // Matlab to C indexing
}
// 2020-01-08 Check
int const DUMMY({-9876};
_sdedges.resize (nbedges * 2,DUMMY) ;
if (!ifs.eof())
{
cout << nbedges << endl; // change to while-loop
for (int k = 0; k < nbedges * 2; ++k)

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 13

767: {

768 : ifs >> _sdedges.at (k);

769: _sdedges[k] —-= OFFSET; // Matlab to C indexing

770 }

771: //assert (ifs.eof());

772 assert (count (_sdedges.cbegin(),_sdedges.cend(),DUMMY)==0) ;

773: }

774 : else

775: {

776: cout << "\n ####### no subdomain info of edges available! #########\n";

777 }

778: cout << "\n End of File read " << _sdedges.at (2*nbedges-2) << " " << _sdedges.at
(2*nbedges-1) << "\n" << endl;

779:

780: return;

781: }

782:

783: bool Mesh: :Check_array_dimensions () const

784: {

785: bool b_ia = static_cast<int>(_ia.size() / _nvert_e) == _nelem;

786 : if (!'b_ia) cerr << "misfit: _nelem wvs. _ia" << endl;

787 :

788: bool b_xc = static_cast<int>(_xc.size() / _ndim) == _nnode;

789: if (!'b_xc) cerr << "misfit: _nnode vs. _xc'" << endl;

790:

791: bool b_ea = static_cast<int>(_ea.size() / _nedge_e) == _nelem;

792 if (!b_ea) cerr << "misfit: _nelem vs. _ea" << endl;

793:

794 : bool b_ed = static_cast<int>(_edges.size() / 2) == _nedge;

795: if (!'b_ed) cerr << "misfit: _nedge vs. _edges" << endl;

796:

797:

798 : return b_ia && b_xc && b_ea && b_ed;

799: }

800:

801: wvoid Mesh: :Del_EdgeConnectivity ()

802: {

803: _nedge = 0; //!< number of edges in mesh

804: _edges.resize (0); // 1< edges of mesh (vertices ordered ascending)

805: _edges.shrink_to_fit();

806: _ea.resize(0); // 1< edge based element connectivity

807: _ea.shrink_to_fit ();

808: _ebedges.resize (0); //!< boundary edges [nbedges]

809: _ebedges.shrink_to_fit();

810: return;

811: }

812:

813:

814:

815: // ####HFAAAHHARAAHFAAAAHFAAAAFAFAAHARAAAFAAAA AR AF AR AR AAHAAAAHAH
816:

817: RefinedMesh: :RefinedMesh (Mesh const &cmesh, std::vector<bool> const &ibref)
818: //: Mesh(cmesh), _cmesh(cmesh), _ibref (ibref), _nref(0), _vfathers (0)

819: : Mesh (cmesh), _ibref (ibref), _nref(0), _vfathers(0)

820: {

821: if (_ibref.size() == 0) // refine all elements

822: {

823: //

824 : RefineAllElements () ;

825: }

826: else

827: {

828: cout << endl << " Adaptive Refinement not implemented yet." << endl;
829: assert (_ibref.size () != 0);

830: }

831: }

832:

833: RefinedMesh:: "RefinedMesh ()

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 14

834:
835:
836:
837:
838:
839:
840:
841:
842:
843:
844:
845:
846:
847:
848:
849:
850:
851:
852:
853:
854:
855:
856:
857:
858:
859:
860:
861:
862:
863:
864:
865:
866:
le
867:
868:
869:
870:

{1

Mesh RefinedMesh: :RefineElements (std::vector<bool> const & /*ibref*/)

{

Mesh new_mesh (_ndim, _nvert_e, _ndof_e, _nedge_e);
cout << " NOT IMPLEMENTED: Mesh::RefineElements" << endl;

//// 1initialize new coorsinates with the old one

//auto new_coords = new_mesh.GetCoords();
//new_coords = _xc; // copy coordinates from old mesh

//// access vertex connectivite, edge connectiviy and edge information of new mesh

//auto new_ia = new_mesh.GetConnectivity();
//auto new_ea = new_mesh.GetEdgeConnectivity();
//auto new_edges = new_mesh.GetEdges ();

//// storing the parents of edges and vertices

}

//assert (new_ia.size()== new_ea.size());
//new_mesh.SetNnode (new_coords.size());
//new_mesh.SetNelem(new_ia.size()/3);
//new_mesh._nedge = new_edges.size()/2;

return new_mesh;

//JF
void RefinedMesh: :RefineAllElements (int nref)

{

cout << "\n####H###H4HH#H Refine Mesh " << nref << " times ";
double tstart = clock();
DeriveEdgeFromVertexBased () ; // ensure that edge information is availab

for (int kr = 0; kr < nref; ++kr)

{

//DeriveEdgeFromVertexBased () ; // ensure that edge information is a

vailable // GH: not needed in each loop

871:
872:
873:
874 :
875:
876:
877 :
878:
879:
880:
881:
882:
883:
884:
885:
886:
887:
888:
vertex)
889:
890:
891:
892:
tex
893:
894:
895:
896:
897:

auto old_ea(_ea); // save old edge connectivity
auto old_edges (_edges); // save old edges

auto old_nedges (Nedges());

auto old_nnodes (Nnodes ());

auto old_nelems (Nelems ());

// the new vertices will be appended to the coordinates in _xc

vector<int> edge_sons (2 * old_nedges); // 2 sons for each edge

// —-— Derive the fine edges ———
int new_nedge = 2 * old_nedges + 3 * old_nelems; // #edges in new mesh
int new_nelem = 4 * old_nelems; // #elements in new mesh

|
@)
'_l
[oR

int new_nnode = _nnodes + old_nedges; // #nodes in new mesh

_Xc.reserve (2 * new_nnode);
// store the 2 fathers of each vertex (equal fathers denote original coarse

_vfathers.resize (2 * old_nnodes);

for (int vc = 0; vc < old _nnodes; ++vc)

{
_vfathers([2 * vc] = vc; // equal fathers denote original coarse ver
_vfathers[2 * vc + 1] = vc;

}

_ia.clear();
_ea.clear();

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 15

h

898:
899:
900:
1; ..

901:
1; ..
902:
903:
904:
905:
906:
907:
908:
909:
910:
911:
912:
913:
914:
915:
916:
917:
918:
919:
920:
921:
922:
923:
924:
925:
926:
927:
928:
929:
930:
931:
932:
933:
934:
935:
936:
937:
938:

939:
940:

_ea.resize (new_nelem * 3);
_edges.clear();
_edges.resize (2 * new_nedge); // vertices of edges [v_0, v_1;v_0, v

vector<int> e_son (2 * old_nedges); // sons of coarse edges [s_0, s_1; s_0, s

// split all coarse edges and append the new nodes

int kf = 0; // index of edges in fine mesh
int vf = old_nnodes; // index of new vertex in fine grid
for (int kc = 0; kc < old_nedges; ++kc) // index of edges in coarse mesh
{
//
int vl = old_edges[2 * kc]; // vertices of old edge
int v2 = old_edges[2 * kc + 1];
// append coordinates of new vertex
double xf = 0.5 * (_xc[2 * vl] + _xc[2 * v2]);
double yf = 0.5 * (_xc[2 * vl + 1] + _xc[2 * v2 + 1]);

_xc.push_back (xf);
_xc.push_back (yf);
// fathers of vertex vf
_vfathers.push_back (vl);
_vfathers.push_back (v2);

// split old edge into two edges

_edges[2 * kf 1 = vl; // coarse vertex 1
_edges[2 * kf + 1] = vf; // to new fine vertex
e_son[2 * kc] = kf; // son edge

++kf;

_edges[2 * kf 1 = vi; // new fine vertex
_edges[2 * kf + 1] = v2; // to coarse vertex 2
e_son[2 * ke + 1] = kf; // son edge

++vf;

++kf;

}
_xc.shrink_to_fit ();
_vfathers.shrink_to_fit ();

// —— derive the fine mesh elements —-—
// creates additional fine edges
for (int kc = 0; kc < old _nelems; ++kc) // index of elements in coarse mes

{

array<array<int, 3>, 3 * 2> boundary; // fine scale vertices and edges a

s boundary of old element

4

941 : //boundary[][0], boundary[][1] ..vertices boundary[][2] edge

942:

943: for (int j = 0; j < 3; ++7) // each edge in element

944 {

945: int ce = old_eal[3 * kc + Jjl; // coarse edge number

946:

947: int sl = e_son[2 * ce 1; // son edges of that coarse edge
948: int s2 = e_son[2 * ce + 1];

949: boundary[2 * J]1[2] = s1; //add boundary edge

950: boundary[2 * j][0] = _edges([2 * sl + 0];

951: boundary[2 * j]1[1] = _edges[2 * sl + 1];

952: if (boundary[2 * j]1[0] > boundary[2 * j]l[1l]) swap(boundary[2 * F]1[0]
boundary[2 * j1I[1]); // fine vertices always in 2nd entry

953: boundary[2 * j + 1]1[2] = s2; //add boundary edge

954 boundary[2 * j + 1][0] = _edges[2 * s2 + 0];

955: boundary[2 * j + 1][1] = _edges[2 * s2 + 1];

956: if (boundary[2 * j + 1]1[0] > boundary[2 * j + 1][1l]) swap(boundary[2

* 3+ 11[01,
957:
958:
959:

boundary[2 * j + 11[11]);

}

sort (boundary.begin (), boundary.end()); // sort —> edges wit

./accu_template/geom. cpp Mon Jan

h same coarse vertex will be neighbors
960:

961: int interior_1 = 2 * o

962: int interior_2 = 2 * o

963: int interior_3 = 2 * o

964 :

965: _edges[interior_1 * 2

966: _edges[interior_1 * 2

967 :

968: _edges[interior_2 2

969: _edges[interior_2 2

970:

971: _edges[interior_3 * 2

972: _edges[interior_3 * 2

973:

974 : _ealkc * 3 * 4 1 =
edges for every old element

975: _ealkc * 3 * 4 + 1] =

976: _ealkc * 3 * 4 + 2] =

977 :

978: _ealkec * 3 4 + 3] =

979: _ealkc * 3 4 + 4] =

980: _ealkc * 3 4 + 5] =

981:

982: _ealkc * 3 * 4 + 6] =

983: _ealkc * 3 * 4 + 7] =

984: _ealkc * 3 * 4 + 8] =

985:

986: _ealkc * 3 * 4 + 9] =

987: _ealkc * 3 * 4 + 10]

988: _ealkec * 3 * 4 4+ 11] =

989: }

990:

991: // GH: ToDo: _bedges has to upda

[2] storing start/end vertex

992: // Pass the refinement informa
993: auto old_ebedges (_ebedges)
es] (edge based storage)

994: unsigned int old_nbedges (o
995:
996: _ebedges.resize (2 * old_nb
ted
997: unsigned int kn = 0;
998: for (unsigned int ke = 0;
edges
999: {
1000: const auto kc = old_eb
1001: _ebedges[kn] = e_son[2
1002: ++kn;
1003: _ebedges[kn] = e_son[2
1004: ++kn;
1005: }
1006: // HG
1007: // set new mesh parameters
1008: SetNelem (new_nelem) ;
10009: SetNnode (new_nnode) ;
1010: SetNedge (new_nedge) ;
1011:
1012: #ifdef CUTHILL_MCKEE
1013: {
1014: // Cuthill-McKee reordering
1015: // Increases mesh generation t
1016: auto const perm = cuth
1017: PermuteVertices_EdgeBa
1018: }
1019: #endif
1020:
1021: DeriveVertexFromEdgeBased (

12 07:22:36 2026

16

1d_nedges + kc * 3;
1d_nedges + kc * 3
1d_nedges + kc * 3

// add interior edges

4

+ 1
+ 2;

boundary[0][1]; // add interior edges

+ 1] = boundary[1l][1];
] = boundary[2][1];
+ 1] = boundary[3]1[1];
] = boundary[4][1];
+ 1] = boundary[5][1];

boundary[0] [2]; // add 4 new elements with

boundary[1][2];
interior_1;

boundary[2][2];
boundary[3]1[2];
interior_2;

boundary[4][2];
boundary[5][2];

interior_3;

interior_1;

= interior_2;

interior_3;

ted for the new mesh //!< boundary edges [nbedges]

tion to the boundary edges (edge based)
// save original boundary edges [nbedg

7
1d_ebedges.size());
edges) ; // each old boundary edge will be bisec
// index of new boundary edges
ke < old_nbedges; ++ke) // index of old boundary
edges[ke];

* ke 1

* ke + 1];

ime by factor 5 - but solver is faster.
ill_mckee_reordering (_edges);
sed (perm) ;

)i

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 17

1022:
1023:
1024:
1025:
1026:
1027:
1028:
1029:
1030:
1031:
1032:
1033:
1034:
1035:
1036:
1037:
1038:
1039:
1040:
1041:
1042:
1043:
1044:
1045:
1046:
1047:
1048:
1049:
1050:
1051:
1052:
1053:
1054:
1055:
1056:
1057:
1058:
1059:
1060:
1061:
1062:
1063:
1064:
1065:
1066:
1067:
1068:
1069:
1070:
1071:
1072:
1073:
1074:
1075:
1076:
1077:
1078:
1079:
1080:
1081:
1082:
1083:
1084:
1085:
1086:
1087:
1088:
1089:

assert (RefinedMesh: :Check_array_dimensions ());
++_nref; // track the number of refinements
}
double duration = (clock() - tstart) / CLOCKS_PER_SEC;
cout << << duration << ;
return;

void Mesh: :PermuteVertices_EdgeBased (vector<int> const &old2new)
{
// permute vertices _edges
auto const edges_old(_edges);
for (size_t k = 0; k < _edges.size(); k += 2)
{
_edges [k] old2new|[edges_old[k 11;
_edges[k + 1] = old2new[edges_old[k + 1]];
if (_edges[k] > _edges[k + 11)
swap (_edges[k], _edges[k + 11);

}
// permute coordinates
auto const coord_old(_xc);
for (size_t k = 0; k < _xc.size() / 2; ++k)
{
_xc[2 * old2new[k]] = coord_old[2 * k 1;
_xc[2 * old2newl[k] + 1] coord_old[2 * k + 1];

}

return;

void RefinedMesh: :PermuteVertices_EdgeBased (vector<int> const &old2new)
{
Mesh: :PermuteVertices_EdgeBased (old2new) ;
// permute fathers of a vertex
auto const old_fathers(_vfathers);
for (size_t k = 0; k < _vfathers.size() / 2; ++k)
{
_vfathers[2 * old2new[k]] = old_fathers[2 * k 1;
_vfathers[2 * old2newl[k] + 1] old_fathers[2 * k + 1];

}

return;

bool RefinedMesh: :Check_array_dimensions () const

{
const bool bp = Mesh::Check_array_dimensions();
const bool bvf = (static_cast<int>(_vfathers.size()) / 2 == Nnodes());

return bp && bvf;

}
/S HEAAAAARAAAAAAAAAAAAAAFAAAAAAAFFRAAA A FFRAAA A FHRAAAAAFFRAAAAAFFAAAA

gMesh_Hierarchy: :gMesh_Hierarchy (Mesh const &cmesh, int const nlevel)
: _gmesh (max(l, nlevel))

{

_gmesh[0] = make_shared<Mesh> (cmesh) ;
for (int lev = 1; lev < nlevel; ++lev)
{
_gmesh.at (lev) = make_shared<RefinedMesh>(*_gmesh.at (lev - 1));

//auto vv=_gmesh[lev]—->GetFathersOfVertices();

./accu_template/geom. cpp Mon Jan 12 07:22:36 2026 18

1090: //cout << " :: "<< vv.size() <<endl;

1091: }

1092: for (size_t lev = 0; lev < _gmesh.size(); ++lev)

1093: {

1094: _gmesh[lev]->Del_EdgeConnectivity();

1095: }

1096: }

1097:

1098:

1099: // ########HHAHHARHARFARFARFARFARFARFARFARHARFARHARAAR AR AR AR AR AR AS

1100: Mesh_2d_3_square: :Mesh_2d_3_square (int nx, int ny, int myid, int procx, int procy)
1101: : Mesh(2, 3, 3, 3), // two dimensions, 3 vertices, 3 dofs, 3 edges per element
1102: _myid(myid), _procx(procx), _procy(procy), _neigh{{ -1, -1, -1, -1}}, _color (0

1103: _x1(0.0), _xr(1.0), _yb(0.0), _yt(l1.0), _nx(nx), _ny(ny)

1104: {

1105: //void IniGeom (int const myid, int const procx, int const procy, int neigh[], in
t &color)

1106: int const ky = _myid / _procx;

1107: int const kx = _myid % _procy; // MOD (myid, procx)

1108: // Determine the neighbors of domain/rank myid

11009: _neigh[0] = (ky == 0) ? -1 : _myid - _procx; // South

1110: _neighl[1] (kx == _procx - 1) ? -1 : _myid + 1; // East

1111: _neigh[2] = (ky == _procy — 1) ? -1 : _myid + _procx; // North

1112: _neigh[3] = (kx == 0) ? -1 : _myid - 1; // West

1113:

1114: _color = (kx + ky) & 1 ;

1115:

1116: // subdomain is part of unit square

1117: double const hx = 1. / _procx;

1118: double const hy = 1. / _procy;

1119: _x1 = kx * hx; // left

1120: _xr = (kx + 1) * hx; // right

1121: _yb = ky * hy; // bottom

1122: _yt = (ky + 1) * hy; // top

1123:

1124: // Calculate coordinates

1125: int const nnode = (_nx + 1) * (_ny + 1); // number of nodes

1126: Resize_Coords (nnode, 2); // coordinates in 2D [nnode] [ndim]

1127: GetCoordsInRectangle(_nx, _ny, _x1, _xr, _yb, _yt, GetCoords() .data());

1128:

1129: // Calculate element connectivity (linear triangles)

1130: int const nelem = 2 * _nx * _ny; // number of elements

1131: Resize_Connectivity (nelem, 3); // connectivity matrix [nelem] [3]

1132: GetConnectivityInRectangle (_nx, _ny, GetConnectivity () .data());

1133:

1134: return;

1135: }

1136:

1137: Mesh_2d_3_square: : "Mesh_2d_3_square ()

1138: {}

1139:

1140:

1141: wvoid Mesh_2d_3_square: :SetU(std::vector<double> &u) const

1142: {

1143: int dx = _nx + 1;

1144: for (int j = 0; j <= _ny; ++3)

1145: {

1146: int k = J * dx;

1147: for (int i = 0; i <= _nx; ++i, ++k)

1148: {

1149: ulk] = 0.0;

1150: }

1151: }

1152:

1153: }

1154:

1155: void Mesh_2d_3_square: :SetF (std::vector<double> &f) const

./accu_template/geom. cpp

1156: {
1157:
1158:
1159:
1160:
1161:
1162:
1163:
1164:
1165:
1166:
1167: }
1168:
1169:
1170: std:
1171: |
1172:
1173:
1174:
1175:
1176:
1177:
1178:
1179:
1180:
1181:
1182:
1183:
1184:
1185:
1186:
1187:
1188:
1189:
1190:
1191:
1192:
1193:
1194:
1195:
1196:
1197:
1198: }
1199:
1200:
1201: {
1202:
endl;
1203:
1204: }
1205:
1206:
1207:
1208:

1209: wvoid Mesh_2d_3_square: :SaveVectorP (std::string const &name,

const
1210: {
1211: //
1212:

to_string (_myid

1213:
1214:
1215:
1216:
1217:
1218:
1219:

vector<int> Mesh_2d_3_square::Index_BoundaryNodes ()

Mon Jan 12 07:22:36 2026 19
int dx = _nx + 1;
for (int j = 0; j <= _ny; ++7J)
{
int k = j * dx;
for (int i1 = 0; i <= _nx; ++i, ++k)
{
f[k] = 1.0;
}
}
:vector<int> Mesh_2d_3_square::Index_DirichletNodes () const
int const dx = 1,
dy = _nx + 1,
bl = 0,
br = _nx,
tl = _ny * (_nx + 1),
tr = (ny + 1) * (nx + 1) - 1;
int const start([4] = { bl, br, tl, bl};
int const end[4] { br, tr, tr, tl};
int const step[4] = { dx, dy, dx, dy};
vector<int> idx (0);
for (int j = 0; J < 4; j++)
{
if (_neigh[j] < 0)
{
for (int i1 = start[j]; i <= end[]j]; 1 += step[]j])
{
idx.push_back (i) ; // node i is Dirichlet node
}
}
}
// remove multiple elements

// sort
// remove duplicate data

sort (idx.begin (), idx.end());

idx.erase(unique (idx.begin (), idx.end()), idx.end());

return idx;

const

cerr << << __FILE__ << << __LINE__ <<

return Index_BoundaryNodes () ;

vector<double> const &u)

construct the file name for subdomain myid
const string tmp(std::to_string(_myid / 100)
5 10));

%

+ to_string((_myid 100) / 10) +

°

const string namep name +
ofstream ff (namep.c_str());
ff.precision(6);

ff.setf(ios::fixed,

+ tmp;

ios::floatfield);

// assumes tensor product grid in unit square; rowise numbered (as generated in

class constructor)

./accu_template/geom. cpp

1220:
surf ())
1221:
1222:
1223:
1224:
1225:
1226:
1227:
1228:
1229:
1230:
1231:
1232:
1233:
1234:
1235:
1236:
1237:
1238:
1239:
1240:
1241:
1242:
1243:
1244:
1245:
1246:
1247:
1248:
1249:
1250:
1251:
1252:
1253:
1254:
1255:
[1
1256:
1257:
1258:
1259:
1260:
1261:
1262:
1263:
1264:
1265:
1266:
1267:
1268:
1269:
1270:
1271:
1272:
1273:
1274:
1275:
1276:
1277:
1278:

// output is provide

auto const &xc Get
int k 0;
for (int j

{

0; <=

= J

for (int i = 0;

ff << xc[2 *
ff << endl;

}

ff.close();
return;

}

double const x1,
double xc[])

const double hx =
hy

(x
(y

int k =
for

{

0;
(int J

= 0; <=

=]
const double y0
for (int 1 = 0;

{

xcl[k]
xcl[k + 1]

x1

}

return;

}

{

const int dx nx +
int k 0;
int 1 0;
for (int j

{

for

{

(int

ia[l
ia[l +
iafll
1 +=
iall
iall
iall
1 +=

[y

~ A

+ 1
+ 2]
3;

}
}

return;

}

void Mesh_2d_3_square: :GetCoordsInRectangle (int const nx,

void Mesh_2d_3_square: :GetConnectivityInRectangle (int const nx,

Mon Jan 12 07:22:36 2026 20

d for tensor product grid visualization (similar to Matlab-—

Coords () ;

_ny; ++3j)

i <= _nx; ++i, ++k)

k + 0] << " T xc[2 *k + 1] << " " << ul[k] << endl;

int const ny,

double const xr, double const yb, double const yt,

/ nx,
/ ny;

r — x1)
t - yb)

ny; ++3j)

i <=

+]
nx;

* hy;

++1i, k += 2)
+ i * hx;

v0;

int const ny, int ia

1;

++3j, ++k)

nx; ++i, ++k)

1;
dx + 1;

dx;
dx + 1;

AR Iiiddsazdsaddaasdaadaasddaaddasdiadddaaddaaddaddadddsdddsdddssdssi

./accu_template/geom.h Mon Jan 12 07:22:36 2026 1

1l: #ifndef GEOM _FILE
2: #define GEOM_FILE
3: #include <array>
4: #include <functional> // function; C++11
5: #include <iostream>
6: #include <memory> // shared_ptr
7: #include <string>
8: #include <vector>
9:
10: /#**
11: * Basis class for finite element meshes.
12: */
13: class Mesh
14: {
15: public:
16: Vi
17: * Constructor initializing the members with default values.
18: *
19: * @param[in] ndim space dimensions (dimension for coordinates)
20: * @param[in] nvert_e number of vertices per element (dimension for connectivi
ty)
21: * @param[in] ndof_e degrees of freedom per element (= @p nvert_e for linear
elements)
22 * @param[in] nedge_e number of edges per element (= @p nvert_e for linear ele
ments in 2D)
23: */
24: explicit Mesh(int ndim, int nvert_e = 0, int ndof_e = 0, int nedge_e = 0);
25:
26: _ _attribute_ ((noinline))
27: Mesh (Mesh const &) = default;
28:
29: Mesh &operator=(Mesh const &) = delete;
30:
31:
32: Jr*
33: * Destructor.
34: *
35: * See clang warning on
36: * <a href="https://stackoverflow.com/questions/28786473/clang-no—-out-of-line-vi
rtual-method-definitions—-pure-abstract-c-class/40550578">weak-vtables.
37: */
38: virtual "Mesh{();
39:
40: Vi
41: * Reads mesh data from a binary file.
42 *
43: * File format, see ascii_write _mesh.m
44 *
45: * @param[in] fname file name
46: */
47 : explicit Mesh(std::string const &fname);
48:
49: Vi
50: * Reads mesh data from a binary file.
51: *
52: * File format, see ascii_write_mesh.m
53: *
54: * @param[in] fname file name
55: */
56: void ReadVertexBasedMesh (std::string const &fname);
57:
58: Vi
59: * Number of finite elements in (sub)domain.
60: * @return number of elements.
61: */
62: int Nelems () const
63: {
64: return _nelem;

./accu_template/geom.h Mon Jan 12 07:22:36 2026 2

65: }

66:

67: Vaad

68: * Global number of vertices for each finite element.
69: * @return number of vertices per element.

70: */

71: int NverticesElements () const

72 {

73: return _nvert_e;

74 : }

75:

76: Vit

77 . * Global number of degrees of freedom (dof) for each finite element.
78: * (@return degrees of freedom per element.

79: */

80: int NdofsElement () const

81: {

82: return _ndof_e;

83: }

84:

85: Vi

86: * Number of vertices in mesh.

87: * @return number of vertices.

88: */

89: int Nnodes () const

90: {

91: return _nnode;

92: }

93:

94 : /**

95: * Space dimension.

96: * @return number of dimensions.

97: */

98: int Ndims () const

99: {
100: return _ndim;
101: }
102:
103: Vi

104: * (Re—-)Allocates memory for the element connectivity and redefines the appropri

ate dimensions.

105: *

106: * @param[in] nelem number of elements

107: * @param[in] nvert_e number of vertices per element
108: */
109: void Resize_Connectivity (int nelem, int nvert_e)

110: {
111: SetNelem(nelem) ; // number of elements
112: SetNverticesElement (nvert_e); // vertices per element
113: _ja.resize (nelem * nvert_e);
114: }
115:

116: Vi

117: * Read connectivity information (gl,g2,93)_1.

118: * @return connectivity vector [nelems*ndofs].

119: */
120: const std::vector<int> &GetConnectivity () const
121: {

122: return _ia;
123: }
124:
125: Vi

126: * Access/Change connectivity information (gl,g2,g3)_1i.
127: * @return connectivity vector [nelems*ndofs].

128: */
129: std::vector<int> &GetConnectivity ()
130: {

131: return _ia;

./accu_template/geom.h Mon Jan 12 07:22:36 2026 3

132:
133:
134:
135:

}

/**
* (Re-)Allocates memory for the element connectivity and redefines the appropri

ate dimensions.

136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:

)> &func)

4

14

171:
double) >
172:
double) >
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:

193:
194:

*

* @param[in] nnodes number of nodes
* @param[in] ndim space dimension
*/
void Resize_Coords (int nnodes, int ndim)
{
SetNnode (nnodes) ; // number of nodes
SetNdim (ndim) ; // space dimension

_xc.resize (nnodes * ndim);

}
/**

* Read coordinates of vertices (x,y)_1.
* @return coordinates vector [nnodes*2].
*/
const std::vector<double> &GetCoords () const
{
return _ xcC;

}
/**

* Access/Change coordinates of vertices (x,y)_1.
* @return coordinates vector [nnodes*2].
*/
std: :vector<double> &GetCoords ()
{
return _ xc;

}

/**
* Calculate values in vector (@p v via function @p func(x,y)
* @param[in] v vector

* @param[in] func function of (x,y) returning a double value.
*/
void SetValues (std::vector<double> &v, const std::function<double (double, double
const;
void SetBoundaryValues (std::vector<double> &v, const std::function<double (double
&func) const;
void SetDirchletValues (std::vector<double> &v, const std::function<double (double

&func) const;

/**
* Prints the information for a finite element mesh
*/

void Debug() const;

/**
* Prints the edge based information for a finite element mesh
*/

void DebugEdgeBased () const;

/**
* Determines the indices of those vertices with Dirichlet boundary conditions
* @return index vector.

*/
virtual std::vector<int> Index_DirichletNodes () const;
virtual std::vector<int> Index_BoundaryNodes () const;
/**

* Write vector @p v together with its mesh information to an ASCii file @p fnam

*

* The data are written in C-style.

./accu_template/geom.h Mon Jan 12 07:22:36 2026 4

195:
196:
197:
198:
199:

const;

}.

200:
201:
202:
txt.
203:
204:
205:
206:
207 :
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224
225:
226:
227 :
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242
243:
244 :
245:
246:
247
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:

*
* @param[in] fname file name
* @param[in] v vector
*/
void Write_ascii_matlab(std::string const &fname, std::vector<double> const &v)

/**

* Exports the mesh information to ASCii files @p basename + {_coords|_elements

*

* The data are written in C-style.
*
* @param[in] basename first part of file names
*/
void Export_scicomp (std::string const &basename) const;

/**
* Visualize @p v together with its mesh information via matlab or octave.
*
* Comment/uncomment those code lines in method Mesh:Visualize (geom.cpp)
* that are supported on your system.
*

* @param[in] v vector
*
* @warning matlab files ascii_read meshvector.m visualize results.m
* must be in the executing directory.
*/
void Visualize (std::vector<double> const &v) const;

/**
* Global number of edges.
* @return number of edges in mesh.
*/
int Nedges () const
{
return _nedge;

}

/**
* Global number of edges for each finite element.
* @return number of edges per element.
*/
int NedgesElements () const
{
return _nedge_e;

}
/**

* Read edge connectivity information (el,e2,e3)_1i.
* @return edge connectivity vector [nelems*_nedge_e].
*/

const std::vector<int> &GetEdgeConnectivity () const

{

return _ea;

}

/**
* Access/Change edge connectivity information (el,e2,e3)_1i.
* @return edge connectivity vector [nelems*_nedge_e].
*/
std::vector<int> &GetEdgeConnectivity ()
{
return _ea;

}
/**

* Read edge information (vl1,vZ2)_1i.

./accu_template/geom.h Mon Jan 12 07:22:36 2026 5

261: * @return edge connectivity vector [_nedge*2].

262: */

263: const std::vector<int> &GetEdges () const

264: {

265: return _edges;

266: }

267:

268: Vi

269: * Access/Change edge information (vl1,v2)_1.

270: * @return edge connectivity vector [_nedge*2].

271: */

272: std::vector<int> &GetEdges /()

273: {

274 : return _edges;

275: }

276:

277 : Jr*

278: * Determines all node to node connections from the vertex based mesh.

279: *

280: * @return vector[k][] containing all connections of vertex k, including to itse
1f.

281: */

282: std: :vector<std::vector<int>> Node2NodeGraph () const

283: {

284: //// Check version 2 wrt. version 1

285: //auto vi=NodeZNodeGraph_1();

286: //auto v2=NodeZNodeGraph_2 () ;

287: //1f (equal (vl.cbegin(),vl.cend(),v2.begin()))

288: / /A

289: //std::cout << "\nidentical Versions\n";

290: //}

291: //else

292: /71

293: //std::cout << "\nE R R O R in Versions\n";

294 //}

295:

296: //return NodeZNodeGraph_1();

297: return Node2NodeGraph_2 () ; // 2 times faster than version 1

298: }

299:

300: Vi

301: * Accesses the father-of-nodes relation.

302: *

303: * @return vector of length 0 because no relation available.

304: *

305: */

306: virtual std::vector<int> const &GetFathersOfVertices () const

307: {

308: return _dummy;

309: }

310:

311: Vaad

312: * Deletes all edge connectivity information (saves memory).

313: */

314: void Del_EdgeConnectivity();

315:

316: protected:

317: //public:

318: void SetNelem (int nelem)

319: {

320: _nelem = nelem;

321: }

322:

323: void SetNverticesElement (int nvert)

324: {

325: _nvert_e = nvert;

326: }

327:

./accu_template/geom.h Mon Jan 12 07:22:36 2026 6

328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:

e in 2D)

361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:

le in

378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:

2D)

void SetNdofsElement (int ndof)
{

_ndof_e = ndof;

}

void SetNnode (int nnode)

{

_nnode = nnode;

}

void SetNdim(int ndim)
{
_ndim = ndim;

}

void SetNedge (int nedge)
{

_nedge = nedge;

}

*

/

Reads vertex based mesh data from a binary file.

File format, see ascii_write mesh.m

% % % % %

@param[in] fname file name
*/
void ReadVectexBasedMesh (std::string const &fname);

/**
* The vertex based mesh data are used to derive the edge based data.
*

* @warning Exactly 3 vertices, 3 edges per element are assumed (linear triangl

*/

void DeriveEdgeFromVertexBased()

{
//DeriveEdgeFromVertexBased_slow();
//DeriveEdgeFromVertexBased_fast ();
DeriveEdgeFromVertexBased_fast_2();

}

void DeriveEdgeFromVertexBased_slow ()

void DeriveEdgeFromVertexBased_fast () ;

void DeriveEdgeFromVertexBased_fast_2();

4

/**

* The edge based mesh data are used to derive the vertex based data.
* @warning Exactly 3 vertices, 3 edges per element are assumed (linear triang

*/

void DeriveVertexFromEdgeBased() ;

/**
* Determines the indices of those vertices with Dirichlet boundary conditions
* @return index vector.

*/
int Nnbedges () const
{
return static_cast<int> (_bedges.size());
}
/**

* Checks whether the array dimensions fit to their appropriate size parameters
* @return index vector.

*/

./accu_template/geom.h Mon Jan 12 07:22:36 2026 7

394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407 :
1f.
408:
409:
410:
411:
412:
413:
414:
415:
416:
1f.
417 :
418:
419:
420:
421 :
422
423:
424
425:
426
427 :
428:
429:
430:
431 :
432:
vertex
433:
434

virtual bool Check_array_dimensions () const;

/**
* Permutes the vertex information in an edge based mesh.
*

* @param[in] oldZnew new indices of original vertices.
*/

void PermuteVertices_EdgeBased (std::vector<int> const &old2new);

private:

/**

* Determines all node to node connections from the vertex based mesh.
*

* @return vector([k][] containing all connections of vertex k, including to itse

*/
std::vector<std::vector<int>> Node2NodeGraph_1() const; // is correct

/**
* Determines all node to node connections from the vertex based mesh.
*

* Faster than (@p NodeZNodeGraph_1().
*

* @return vector[k][] containing all connections of vertex k, including to itse

protected:

*/
std::vector<std::vector<int>> Node2NodeGraph_2 () const; // is correct
//private:
int _nelem; //!< number elements
int _nvert_e; //!< number of vertices per element
int _ndof_e; //!< degrees of freedom (d.o.f.) per element
int _nnode; //!< number nodes/vertices
int _ndim; // 1< space dimension of the problem (1, 2, or 3)
std: :vector<int> _ia; //!< element connectivity

std: :vector<double> _xc; //!< coordinates

protected:

// B.C.
std::vector<int> _bedges; //!< boundary edges [nbedges][2] storing start/end

// 2020-01-08

std::vector<int> _sdedges; //!< boundary edges [nbedges][2] with left/right s

ubdomain number

435:
436:
437 :
438:
439:
440:
441 :
442 :
443
444
445:;
446:
447 :
448:
449:
450:
451 :
452
453
454 :
455:
456:
457 :

protected:

//private:

// edge based connectivity

int _nedge; //!< number of edges in mesh

int _nedge_e; //!< number of edges per element
std::vector<int> _edges; //!< edges of mesh (vertices ordered ascending)
std: :vector<int> _ea; // 1< edge based element connectivity

// B.C.

std::vector<int> _ebedges; //!< boundary edges [nbedges]

private:

const std::vector<int> _dummy; //!< empty dummy vector

// EE R e b b b b b e b b b b i b e b e b i b b i b b b i b b e b b i b e b i b b i b b i b b b b

class RefinedMesh: public Mesh

public:

/**

./accu_template/geom.h Mon Jan 12 07:22:36 2026 8

458: * Constructs a refined mesh according to the marked elements in @p ibref.

459: *

460: * If the vector @p ibref has size 0 then all elements will be refined.

461: *

462: * @param[in] cmesh original mesh for coarsening.

463: * @param([in] ibref vector containing True/False regarding refinement for each
element

464: *

465: */

466: //explicit RefinedMesh (Mesh const &cmesh, std::vector<bool> const &ibref = std::
vector<bool> (0));

467 : RefinedMesh (Mesh const &cmesh, std::vector<bool> const &ibref);

468: //RefinedMesh (Mesh const &cmesh, std::vector<bool> const &ibref);

469:

470: Vi

471: * Constructs a refined mesh by regulare refinement of all elements.

472 *

473: * @param[in] cmesh original mesh for coarsening.

474 : *

475: */

476: explicit RefinedMesh (Mesh const &cmesh)

477 : : RefinedMesh (cmesh, std::vector<bool> (0))

478 : {}

479:

480:

481 : RefinedMesh (RefinedMesh const &) = delete;

482: //RefinedMesh (RefinedMesh const&&) = delete;

483:

484: RefinedMesh &operator=(RefinedMesh const &) = delete;

485: //RefinedMesh& operator=(RefinedMesh const&&) = delete;

486:

487 : Vi

488: * Destructor.

489: */

490: virtual "RefinedMesh () override;

491:

492: Vi

493: * Refines the mesh according to the marked elements.

494 ; *

495: * @param[in] ibref vector containing True/False regarding refinement for each
element

496: *

497 : * @return the refined mesh

498: *

499: */

500: Mesh RefineElements (std::vector<bool> const &ibref);

501:

502: Vad

503: * Refines all elements in the actual mesh.

504: *

505: * @param[in] nref number of regular refinements to perform

506: *

507: */

508: void RefineAllElements (int nref = 1);

509:

510: Vi

511: * Accesses the father-of-nodes relation.

512: *

513: * @return father-of-nodes relation [nnodes][2]

514: *

515: */

516: std::vector<int> const &GetFathersOfVertices () const override

517: {

518: return _vfathers;

519: }

520:

521: protected:
522: Vi

./accu_template/geom.h Mon Jan 12 07:22:36 2026 9

523:
524:
525:
526:
527:
528:
529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:

* Checks whether the array dimensions fit to their appropriate size parameters
* @return index vector.
*/

bool Check_array_dimensions () const override;

/**
* Permutes the vertex information in an edge based mesh.
*

* @param[in] oldZnew new indices of original vertices.
*/
void PermuteVertices_EdgeBased(std::vector<int> const &old2new);

private:
//Mesh const & _cmesh; //!< coarse mesh
std: :vector<bool> const _ibref; //!< refinement info
int _nref; //!< number of regular refinements performed
std: :vector<int> _vfathers; //!< stores the 2 fathers of each vertex (e

qual fathers denote original coarse vertex)

541:
542:
543:
544:
545:
546:
547:
548:
549:
550:

esh.

551:
552:
553:
554:
555:
556:
557:
558:
559:
560:
561:
562:
563:
564:
565:
566:
567:
568:
569:
570:
571:
572:
573:
574:
575:
576:
577:
578:
579:
580:
581:
582:
583:
584:
585:
586:
587:
588:

}i

// AAAAAAAA A

class gMesh_Hierarchy

{
public:

/**
* Constructs mesh hierarchy of @p nlevel levels starting with coarse mesh @p cm

* The coarse mesh (@p cmesh will be (@p nlevel-1 times geometrically refined.
*
* @param[in] cmesh initial coarse mesh

* @param[in] nlevel number levels in mesh hierarchy
*

*/

gMesh_Hierarchy (Mesh const &cmesh, int nlevel);

size_t size () const

{

return _gmesh.size();

}
/**

* Access to mesh @p lev from mesh hierarchy.
*
* @return mesh @p lev

* @warning An out_of_range exception might be thrown.
*

*/
Mesh const &operator[] (int lev) const

{

return *_gmesh.at (lev);

}
/**

* Access to finest mesh in mesh hierarchy.
*

* @return finest mesh
*

*/
Mesh const &finest () const

{

return *_gmesh.back();

}
/**

* Access to coarest mesh in mesh hierarchy.

./accu_template/geom.h Mon Jan 12 07:22:36 2026 10

589: *

590: * @return coarsest mesh

591: *

592: */

593: Mesh const &coarsest () const

594: {

595: return *_gmesh.front ();

596: }

597:

598: private:

599: std::vector<std::shared_ptr<Mesh>> _gmesh; //!< mesh hierarchy from coarse ([0])
to fine.

600:

601: };

602:

603:

604:

605: // AAAA A

606: /**

607: * 2D finite element mesh of the square consisting of linear triangular elements.

608: */

609: class Mesh_2d_3_square: public Mesh

610: {

611: public:

612: /**

613: * Generates the f.e. mesh for the unit square.

614: *

615: * @param[in] nx number of discretization intervals in x—-direction

616: * @param[in] ny number of discretization intervals in y-direction

617: * @param([in] myid my MPI-rank / subdomain

618: * @param[in] procx number of ranks/subdomains in x-direction

619: * @param[in] procy number of processes in y-direction

620: */

621: Mesh_2d_3_square (int nx, int ny, int myid = 0, int procx = 1, int procy = 1);

622:

623: Vi

624: * Destructor

625: */

626: "Mesh_2d_3_square () override;

627 :

628: Vi

629: * Set solution vector based on a tensor product grid in the rectangle.

630: * @param[in] u solution vector

631: */

632: void SetU(std::vector<double> &u) const;

633:

634: Vil

635: * Set right hand side (rhs) vector on a tensor product grid in the rectangle.

636: * @param[in] f rhs vector

637: */

638: void SetF (std::vector<double> &f) const;

639:

640: Vi

641: * Determines the indices of those vertices with Dirichlet boundary conditions

642: * @return index vector.

643: */

644: std: :vector<int> Index_DirichletNodes () const override;

645: std: :vector<int> Index_BoundaryNodes () const override;

646:

647 : Vi

648: * Stores the values of vector @p u of (sub)domain into a file @p name for furt

her processing in gnuplot.

649: * The file stores rowise the x— and y—- coordinates together with the value fro
m (@p u
650: * The domain [@p x1, @p xr] x [@p yb, @p yt] is discretized into @p nx x @p ny
intervals.
651: *
652: * @param[in] name basename of file name (file name will be extended by the ra

./accu_template/geom.h

nk number)

Mon Jan 12 07:22:36 2026 11

rowise numbered

std: :vector<double> const &u) const;

double yb, doubl

MPI ranks of neighbors (negative: no neighbor bu

board) of subdomains

of
of
of
of

square
square
square
square

653: * @param[in] u local vector

654 : *

655: * @warning Assumes tensor product grid in unit square;

656: * (as generated in class constructor).

657: * The output 1is provided for tensor product grid visualization

658: * (similar to Matlab-surf()).

659: *

660: * @see Mesh_2d_3_ square

661: */

662: void SaveVectorP (std::string const &name,

663:

664 : // here will still need to implement in the class

665: // GetBound(), AddBound/()

666: // or better a generalized way with indices and their appropriate ranks for MPI

communication

667:

668: private:

669: Vi

670: * Determines the coordinates of the discretization nodes of the domain [@p xI1,

@p xr] x [@p yb, @p yt]

671: * which is discretized into @p nx x @p ny intervals.

672: * @param[in] nx number of discretization intervals in x—-direction

673: * @param[in] ny number of discretization intervals in y-direction

674 : * @param[in] x1 x—coordinate of left boundary

675: * @param[in] Xxr x—coordinate of right boundary

676: * @param[in] yb y—coordinate of lower boundary

677: * @param[in] yt y—coordinate of upper boundary

678: * @param[out] xc coordinate vector of length 2n with x(2*k,2*k+1) as coordin
ates of node k

679: */

680:

681: void GetCoordsInRectangle (int nx, int ny, double x1, double xr,
e yt,

682: double xc[]);

683: Vad

684: * Determines the element connectivity of linear triangular elements of a FEM d
iscretization

685: * of a rectangle using @p nx x @p ny equidistant intervals for discretization.

686: * @param[in] nx number of discretization intervals in x—-direction

687: * @param[in] ny number of discretization intervals in y-direction

688: * @param[out] ia element connectivity matrix with ia(3*s,3*s+1,3*s+2) as nod
e numbers od element s

689: */

690: void GetConnectivityInRectangle (int nx, int ny, int ial[]);

691:

692: private:

693: int _myid; //!< my MPI rank

694 : int _procx; //!< number of MPI ranks in x-direction

695: int _procy; //!< number of MPI ranks in y-direction

696: std::array<int, 4> _neigh; //I<
t b.c.

697: int _color; // 1< red/black coloring (checker

698:

699: double _x1; //!< x coordinate of lower left corner

700: double _ xr; //!< x coordinate of lower right corner

701: double _yb; //!< y coordinate or lower left corner

702: double _yt; //!< y coordinate of upper right corner

703: int _nx; //!< number of intervals in x-direction

704: int _ny; //!< number of intervals in y-direction

705: };

706:

707: // L B S b b i b i i i i b i i i i i i i i i b b b b b b b b i b e i i i

708:

709:

710:

711:

712: #endif

./accu_template/main.cpp Mon Jan 12 07:22:36 2026 1

1: // MPI code in C++.
: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]
// and /opt/mpich/include/mpil2c++/comm.h for details

2

3

4

5: #include "geom.h"

6: #include "par_geom.h"
7: #include "vdop.h"

8:

9: #include <cassert>
10: #include <cmath>
11: #include <iostream>

12: #include <mpi.h> // MPI

13: //#include <omp.h> // OpenMP, for E9 it 1is not necessary

14: using namespace std;

15:

16:

17: int main(int argc, char **argv)

18: {

19: MPI_TInit (&argc, é&argv);

20: MPI_Comm const icomm (MPI_COMM_WORLD) ;

21: //omp_set_num_threads (1); // don’t use OMP parallelization for
a start

22: //

23: {

24: int np;

25: MPI_Comm_size (icomm, &np);

26:

27: assert (4 == np); // example is only provided for 4 MPI proce
sses

28: }

29: /) #H#RFARFARFARFAREARHARHARFARFARFARFARFARAARAARFARFARFARAA A RAARAA A

30: // ———- Read the f.e. mesh and the mapping of elements to MPI processes

31: //Mesh const mesh_c ("square_4.txt"); // Files square_4.txt and square_4_sd
.txt are needed

32: ParMesh const mesh ("square'", icomm) ;

33:

34: int const numprocs = mesh.NumProcs();

35: int const myrank = mesh.MyRank () ;

36: if (0 == myrank) {

37: cout << "\n There are " << numprocs << " processes running.\n \n'";

38: }

39:

40: int const check_rank=0; // choose the MPI process you would like t
o check the mesh

41: //1f (check_rank == myrank) mesh.Debug();

42 //1f (check_rank == myrank) mesh.DebugEdgeBased();

43:

44: // ———- allocate local vectors and check skalar product and vector accumulation

45: vector<double> x1 (mesh.Nnodes (), 1.0);

46: mesh.SetValues (x1l, [] (double x, double y) -> double {return x * x * std::sin(2.5
* M PI * y);})i

47 :

48: //E9

49: if (myrank == check_rank) {

50: cout << "E9" << endl;

51: }

52:

53: double ss = mesh.dscapr(xl,xl);

54: if (myrank == check_rank) {

55: cout << myrank << " : scalar : " << ss << endl << endl;

56: }

57:

58: mesh.VecAccu (x1);

59:

60: //E10

61: if (myrank == check_rank) {

62: cout << "E10" << endl;

63: }

./accu_template/main.cpp

64:
65:
66:
67:
68:
69:
70:
71:
72

2]

<<

73:
74 :
75:
76:
77 :
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:

endl;

}

vector<int> xl1_int (mesh.Nnodes (), 1);

Mon Jan 12 07:22:36 2026 2

// check accumulation (by console output)

mesh.VecAccu(xl_int);

vector<double> coords = mesh.GetCoords();

if (check_rank == myrank) {
for (size_t i = 0; i < coords.size(); i += 2){
cout << << coords[i] << << coords[i + 1]
}
}
//E11
if (myrank == check_rank) {
cout << << endl;

}
int global_nodes = mesh.GlobalNodes ()

4

if (check_rank == myrank) {
cout << << global_nodes << endl;
}
//E12
if (myrank == check_rank) {
cout << << endl;

}

vector<double> x1_new (mesh.Nnodes (),

mesh.Average (x1_new) ;

MPI_Finalize();
return 0;

1.

0);

<<

<< x1_int[i/

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 1

1: // see: http://1lvm.org/docs/CodingStandards.html#include—-style
2: #include "vdop.h"
3: //#include "geom.h"
4: #include "par_geom.h"
5:
6: #include <algorithm>
7: #include <array>
8: #include <cassert>
9: #include <cmath>
10: #include <ctime> // contains clock ()
11: #include <fstream>
12: #include <iostream>
13: #include <list>
14: #include <numeric> // accumulate ()
15: #include <string>
16: #include <vector>
17:
18: using namespace std;
19:
20:
21: ParMesh: :ParMesh (int ndim, int nvert_e, int ndof_e, int nedge_e, MPI_Comm const &ico
mm)
22 Mesh (ndim, nvert_e, ndof_e, nedge_e),
23: _icomm(icomm), _numprocs(-1l), _myrank(-1),
24: _v_12g(0), _t_12g(0), _v_g21l{{}}, _t_g21{{}}, _valence(0),
25: _sendbuf (0), _sendcounts(0), _sdispls(0),
26: _loc_itf(0), _gloc_itf (0), _buf2loc(0)
27: |
28: MPI_Comm_size (icomm, &_numprocs);
29: MPI_Comm_rank (icomm, &_myrank);
30: }
31:
32: ParMesh:: "ParMesh ()
33: {1}
34:
35:
36:
37: ParMesh: :ParMesh (std::string const &sname, MPI_Comm const &icomm)
38: ParMesh (2, 3, 3, 3, icomm) // two dimensions, 3 vertices, 3 dofs, 3 edges per
element
39: {
40: //const int numprocs = _icomm.Get_size();
471 const string NS = "_" + to_string(_numprocs);
42 const string fname = sname + NS + ".txt";
43: J/cout << "########H###S " << fname << endl;
44: ReadVertexBasedMesh (fname) ;
45: cout << "\n End of sequential File read \n";
46: S T
47 : // Until this point a 1 1 processes possess a 1 1 mesh info in g 1 o b a 1
numbering
48: //
49: // Now, we have to select the data belonging to my_rank
50: // and we have to create the mapping local to global (12g) and vice versa (g2l)
51: S/ -
52:
53: // save the global node mesh (maybe we need it later)
54: DeriveEdgeFromVertexBased () ; // and even
more
55: Mesh global_mesh (*this) ; // requires a 1 o t of memory
56: Del_EdgeConnectivity();
57:
58: // read the subdomain info
59: const string dname = sname + NS + "_sd" + "_.txt";
60: vector<int> t2d = ReadElementSubdomains (dname); // global mapping triangle to s

ubdomain for all elements

61:

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 2

62: //const int myrank = _icomm.Get_rank();

63: Transform_Local2Global_Vertex (_myrank, t2d); // Vertex based mesh: now 1in
1l oc a l indexing

64:

65: DeriveEdgeFromVertexBased() ; // Generate also the 1 o c a 1

edge based information

66:

67: Generate_VectorAdd() ;

68:

69:

70: // Now we have to organize the MPI communication of vertices on the subdomain in
terfaces

71:

72 return;

73: }

74 :

75: vector<int> ParMesh: :ReadElementSubdomains (string const &dname)
76: {

77 ifstream ifs (dname);
78: if (! (ifs.is_open() && ifs.good())) {
79: cerr << "ParMesh: :ReadElementSubdomain: Error cannot open file "
endl;
80: assert (ifs.is_open());
81: }
82:
83: int const OFFSET{1l}; // Matlab to C indexing
84: cout << "ASCI file " << dname << " opened" << endl;
85:
86: // Read some mesh constants
87: int nelem;
88: ifs >> nelem;
89: cout << nelem << " " << Nelems () << endl;
90: assert (Nelems () == nelem);
91:
92: // Allocate memory
93: vector<int> t2d(nelem, -1);
94 : // Read element mapping
95: for (int k = 0; k < nelem; ++k) {
96: int tmp;
97: ifs >> tmp;
98: //t2d[k] = tmp — OFFSET;
99: // 2020-01-08
100: t2d[k] = min(tmp, NumProcs()) - OFFSET;
101: }
102:
103: return t2d;
104: }
105:

<< dname <<

106: void ParMesh: :Transform_Local2Global_Vertex (int const myrank, vector<int> const &t2d

107: {

108: // number of local elements

109: const int 1_ne = count (t2d.cbegin(), t2d.cend(), myrank);

110: //cout << myrank << ":: " << lne << endl;

111: vector<int> 1_ia(l_ne * NverticesElements (), —-1); // local elements still with g
lobal vertex numbers

112: _t_12g.resize(l_ne, -1);

113:

114: int 1k = 0;

115: for (size_t k = 0; k < t2d.size(); ++k) {

116: if (myrank == t2d[k]) {

117: //1f (0O==myrank)

118: /71

119: //cout << 1k << " k " << t2d[k] << endl;

120: //}

121: 1_ia[3 * 1k] = _ial[3 * k 1;

122: 1 _ia[3 * 1k + 1] = _ial[3 * k + 1];

123: 1_ia[3 * 1k + 2] = _ial[3 * k + 2]; // local elements still with global v

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 3

ertex numbers

124: _t_12g[lk] = k; // elements: local to global mappi
ng

125: _t_g21[k] = 1k; // global to local

126: ++1k;

127: }

128: }

129: // Checks:

130: assert (count (l_ia.cbegin(), 1l_ia.cend(), -1) = 0);

131: assert (count (_t_1l2g.cbegin(), _t_1l2g.cend(), -1) == 0);

132:

133: // Vertices: local to global mapping

134: auto tmp = 1_ia;

135: sort (tmp.begin (), tmp.end());

136: auto ip = unique (tmp.begin(), tmp.end());

137: tmp.erase (ip, tmp.end());

138: _v_12g = tmp; // Vertices: local to global mappi
ng

139: for (size_t 1lkv = 0; 1lkv < _v_12g.size(); ++1lkv) {

140: _v_g2l[_v_12g[lkv]] = lkv; // global to local

141: }

142:

143: // Boundary edges

144: vector<int> 1_bedges;

145: vector<int> 1_sdedges;

146: for (size_t b = 0; b < _bedges.size(); b += 2) {

147: int const vl = _bedges[b 1; // global vertex numbers

148: int const v2 = _bedges[b + 11];

149: try {

150: int const 1lvl = _v_g2l.at(vl); // map[] would add that element

151: int const 1lv2 = _v_g2l.at (v2); // but at () throws an exept
ion

152: 1_bedges.push_back (1vl);

153: 1_bedges.push_back (1v2); // Boundaries: already in local 1
ndexing

154: // 2020-01-08

155: 1_sdedges.push_back (_sdedges[b]);

156: 1_sdedges.push_back (_sdedges[b+1l]);

157: }

158: catch (std::out_of_range & err) {

159: //cerr << ",";

160: }

161: }

162:

163: // number of local vertices

164: const int 1_nn = _v_12g.size();

165: vector<double> 1_xc (Ndims () *1_nn);

166: for (int 1lkk = 0; 1lkk < 1_nn; ++1kk) {

167: int k = _v_12g.at (1kk);

168: 1_xc[2 * 1lkk] = _xc[2 * k 1;

169: 1l xc[2 * 1lkk + 1] = _xc[2 * k + 1];

170: }

171:

172:

173: // Now, we represent the vertex mesh in 1 o ¢ a 1 numbering

174: // elements

175:

176: for (size_t 1 = 0; i < 1l_ida.size(); ++1i) {

177: 1_iafi] = _v_g2l.at(1l_iali]); // element vertices: global to lo
cal

178: }

179: SetNelem (1l_ne);

180: _dia = 1_1ia;

181: // boundary

182: _bedges = 1_bedges;

183: _sdedges = 1_sdedges;

184: // coordinates

185: SetNnode (1_nn) ;

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 4

186:
187:
188:
189: 1}
190:
191:

xc = 1_xc;

return;

192: void ParMesh: :Generate_VectorAdd ()

193: {
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207
th 0
208:
209:
210:
211:
ces
212:
213:
214:
M, _icomm) ;
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:

// Some checks

int 1lnn = Nnodes|(); // local number of vertices
assert (static_cast<int>(_v_12g.size()) == 1lnn);

int ierr{-12345};

// ———— Determine global largest vertex index

int gidx_max{-1}; // global largest vertex index

int lmax = *max_element (_v_12g.cbegin(), _v_12g.cend());

MPI_Allreduce (&lmax, &gidx_max, 1, MPI_INT, MPI_MAX, _icomm);

int gidx_min{-1}; // global smallest vertex index
int lmin = *min_element (_v_1l2g.cbegin(), _v_12g.cend());

MPI_Allreduce (&lmin, &gidx_min, 1, MPI_INT, MPI_MIN, _icomm);

//cout << gidx_min << " " << gidx_max << endl;

assert (0 == gidx_min); // global indices have to start wi
// ———— Determine for all global vertices the number of subdomains it belongs to
vector<int> global (gidx_max+1l, 0); // global scalar array for verti
for (auto const gidx : _v_12g) global[gidx] = 1;

// https://www.mpi-forum.orqg/docs/mpi-2.2/mpi22—-report/nodel09.htm
ierr = MPI_Allreduce (MPI_IN_PLACE, global.data(), global.size(), MPI_INT, MPI_SU

//1if (0 == MyRank()) cout << global << endl;

//MPI_Barrier (_icomm) ;

//cout << _xc[2*_ v_g2l.at(2)] << " , " << _xc[2*_v_g2l.at (2)+1] << endl;
//MPI_Barrier (_icomm);

// now, global[] contains the number of subdomains a global vertex belongs to
if (count (global.cbegin(), global.cend(), 0) > 0)

cerr << "\n !1! Non-continuous global vertex indexing !!!\n";
// ———— Determine local interface vertices (<==> global[] > 1)
// _loc_itf, neigh_itf
//vector<int> loc_1itf; // local indices of interface ve

rtices on this MPI process

227 :
228:
229:
230:

for (size_t 1k = 0; 1lk < _v_12g.size(); ++1k) {

int const gk = _v_12g[lk]; // global index of local vertex 1k
if (globallgk] > 1) {
_loc_itf.push_back (1k); // local indices of interface vert

ices on this MPI process

231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
12g(vl;} s
241:
242:

243:
244 :
245:
246:

}
}

//MPI_Barrier (_icomm);

//if (0 == MyRank()) cout << "\n..._loc_itf...\n" << _loc_1itf << "\n...... \n";
//MPI Barrier (_icomm) ;
// ———— global indices of local interface vertices

//auto gloc_itf(_loc_itf);
_gloc_itf= loc_itf;
for_each(_gloc_itf.begin(), _gloc_itf.end(), [this] (auto & v) -> void { v = _v

//MPI Barrier (_icomm);
//1if (0 == MyRank()) cout << "\n..._gloc_itf...\n" << _gloc_itf << "\n...... \n"

//DebugVector (_gloc_itf,"_gloc_itf");

// ———— Determine the global length of interfaces
vector<int> vnn (NumProcs (), -1); // number of interface vertices pe

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 5
r MPI rank

247: int 1_itf(_loc_itf.size()); // # local interface vertices

248: ierr = MPI_Allgather(&l_itf, 1, MPI_INT, wvnn.data(), 1, MPI_INT, _icomm);

249: assert (0 == ierr);

250: //cout << vnn << endl;

251:

252: // ———— Now we consider only the inferface vertices

253: int snn = accumulate (vnn.cbegin(), vnn.cend(), 0); // required length of array f
or global interface indices

254: //cout << snn << " " << gnn << endl;

255: vector<int> dispnn (NumProcs (), 0) ; // displacement of interface verti
ces per MPI rank

256: partial_sum(vnn.cbegin(), vnn.cend() - 1, dispnn.begin() + 1);

257: //cout << dispnn << endl;

258:

259: // ———— Get the global indices for all global interfaces

260: vector<int> g_itf (snn, -1); // collects all global indices of

the global interfaces

261: // https://www.mpich.org/static//docs/v3.0.x/www3/MPI_Gatherv.html

262: ierr = MPI_Gatherv(_gloc_itf.data(), _gloc_itf.size(), MPI_INT,

263: g_itf.data(), vnn.data(), dispnn.data(), MPI_INT, 0, _icomm)
14

264: assert (0 == ierr);

265: // https://www.mpich.org/static/docs/v3.1/www3/MPI_Bcast.html

266: ierr = MPI_Bcast(g_itf.data(), g_itf.size(), MPI_INT, 0, _icomm);

267: assert (0 == ierr); // Now, each MPI rank has the all
global indices of the global interfaces

268: //MPI_Barrier (_icomm);

269: //1if (MyRank () == 0) cout << "\n...g_itf...\n" << g_itf << "\n...... \n";

270: //MPI_Barrier (_icomm);

271:

272 /) ——— Determine all MPI ranks a local interface vertex belongs to

273: vector<vector<int>> neigh_itf(_loc_itf.size());// subdomains a local interface v
ertex belongs to

274 : for (size_t 1k = 0; 1k < _loc_itf.size(); ++1k) {

275: const int gvert = _gloc_itf[1lk]; // global index of local interfac
e node 1k

276: for (int rank = 0; rank < NumProcs(); ++rank) {

277 : auto const startl = g_itf.cbegin() + dispnn[rank];

278: auto const endl = startl + vnn[rank];

279: if (find(startl, endl, gvert) != endl) {

280: neigh_itf[1lk] .push_back (rank);

281: }

282: }

283: }

284:

285: // ———— check the available info in _loc_itf[lk], _gloc_itf[lk], neigh_itf[lk]

286: //MPI_Barrier (_icomm);

287: ////1f (MyRank ()==0) cout << "\n...neigh_itf ...\n" << neigh_itf << endl;

288: //if (MyRank () == 0) {

289: //for (size_t 1lk = 0; 1k < _loc_itf.size(); ++1k) {

290: //cout << 1k << " : local idx " << _loc_itf[lk] << " , global idx " <<
_gloc_itf[1lk];

291: //cout << " with MPI ranks " << neigh_1itf[lk] << endl;

292: //}

293: //}

294 : //MPI_Barrier (_icomm) ;

295:

296: // ———— store the valence (e.g., the number of subdomains it belongs to) of all
local vertices

297: _valence.resize (Nnodes(),1);

298: for (size_t 1k = 0; 1k < _loc_itf.size(); ++1k)

299: {

300: _valence[_loc_itf[lk]] = neigh_itf[lk].size();

301: }

302: //DebugVector (_valence, "_valence",_icomm) ;

303:

304: // ———— We ware going to use MPI_Alltoallv for data exchange on interfaces

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 6

305:
306:
307:

1s[],

// https://www.mpi—-forum.org/docs/mpi—-3.1/mpi3l-report/nodel09.htm#Nodel09
// https://www.open—-mpi.org/doc/v4.0/man3/MPI_Alltoallv.3.php
//int MPI_Alltoallv(const void* sendbuf, const int sendcounts[], const int sdisp

MPI Datatype sendtype, void* recvbuf, const int recvcounts[], const int rdispls([], MP

I_Datatype recvtype, MPI_Comm comm)

308:
309:
310:
311:
312:
313:
314:
315:
316:
317:

//

// MPI _Alltoallv needs:

// vector<double> sendbuf (MPI_IN_PLACE: used also as recvbuf)

// vector<int> sendcounts (the same as for recv)

// vector<int> sdispls (the same as for recv)

//

// We need to map the interface vertices onto the sendbuffer:

// vector<int> loc_1itf local 1index of interface vertex 1k

// vector<int> gloc_itf global index of interface vertex lk

// vector<int> bufZloc local indices of sendbuffer position

s (the same as for recv)

318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:

// ———— Determine sendcounts[] and sdipls[] from neigh_ itf[]
//vector<int> _sendcounts (NumProcs (), 0);
_sendcounts.resize (NumProcs (), 0);
for (size_t 1lk = 0; lk < _loc_itf.size(); ++1lk) {
auto const &kneigh = neigh_itf[1lk];
for (size_t ns = 0; ns < kneigh.size(); ++ns) {
++_sendcounts[kneigh[ns]];
}
}

//1f (MyRank () == 0) cout << "\n..._sendcounts ...\n" << _sendcounts << endl;

//vector<int> _sdispls (NumProcs (), O0);

_sdispls.resize (NumProcs (), 0);

partial_sum(_sendcounts.cbegin(), _sendcounts.cend() - 1, _sdispls.begin() + 1);
//vector<int> _sdispls (NumProcs ()+1, 0);

//partial_sum(_sendcounts.cbegin (), _sendcounts.cend(), _sdispls.begin() + 1);

//1f (MyRank () == 0) cout << "\n..._sdispls ...\n" << _sdispls << endl;
// ———— Determine size of buffer ’‘nbuffer’ and mapping ’‘buflloc’
int const nbuffer = accumulate (_sendcounts.cbegin(), _sendcounts.cend(), 0);

//vector<int> _buflloc (nbuffer, -1);
_buf2loc.resize (nbuffer, -1);

int buf_idx = 0; // position in buffer
for (int rank = 0; rank < NumProcs(); ++rank) {
assert (buf_idx == _sdispls[rank]);

for (size_t 1k = 0; 1k < _loc_itf.size(); ++1k) {
auto const &kneigh = neigh_itf[1lk];
if (find(kneigh.cbegin(),kneigh.cend (), rank) !=kneigh.cend())
{
_buf2loc[buf_idx] = _loc_itf[1lk];
++buf_idx;

}
}
//1f (MyRank () == 0) cout << "\n...buf2loc ...\n" << buf2loc << endl;
//DebugVector (buf2loc, "buf2loc",__icomm) ;

// ———— Allocate send/recv buffer
//vector<double> _sendbuf (nbuffer,-1.0);
_sendbuf.resize (nbuffer,-1.0);

assert (CheckInterfaceExchange_InPlace());

cout << " Check of data exchange (InPlace) successful!\n";
assert (CheckInterfaceExchange());

cout << " Check of data exchange successful!\n";

assert (CheckInterfaceAdd_InPlace());

cout << " Check of data add successful!\n";

assert (CheckInterfaceAdd());

cout << " Check of data add (InPlace) successful!\n";

vector<double> x (Nnodes(),-1.0);

-1.

-1.

0;

0;

// init x with global verte

sdispls.data (), MPI

sdispls.data (), MPI

// onl

// init x with global verte

_sdispls.data(), M

_sdispls.data(), M

// onl

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 7

370: VecAccu (X) ;

371: cout << ;

372:

373:

374: return;

375: }

376:

377: bool ParMesh: :CheckInterfaceExchange_InPlace() const

378: {

379: vector<double> x (Nnodes(),-1.0);

380: copy (_v_12g.cbegin(),_v_12g.cend(),x.begin());
X 1indices

381:

382: for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)

383: {

384: _sendbuf[ls] = x[_buf2loc.at(ls)];

385: }

386: int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(),
DOUBLE,

387: _sendbuf.data (), _sendcounts.datal(),
DOUBLE, _icomm) ;

388: assert (ierr==0);

389: //DebugVector (_sendbuf, "_sendbuf",_icomm) ;

390:

391: vector<double> y (x);

392: for(size_t 1k = 0; 1lk<_loc_itf.size(); ++1k) y[_loc_itf.at(lk)] =
y for interface nodes

393: for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)

394: {

395: y[_buf2loc.at (1ls)] = _sendbuf[ls];

396: }

397:

398: double const eps=le-10;

399: bool bv = equal (x.cbegin(),x.cend(),y.cbegin(),

400: [eps] (double a, double b) -> bool

401: { return std::abs(a-b)<eps*(1.0+0.5* (std::abs(a)+ std::abs
(b))); 1}

402) ;

403: return bv;

404: }

405:

406: bool ParMesh: :CheckInterfaceExchange () const

407: {

408: vector<double> x (Nnodes(),-1.0);

409: copy (_v_12g.cbegin(),_v_12g.cend(),x.begin());
X 1indices

410:

411: for(size_t 1ls = 0; l1ls<_sendbuf.size(); ++1s)

412: {

413: _sendbuf[ls] = x[_buf2loc.at(ls)];

414: }

415: vector<double> recvbuf (_sendbuf.size());

416: int ierr = MPI_Alltoallv(_sendbuf.data (), _sendcounts.datal(),
PI_DOUBLE,

417 recvbuf.data (), _sendcounts.data(),
PI_DOUBLE, _icomm);

418: //DebugVector (_sendbuf, "_sendbuf",__icomm) ;

419: //DebugVector (recvbuf, "recvbuf", _icomm) ;

420: assert (ierr==0);

421 :

422 vector<double> y (x);

423: for(size_t 1k = 0; 1lk<_loc_itf.size(); ++1k) y[_loc_itf.at(lk)] =
y for interface nodes

424 for(size_t 1ls = 0; ls<recvbuf.size(); ++1s)

425: {

426: y[_buf2loc.at (1ls)] = recvbuf[ls];

427 : }

428: //cout << "WRONG : " << count (y.cbegin(),y.cend(), —-1.0) << endl;

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 8

429:
430:
431:
432:
433:
(b)));
434
435:
436:
437 :
438:
439:
440:
441 :
442 :
443
alues
444
445:
446:
447 :
448:
449
450:
DOUBLE,
451 :
DOUBLE,
452
453:
454
455:
456:

}

}

double const eps=le-10;
bool bv = equal (x.cbegin(),x.cend(),y.cbegin(),
[eps] (double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5* (std::abs(a)+ std::abs

return bv;

bool ParMesh: :CheckInterfaceAdd_InPlace () const

{

vector<double> x (Nnodes(),-1.0);
for (size_t 1i=0; i<x.size(); ++1)
{

x[1i] = _xc[2*1]+_xc[2*i+1]; // init x with coordinate v
}

for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)
{
_sendbuf[ls] = x[_buf2loc.at(ls)];

}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

_sendbuf.data (), _sendcounts.data(), _sdispls.data(), MPI_

_icomm) ;

assert (ierr==0);
//DebugVector (_sendbuf, "_sendbuf",_icomm) ;

vector<double> y (X);
for(size_t 1lk = 0; 1lk<_loc_itf.size(); ++1k) y[_loc_itf.at(lk)] = 0.0; // only

for interface nodes

457 :
458:
459:
460:
461:
462:
463:
464 :
465:
466:
467 :
468:
469:
(b)));
470:
471:
472
473
474 :
475
476:
477 :
478 :
479:
values
480:
481:
482:
483:
484 :
485:
486:
487 :
488:

PI_DOUBLE,

}

}

for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)
{
y[_buf2loc.at (1ls)] += _sendbuf[ls];
}
MPI_Barrier (_icomm) ;
//DebugVector (x, "x",_icomm) ;
//DebugVector (y, "y",_icomm) ;
for (size_t i= 0; i<y.size(); ++i) yl[i]l/=_valencel[i]; // divide by valence

double const eps=1le-10;
bool bv = equal (x.cbegin(),x.cend(),y.cbegin(),
[eps] (double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5* (std::abs(a)+ std::abs

return bv;

bool ParMesh: :CheckInterfaceAdd () const

{

vector<double> x (Nnodes(),-1.0);
for (size_t i=0; i<x.size(); ++1i)

{

//x[1] = _xc[2*1]+ _xc[2*i+1]; // init x with coordinate
x[1] = _v_12gI[il];

}

for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)

{
_sendbuf[ls] = x[_buf2loc.at(ls)];
}
vector<double> recvbuf (_sendbuf.size());
int ierr = MPI_Alltoallv(_sendbuf.data(), _sendcounts.data(), _sdispls.data(), M

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 9

489:

PI_DOUBLE,

490:
491 :
492:
493:
494
495:

recvbuf.data (), _sendcounts.data(), _sdispls.data(), M
_icomm) ;
//DebugVector (_sendbuf, "_sendbuf",__icomm) ;
//DebugVector (recvbuf, "recvbuf", _icomm) ;
assert (ierr==0);

vector<double> y (X);
for(size_t 1lk = 0; 1lk<_loc_itf.size(); ++1lk) y[_loc_itf.at(lk)] = 0.0; // only

for interface nodes

496:
497 :
498:

oc.at (ls)]

1s] <<
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
(0)));
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
521:
522:
523:
DOUBLE,
524:
DOUBLE,
525:
526:
527:
528:

for(size_t 1ls = 0; ls<recvbuf.size(); ++1s)
{

//1f (0==MyRank ()) cout << lIs << ": " << _buf2loc.at(ls) << " " << y[_buf2l
<< "('"<< x[buflZloc.at(ls)] << ")" << " " << recvbuf[ls] << " (" << _sendbuf/[

")" << endl;

}

y[_buf2loc.at (1ls)] += recvbuf[ls];
}
MPI_Barrier (_icomm) ;
//DebugVector (x, "x",_icomm) ;
//DebugVector (y, "y",_icomm) ;
for (size_t i= 0; i<y.size(); ++i) yl[i]l/=_valencel[il]; // divide by valence

double const eps=1le-10;
bool bv = equal (x.cbegin(),x.cend(),y.cbegin(),

[eps] (double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5* (std::abs(a)+ std::abs

return bv;

void ParMesh: :VecAccu (std: :vector<double> &w) const

{

for(size_t 1ls = 0; l1ls<_sendbuf.size(); ++1s)
{
_sendbuf[ls] = w[_buf2loc.at(ls)];

}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

_sendbuf.data (), _sendcounts.data(), _sdispls.data(), MPI_

_icomm) ;

assert (ierr==0);
//DebugVector (_sendbuf, "_sendbuf",_icomm) ;

for(size_t 1k 0; 1lk<_loc_itf.size(); ++1k) w[_loc_itf.at(lk)] = 0.0; // only

for interface nodes

529:
530:
531:
532:
533:
534:
535:
536:
537:
538:
539:
540:
541:
542:
543:
DOUBLE,
544:
DOUBLE,
545:
546:

}

for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)

{
w[_buf2loc.at(ls)] += _sendbuf[ls];

}

return;

void ParMesh: :VecAccu (std::vector<int> &w) const

{

for(size_t 1ls = 0; l1ls<_sendbuf.size(); ++1s)

{
_sendbuf[ls] = w[_buf2loc.at(1ls)];

}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_

_icomm) ;

assert (ierr==0); C?&f
//DebugVector (_sendbuf, "_sendbuf",__icomm) ;

Mobile User

./accu_template/par_geom.cpp Mon Jan 12 07:22:36 2026 10

547 :

548: for(size_t 1k = 0; lk<_ loc_itf.size(); ++1lk) w[_loc_itf.at(lk)] = 0.0; // only
for interface nodes

549: for(size_t 1ls = 0; ls<_sendbuf.size(); ++1s)

550: {

551: w[_buf2loc.at (ls)] += _sendbuf[ls];

552: }

553:

554: return;

555: }

556:

557: int ParMesh: :GlobalNodes () const

558: {

559: int local_max = *max_element (_v_12g.begin(), _v_12g.end());

560: int global_max = 0;

561:

562: MPI_Allreduce(&local_max, &global max, 1, MPI_INT, MPI_MAX, _icomm);

563:

564: std: :vector<int> global_flag(global_max + 1, 0);

565: for (int gidx : _v_129g) {

566: global_flag[gidx] = 1;

567: }

568:

569: MPI_Allreduce (MPI_IN_PLACE,global_flag.data(),global_flag.size(),MPI_INT,MPI_SUM
,_icomm) ;

570: éz

571: int global_nodes = 0;

572: for (int v : global_flag) { 6

573: if (v > 0) ++global_nodes;

574: }

575:

576: return global_nodes;

577: }

578:

579:

580: wvoid ParMesh: :Average (std::vector<double> &w) const

581: {

582: VecAccu (w) ;

583:

584: for (size_t 1k = 0; 1k < _loc_itf.size(); ++1k)

585: { (/

586: int const local_idx = _loc_itf[1lk];

587: w[local_idx] /= _valence[local_idx];

588: }

589: }

590:

Mobile User

./accu_template/par_geom.h Mon Jan 12 07:22:36 2026 1

1l: #ifndef PAR_GEOM_FILE

2: #define PAR_GEOM_FILE

3: #include "geom.h"

4: #include "vdop.h"

5: #include <array>

6: #include <functional> // function; C++11
7: #include <iostream>

8: #include <map>

9: #include <memory> // shared_ptr
10: #include <mpi.h> // MPI
11: #include <string>
12: #include <vector>

13:

14: class ParMesh: public Mesh

15: {

16: public:

17: Jr*

18: * Constructor initializing the members with default values.

19:

20: * @param[in] ndim space dimensions (dimension for coordinates)

21: * @param[in] nvert_e number of vertices per element (dimension for connectivi
ty)

22: * @param[in] ndof_e degrees of freedom per element (= (@p nvert_e for linear
elements)

23: * @param[in] nedge_e number of edges per element (= @p nvert_e for linear ele
ments in 2D)

24: * @param[in] icomm MPI communicator

25: */

26: explicit ParMesh (int ndim, int nvert_e = 0, int ndof_e = 0, int nedge_e = 0, MPI
_Comm const &icomm = MPI_COMM_WORLD) ;

27:

28: ParMesh (ParMesh const &) = default;

29:

30: ParMesh &operator=(ParMesh const &) = delete;

31:

32:

33: Vadd

34: * Destructor.

35: *

36: * See clang warning on

37: * <a href="https://stackoverflow.com/questions/28786473/clang-no-out—-of-line-vi
rtual-method—-definitions—pure—-abstract—-c—class/40550578">weak-vtables.

38: */

39: virtual "ParMesh () ;

40:

41: Vi

42 * Reads mesh data from a binary file.

43: *

44 . * @param[in] sname suffix of file name

45: * @param[in] icomm MPI communicator

46: * @see ascii_write _mesh.m for the file format.

47 */

48: explicit ParMesh (std::string const &sname, MPI_Comm const &icomm = MPI_COMM_WORL
D);

49:

50: void VecAccu (std::vector<double> &w) const;

51: void VecAccu (std::vector<int>& x) const;

52:

53: /** Inner product

54 * @param[in] x vector

55: * @param[in] y vector

56: * @return resulting Euclidian inner product <x,y>

57: */

58: double dscapr (std::vector<double> const &x, std::vector<double> const &y) const

59: {

60: return par_scalar(x, y, _icomm);

61l: }

62:

./accu_template/par_geom.h Mon Jan 12 07:22:36 2026 2

63: int GlobalNodes () const;

64: void Average (std::vector<double> &w) const;

65:

66: private:

67: Vi

68: * Reads the global triangle to subdomain mapping.
69: *

70: * @param[in] dname file name

71: *

72 * @see ascii_write_subdomains.m for the file format
73: */

74: std: :vector<int> ReadElementSubdomains (std::string const &dname);
75:

76:

77 : Vi

78: * Transform

79: *

80: * @param[in] myrank MPI rank of this process

81: * @param[in] t2d global mapping triangle to subdomain for all elements (

vertex based)

82: */

83: void Transform_Local2Global_Vertex (int myrank, std::vector<int> const &t2d);
84:

85:

86: /**

87: * Transform

88: */

89: void Generate_VectorAdd();

90:

91: bool CheckInterfaceExchange_InPlace () const;

92: bool CheckInterfaceExchange () const;

93: bool CheckInterfaceAdd_InPlace() const;

94 : bool CheckInterfaceAdd () const;

95:

96:

97: public:

98: /** MPI rank of the calling process in communication group.
99: *

100: * @return MPI rank of the calling process

101: */

102: int MyRank () const
103: {
104: return _myrank;
105: }
106:

107: /** Number of MPI processes 1in communication group.
108: *

109: * @return Number of MPI processes

110: */
111: int NumProcs () const
112: {

113: return _numprocs;

114: }
115:
116: /** Returns recent

117: * @return MPI communicator

118: */

119: MPI_Comm GetCommunicator () const

120: {
121: return _icomm;
122: }
123:
124: private:

125: // Don’t use &_icomm ==> Error

126: MPI_Comm const _icomm; //!< MPI communicator for the group o

f processes
127: int _numprocs; //!< number of MPI processes

128: int _myrank; //!< my MPI rank

./accu_template/par_geom.h Mon Jan 12 07:22:36 2026 3

129: std: :vector<int> _v_12g; //!< vertices: local to global mappi
ng

130: std::vector<int> _t_12g; //!< triangles: local to global mappi
ng

131: std: :map<int, int> _v_g2l; // 1< vertices: global to local mappi
ng

132: std: :map<int, int> _t_g2l; //!< triangles: global to local mappi
ng

133:

134: //std::vector<int> e_12g; // 1< edges: local to global map
ping

135:

136: std::vector<int> _valence; // 1< valence of local vertices, i.e.
number of subdomains they belong to

137: // MPI_Alltoallv needs:

138: mutable std::vector<double> _sendbuf; //!< send buffer a n d receiving bu
ffer (MPI_IN_ PLACE)

139: std: :vector<int> _sendcounts; //!< number of data to send to each M
PI rank (the same as for recv)

140: std: :vector<int> _sdispls; //!< offset of data to send to each M
PI rank wrt. _senbuffer (the same as for recv)

141: //

142: // We need to map the interface vertices onto the sendbuffer:

143: std::vector<int> _loc_itf; //!< local 1index of interface vertex

1k
144: std::vector<int> _gloc_itf; //!< global index of interface vertex
1k

145: std::vector<int> _buf2loc; //!< local indices of sendbuffer posi
tions (the same as for recv)

146:

147:

148: };

149:

150:

151: #endif

./accu_template/vdop.cpp Mon Jan 12 07:22:36 2026 1

1l: #include "vdop.h"

2: #include <cassert> // assert ()
3: #include <cmath>

4: #include <iostream>

5: #include <vector>

6: using namespace std;

7
8

9: wvoid vddiv (vector<double> & x, vector<double> consté& vy,

10: vector<double> consté& z)
11: {

12: assert (x.size()==y.size() && y.size()==z.size());
13: size_t n = x.size();

14

15: #pragma omp parallel for

16: for (size_t k = 0; k < n; ++k)

17: {

18: x[k] = ylk]l / z[k]l;

19: }

20: return;

21: }

22:

23: //**

25: void vdaxpy (std::vector<double> & x, std::vector<double> consté& vy,

26: double alpha, std::vector<double> const& z)
27: |

28: assert(x.size()==y.size () && y.size()==z.size());
29: size_t n = x.size();

30:

31: #pragma omp parallel for

32: for (size_t k = 0; k < n; ++k)

33: {

34: x[k] = y[k] + alpha * z[k];

35: }

36: return;

37: }

38: //**

40: double dscapr (std::vector<double> const& x, std::vector<double> consté& y)
41: |

42 assert (x.size()==y.size());
43: size_t n = x.size();

44

45: double s = 0.0;

46: //#pragma omp parallel for reduction (+:s)
47 : for (size_t k = 0; k < n; ++k)
48: {

49: s += x[k] * yI[k];

50: }

51:

52: return s;

53: }

54

55: //**

56: //void DebugVector (vector<double> const &v)

57: //{

58: //cout << "\nVector (nnode = " << v.size() << ")\n";
59: //for (size_t F = 0; j < v.size(); ++7)

60: 2l

61: //cout.setf (ios::right, ios::adjustfield);
62: //cout << v[j] << " ",

63: //}

64: //cout << endl;

65:

66: //return;

67: //}

68: //**

./accu_template/vdop.cpp Mon Jan 12 07:22:36 2026 2

69:

bool CompareVectors (std::vector<double> consté& x, int const n, double const y[], dou

ble const eps)

70:
71:
72
73:
74 :
75:
76:
77
78:
79:

(b)));

80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:

icomm)

91:
92:
93:
94:
95:
96:
97:
98:
99:
100:

omm)

101:
102:
103:
104:
105:
106:
107:

108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:

128:
129:
130:

{

bool bn = (static_cast<int> (x.size())==n);
if ('bn)
{
cout << "####H##H### Error: " << "number of elements" << endl;

}
//bool bv = equal (x.cbegin(),x.cend(),y);
bool bv = equal (x.cbegin(),x.cend(),vy,
[eps] (double a, double b) —-> bool
{ return std::abs(a-b)<eps*(1.0+0.5* (std::abs(a)+ std::abs
}
)

if ('bv)
{
assert (static_cast<int> (x.size())==n);
cout << "HH#HHHHHEH Error: " << "values" << endl;

}

return bn && bv;

}

//**

double par_scalar (vector<double> const &x, vector<double> const &y, MPI_Comm consté&

{
const double s = dscapr(x,y);
double sg;
MPI_Allreduce(&s, &sg,1,MPI_DOUBLE,MPI_SUM, icomm) ;

return (sqg) ;

}

//**

void ExchangeAll (vector<double> const &xin, vector<double> &yout, MPI_Comm const &ic

{
int myrank, numprocs,ierr(-1);
MPI_Comm_rank (icomm, &myrank); // my MPI-rank
MPI_Comm_size (icomm, &numprocs);
int const N=xin.size();

int const sendcount = N/numprocs; // equal sized junks
assert (sendcount *numprocs==N) ; // really all junk sized
assert (xin.size()==yout.size());

auto sendbuf = xin.data();

auto recvbuf = yout.data();

ierr = MPI_Alltoall (sendbuf, sendcount, MPI_DOUBLE,
recvbuf, sendcount, MPI_DOUBLE, icomm);

assert (O==ierr);

return;

}

//**

void ExchangeAllInPlace (vector<double> &xin, MPI_Comm const &icomm)
{
int myrank, numprocs,ierr(-1);
MPI_Comm_rank (icomm, &myrank); // my MPI-rank
MPI_Comm_size (icomm, &numprocs);
int const N=xin.size();

int const sendcount = N/numprocs; // equal sized junks
assert (sendcount *numprocs==N) ; // really all junk sized
auto sendbuf = xin.data();

ierr = MPI_Alltoall (MPI_IN_PLACE, sendcount, MPI_DOUBLE,

./accu_template/vdop.cpp Mon Jan 12 07:22:36 2026 3

131: sendbuf, sendcount, MPI_DOUBLE, icomm);
132: assert (O==ierr);

133:

134: return;

135: }

./accu_template/vdop.h Mon Jan 12 07:22:36 2026 1

1: #ifndef VDOP_FILE

2: #define VDOP_FILE

3: #include <iostream>

4: #include <mpi.h> // MPI
5: #include <string>

6: #include <vector>

7

8

: /** @brief Element—-wise vector divison x_k = y_k/z_k.
9: *

10: * (@param[out] x target vector

11: * @param[in] 'y source vector

12: * @param[in] z source vector

13: *

14: */

15: void wvddiv (std::vector<double> &x, std::vector<double> const &y,
16: std: :vector<double> const &z);

17:

18: /** @brief Element-wise daxpy operation x(k) = y(k) + alpha*z (k).

20: * @param[out] x target vector

21: * @param[in] 'y source vector

22: * @param[in] alpha scalar

23: * @param[in] z source vector

24: *

25: */

26: void vdaxpy (std::vector<double> &x, std::vector<double> const &y,
27: double alpha, std::vector<double> const &z);

28:

29:

30: /** @brief Calculates the Euclidean inner product of two vectors.

* @param[in] x vector
33: * @param[in] 'y vector
34: * @return Euclidean inner product @f$\langle x,y \rangle@fS$
35: *
36: */

37: double dscapr(std::vector<double> const &x, std::vector<double> const &y);

40: inline
41: double L2_scapr (std::vector<double> const &x, std::vector<double> const &y)
42: |

43 return dscapr(x, y) / x.size();

44 1}

45:

46:

47 JHF Parallel inner product

48: @param[in] x vector

49: @param[in] y vector

50: @param[in] icomm MPI communicator

51: @return resulting Euclidian inner product <x,y>
52: */

53: double par_scalar (std::vector<double> const &x, std::vector<double> const &y,
54: MPI_Comm consté& icomm=MPI_COMM_WORLD) ;

55:

56:

57:

58: /* ReadId : Input and broadcast of an integer */
59: inline
60: int ReadIn(std::string const &ss = std::string(), MPI_Comm const &icomm = MPI_COMM_W

61: {

62: MPI_Barrier (icomm) ;

63: int myrank; /* my rank number */
64: MPI_Comm_rank (icomm, &myrank);

65: int id;

66:

67: if (myrank == 0) {

./accu_template/vdop.h Mon Jan 12 07:22:36 2026 2

68:

69:
70:
71:
72
73:
74 :
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
_Comm
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
t) @Gf$§
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
nst ep
128:
129:
130:
131:

std::cout << "\n\n " << ss << " : Which process do you want to debug ? \n"

std::cin >> id;
}
MPI_Bcast (&id, 1, MPI_INT, 0O, icomm);

return id;

/**
* Print entries of a vector to standard output.
*
* @param[in] v vector values
* @param[in] ss string containing the vector name
* @param[in] icomm communicator group for MPI
*
*/

//void DebugVector (std::vector<double> const &v);
template <class T>
void DebugVector (std::vector<T> const &v, std::string const &ss = std::string(),
const &icomm = MPI_COMM_WORLD)
{
MPI_Barrier (icomm) ;
int numprocs; /* # processes */
MPI_Comm_size (icomm, &numprocs);
int myrank; /* my rank number */
MPI_Comm_rank (icomm, &myrank);

int readid = ReadIn(ss); /* Read readid */

while ((0 <= readid) && (readid < numprocs)) {
if (myrank == readid) {
std::cout << "\n\n process " << readid;
std::cout << "\n " << ss << " (nnode = " << v.size() << ")\n";
for (size_t j = 0; j < v.size(); ++3) |
std::cout.setf(std::ios::right, std::ios::adjustfield);
std::cout << v[j] << " "
}
std::cout << std::endl;
fflush (stdout) ;
}

readid = ReadIn(ss, icomm); /* Read readid */
}
MPI_Barrier (icomm) ;
return;

}

/** @brief Compares an STL vector with POD vector.
*

MPI

* The accuracy criteria @f$ |x k-y k| < \varepsilon \left ({1+0.5(|x_k|+|y_k|)}\righ

follows the book by

@param[in] x STL vector

@param[in] n length of POD vector

@param[in] 'y POD vector

@param[in] eps relative accuracy criteria (default := 0.0).

@return true iff pairwise vector elements are relatively close to each other.

S

*/

Stoyan/Baran, p.8.

bool CompareVectors (std::vector<double> const &x, int n, double const y[], double co

s = 0.0);

/** OQutput operator for vector
* @param[in,out] s output stream, e.g. @p cout

./accu_template/vdop.h Mon Jan 12 07:22:36 2026 3

132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
const
154:
155:
156:
157:
158:
159:
160:
161:
162:
ORLD) ;
163:
164:
165:
166:

@param[in] v vector

* @return output stream

*/
template <class T>
std::ostream &operator<<(std::ostream &s, std::vector<T> const &v)
{

for (auto vp : v) {

S << Vp << n n ;
}
return s;

}

/** Exchanges equal size partions of vector @p xin with all MPI processes.
* The received data are return in vector @p yout

*

* @param[in] Xin input vector

* (@param[out] yout output vector

* (@param[in] icomm MPI communicator
*

*/

void ExchangeAll (std::vector<double> const &xin, std::vector<double> &yout
&icomm = MPI_COMM_WORLD) ;

/** Exchanges equal size partions of vector @p xin with all MPI processes.
* The received data are return in vector (@p xin
*
* @param[in,out] xin input/output vector
* @param[in] icomm MPI communicator
*
*/

void ExchangeAllInPlace (std::vector<double> &xin, MPI_Comm const &icomm =

#endif

, MPI_Comm

MPI_COMM_W

