./main.cpp

Mon Jan 12 07:22:36

#include
#include
#include
#include
using namespace std;

int main (int argc,
{
MPI_TInit (&argc,
MPI_Comm icomm =
int myrank;
MPI_Comm_rank (icomm,

&argv) ;

int n = 20;
vector<double> x(n);
vector<double> y = x;

2026 1

char** argv)

MPI_COMM_WORLD;

&myrank) ;

for (int i = 0; i < n; ++1)
{
x[i] = myrank*100 + (i % 5)*10 + i;
y[i] = 1.0/ (x[1]);
}
if (myrank == 0) // so scalar product is well defined (avoid division by 0)
y[0] = 0;
//E5
if (myrank == 0) cout << << endl;
DebugVector (x, icomm) ;
//E6
if (myrank == 0) cout << << endl;
double scalar_product = par_scalar(x, y, icomm);

if (myrank == 0)
{
cout << <<
}
// E7
if (myrank == 0) cout
double xmin, xmax;
par_minmax (x, xmin, xmax,
if (myrank == 0)
{
cout <<
cout <<
}
// E8
if (myrank == 0) cout <<

vector<double> x_new(n);

// All to all

if (myrank == 0) cout <<
MPI_Alltoall (x.data (), 5,
DebugVector (x_new, icomm);
if (myrank == 0) cout <<

MPI_Alltoall (MPI_IN_PLACE,

DebugVector (x, icomm);

MPI_Finalize();
return 0;

scalar_product << endl << endl;

<< << endl;

icomm) ;

<< xmin << endl;

<< xmax << endl << endl;

<< endl;
<< endl;

MPI_DOUBLE, x_new.data(), 5, MPI_DOUBLE,

<<
x.data (),

endl;

0, MPI_DOUBLE, 5, MPI_DOUBLE,

icomm) ;

icomm) ;

. /VecFuncs. cpp

44
45:

Mon Jan 12 07:22:36 2026 1

"VecFuncs.h"
<vector>
<iostream>
<cassert>
<cfloat>

#include
#include
#include
#include
#include

void DebugVector (const std::vector<double>& xin,
{

int rank, size;

MPI_Comm icomm)

MPI_Comm_rank (icomm, &rank);
MPI_Comm_size (icomm, &size);
int ierr;
int active_rank = -1;
for (int step = 0; step < size; ++step) [734&;22/ 6{67
: .
if (rank == 0) C\/(»M[L oY -
{
std::cout << "Enter rank to display wvector: " << std::endl;
std::cin >> active_rank;
}
ierr = MPI_Bcast (&active_rank, 1, MPI_INT, 0, icomm);
assert (ierr == 0);
MPI_Barrier (icomm) ;
if (rank == active_rank) k/
{
std::cout << "Output from process " << rank << std::endl;

for (size_t i = 0; 1 < xin.size();

{

std::cout << "min[" << i <<

}

std::cout << std::endl;
}

MPI_Barrier (icomm) ;

}

double par_scalar (const std::vector<double> &x,

MPI_Comm &comm) {

46:
47 :
48:
49:
50:
51:
52:
53:
54:

omm) ;

55:
56:
57:
58:
59:
60:

H] =

++1)

" << xin[i] << std::endl;

const std::vector<double> &y, const

assert (x.size()==y.size());
double local_sum = 0.0;
for (int k = 0; k < x.size(); ++k) {
local_sum += x[k] * y[k];
} %
double global_sum = 0.0;
int mpi_error = MPI_Allreduce(&local_sum, &global_sum, 1, MPI_DOUBLE, MPI_SUM,
assert (mpi_error == 0);
return global_sum;
}
void par_minmax (std::vector<double> &x, double &min_value, double &max_value, const

MPI_Comm &icomm)

61:
62:
63:
64:
65:

{
int myrank;
MPI_Comm_rank (icomm, &myrank);

int local_n = x.size();

[¢]

Mobile User

. /VecFuncs. cpp

Mon Jan 12 07:22:36 2026 2

66: int global_offset = myrank * local_n;
67:
68: struct {double value; int idx;} local_min, local_max, global _min, global_max
; // global index
69:
70: local_min.value = local_max.value = x[0];
71: local_min.idx = local_max.idx = global_offset;
72:
73: // finding local min/max with the corresponding global index
74 : for (int i1 = 1; i < local_n; ++i) {
75: int global_idx = global_offset + 1i;
76: if (x[i] < local_min.value) {
77 local _min.value = x[i];
78 : local_min.idx = global_idx;
79: }
80: if (x[i] > local_max.value) {
81: local_max.value = x[i];
82: local _max.idx = global_idx;
83: }
84: }
85:
86: // reduction to the global one including the global index (need it later for
interchanging)
87: MPI_Allreduce(&local_min, &global_min, 1, MPI_DOUBLE_INT, MPI_MINLOC, icomm)
’
88: MPI_Allreduce(&local_max, &global_max, 1, MPI_DOUBLE_INT, MPI_MAXLOC, icomm)
14
89: min_value = global _min.value;
90: max_value = global_max.value;
91:
92: // calculating the process and the local index for interchanging the min and
max value
93: int rank_min = global_min.idx / local_n;
94 : int rank_max = global_max.idx / local_n;
95: int local min_idx = global_min.idx % local_n;
96: int local_max_idx = global_max.idx % local_n;
97:
98: // interchanging
99: if (rank_min == rank_max) {
100: std::swap(x[local _min_idx], x[local_max_idx]);
101: } -
102: else { Z/////
103: double recv_value;
104: if (myrank == rank_min) {
105: MPI_Sendrecv (&x[local_min_idx], 1, MPI_DOUBLE, rank_max, 0, &recv_va
lue, 1, MPI_DOUBLE, rank_max, 0, icomm, MPI_STATUS_IGNORE) ;
106: x[local_min_idx] = recv_value;
107: }
108: if (myrank == rank_max) {
109: MPI_Sendrecv (&x[local_max_idx], 1, MPI_DOUBLE, rank_min, 0, &recv_va
lue, 1, MPI_DOUBLE, rank_min, 0, icomm, MPI_STATUS_IGNORE) ;
110: x[local_max_idx] = recv_value;
111: }
112:
113: }
114:
115:
116: return;

117: }

Mobile User

./VecFuncs.h

11: double par_scalar (const std::vector<double> &x,

Mon Jan 12 07:22:36 2026

<vector>
<mpi.h>
<iostream>
<cassert>
<cfloat>

1: #pragma once
2:

3: #include

4: #include

5: #include

6: #include

7: #include

8:

9:
10:

MPI_Comm &icomm) ;

12:

13: void par_minmax (std::vector<double> &x,

Comm &icomm) ;

void DebugVector (const std::vector<double>& xin, MPI_Comm icomm) ;

double &min_val, double &max_val,

const std::vector<double> &y, const

const MPI__

