./first_template/greetings.cpp

30:

icomm,

ge

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42
43:
44 .
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
size
58:
59:
60:
6l:
62:
63:
64:
65:
66:

#include
#include
#include
#include
#include
#include
using namespace std;

// see http://www.open—-mpi.org/doc/current
// for details on MPI functions

void greetings (MPI_Comm const &icomm)
{
int myrank, numprocs;
MPI_Comm_rank (icomm, &myrank);
MPI_Comm_size (icomm, &numprocs);

Wed Jan 07 11:27

:53 2026 1

// MPI

// my MPI-rank
// #MPI processes

char *name = new char [MPI_MAX_ PROCESSOR_NAME],
*chbuf = new char [MPI_MAX PROCESSOR_NAME];

int reslen, ierr;
MPI_Get_processor_name (name, &reslen);

if (O0==myrank) {
cout << << myrank <<

for (int i = 1; i < numprocs; ++i)
MPI_Status stat;
stat .MPI_ERROR = 0;

{

<<

name << endl;

// MUS T be initialized!!

ierr = MPI_Recv(chbuf, MPI_MAX PROCESSOR_NAME, MPI_CHAR, i, MPI_ANY_ TAG,

<< chbuf;

<< endl;

&stat) ;
assert (O==ierr);
cout << << stat.MPI_SOURCE <<
int count;
MPI_Get_count (&stat, MPI_CHAR, &count);
cout << << count <<
// stat.Get_error() // Error code
}
}
else {
int dest = 0;
ierr = MPI_Send(name, strlen(name) + 1,

assert (O==ierr);

}

delete [] chbuf;
delete [] name;
return;

void greetings_cpp (MPI_Comm const &icomm)
{
int myrank, numprocs;
MPI_Comm_rank (icomm, &myrank);
MPI_Comm_size (icomm, &numprocs);
string name (MPI_MAX_ PROCESSOR_NAME,)
recvbuf (MPI_MAX PROCESSOR_NAME,

int reslen, ierr;

14

)i

// size of received data

MPI_CHAR, dest, myrank, icomm);

MPI_Get_processor_name (name.data(), &reslen);

name.resize (reslen);

if (O0==myrank) {
cout << " << myrank <<
for (int i = 1; i < numprocs; ++i)
MPI_Status stat;

{

<<

// my MPI-rank

// #MPI processes

// C++

// C++: receive buffer,

// C++

name << endl;

don’t chan

Mobile User

./first_template/greetings.cpp Wed Jan 07 11:27:53 2026 2

67: stat .MPI_ERROR = 0; // MUS T be initialized!!

68:

69: ierr = MPI_Recv (recvbuf.data (), MPI_MAX PROCESSOR_NAME, MPI_CHAR, i, MPI
_ANY_TAG, icomm, &stat);

70: assert (O==ierr);

71:

72 int count;

73: MPI_Get_count (&stat, MPI_CHAR, &count); // size of received data

74: string const chbuf (recvbuf, 0, count) ; // C++

75: cout << << stat.MPI_SOURCE << << chbuf;

76: cout << << count << << endl;

77 : // stat.Get_error() // Error code

78 : }

79: }

80: else {

81: int dest = 0;

82: ierr = MPI_Send(name.data(), name.size(), MPI_CHAR, dest, myrank, icomm);

83: assert (O==ierr);

84: }

85: return;

86: }

Mobile User

./first_template/greetings.h Wed Jan 07 11:27:53 2026 1

/7 general header for all functions in directory

#ifndef GREETINGS_FILE
#define GREETINGS_FILE

#include <mpi.h>

Vadd Each process finds out its host, sends this information
to root process 0 which prints this information for each process.
@param[in] icomm the MPI process group that is used.

*/

void greetings (MPI_Comm const &icomm) ;
void greetings_cpp (MPI_Comm const &icomm);

#endif

./first_template/main.cpp Wed Jan 07 11:27:53 2026 1

1: // MPI code in C++.
2: // See [Gropp/Lusk/Skjellum, "Using MPI", p.33/41 etc.]
3: // and /opt/mpich/include/mpil2c++/comm.h for details
4:
5: #include "greetings.h"
6: #include <iostream> // MPI
7: #include <mpi.h>
8: using namespace std;
9:
10: int main(int argc, char *argv([])
11: {
12: MPI_Comm icomm = MPI_COMM_WORLD;
13:
14: MPI_TInit (&argc, &argv);
15: int myrank, numprocs;
16: // numprocs = 1; // delete this line when uncommenting the next line
17: MPI_Comm_rank (icomm, &myrank); // my MPI-rank
18: MPI_Comm_size (icomm, &numprocs);
19:
20: if (O0==myrank) {
21: cout << "\n There are " << numprocs << " processes running.\n \n";
22: }
23:
24: greetings (icomm) ;
25: greetings_cpp (icomm) ;
26:
27: if (O0==myrank) cout << endl;
28:
29: MPI_Finalize();
30:
31: return 0;
32: }
33:

34:

