
jacsolve.cpp Mon Jan 12 07:22:36 2026 1

1: #include "vdop.h"

2: #include "geom.h"

3: #include "getmatrix.h"

4: #include "jacsolve.h"

5: #include "userset.h"

6:

7: #include <cassert>

8: #include <cmath>

9: #include <iostream>

10: #include <vector>

11: using namespace std;

12:

13: // ###

14: // ParMesh const & mesh,

15: void JacobiSolve(CRS_Matrix const &SK, vector<double> const &f, vector<double> &u)

16: {

17: const double omega = 1.0;

18: const int maxiter = 300; //LISA: lowered the maxiter

19: const double tol = 1e-4, // tolerance //LISA: lowered the toller

ance

20: tol2 = tol * tol; // tolerance^2

21:

22: int nrows = SK.Nrows(); // number of rows == number of columns

23: assert(nrows == static_cast<int>(f.size()) && f.size() == u.size());

24:

25: cout << endl << " Start Jacobi solver for " << nrows << " d.o.f.s" << endl;

26: // Choose initial guess

27: for (int k = 0; k < nrows; ++k) {

28: u[k] = 0.0; // u := 0

29: }

30:

31: vector<double> dd(nrows); // matrix diagonal

32: vector<double> r(nrows); // residual

33: vector<double> w(nrows); // correction

34:

35: SK.GetDiag(dd); // dd := diag(K)

36: ////DebugVector(dd);{int ijk; cin >> ijk;}

37:

38: // Initial sweep

39: SK.Defect(r, f, u); // r := f - K*u

40:

41: vddiv(w, r, dd); // w := D^{-1}*r

42: const double sigma0 = dscapr(w, r); // s0 := <w,r>

43:

44: // Iteration sweeps

45: int iter = 0;

46: double sigma = sigma0;

47: while (sigma > tol2 * sigma0 && maxiter > iter) // relative error

48: //while (sigma > tol2 && maxiter > iter) // absolute error

49: {

50: ++iter;

51: vdaxpy(u, u, omega, w); // u := u + om*w

52: SK.Defect(r, f, u); // r := f - K*u

53: vddiv(w, r, dd); // w := D^{-1}*r

54: sigma = dscapr(w, r); // s0 := <w,r>

55: // cout << "Iteration " << iter << " : " << sqrt(sigma/sigma0) << endl;

56: }

57: cout << "aver. Jacobi rate : " << exp(log(sqrt(sigma / sigma0)) / iter) << " (

" << iter << " iter)" << endl;

58: cout << "final error: " << sqrt(sigma / sigma0) << " (rel) " << sqrt(sigma) <<

 " (abs)\n";

59:

60: return;

61: }

62:

63:

64:

65: void JacobiSmoother(Matrix const &SK, std::vector<double> const &f, std::vector<doub

jacsolve.cpp Mon Jan 12 07:22:36 2026 2

le> &u,

66: std::vector<double> &r, int nsmooth, double const omega, bool ze

ro)

67: {

68: // ToDO: ensure compatible dimensions

69:

70: int const nnodes = static_cast<int>(u.size());

71: if (zero) { // assumes initial solution is zero

72: DiagPrecond(SK, f, u, omega);

73: --nsmooth; // first smoothing sweep done

74: }

75:

76: auto const &D = SK.GetDiag(); // accumulated diagonal of matrix @p SK

.

77: for (int ns = 1; ns <= nsmooth; ++ns) {

78: SK.Defect(r, f, u); // r := f - K*u

79: #pragma omp parallel for

80: for (int k = 0; k < nnodes; ++k) {

81: // u := u + om*D^{-1}*r

82: u[k] = u[k] + omega * r[k] / D[k]; // MPI: distributed to accumulated ve

ctor needed

83: }

84: }

85:

86: return;

87: }

88:

89: void DiagPrecond(Matrix const &SK, std::vector<double> const &r, std::vector<double>

 &w,

90: double const omega)

91: {

92: // ToDO: ensure compatible dimensions

93: auto const &D = SK.GetDiag(); // accumulated diagonal of matrix @p SK.

94: int const nnodes = static_cast<int>(w.size());

95: #pragma omp parallel for

96: for (int k = 0; k < nnodes; ++k) {

97: w[k] = omega * r[k] / D[k]; // MPI: distributed to accumulated vector n

eeded

98: }

99:

100: return;

101: }

102:

103:

104: Multigrid::Multigrid(Mesh const &cmesh, int const nlevel)

105: : _meshes(cmesh, nlevel),

106: _SK(), _u(_meshes.size()), _f(_meshes.size()), _d(_meshes.size()), _w(_meshes.

size()),

107: _Pc2f()

108: {

109: cout << "\n........................ in Multigrid::Multigrid

\n";

110: // Allocate Memory for matrices/vectors on all levels

111: for (size_t lev = 0; lev < Nlevels(); ++lev) {

112: _SK.push_back(FEM_Matrix(_meshes[lev])); // CRS matrix

113: const auto nn = _SK[lev].Nrows();

114: _u[lev].resize(nn);

115: _f[lev].resize(nn);

116: _d[lev].resize(nn);

117: _w[lev].resize(nn);

118: auto vv = _meshes[lev].GetFathersOfVertices();

119: cout << vv.size() << endl;

120: }

121: // Intergrid transfer operators

122: //cout << "\n........................ in Multigrid::Multigrid Prolongation ...

...............\n";

123: //_Pc2f.push_back(BisectInterpolation(vector<int>(0))); // no prolongation to

coarsest grid

jacsolve.cpp Mon Jan 12 07:22:36 2026 3

124: _Pc2f.push_back(BisectIntDirichlet()); // no prolongation to coarsest grid

125: for (size_t lev = 1; lev < Nlevels(); ++lev) {

126: //cout << lev << endl;

127: //cout << _meshes[lev].GetFathersOfVertices () << endl;

128: _Pc2f.push_back(BisectIntDirichlet(_meshes[lev].GetFathersOfVertices (), _

meshes[lev-1].Index_DirichletNodes ()));

129: //cout << _Pc2f.back().Nrows() << " " << _Pc2f.back().Ncols() <

< endl;

130: }

131: cout << "\n..\n";

132: }

133:

134: Multigrid::˜Multigrid()

135: {}

136:

137: void Multigrid::DefineOperators()

138: {

139: for (size_t lev = 0; lev < Nlevels(); ++lev) {

140: DefineOperator(lev);

141: }

142: return;

143: }

144:

145: // GH: Hack

146: void Multigrid::DefineOperator(size_t lev)

147: {

148: _SK[lev].CalculateLaplace(_f[lev]); // fNice() in userset.h

149:

150: if (lev == Nlevels() - 1) { // fine mesh

151: _meshes[lev].SetValues(_u[lev], [](double x, double y) -> double

152: { return x *x * std::sin(2.5 * M_PI * y); }

153:);

154: }

155: else {

156: _meshes[lev].SetValues(_u[lev], f_zero);

157: }

158:

159: _SK[lev].ApplyDirichletBC(_u[lev], _f[lev]);

160:

161: return;

162: }

163:

164: void Multigrid::JacobiSolve(size_t lev)

165: {

166: assert(lev < Nlevels());

167: ::JacobiSolve(_SK[lev], _f[lev], _u[lev]);

168: }

169:

170: void Multigrid::MG_Step(size_t lev, int const pre_smooth, bool const bzero, int nu)

171: {

172: assert(lev < Nlevels());

173: int const post_smooth = pre_smooth;

174:

175: if (lev == 0) { // coarse level

176: JacobiSmoother(_SK[lev], _f[lev], _u[lev], _d[lev], 100, 1.0, false);

177: }

178: else {

179: JacobiSmoother(_SK[lev], _f[lev], _u[lev], _d[lev], pre_smooth, 0.85, bzero

);

180:

181: if (nu > 0) {

182:

183: _SK[lev].Defect(_d[lev], _f[lev], _u[lev]); // d := f - K*u

184: _Pc2f[lev].MultT(_d[lev], _f[lev - 1]); // f_H := R*d

185: //DefectRestrict(_SK[lev], _Pc2f[lev], _f[lev - 1], _f[lev], _u[lev]); /

/ f_H := R*(f - K*u)

186:

187: //_meshes[lev-1].Visualize(_f[lev - 1]); // GH: Visualize

jacsolve.cpp Mon Jan 12 07:22:36 2026 4

: f_H should be 0 on Dirichlet B.C.

188:

189: MG_Step(lev - 1, pre_smooth, true, nu); // solve K_H * u_H =f_H

with u_H:=0

190: for (int k = 1; k < nu; ++k) {

191: // W-cycle

192: MG_Step(lev - 1, pre_smooth, false, nu); // solve K_H * u_H =f_H

193: }

194:

195: _Pc2f[lev].Mult(_w[lev], _u[lev - 1]); // w := P*u_H

196:

197: vdaxpy(_u[lev], _u[lev], 1.0, _w[lev]); // u := u + tau*w

198: }

199:

200: JacobiSmoother(_SK[lev], _f[lev], _u[lev], _d[lev], post_smooth, 0.85, fals

e);

201:

202: }

203:

204: return;

205: }

206:

207: void Multigrid::MG_Solve(int pre_smooth, double eps, int nu)

208: {

209: size_t lev=Nlevels()-1; // fine level

210:

211: // start with zero guess

212: DiagPrecond(_SK[lev], _f[lev], _w[lev], 1.0); // w := D^{-1]*f

213: //double s0 = L2_scapr(_f[lev],_w[lev]); // s_0 := <f,w>

214: double s0 = dscapr(_f[lev],_w[lev]); // s_0 := <f,w>

215: double si;

216:

217: bool bzero = true; // start with zero guess

218: int iter = 0;

219: do

220: {

221: MG_Step(lev, pre_smooth, bzero, nu);

222: bzero=false;

223: _SK[lev].Defect(_d[lev], _f[lev], _u[lev]); // d := f - K*u

224: DiagPrecond(_SK[lev], _d[lev], _w[lev], 1.0); // w := D^{-1]*d

225: //si = L2_scapr(_d[lev],_w[lev]); // s_i := <d,w>

226: si = dscapr(_d[lev],_w[lev]); // s_i := <d,w>

227: ++iter;

228: } while (si>s0*eps*eps);

229:

230:

231: cout << "\nrel. error: " << sqrt(si/s0) << " (" << iter << " iter.)" << endl;

232: return;

233: }

234:

235:

236: void JacobiSolveMPI(ParMesh const &mesh, CRS_Matrix const &SK, vector<double> const

&f, vector<double> &u)

237: {

238: const double omega = 1.0;

239: const int maxiter = 300;

240: const double tol = 1e-4,

241: tol2 = tol * tol;

242:

243: int nrows = SK.Nrows();

244: assert(nrows == static_cast<int>(f.size()) && f.size() == u.size());

245:

246: vector<double> dd(nrows);

247: vector<double> r(nrows);

248: vector<double> w(nrows);

249:

250: SK.GetDiag(dd);

251: SK.Defect(r, f, u);

Mobile User

jacsolve.cpp Mon Jan 12 07:22:36 2026 5

252: vddiv(w, r, dd);

253:

254: double sigma0 = dscapr(w, r);

255: double sigma = sigma0;

256:

257: int iter = 0;

258: while (sigma > tol2 * sigma0 && iter < maxiter)

259: {

260: ++iter;

261: vddiv(w, r, dd); // w = D^-1 * r

262: mesh.VecAccu(w); // make w consistent across processes

263: vdaxpy(u, u, omega, w); // u := u + omega * w

264: SK.Defect(r, f, u);

265: sigma = dscapr(w, r);

266: }

267:

268: if (mesh.MyRank() == 0)

269: {

270: cout << "aver. Jacobi rate : "

271: << exp(log(sqrt(sigma / sigma0)) / iter)

272: << " (" << iter << " iter)" << endl;

273:

274: cout << "final error: "

275: << sqrt(sigma / sigma0) << " (rel) "

276: << sqrt(sigma) << " (abs)\n";

277: }

278:

279: }

280:

281:

Mobile User

