
assemble_1D.m Wed Jan 14 20:52:12 2026 1

1: function [K,F] = assemble_1D(x,lambda,f)
2: N = length(x);
3: K = zeros(N);
4: F = zeros(N,1);
5:

6: for i = 1:N-1
7: h = x(i+1)-x(i);
8: xm = (x(i)+x(i+1))/2; %mid point evaluation
9: lam = lambda(xm);

10: Ke = lam/h * [1 -1; -1 1]; %exact P1 stiffness matrix
11: xm = (x(i)+x(i+1))/2;
12: Fe = f(xm)*h/2 * [1;1]; %mid point quadrature for RHS
13: %assembly into global system

14: K(i:i+1,i:i+1) = K(i:i+1,i:i+1) + Ke;
15: F(i:i+1) = F(i:i+1) + Fe;
16: end
17: end

Mobile User

Ex6A.m Wed Jan 14 20:52:12 2026 1

1: clear; clc; close all;
2: pList = [5, 10, 20, 100];
3: nIter = 9;

4:

5: figure;
6: tiledlayout(2,2)

7: for ip = 1:length(pList)
8: p = pList(ip);

9:

10: f = @(x) 2*p^3*x./(p^2*x.^2+1).^2; %RHS

11: lambda = @(x) 1; %DIffusion coefficient

12:

13: u_exact = @(x) atan(p*x);
14:

15: x = linspace(-1,1,10); %initial uniform mesh (includes
 x=0)

16:

17: for it = 1:nIter %adaptive FEM loop
18: [K,F] = assemble_1D(x,lambda,f); %assemble global

stiffness matrix K and load vector F

19: %Neumann boundary conditions at x=1

20: F(end) = F(end) + p/(p^2+1);
21: %Dirichlet boundary conditions at x=-1

22: K(1,:) = 0;

23: K(1,1) = 1;

24: F(1) = -atan(p);
25:

26: u = K \ F;

27:

28: if it < nIter % h-adaptivity loop
29: eta = flux_jump(x,u,lambda);

30: x = h_adapt(x,eta,0.3);

31: end
32: end
33:

34: u_ex = u_exact(x(:)); % force column vector

35: err_inf = max(abs(u - u_ex));
36: nexttile

37: plot(x,u,’-o’,’LineWidth’,1.5); hold on
38: plot(x,u_ex,’--’,’LineWidth’,1.5)
39: title([’p = ’,num2str(p)])
40: xlabel(’x’), ylabel(’u’)
41: legend(’FEM’,’exact’,’Location’,’best’)
42: grid on
43:

44: fprintf(’p = %d\n’, p);
45: fprintf(’error = %.3e\n\n’, err_inf);
46: end
47:

48: sgtitle(’Exercise 6A: h-adaptivity and exact solution comp

Mobile User

Ex6A.m Wed Jan 14 20:52:12 2026 2

arison’)

Ex6B.m Wed Jan 14 20:52:12 2026 1

1: clear; clc;
2: lambda = @(x) (x < 1/sqrt(2)) + 10*(x >= 1/sqrt(2)); %diff

usion coefficient

3: f = @(x) 0; %homogeneous RHS

4: x = linspace(0,1,6); %coarse initial mesh, doesn’t inclu
de x_m

5: nIter = 6;

6:

7: for it = 1:nIter
8: [K,F] = assemble_1D(x,lambda,f); %assemble
9: K(1,:) = 0; K(1,1) = 1; F(1) = 0; % Dirichlet BC at

x=0

10: K(end,:) = 0; K(end,end) = 1; F(end) = 1; % Dirichlet
BC at x=1

11: u = K\F;

12:

13: if it < nIter %h-adaptivity loop
14: eta = flux_jump(x, u, lambda);

15: x = h_adapt(x,eta,0.4);

16: end
17: end
18:

19: figure
20: plot(x,u,’-o’,’LineWidth’,1.5)
21: xlabel(’x’), ylabel(’u’)
22: title(’Ex6B, h-adaptivity with coefficient jump’)
23: grid on

Ex6C.m Wed Jan 14 20:52:12 2026 1

1: clear; clc; close all;
2: p = 70;

3: %p=-70;

4: lambda = @(x) 1; %constant diffusion

5: f = @(x) 0; %homogeneous RHS

6:

7: N = 30; % Initial mesh (uniform)

8: x = linspace(0,1,N)’;
9:

10: nIter = 8;

11:

12: for it = 1:nIter
13: [K,F] = assemble_1D(x,lambda,f); %assemble
14: for i = 1:length(x)-1 %convection term added manually
15: h = x(i+1) - x(i);
16: Ke_conv = p/2 * [-1 1; -1 1];
17: K(i:i+1,i:i+1) = K(i:i+1,i:i+1) + Ke_conv;
18: end
19: K(1,:) = 0; K(1,1) = 1; F(1) = 0; % Dirichlet BC at x=

0

20: K(end,:) = 0; K(end,end) = 1; F(end) = 1; % Dirichlet
BC at x=1

21:

22: u = K\F;

23:

24: if it < nIter
25: Nn = length(x); %initialize indicator
26: eta = zeros(Nn,1);
27: for j = 2:Nn-1 %interior nodes only
28: ul = (u(j)-u(j-1))/(x(j)-x(j-1)); %left deriva

tive

29: ur = (u(j+1)-u(j))/(x(j+1)-x(j)); %right deriv
ative

30: %Jump in convection-diffusion flux

31: Jl = -ul + p*u(j);
32: Jr = -ur + p*u(j);
33: eta(j) = abs(Jr - Jl);
34: end
35: x = r_adapt(x, eta);

36: end
37: end
38:

39: figure
40: plot(x,u,’-o’,’LineWidth’,1.5)
41: xlabel(’x’), ylabel(’u’)
42: title([’Ex6C, r-adaptivity, PÃ©clet p = ’,num2str(p)])
43: grid on

Mobile User

flux_jump.m Wed Jan 14 20:52:12 2026 1

1: function eta = flux_jump(x,u,lambda)
2: N = length(x);
3: eta = zeros(N,1);
4:

5: for j = 2:N-1
6: ul = (u(j)-u(j-1))/(x(j)-x(j-1)); %left derivative
7: ur = (u(j+1)-u(j))/(x(j+1)-x(j)); %right derivative
8: eta(j) = abs(lambda(x(j))*ur - lambda(x(j))*ul); %erro

r indicator

9: end
10: end

Mobile User

h_adapt.m Wed Jan 14 20:52:12 2026 1

1: function xnew = h_adapt(x,eta,theta) %eta is local error
2: xnew = x(1);

3: for i = 1:length(x)-1
4: if eta(i) > theta*max(eta) %if local error is large, i

nster a midpoint

5: xnew = [xnew, (x(i)+x(i+1))/2];
6: end
7: xnew = [xnew, x(i+1)]; %if local error is small, keep

the element unchanged

8: end
9: xnew = unique(xnew);

10: end

Mobile User

r_adapt.m Wed Jan 14 20:52:12 2026 1

1: function xnew = r_adapt(x,eta_elem)
2: N = length(x);
3: w = abs(eta_elem) + 1e-10; %error based monitor function
4: s = zeros(N,1);
5: for i = 2:N
6: s(i) = s(i-1) + w(i-1); %cumulative sum
7: end
8: s = s / s(end); % normalize to [0,1]
9: s_new = linspace(0,1,N)’;

10: xnew = interp1(s, x, s_new, ’linear’);
11: end

Mobile User

