
./main.cpp Mon Jan 12 07:22:36 2026 1

1: #include <iostream>

2: #include <mpi.h>

3: #include <vector>

4: #include "VecFuncs.h"

5: using namespace std;

6:

7:

8: int main(int argc, char** argv)

9: {

10: MPI_Init(&argc, &argv);

11: MPI_Comm icomm = MPI_COMM_WORLD;

12: int myrank;

13: MPI_Comm_rank(icomm, &myrank);

14:

15: int n = 20;

16: vector<double> x(n);

17: vector<double> y = x;

18: for (int i = 0; i < n; ++i)

19: {

20: x[i] = myrank*100 + (i % 5)*10 + i;

21: y[i] = 1.0/(x[i]);

22: }

23: if(myrank == 0) // so scalar product is well defined (avoid division by 0)

24: y[0] = 0;

25:

26: //E5

27: if (myrank == 0) cout << "E5" << endl;

28: DebugVector(x, icomm);

29:

30: //E6

31: if (myrank == 0) cout << "E6" << endl;

32: double scalar_product = par_scalar(x, y, icomm);

33:

34: if (myrank == 0)

35: {

36: cout << "<x,y> = " << scalar_product << endl << endl;

37: }

38:

39: // E7

40: if (myrank == 0) cout << "E7" << endl;

41: double xmin, xmax;

42: par_minmax(x, xmin, xmax, icomm);

43:

44: if (myrank == 0)

45: {

46: cout << "Global min: " << xmin << endl;

47: cout << "Global max: " << xmax << endl << endl;

48: }

49:

50: // E8

51: if (myrank == 0) cout << "E8" << endl;

52: vector<double> x_new(n);

53:

54: // All to all

55: if (myrank == 0) cout << "All to all" << endl;

56: MPI_Alltoall(x.data(), 5, MPI_DOUBLE, x_new.data(), 5, MPI_DOUBLE, icomm);

57: DebugVector(x_new, icomm);

58:

59: if (myrank == 0) cout << "All to all (in place)" << endl;

60: MPI_Alltoall(MPI_IN_PLACE, 0, MPI_DOUBLE, x.data(), 5, MPI_DOUBLE, icomm);

61:

62: DebugVector(x, icomm);

63:

64:

65: MPI_Finalize();

66: return 0;

67: }

./VecFuncs.cpp Mon Jan 12 07:22:36 2026 1

1: #include "VecFuncs.h"

2: #include <vector>

3: #include <iostream>

4: #include <cassert>

5: #include <cfloat>

6:

7: void DebugVector(const std::vector<double>& xin, MPI_Comm icomm)

8: {

9: int rank, size;

10: MPI_Comm_rank(icomm, &rank);

11: MPI_Comm_size(icomm, &size);

12: int ierr;

13:

14: int active_rank = -1;

15:

16: for (int step = 0; step < size; ++step)

17: {

18: if (rank == 0)

19: {

20: std::cout << "Enter rank to display vector: " << std::endl;

21: std::cin >> active_rank;

22: }

23:

24: ierr = MPI_Bcast(&active_rank, 1, MPI_INT, 0, icomm);

25: assert(ierr == 0);

26:

27: MPI_Barrier(icomm);

28:

29: if (rank == active_rank)

30: {

31: std::cout << "Output from process " << rank << std::endl;

32:

33: for (size_t i = 0; i < xin.size(); ++i)

34: {

35: std::cout << "xin[" << i << "] = " << xin[i] << std::endl;

36: }

37:

38: std::cout << std::endl;

39: }

40:

41: MPI_Barrier(icomm);

42: }

43: }

44:

45: double par_scalar(const std::vector<double> &x, const std::vector<double> &y, const

MPI_Comm &comm) {

46: assert(x.size()==y.size());

47:

48: double local_sum = 0.0;

49: for (int k = 0; k < x.size(); ++k) {

50: local_sum += x[k] * y[k];

51: }

52:

53: double global_sum = 0.0;

54: int mpi_error = MPI_Allreduce(&local_sum, &global_sum, 1, MPI_DOUBLE, MPI_SUM, c

omm);

55: assert(mpi_error == 0);

56:

57: return global_sum;

58: }

59:

60: void par_minmax(std::vector<double> &x, double &min_value, double &max_value, const

MPI_Comm &icomm)

61: {

62: int myrank;

63: MPI_Comm_rank(icomm, &myrank);

64:

65: int local_n = x.size();

Mobile User

./VecFuncs.cpp Mon Jan 12 07:22:36 2026 2

66: int global_offset = myrank * local_n;

67:

68: struct {double value; int idx;} local_min, local_max, global_min, global_max

; // global index

69:

70: local_min.value = local_max.value = x[0];

71: local_min.idx = local_max.idx = global_offset;

72:

73: // finding local min/max with the corresponding global index

74: for (int i = 1; i < local_n; ++i) {

75: int global_idx = global_offset + i;

76: if (x[i] < local_min.value){

77: local_min.value = x[i];

78: local_min.idx = global_idx;

79: }

80: if (x[i] > local_max.value){

81: local_max.value = x[i];

82: local_max.idx = global_idx;

83: }

84: }

85:

86: // reduction to the global one including the global index (need it later for

 interchanging)

87: MPI_Allreduce(&local_min, &global_min, 1, MPI_DOUBLE_INT, MPI_MINLOC, icomm)

;

88: MPI_Allreduce(&local_max, &global_max, 1, MPI_DOUBLE_INT, MPI_MAXLOC, icomm)

;

89: min_value = global_min.value;

90: max_value = global_max.value;

91:

92: // calculating the process and the local index for interchanging the min and

 max value

93: int rank_min = global_min.idx / local_n;

94: int rank_max = global_max.idx / local_n;

95: int local_min_idx = global_min.idx % local_n;

96: int local_max_idx = global_max.idx % local_n;

97:

98: // interchanging

99: if (rank_min == rank_max){

100: std::swap(x[local_min_idx], x[local_max_idx]);

101: }

102: else {

103: double recv_value;

104: if (myrank == rank_min){

105: MPI_Sendrecv(&x[local_min_idx], 1, MPI_DOUBLE, rank_max, 0, &recv_va

lue, 1, MPI_DOUBLE, rank_max, 0, icomm, MPI_STATUS_IGNORE);

106: x[local_min_idx] = recv_value;

107: }

108: if (myrank == rank_max){

109: MPI_Sendrecv(&x[local_max_idx], 1, MPI_DOUBLE, rank_min, 0, &recv_va

lue, 1, MPI_DOUBLE, rank_min, 0, icomm, MPI_STATUS_IGNORE);

110: x[local_max_idx] = recv_value;

111: }

112:

113: }

114:

115:

116: return;

117: }

Mobile User

./VecFuncs.h Mon Jan 12 07:22:36 2026 1

1: #pragma once

2:

3: #include <vector>

4: #include <mpi.h>

5: #include <iostream>

6: #include <cassert>

7: #include <cfloat>

8:

9: void DebugVector(const std::vector<double>& xin, MPI_Comm icomm);

10:

11: double par_scalar(const std::vector<double> &x, const std::vector<double> &y, const

MPI_Comm &icomm);

12:

13: void par_minmax(std::vector<double> &x, double &min_val, double &max_val, const MPI_

Comm &icomm);

