jacsolve.cpp Mon Jan 12 07:22:36 2026 1

1: #include "vdop.h"
2: #include "geom.h"
3: #include "getmatrix.h"
4: #include "jacsolve.h"
5: #include "userset.h"
6:
7: #include <cassert>
8: #include <cmath>
9: #include <iostream>
10: #include <vector>
11: using namespace std;
12:
13: /) ####HHFAAAAHARAAHFAARAHFAAAHFFARAHF AR A FFAAHH AR A F AR A HF AR A FA AR A
14: // ParMesh const & mesh,
15: void JacobiSolve (CRS_Matrix const &SK, vector<double> const &f, vector<double> &u)
16: {
17: const double omega = 1.0;
18: const int maxiter = 300; //LISA: lowered the maxiter
19: const double tol = le-4, // tolerance //LISA: lowered the toller
ance
20: tol2 = tol * tol; // tolerance”™2
21:
22: int nrows = SK.Nrows () ; // number of rows == number of columns
23: assert (nrows == static_cast<int>(f.size()) && f.size() == u.size());
24 :
25: cout << endl << " Start Jacobi solver for " << nrows << " d.o.f.s" << endl;
26: // Choose initial guess
27 : for (int k = 0; k < nrows; ++k) {
28: ulk] = 0.0; // u := 0
29: }
30:
31: vector<double> dd(nrows); // matrix diagonal
32: vector<double> r (nrows); // residual
33: vector<double> w(nrows); // correction
34:
35: SK.GetDiag (dd) ; // dd := diag(K)
36: ////DebugVector (dd); {int ijk; cin >> ijk;}
37:
38: // Initial sweep
39: SK.Defect (r, £, u); // r := f — K*u
40:
41 : vddiv(w, r, dd); // w := D {-1}*r
42 const double sigma0 = dscapr (w, r); // s0 := <w, r>
43:
44 // Iteration sweeps
45 int iter = 0;
46: double sigma = sigmaO0;
47: while (sigma > tol2 * sigmaO && maxiter > iter) // relative error
48: //while (sigma > tol2 && maxiter > iter) // absolute error
49: {
50: ++iter;
51: vdaxpy (u, u, omega, w); // u := u + om*w
52 SK.Defect (r, £, u); // r := f — K*u
53: vddiv (w, r, dd); // w := D {-1}*r
54: sigma = dscapr(w, r); // s0 := <w,r>
55: // cout << "Iteration " << iter << " : " << sqgrt(sigma/sigma0) << endl;
56: }
57: cout << "aver. Jacobi rate : " << exp(log(sqgrt(sigma / sigma0)) / iter) << " (
" << iter << " iter)" << endl;
58: cout << "final error: " << sqgrt(sigma / sigma0) << " (rel) " << sgrt(sigma) <<
" (abs)\n";
59:
60: return;
61l: }
62:
63:
64:
65: void JacobiSmoother (Matrix const &SK, std::vector<double> const &f, std::vector<doub

jacsolve.cpp Mon Jan 12 07:22:36 2026 2

le> &u,
66:

ro)

67:
68:
69:
70:
71:
72
73:
74 :
75:
76:

77 :
78:
79:
80:
81:
82:

std: :vector<double> &r, int nsmooth, double const omega, bool ze

// ToDO: ensure compatible dimensions

int const nnodes = static_cast<int> (u.size());
if (zero) { // assumes initial solution is zero
DiagPrecond(SK, f, u, omega);
——-nsmooth; // first smoothing sweep done
}
auto const &D = SK.GetDiag(); // accumulated diagonal of matrix @p SK
for (int ns = 1; ns <= nsmooth; ++ns) {
SK.Defect (r, £, u); // r := f - K*u

#pragma omp parallel for
for (int k = 0; k < nnodes; ++k) {
// u :=u + om*D*{-1}*r
ul[k] = ul[k] + omega * r[k] / D[k]; // MPI: distributed to accumulated ve

ctor needed

83: }
84: }
85:
86: return;
87: 1}
88:
89: void DiagPrecond (Matrix const &SK, std::vector<double> const &r, std::vector<double>
&w,
90: double const omega)
91: {
92: // ToDO: ensure compatible dimensions
93: auto const &D = SK.GetDiag(); // accumulated diagonal of matrix @p SK.
94 : int const nnodes = static_cast<int> (w.size());
95: #pragma omp parallel for
96: for (int k = 0; k < nnodes; ++k) {
97: w[k] = omega * r([k] / D[k]; // MPI: distributed to accumulated vector n
eeded
98: }
99:
100: return;
101: }
102
103
104: Multigrid::Multigrid (Mesh const &cmesh, int const nlevel)
105 _meshes (cmesh, nlevel),
106 _SK(), _u(_meshes.size()), _f(_meshes.size()), _d(_meshes.size()), _w(_meshes.
size()),
107 _Pc2f ()
108: {
109 cout << "N\m.o..LiilLliioiiioa oL in Multigrid::Multigrid
\n'";
110 // Allocate Memory for matrices/vectors on all levels
111 for (size_t lev = 0; lev < Nlevels(); ++lev) {
112 _SK.push_back (FEM_Matrix (_meshes[lev])); // CRS matrix
113 const auto nn = _SK[lev] .Nrows();
114 _ullev].resize (nn);
115 _fl[lev].resize (nn);
116 _d[lev] .resize (nn);
117 _w([lev].resize (nn);
118 auto vv = _meshes[lev].GetFathersOfVertices();
119 cout << vv.size() << endl;
120 }
121 // Intergrid transfer operators
122 J/cout << "\N. . e e e in Multigrid::Multigrid Prolongation
............... \n";
123 //_Pc2f.push_back(BisectInterpolation (vector<int>(0))); // no prolongation to

coarsest grid

jacsolve.cpp

124:

125:

126:

127:

128:
meshes [
129:
endl;
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
16l:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:

<

180:
181:
182:
183:
184:
185:
/ f_H
186:
187:

Mon Jan 12 07:22:36 2026

_Pc2f.push_back(BisectIntDirichlet ()

for (size_t lev = 1; lev < Nlevels();
//cout << lev << endl;
//cout << _meshes[lev]

_Pc2f.push_back(BisectIntDirichlet (_meshes[lev].GetFathersOfVertices

lev-1] .Index_DirichletNodes ())) ;
//cout << _Pc2f.back/()

cout <<

}

Multigrid:: "Multigrid()
{}

void Multigrid: :DefineOperators ()

{

3

Y; // no prolongation to coarsest grid
++lev) {

.GetFathersOfVertices () << endl;
()

n

.Nrows () << " << _Pc2f.back() .Ncols () <

for (size_t lev = 0; lev < Nlevels(); ++lev) {
DefineOperator (lev);
}
return;
}
// GH: Hack
void Multigrid: :DefineOperator (size_t lev)
{
_SK[lev].CalculatelLaplace(_f[lev]); // fNice() 1in userset.h

if (lev == Nlevels() - 1) { // fine mesh
_meshes([lev].SetValues(_u[lev], [] (double x, double y) —-> double
{ return x *x * std::sin(2.5 * M_PI * y); }
)i
}
else {
_meshes[lev] .SetValues(_ul[lev], f_zero);
}
_SK[lev] .ApplyDirichletBC(_ullev], _f[lev]);
return;
}
void Multigrid: :JacobiSolve (size_t lev)
{
assert (lev < Nlevels());
::JacobiSolve (_SK[lev], _f[lev], _ullev]);

}

void Multigrid::MG_Step(size_t lev, int const pre_smooth, bool const bzero, int nu)
{
assert (lev < Nlevels());
int const post_smooth = pre_smooth;
if (lev == 0) { // coarse level
JacobiSmoother (_SK[lev], _f[lev], _ullev], _d[lev], 100, 1.0, false);
}
else {
JacobiSmoother (_SK[lev], _fllev], _ullev], _d[lev], pre_smooth, 0.85, bzero
if (nu > 0) {
_SK[lev].Defect (_d[lev], _fllev], _ullev]); // d := f - K*u
_Pc2f[lev] .MultT (_d[lev], _fl[lev - 11); // f_H := R*d

//DefectRestrict (_SK[lev], _Pc2f[lev], _f[lev - 1], _f[lev], _ul[lev]);

R*(f - K*u)

//_meshes[lev-1].Visualize (_f[lev — 1]);

/

// GH: Visualize

jacsolve.cpp Mon Jan 12 07:22:36 2026 4

f H should be 0 on Dirichlet B.C.

188:

189: MG_Step(lev — 1, pre_smooth, true, nu); // solve K H * u H =f_H
with u_H:=0

190: for (int k = 1; k < nu; ++k) {

191: // W-cycle

192: MG_Step (lev — 1, pre_smooth, false, nu); // solve K H * u H =f H

193: }

194:

195: _Pc2f[lev] .Mult (_w[lev], _ullev - 1]); // w := P*u_H

196:

197: vdaxpy (_ullev], _ullev], 1.0, _w[lev]); // u := u + tau*w

198: }

199:

200: JacobiSmoother (_SK[lev], _fllev], _ullev], _d[lev], post_smooth, 0.85, fals
e);

201:

202: }

203:

204: return;

205: }

206:

207: wvoid Multigrid: :MG_Solve (int pre_smooth, double eps, int nu)

208: {

209: size_t lev=Nlevels()-1; // fine level

210:

211: // start with zero guess

212: DiagPrecond(_SK[lev], _fllev], _w[lev], 1.0); // w ;= DN{-1]*f

213: //double s0 = L2_scapr(_f[lev],_w[lev]); // s_0 := <f,w>

214: double s0 = dscapr(_fllev],_wl[lev]); // s_0 := <f,w>

215: double si;

216:

217: bool bzero = true; // start with zero guess

218: int iter = 0;

219: do

220: {

221: MG_Step(lev, pre_smooth, bzero, nu);

222: bzero=false;

223: _SK[lev] .Defect (_d[lev], _f[lev], _ullev]); // d := £ - K*u

224: DiagPrecond(_SK[lev], _d[lev], _w[lev], 1.0); /) w = D"N{-1]*d

225: //si = L2_scapr(_d[lev],_w[lev]); // s_1 := <d,w>

226: si = dscapr(_dl[lev],_wl[lev]); // s_1 := <d,w>

227 : ++iter;

228: } while (si>sO*eps*eps);

229:

230:

231: cout << "\nrel. error: " << sqgrt(si/s0) << " (" << iter << " iter.)" << endl;

232: return;

233: }

234:

235:

236: void JacobiSolveMPI (ParMesh const &mesh, CRS_Matrix const &SK, vector<double> const
&f, vector<double> &u)

237: {

238: const double omega =1.0;

239: const int maxiter = 300;

240: const double tol = le—4,

241: tol2 = tol * tol;

242:

243: int nrows = SK.Nrows();

244 assert (nrows == static_cast<int>(f.size()) && f.size() == u.size());

245:

246: vector<double> dd(nrows) ;

247 : vector<double> r (nrows) ;

248: vector<double> w(nrows) ;

249:

250: SK.GetDiag(dd); <—— (ocK (0(_965

251: SK.Defect (r, £, u);

Mobile User

jacsolve.cpp Mon Jan 12 07:22:36 2026 5

252: vddiv(w, r, dd);

253: = Qccqy (W)

254: double sigmaO = dscapr(w, r); - WCEN_ S

255: double sigma = sigmaO0;

256:

257: int iter = 0;

258: while (sigma > tol2 * sigma0O && iter < maxiter)
259: {

260: ++iter;

261: vddiv(w, r, dd); // w = D=1 * r

262: v/ mesh.VecAccu (w) ; // make w consistent across processes
263: vdaxpy (u, u, omega, w); // u := u + omega * w
264: SK.Defect (r, £, u);

265: sigma = dscapr(w, r); - ?ay_SCGZLV

266: }

267:

268: if (mesh.MyRank () == 0)

269: {

270: cout << "aver. Jacobi rate : "

271: << exp(log(sgrt (sigma / sigmaQ)) / iter)
272 << " (" << iter << " iter)" << endl;
273:

274 : cout << "final error: "

275: << sqgrt(sigma / sigmaQ) << " (rel) "
276: << sqgrt (sigma) << " (abs)\n";

277: }

278:

279: }

280:

281:

Mobile User

