
Exercise 4: PDEs in 1D and FEM

Lisa Pizzo

(A)

Given problem: Consider the PDE

−u′′(x) + a · u(x) = f(x), x ∈ (0, 1) = Ω,

with boundary conditions

u(0) = 0,
∂u(1)

∂n⃗
= α

(
gB − u(1)

)
,

where a, α, gB ∈ R are constants.

• Write the variational formulation of that PDE, define a(·, ·) and ⟨F, ·⟩.

• Write down the FEM representation using an equidistant discretization of the computa-
tional domain Ω and linear shape function in each of the n elements.

• Compute the elements of the stiffness matrix.

• Solve the system of equations.

Weak Formulation
We define the trial and test space

V = {v ∈ H1(0, 1) : v(0) = 0}.

Multiply the PDE by a test function v ∈ V and integrate:∫ 1

0
(−u′′)v dx+

∫ 1

0
auv dx =

∫ 1

0
fv dx.

Integrating the first term by parts and inserting the boundary data yields:∫ 1

0
u′v′ dx+

∫ 1

0
auv dx+ αu(1)v(1) =

∫ 1

0
fv dx+ αgBv(1).

Define the bilinear form and linear functional

a(u, v) =

∫ 1

0
u′v′ dx+

∫ 1

0
auv dx+ αu(1)v(1),

⟨F, v⟩ =
∫ 1

0
fv dx+ αgBv(1).
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FEM Discretization
Let the interval be discretized uniformly with nodes xi = ih with h = 1/n. Then using the
standard linear basis functions {φ1, . . . , φn}, with which we then have uh(x) =

∑n
j=1 ujφj(x),

stiffness matrix
Aij = a(φj , φi)

and the right hand side vector
Fi = ⟨F,φi⟩.

Element of the stiffness matrix
In order to properly compute the stiffness matrix we separate the two parts of the bilinear form
a(u, v). Hence, on one element [xk−1, xk], we have

Ke
diff =

∫ xk

xk−1

φ′
iφ

′
jdx =

1

h

(
1 −1
−1 1

)
,

Ke
react = a

∫ xk

xk−1

φiφjdx = a
h

6

(
2 1
1 2

)
.

Thus local stiffness matrix:
Ae = Ke

diff +Ke
react.

The global stiffness matrix A is built by adding overlapping contributions from all elements.
The local element level load vector corresponding to a constant source f on the element

[xk−1, xk] is F
e,

F e =

∫ xk

xk−1

f

(
φk−1

φk

)
dx = f

h

2

(
1
1

)
.

We can now modify the last entry to account for the Robin BC

Ann = Ann + α

and
Fn = Fn + αgB.

Analytical solution
We firstly solve the homogeneous equation −u′′ + au = 0, and the solution is

uh(x) = C1e
√
ax + C2e

−
√
ax, a > 0.

To this we then apply Dirichlet boundary conditions at x = 0 and hence

uh(0) = C1 + C2 = 0 ⇒ uh(x) = C1(e
√
ax − e−

√
ax) = C1 sinh(

√
ax).

Then we solve the particular solution for constant f(x) = f0, the solution will then be

up(x) =
f0
a
(1− e−

√
ax).

Hence the general solution

u(x) = C1 sinh(
√
ax) +

f0
a
(1− e−

√
ax).

And now we can apply Robin boundary conditions at x = 1, u′(1) = α(gB − u(1)).

u′(x) = C1

√
a cosh(

√
ax),
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and hence, plugging in x = 1, we obtain

C1

√
a cosh(

√
a) = α(gB −

(
C1 sinh(

√
a) +

f0
a
)
)
.

This leads to

C1 =
α(gB − f0

a )

α sinh(
√
a) +

√
a cosh(

√
a)

Visualization in Matlab
I implemented both the numerical and analytical solutions in MATLAB, and the figure below
compares their results.

Figure 1: FEM vs Analytical solution
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(B)

Given problem: Consider the PDE

−
(
λ(x) · u′(x)

)′
= 0, x ∈ (0, 1) = Ω, u(0) = 0, u(1) = 1,

with

λ(x) =

1, x ∈
(
0, 1√

2

)
,

10, x ∈
(

1√
2
, 1
)
.

• Write the variational formulation and the FEM system.

• Solve the system of equations.

Variational Formulation
Test space with homogeneous Dirichlet conditions

V = H1
0 (0, 1) = {v ∈ H1(0, 1) : v(0) = v(1) = 0}.

Multiply the PDE by v ∈ V and integrate:∫ 1

0
−(λu′)′v dx = 0,

then integrate by parts ∫ 1

0
λ(x)u′(x)v′(x) dx = 0 ∀v ∈ V.

Since u ̸∈ V , we handle the non homogeneous boundary conditions by writing

u = uD + w,

where w ∈ V and uD satisfies uD(0) = 0 and uD(1) = 1. A convenient choice is uD(x) = x.
Inserting u = uD + w into the weak form gives:∫ 1

0
λ(u′D + w′)v′ dx = 0.

Thus the variational formulation for w is:

Find w ∈ V : a(w, v) = F (v) ∀v ∈ V,

with

a(w, v) =

∫ 1

0
λw′v′ dx, F (v) = −

∫ 1

0
λu′D v′ dx.

Since u′D(x) = 1, the right-hand side simplifies to

F (v) = −
∫ 1

0
λ v′ dx.

FEM Discretization
Let 0 = x0 < x1 < · · · < xn = 1 be a uniform grid with h = 1/n. The standard hat basis

{φ0, . . . , φn} satisfies φi(xj) = δij .
Since w(0) = w(1) = 0, we approximate w in

Vh = span{φ1, . . . , φn−1}.
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We write

wh(x) =
n−1∑
j=1

wjφj(x).

The discrete system is
Aw = F,

with entries

Aij =

∫ 1

0
λφ′

jφ
′
i dx, Fi = −

∫ 1

0
λφ′

i dx.

Local Element Matrices
Consider an element [xk−1, xk] of length h. The derivatives are constant:

φ′
k−1 = −1

h
, φ′

k =
1

h
.

Case A: The element is entirely inside a region where λ is constant.
For λ(x) = λ (either 1 or 10), the local stiffness matrix is

A = λ
1

h

(
1 −1
−1 1

)
.

The local load vector (using u′D = 1) is:

F = −λ

(∫ xk

xk−1
φ′
k−1 dx∫ xk

xk−1
φ′
k dx

)
=

(
λ

−λ

)
.

Case B: The jump point x0 =
1√
2
lies inside the element.

Let
h1 = x0 − xk−1, h2 = xk − x0, h1 + h2 = h.

Split integrals:

A =

∫ x0

xk−1

1 · (. . . ) dx+

∫ xk

x0

10 · (. . . ) dx.

Compute:

A =
1

h2

(
h1 + 10h2 −(h1 + 10h2)

−(h1 + 10h2) h1 + 10h2

)
.

Local load contributions:

F =

 h1 + 10h2
h

−h1 + 10h2
h

 .

Assembly and Final System
Assemble all local contributions into the global stiffness matrix A and load vector F . Solve

the (n− 1)× (n− 1) linear system
Aw = F.

The final FEM approximation is

uh(xi) = uD(xi) + wh(xi) = xi + wi, i = 0, . . . , n.

Exact Solution (for verification)
From −(λu′)′ = 0 we get λ(x)u′(x) = J for some constant flux J . Thus

u′(x) =
J

λ(x)
.
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Let x0 =
1√
2
. For 0 ≤ x ≤ x0, λ = 1:

u(x) = Jx.

For x0 ≤ x ≤ 1, λ = 10:

u(x) = J
(
x0 +

x− x0
10

)
.

Use u(1) = 1 to determine J :

1 = J

(
x0 +

1− x0
10

)
⇒ J =

1

x0 +
1− x0
10

.

Thus the exact solution is

u(x) =


Jx, 0 ≤ x ≤ x0,

J

(
x0 +

x− x0
10

)
, x0 ≤ x ≤ 1.

This provides a direct reference for validating the FEM implementation.
Visualization in Matlab
I implemented both the numerical and analytical solutions in MATLAB, and the figure below
compares their results.

Figure 2: FEM vs Analytical solution
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(C)

Given problem: Solve the Péclet problem

−u′′(x) + p u′(x) = 0, x ∈ (0, 1), u(0) = 0, u(1) = 1,

with FEM for a constant p ∈ R.

• Write the variational formulation and the FEM system.

• Solve the system of equations with p = 70 and n ∈ {10, 20, 30, 40, 70}. Explain the behavior
of the discrete solution uh.

Variational formulation
Multiply the PDE by a test function v ∈ H1

0 (0, 1) and integrate:∫ 1

0

(
−u′′(x) + p u′(x)

)
v(x) dx = 0.

Integrate the second derivative term by parts:∫ 1

0
−u′′v =

∫ 1

0
u′v′.

The boundary term vanishes because v(0) = v(1) = 0.
Thus the weak problem is:

Find u ∈ H1
0 (0, 1) such that

∫ 1

0
u′(x)v′(x) dx+ p

∫ 1

0
u′(x)v(x) dx = 0, ∀v ∈ H1

0 (0, 1).

This gives the bilinear form:

a(u, v) =

∫ 1

0
u′v′ + p

∫ 1

0
u′v.

FEM discretization
Let the mesh be uniform with nodes xi = ih, h = 1

n , and standard hat functions φi.
The discrete problem is:

Find uh ∈ Vh ⊂ H1
0 (0, 1) such that a(uh, φj) = 0, j = 1, . . . , n− 1.

We assemble the stiffness matrix:

Aij =

∫ 1

0
φ′
i(x)φ

′
j(x) dx + p

∫ 1

0
φ′
i(x)φj(x) dx.

For a uniform mesh and linear elements:∫ xi

xi−1

φ′
iφ

′
i =

1

h
,

∫ xi

xi−1

φ′
iφ

′
i−1 = −1

h
,∫ xi

xi−1

φ′
iφi =

1

2
,

∫ xi

xi−1

φ′
iφi−1 = −1

2
.

Where the first two are used for the first term of the bilinear form a, and the second two for the
second term of the bilinear form.

Thus each element contributes:
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K =
1

h

(
1 −1
−1 1

)
, C =

p

2

(
1 −1
−1 1

)
.

Hence, the element matrix A = K + C is

A =

(
1
h − p

2 − 1
h − p

2
− 1

h + p
2

1
h + p

2

)
.

Now, we know that every interior node i receives contributions from the two elements touch-
ing it, meaning element [xi−1, xi] and element [xi, xi+1]. Hence the global matrix is so assembled:

Global diagonal: each nodes getsK11 from the right element andK22 from the left element,

Ai,i =
1

h
− p

2
+

1

h
+

p

2
=

2

h

Global left off diagonal: contribution from element [xi−1, xi]

Ai,i−1 = −1

h
− p

2
,

Global right off diagonal: contribution from element [xi, xi+1]

Ai,i+1 = −1

h
+

p

2
,

The load vector is zero, and the boundary condition u(1) = 1 introduces:

bn−1 =

(
1

h
− p

2

)
· 1.

So the FEM linear system is:
Auh = b.

Numerical results for p = 70
We solve the system for:

n ∈ {10, 20, 30, 40, 70}, h =
1

n
.

The exact solution is:

u(x) =
epx − 1

ep − 1
.

This function has a sharp boundary layer near x = 1 when p is large, such as p = 70.
Behavior of the discrete solution
For large p, the element Péclet number is:

Peh =
ph

2
.

The Péclet number is the ratio between the two components of the bilinear form, often called
diffusion and convection. This number gives us a clear way to understand what the FEM method
produces.

• For small n (coarse mesh), h is large ⇒ Peh ≫ 1. The FEM solution shows: strong
oscillations, loss of monotonicity, failure to capture the boundary layer. Hence it is very
unstable.
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• As n increases: Peh = p
2n decreases.

For n = 70:

Peh ≈ 70

140
= 0.5,

which is acceptable. The FEM solution becomes monotone and close to the exact expo-
nential boundary layer.

• This demonstrates the classical issue: Standard FEM becomes unstable when convection
dominates diffusion.

Hence, to capture the boundary layer without oscillations, one needs either:

h <
2

p
or stabilization.

Conclusion
The FEM system is well-defined, but standard linear FEM is unstable for large Péclet number.
For p = 70, coarse meshes fail completely, while fine meshes (around n ≥ 70) capture the expo-
nential layer accurately.

Visualization in Matlab
I implemented both the numerical and analytical solutions in MATLAB, and the figure below
compares their results.

Figure 3: FEM vs Analytical solution
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