Exercise 4: PDEs in 1D and FEM

Lisa Pizzo

(A)
Given problem: Consider the PDE
—u(z) +a-u(z) = f(z), z€(0,1)=Q,

with boundary conditions

where a, «, gg € R are constants.
e Write the variational formulation of that PDE, define a(-,-) and (F, ).

e Write down the FEM representation using an equidistant discretization of the computa-
tional domain 2 and linear shape function in each of the n elements.

e Compute the elements of the stiffness matrix.
e Solve the system of equations.

Weak Formulation
We define the trial and test space

V ={ve H'0,1):v(0) =0}.

Multiply the PDE by a test function v € V' and integrate:

1 1 1
/ (—u”)vd:v+/ auvd:n—/ fvdz.
0 0 0

Integrating the first term by parts and inserting the boundary data yields:

1 1 1
/ u'v' dx + / auv dxr + au(l)v(l) = / fvdx + agpv(l).
0 0 0
Define the bilinear form and linear functional

1 1
a(u,v) = / u'v' dx + / auwv dz + au(1)v(l),
0 0

1
<F,U>:/O fvdz + agpv(l).
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FEM Discretization
Let the interval be discretized uniformly with nodes z; = ih with h = 1/n. Then using the
standard linear basis functions {1, ...,¢,}, with which we then have wy(z) = >°7_ u;jp;(x),
stiffness matrix

Aij = a(%’v SOZ)
and the right hand side vector

Element of the stiffness matrix
In order to properly compute the stiffness matrix we separate the two parts of the bilinear form
a(u,v). Hence, on one element [xy_1, x|, we have

Tk 1 1 -1
Kg = / ppidr = — ( > ,
' Tp—1 o h \—1 1 l/

Tk h (2 1
feact = a/ Qpi@jdw =ax <1 2) :
T—1

Thus local stiffness matrix:

(@)

A® = Kgg + K,

react*

The global stiffness matrix A is built by adding overlapping contributions from all elements.
The local element level load vector corresponding to a constant source f on the element

[.TUk_l,ZCk] 1S Fe,
P Pk—1 !
F_/xkx—lf<90k>dx_f2(l)' (/

We can now modify the last entry to account for the Robin BC
App = Ay +

and
Fn:Fn"i_agB‘

Analytical solution
We firstly solve the homogeneous equation —u” + au = 0, and the solution is

up(z) = CreV®® 4+ Che ™V 4 > 0.
To this we then apply Dirichlet boundary conditions at x = 0 and hence
up(0) = C1 4 Cy = 0 = up(z) = C1(eV®® — e V) = O sinh(vaz).

Then we solve the particular solution for constant f(z) = fp, the solution will then be

up(z) = 12(1 — eVany,

a

Hence the general solution

u(x) = Cy sinh(vaz) + @(1 — e~ VA, [/

a

And now we can apply Robin boundary conditions at z = 1, v/(1) = a(gp — u(1)).

u'(z) = C1v/acosh(y/ax),
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and hence, plugging in x = 1, we obtain

C1vacosh(va) = a(gp — (Cy sinh(va) + @))

a

This leads to

a(gs — %)

asinh(y/a) + v/a cosh(y/a)

Ch =

Visualization in Matlab
I implemented both the numerical and analytical solutions in MATLAB, and the figure below
compares their results.
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Figure 1: FEM vs Analytical solution



(B)
Given problem: Consider the PDE
~(\@) - (z)) =0, z€(0,1)=9Q, u0)=0,u(l)=1,

with
1, =xze€ (O, %) ,
M) = 1
10, ve(L1).
e Write the variational formulation and the FEM system.

e Solve the system of equations.

Variational Formulation
Test space with homogeneous Dirichlet conditions

V = H}(0,1) = {v e H(0,1) : v(0) = v(1) = 0}.

Multiply the PDE by v € V' and integrate:

1
/ —(\u)vdx =0,
0
then integrate by parts
1
/ Az)u/ (z)v'(z) dz = 0 Yv e V.
0
Since v ¢ V, we handle the non homogeneous boundary conditions by writing
U =up + w,

where w € V and up satisfies up(0) = 0 and up(1) = 1. A convenient choice is up(x) = =.
Inserting u = up + w into the weak form gives:

1
/ Aup +w')v' dx = 0.
0
Thus the variational formulation for w is:
FindweV: a(w,v)=F(w) YveV,

with . )
a(w,v) = / Aw'v' dx, F(v) = —/ Au'p v dz.
0 0

Since u/,(x) = 1, the right-hand side simplifies to

1
F(v) = —/ A da.
0

FEM Discretization
Let 0 =29 < 1 < -+ < 2, = 1 be a uniform grid with A = 1/n. The standard hat basis

{¢0,...,¢n} satisfies p;(x;) = d;;.
Since w(0) = w(1) = 0, we approximate w in

Vi = span{p1,...,on 1}



We write

The discrete system is

with entries L 1
Aij = / /\Lp;-go; dz, F, = —/ A\l da.
0 0

Local Element Matrices
Consider an element [xy_1, x| of length h. The derivatives are constant:

/ 1 / 1
Pr—1 — W Pk — %

Case A: The element is entirely inside a region where )\ is constant.
For A(z) = A (either 1 or 10), the local stiffness matrix is

1/1 -1
A_Ah<—1 1)'

The local load vector (using u/, = 1) is:

P f;:_l P dz B A
Jok el dx A

Case B: The jump point zy = % lies inside the element.

Let
hy =z — xp_1, ho = x — x0, hi+ ho = h.

xo Tk
A:/ 1~(...)daz+/ 10 (...)dx.
Ti—1 o

Split integrals:

Compute:
A i hi + 10hs —(h1 + 10hg)
~ h2 \—(h1 +10h2)  hy + 10hs
Local load contributions:
hi + 10ho
_ h
E=1"h +10n
h

Assembly and Final System
Assemble all local contributions into the global stiffness matrix A and load vector F'. Solve
the (n — 1) x (n — 1) linear system
Aw =F.

The final FEM approximation is
up(x;) = up(x;) + wp(x;) = z; + w;, i=0,...,n.

Exact Solution (for verification)
From —(Au') =0 we get A(z)u/(z) = J for some constant flux J. Thus

oy



Let o = +. For0<z<zxp, A=1:

S

For zg <z <1, A=10:

Use u(1) =1 to determine J:

1 |
1:J(wo+ ‘TO) - J=—

10

Thus the exact solution is

This provides a direct reference for validating the FEM implementation.
Visualization in Matlab
I implemented both the numerical and analytical solutions in MATLAB, and the figure below
compares their results.
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Figure 2: FEM vs Analytical solution
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(C)
Given problem: Solve the Péclet problem

—u"(z) +pu/(z) =0, z€(0,1), u(0)=0, u(l)=1,
with FEM for a constant p € R.

e Write the variational formulation and the FEM system.

e Solve the system of equations with p = 70 and n € {10, 20, 30,40, 70}. Explain the behavior
of the discrete solution wuy,.

Variational formulation
Multiply the PDE by a test function v € Hg(0,1) and integrate:

/0 (—u"(z) + pu'(2))v(x) de = 0.

Integrate the second derivative term by parts:

The boundary term vanishes because v(0) = v(1) = 0.
Thus the weak problem is:

1 1
Find u € HJ(0,1) such that / o (z) (x) dw —i—p/ u'(z)v(z)de =0, Yve Hy(0,1).
0 0

This gives the bilinear form:

1 1
a(u,v) :/ u'v' +p/ u'v.
0 0

FEM discretization
Let the mesh be uniform with nodes x; = ih, h = %, and standard hat functions ¢;.
The discrete problem is:

Find up € Vj, C H&(O, 1) such that a(up, ;) =0, j=1,...,n—1.

We assemble the stiffness matrix:

1 1
Ay = /0 @) (@) de + p /0 ()05 (x) de.

.

i—

For a uniform mesh and linear elements:

.

i—

/ Pips = 5 / ipi1 =
Ti_1 Ti—1

Where the first two are used for the first term of the bilinear form a, and the second two for the
second term of the bilinear form.
Thus each element contributes:

1 1
1902@2 = 1@2@2—1 =7
1 1

2



11 pf1 -1
K_h<4,1>’ 0_2(4 1>‘

Hence, the element matrix A = K + C is

Now, we know that every interior node i receives contributions from the two elements touch-
ing it, meaning element [x;_1, z;] and element [z;, z;11]. Hence the global matrix is so assembled:
Global diagonal: each nodes gets K11 from the right element and K9 from the left element,

Global left off diagonal: contribution from element [z;_1,z;]

Aji1=—

p
27

Global right off diagonal: contribution from element [x;, z;11]

v

The load vector is zero, and the boundary condition (1) = 1 introduces:

I p
bp1=(=-—-%2]-1.
=(1-3)

Auh = b.

Ajjit1=—5 +

Y

N3

So the FEM linear system is:

Numerical results for p = 70
We solve the system for:
1

n € {10,20,30,40,70},  h=—.
n

The exact solution is:
el — 1
u(x) = .
(@) =——

This function has a sharp boundary layer near x = 1 when p is large, such as p = 70.
Behavior of the discrete solution
For large p, the element Péclet number is:

ph
Peh = ?

The Péclet number is the ratio between the two components of the bilinear form, often called
diffusion and convection. This number gives us a clear way to understand what the FEM method
produces.

e For small n (coarse mesh), h is large = Pej, > 1. The FEM solution shows: strong
oscillations, loss of monotonicity, failure to capture the boundary layer. Hence it is very V
unstable.
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e As n increases: Pe, = 4~ decreases.

For n = 70:
70

~ 140
which is acceptable. The FEM solution becomes monotone and close to the exact expo-
nential boundary layer.

Pe;, 0.5,

e This demonstrates the classical issue: Standard FEM becomes unstable when convection
dominates diffusion.

Hence, to capture the boundary layer without oscillations, one needs either: (/

2
h < — or stabilization.
p
Conclusion
The FEM system is well-defined, but standard linear FEM is unstable for large Péclet number.
For p = 70, coarse meshes fail completely, while fine meshes (around n > 70) capture the expo-
nential layer accurately.

Visualization in Matlab

I implemented both the numerical and analytical solutions in MATLAB, and the figure below
compares their results.

FEM vs Analytical Solution for -u'' + p u' = 0, p=70
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Figure 3: FEM vs Analytical solution
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