import numpy as np import matplotlib.pyplot as plt import adaptivity_schemes np.set_printoptions(precision=2) def lam_func(x): n = len(x) lam_vec = np.zeros(n) for i in range(n): if (x[i] > 1/np.sqrt(2)): lam_vec[i] = 10 else: lam_vec[i] = 1 return lam_vec def Solve_6B(mesh): N = len(mesh) - 1 # number of elements A = np.zeros((N + 1, N + 1)) lam_vec = lam_func(mesh) for i in range(1, N + 1): h = mesh[i] - mesh[i - 1] a_11 = lam_vec[i]/h a_12 = -lam_vec[i]/h a_21 = -lam_vec[i]/h a_22 = lam_vec[i]/h A[i - 1, i - 1] += a_11 A[i - 1, i] += a_12 A[i, i - 1] += a_21 A[i, i] += a_22 #print("A =\n", A) # take dirichlet data into account u_g = np.zeros(N + 1) u_g[0] = 0 u_g[N] = 1 #print("u_g =\n", u_g) # remove first and last row of A A_g = A[1:N, :] #print("A_g =\n", A_g) # assemble RHS with dirichlet data f = -A_g.dot(u_g) #print(f) # matrix for the inner nodes (excluding nodes with dirichlet bcs) A_0 = A[1:N, 1:N] #print(A_0) # solve for u_0 (free dofs) u_0 = np.linalg.solve(A_0, f) # assemble "u = u_0 + u_g" u = np.concatenate([[0], u_0, [1]]) #print("u =\n", u) return u ########## h-adaptivity ########## N = 2 # number of elements mesh = np.linspace(0, 1, N + 1) u = Solve_6B(mesh) plt.plot(mesh, u, '-o') plt.grid() plt.xlabel('x') plt.ylabel('u_h(x)') plt.title("h-adaptivity") N_vec = ["0 refinements, " + str(N) + " elements"] refinements = 5 # number of refinements for i in range(refinements): mesh = adaptivity_schemes.adapt_h(mesh, lam_func(mesh)*u, 0.9) u = Solve_6B(mesh) plt.plot(mesh, u, '-o') N_vec.append(str(i + 1) + " refinements, " + str(len(mesh) - 1) + " elements") plt.legend(N_vec) plt.show() ########## r-adaptivity ########## N = 5 mesh = np.linspace(0, 1, N + 1) u = Solve_6B(mesh) plt.plot(mesh, u, '-o') title = "r-adaptivity with " + str(N) + " elements" plt.title(title) adaptations_vec = ["0 adaptations"] adaptations = 4 # number of iterations for i in range(adaptations): mesh = adaptivity_schemes.adapt_r(mesh, lam_func(mesh)*u) u = Solve_6B(mesh) plt.plot(mesh, u, '-o') adaptations_vec.append(str(i + 1) + " adaptations") plt.legend(adaptations_vec) plt.xlabel('x') plt.ylabel('u_h(x)') plt.grid() plt.show()