
Scientific Computing and FEM
Exercise sheet 4

Jakob Schratter
schratter@student.tugraz.at

November 26, 2025

Exercise (A)
We are given the PDE

−u′′(x) + au(x) = f(x), for x ∈ (0, 1),
u(0) = 0,

∂u(1)
∂n⃗

= α(gb − u(1))

for a, α, gb ∈ R.

Solution (A)
We use integration by parts and choose v with v(0) = 0 such that unwanted terms
vanish. After plugging in the Neumann data and bringing it to the other side we get the
variational formulation: {

Find u ∈ V0, such that
a(u, v) = ⟨F, v⟩, ∀v ∈ V0,

with

a(u, v) =
∫ 1

0
u′(x)v′(x) + au(x)v(x)dx + αu(1)v(1),

⟨F, v⟩ =
∫ 1

0
f(x)v(x)dx + αgbv(1),

V0 = {v ∈ H1(0, 1) : v(0) = 0}.

For the discretization, we choose S1
h(0, 1) ⊆ H1(0, 1) as the space piecewise linear, con-

tinuous basis functions. For N + 1 equidistant nodes x0 < x1 < . . . < xN , xi = ih with
distance h = 1

N , the basis functions have the form

φk(x) =


1
h(x − xk−1) for x ∈ (xk−1, xk),
1
h(xk+1 − x) for x ∈ (xk, xk+1),
0 else,

∀k = 0, . . . , N.
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This gives us the discrete variational formulation{
Find uh ∈ Vh, such that
a(uh, vh) = ⟨F, vh⟩, ∀vh ∈ Vh,

with a(·, ·) and ⟨F, ·⟩ same as before, and

Vh = {v ∈ S1
h(0, 1) : v(0) = 0}.

Using the finite element isomorphism

vh(x) =
N∑

k=0
vkφk(x) ∈ S0

h(0, 1) ↔ v⃗ = (v0, . . . , vN )⊤ ∈ RN+1

we can formulate this using a linear system of equations:{
Find u⃗ ∈ RN+1, such that
Ku⃗ = f⃗ ,

with

Kij =
∫ 1

0
φ′

j(x)φ′
i(x) + aφj(x)φi(x)dx + αφj(1)φi(1),

fi =
∫ 1

0
f(x)φi(x)dx + αgbφi(1).

and the restriction u0 = 0.

Now we compute the elements of the stiffness matrix K ∈ R(N+1)×(N+1) and the right
hand side vector f ∈ RN+1.

We first compute the local element matrices of K by integrating the basis functions over
one element xi.
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For i = 0, . . . , N − 1 we have

K
(i)
11 =

∫ xi+1

xi

(φ′
i(x))2 + a(φi(x))2dx + α(φi(1))2 =

=
∫ xi

xi−1

1
h2 + a

1
h2 (x − xi−1)2dx = 1

h
+ ah

3 ,

K
(i)
12 =

∫ xi+1

xi

φ′
i+1(x)φ′

i(x) + aφi+1(x)φi(x)dx + αφi+1(1)φi(1) =

=
∫ xi+1

xi

− 1
h2 + a

1
h2 (x − xi)(xi+1 − x)dx = − 1

h
+ ah

6 ,

K
(i)
21 = K

(i)
12 = − 1

h
+ ah

6 ,

K
(i)
22 =

∫ xi+1

xi

(φ′
i+1(x))2 + a(φi+1(x))2dx + α(φi+1(1))2 =

=
∫ xi+1

xi

1
h2 + a

1
h2 (xi+1 − x)2dx + +α(φi+1(1))2 =

= 1
h

+ ah

3 +
{

α, for i = N,

0, else.

This results in the stiffness matrix

K =



1
h + ah

3 − 1
h + ah

6
− 1

h + ah
6

2
h + 2ah

3 − 1
h + ah

6
. . . . . . . . .

− 1
h + ah

6
2
h + 2ah

3 − 1
h + ah

6
− 1

h + ah
6

1
h + ah

3 + α

 .

To compute the entries of f⃗ , we have

fi =
∫ xi

xi−1
f(x) 1

h
(x − xi−1)dx +

∫ xi+1

xi

f(x) 1
h

(xi+1 − x)dx + αgbφi(1).

By choosing f(x) = c as a constant for example, this results in

f⃗ =


ch
ch
...

ch
ch + αgb

 .

The Dirichlet boundary conditions are taken care of in the code.
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Exercise (B)
We are given the PDE

−(λ(x)u′(x))′ = 0 for x ∈ (0, 1),
u(0) = 0,

u(1) = 1.

with

λ(x) =

1, x ∈ (1, 1√
2),

10, x ∈ ( 1√
2 , 1).

Solution (B)
For the variational formulation, integrate by parts and choose the test functions to be
in H1

0 (0, 1). Then we get{
Find u ∈ {H1(0, 1) : u(0) = 0, u(1) = 1}, such that
a(u, v) = 0, ∀v ∈ H1

0 (0, 1),

with

a(u, v) =
∫ 1

0
λ(x)u′(x)v′(x)dx.

We separate the domain (0, 1) into two intervals (1, 1√
2) and ( 1√

2 , 1). Since λ(x) is
constant on each subdomain respectively, we get for i = 0, . . . , N − 1

K
(i)
11 =

∫ xi+1

xi

λ(x)(φ′
i(x))2dx =

∫ xi+1

xi

λ(x) 1
h2 dx = λ

h
,

K
(i)
12 =

∫ xi+1

xi

λ(x)φ′
i+1(x)φ′

i(x)dx = −
∫ xi+1

xi

λ(x) 1
h2 dx = −λ

h
,

K
(i)
21 = K

(i)
12 = −λ

h
,

K
(i)
22 = K

(i)
11 = λ

h
.

Hence the global stiffness matrix takes the form (illustrated for N + 1 = 3)

K =

 1
h − 1

h
− 1

h
11
h −10

h
−10

h
10
h

 .

This results in the linear system of equations{
Find u⃗ ∈ RN+1, such that
Ku⃗ = 0⃗,
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with the restrictions u0 = 0 and uN = 1. The Dirichlet boundary conditions are taken
care of in the code.

Exercise (C)
We are given the PDE (Péclet problem)

−u′′(x) + pu′(x) = 0, x ∈ (0, 1)
u(0) = 0
u(1) = 1

with p ∈ R.

Solution (C)
For the variational formulation, integrate by parts and choose the test functions to be
in H1

0 (0, 1). Then we get{
Find u ∈ {H1(0, 1) : u(0) = 0, u(1) = 1}, such that
a(u, v) = 0, ∀v ∈ H1

0 (0, 1),

with

a(u, v) =
∫ 1

0
u′(x)v′(x) + pu′(x)v(x)dx.

For i = 0, . . . , N − 1 we have

K
(i)
11 =

∫ xi+1

xi

(φ′
i(x))2 + pφ′

i(x)φi(x)dx =
∫ xi+1

xi

1
h2 − p

1
h2 (xi+1 − x) = 1

h
− p

2

K
(i)
12 =

∫ xi+1

xi

φ′
i+1(x)φ′

i(x) + pφ′
i+1(x)φi(x)dx =

∫ xi+1

xi

− 1
h2 + p

1
h2 (xi+1 − x)dx = − 1

h
+ p

2

K
(i)
21 =

∫ xi+1

xi

φ′
i(x)φ′

i+1(x) + pφ′
i(x)φi+1(x)dx =

∫ xi+1

xi

− 1
h2 − p

1
h2 (x − xi)dx = − 1

h
− p

2 ,

K
(i)
22 =

∫ xi+1

xi

(φ′
i+1(x))2 + pφ′

i+1(x)φi+1(x)dx =
∫ xi+1

xi

1
h2 + p

1
h2 (x − xi)dx = 1

h
+ p

2

Hence the global stiffness matrix takes the form

K =



1
h − p

2 − 1
h + p

2
− 1

h − p
2

2
h − 1

h + p
2

. . . . . . . . .
− 1

h − p
2

2
h − 1

h + p
2

− 1
h − p

2
1
h + p

2

 .

This results in the linear system of equations{
Find u⃗ ∈ RN+1, such that
Ku⃗ = 0⃗,
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Figure 1: Approximation of the solution in python

with the restrictions u0 = 0 and uN = 1. The Dirichlet boundary conditions are taken
care of in the code.

In figure 1, we can see that for small element numbers, there are instabilities in the
discrete solution. For an increasing number of elements, the calculation becomes more
stable. This is due to the steep curve of the exact solution near the point 1.
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