
./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 1

1: #undef CUTHILL_MCKEE
2: // see: http://llvm.org/docs/CodingStandards.html#include-style
3: #include "vdop.h"
4: #ifdef CUTHILL_MCKEE
5: #include "cuthill_mckee_ordering.h"
6: #endif
7: #include "geom.h"
8:
9: #include <algorithm>
10: #include <array>
11: #include <cassert>
12: #include <cmath>
13: #include <ctime> // contains clock()
14: #include <fstream>
15: #include <iostream>
16: #include <list>
17: #include <string>
18: #include <vector>
19:
20: using namespace std;
21:
22: Mesh::Mesh(int ndim, int nvert_e, int ndof_e, int nedge_e)
23: : _nelem(0), _nvert_e(nvert_e), _ndof_e(ndof_e), _nnode(0), _ndim(ndim), _ia(0),

 _xc(0),
24: _bedges(0), _sdedges(0),
25: _nedge(0), _nedge_e(nedge_e), _edges(0), _ea(), _ebedges(),
26: _dummy(0)
27: {
28: }
29:
30: Mesh::˜Mesh()
31: {}
32:
33: void Mesh::SetValues(std::vector<double> &v, const function<double(double, double)>

&func) const
34: {
35: int const nnode = Nnodes(); // number of vertices in mesh
36: assert(nnode == static_cast<int>(v.size()));
37: for (int k = 0; k < nnode; ++k)
38: {
39: v[k] = func(_xc[2 * k], _xc[2 * k + 1]);
40: }
41: }
42:
43: void Mesh::SetBoundaryValues(vector<double> &v, const function<double(double, double

)> &func) const
44: {
45: auto const idx = Index_BoundaryNodes();
46: for (size_t ik = 0; ik < idx.size(); ++ik)
47: {
48: const int k = idx[ik];
49: v[k] = func(_xc[2 * k], _xc[2 * k + 1]);
50: }
51: }
52:
53: void Mesh::SetDirchletValues(vector<double> &v, const function<double(double, double

)> &func) const
54: {
55: auto const idx = Index_DirichletNodes();
56: for (size_t ik = 0; ik < idx.size(); ++ik)
57: {
58: const int k = idx[ik];
59: v[k] = func(_xc[2 * k], _xc[2 * k + 1]);
60: }
61: }
62:
63:
64:

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 2

65: void Mesh::Debug() const
66: {
67: cout << "\n ############### Debug M E S H ###################\n";
68: cout << "\n Coordinates \n";
69: for (int k = 0; k < _nnode; ++k)
70: {
71: cout << k << " : " ;
72: for (int i = 0; i < _ndof_e; ++i)
73: {
74: cout << _xc[2*k+i] << " ";
75: }
76: cout << endl;
77: }
78: cout << "\n Elements \n";
79: for (int k = 0; k < _nelem; ++k)
80: {
81: cout << k << " : ";
82: for (int i = 0; i < _ndof_e; ++i)
83: cout << _ia[_ndof_e * k + i] << " ";
84: cout << endl;
85: }
86: cout << "\n Boundary (vertices) \n";
87: cout << " _bedges : " << _bedges << endl;
88: return;
89: }
90:
91: void Mesh::DebugEdgeBased() const
92: {
93: cout << "\n ############### Debug M E S H (edge based) ###################\n";
94: cout << "\n Coordinates \n";
95: for (int k = 0; k < _nnode; ++k)
96: {
97: cout << k << " : " << _xc[2 * k] << " " << _xc[2 * k + 1] << endl;
98: }
99:
100: cout << "\n edges \n";
101: for (int k = 0; k < _nedge; ++k)
102: {
103: cout << k << " : ";
104: for (int i = 0; i < 2; ++i)
105: cout << _edges[2 * k + i] << " ";
106: cout << endl;
107: }
108:
109: cout << "\n Elements (edges) \n";
110: assert(_nedge_e * _nelem == static_cast<int>(_ea.size()));
111: for (int k = 0; k < _nelem; ++k)
112: {
113: cout << k << " : ";
114: for (int i = 0; i < _nedge_e; ++i)
115: cout << _ea[_nedge_e * k + i] << " ";
116: cout << endl;
117: }
118: cout << "\n Boundary (edges) \n";
119: cout << " _ebedges : " << _ebedges << endl;
120:
121: return;
122: }
123:
124: void Mesh::Write_ascii_matlab(std::string const &fname, std::vector<double> const &v

) const
125: {
126: assert(Nnodes() == static_cast<int>(v.size())); // fits vector length to mesh

information?
127:
128: ofstream fout(fname); // open file ASCII mode
129: if (!fout.is_open())
130: {

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 3

131: cout << "\nFile " << fname << " has not been opened.\n\n" ;
132: assert(fout.is_open() && "File not opened.");
133: }
134:
135: string const DELIMETER(" "); // define the same delimiter as in matlab/ascii_

read*.m
136: int const OFFSET(1); // convert C-indexing to matlab
137:
138: // Write data: #nodes, #space dimensions, #elements, #vertices per element
139: fout << Nnodes() << DELIMETER << Ndims() << DELIMETER << Nelems() << DELIMETER <

< NverticesElements() << endl;
140:
141: // Write coordinates: x_k, y_k in separate lines
142: assert(Nnodes()*Ndims() == static_cast<int>(_xc.size()));
143: for (int k = 0, kj = 0; k < Nnodes(); ++k)
144: {
145: for (int j = 0; j < Ndims(); ++j, ++kj)
146: {
147: fout << _xc[kj] << DELIMETER;
148: }
149: fout << endl;
150: }
151:
152: // Write connectivity: ia_k,0, ia_k,1 etc in separate lines
153: assert(Nelems()*NverticesElements() == static_cast<int>(_ia.size()));
154: for (int k = 0, kj = 0; k < Nelems(); ++k)
155: {
156: for (int j = 0; j < NverticesElements(); ++j, ++kj)
157: {
158: fout << _ia[kj] + OFFSET << DELIMETER; // C to matlab
159: }
160: fout << endl;
161: }
162:
163: // Write vector
164: for (int k = 0; k < Nnodes(); ++k)
165: {
166: fout << v[k] << endl;
167: }
168:
169: fout.close();
170: return;
171: }
172:
173:
174: void Mesh::Export_scicomp(std::string const &basename) const
175: {
176: //assert(Nnodes() == static_cast<int>(v.size())); // fits vector length to mes

h information?
177: string const DELIMETER(" "); // define the same delimiter as in matlab/ascii_

read*.m
178: int const OFFSET(0);
179: {
180: // Write coordinates into scicomp-file
181: string fname(basename + "_coords.txt");
182: ofstream fout(fname); // open file ASCII mode
183: if (!fout.is_open())
184: {
185: cout << "\nFile " << fname << " has not been opened.\n\n" ;
186: assert(fout.is_open() && "File not opened.");
187: }
188:
189: fout << Nnodes() << endl;
190: // Write coordinates: x_k, y_k in separate lines
191: assert(Nnodes()*Ndims() == static_cast<int>(_xc.size()));
192: for (int k = 0, kj = 0; k < Nnodes(); ++k)
193: {
194: for (int j = 0; j < Ndims(); ++j, ++kj)

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 4

195: {
196: fout << _xc[kj] << DELIMETER;
197: }
198: fout << endl;
199: }
200: fout.close();
201:
202: }
203:
204: {
205: // Write elements into scicomp-file
206: string fname(basename + "_elements.txt");
207: ofstream fout(fname); // open file ASCII mode
208: if (!fout.is_open())
209: {
210: cout << "\nFile " << fname << " has not been opened.\n\n" ;
211: assert(fout.is_open() && "File not opened.");
212: }
213:
214: fout << Nelems() << endl;
215:
216: // Write connectivity: ia_k,0, ia_k,1 etc in separate lines
217: assert(Nelems()*NverticesElements() == static_cast<int>(_ia.size()));
218: for (int k = 0, kj = 0; k < Nelems(); ++k)
219: {
220: for (int j = 0; j < NverticesElements(); ++j, ++kj)
221: {
222: fout << _ia[kj] + OFFSET << DELIMETER; // C to matlab
223: }
224: fout << endl;
225: }
226: fout.close();
227: }
228:
229: return;
230: }
231:
232: /*
233: manjaro> matlab
234: MATLAB is selecting SOFTWARE OPENGL rendering.
235: /usr/local/MATLAB/R2019a/bin/glnxa64/MATLAB: error while loading shared libraries:

 libcrypt.so.1: cannot open shared object file: No such file or directory
236:
237: SOLUTION: sudo pacman -S libxcrypt-compat + reboot
238: */
239:
240: void Mesh::Visualize(vector<double> const &v) const
241: {
242: // define external command
243: //const string exec_m("matlab -nosplash -nodesktop -nojvm -batch < visualize_res

ults.m"); // Matlab
244: //const string exec_m("/usr/local/MATLAB/R2025b/bin/matlab " "-nodesktop -nospla

sh -batch \"visualize_results\"");
245: //const string exec_m("octave --no-window-system --no-gui visualize_results.m");

 // Octave until version 6.3
246: //const string exec_m("octave --no-gui --eval visualize_results.m"); // Octave s

ince version 6.4
247: //const string exec_m("flatpak run org.octave.Octave visualize_results.m");

 // Octave (flatpak): desktop GH
248: const string exec_m("octave visualize_results.m");
249:
250:
251: const string fname("uv.txt");
252: Write_ascii_matlab(fname, v);
253:
254: int ierror = system(exec_m.c_str()); // call ext

ernal command
255:

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 5

256: if (ierror != 0)
257: {
258: cout << endl << "Check path to Matlab/octave on your system" << endl;
259: }
260: cout << endl;
261: return;
262: }
263:
264: std::vector<int> Mesh::Index_DirichletNodes() const
265: {
266: //vector<int> idx(_bedges); // copy
267: // 2020-01-08
268: // copy only the Dirichlet boundary nodes, not all boundary node

s.
269: vector<int> idx(_bedges.size());
270: size_t cnt=0;
271: for (size_t kb = 0; kb < _bedges.size(); kb+=2)
272: {
273: if (_sdedges.at(kb) <0 || _sdedges.at(kb+1) <0) // one neighboring subdomain

 is negativ
274: {
275: idx[cnt] = _bedges[kb];
276: ++cnt;
277: idx[cnt] = _bedges[kb+1];
278: ++cnt;
279: }
280: }
281: idx.resize(cnt);
282:
283: sort(idx.begin(), idx.end()); // sort
284: idx.erase(unique(idx.begin(), idx.end()), idx.end()); // remove duplicate data
285:
286: return idx;
287: }
288:
289: // 2020-01-08
290: std::vector<int> Mesh::Index_BoundaryNodes() const
291: {
292: vector<int> idx(_bedges); // copy
293:
294: sort(idx.begin(), idx.end()); // sort
295: idx.erase(unique(idx.begin(), idx.end()), idx.end()); // remove duplicate data
296:
297: return idx;
298: }
299:
300: // GH
301: // only correct for simplices
302: void Mesh::DeriveEdgeFromVertexBased_fast_2()
303: {
304: assert(NedgesElements() == 3);
305: assert(NverticesElements() == 3); // 3 vertices, 3 edges per element are assum

ed
306:
307: // Store indices of all elements connected to a vertex
308: vector<vector<int>> vertex2elems(_nnode, vector<int>(0));
309: for (int k = 0; k < Nelems(); ++k)
310: {
311: for (int i = 0; i < 3; ++i)
312: {
313: vertex2elems[_ia[3 * k + i]].push_back(k);
314: }
315: }
316: size_t max_neigh = 0; // maximal number of elements per vertex
317: for (auto const &v : vertex2elems)
318: {
319: max_neigh = max(max_neigh, v.size());
320: }

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 6

321: //cout << endl << vertex2elems << endl;
322:
323: // assign edges to elements
324: _ea.clear(); // old data still in _ea without clear()
325: _ea.resize(NedgesElements()*Nelems(), -1);
326: // Derive the edges
327: _edges.clear();
328: _nedge = 0;
329:
330: // convert also boundary edges
331: unsigned int mbc(_bedges.size() / 2); // number of boundary edges
332: _ebedges.clear();
333: _ebedges.resize(mbc, -1);
334: vector<bool> bdir(_nnode, false); // vector indicating boundary nodes
335: //for (size_t kb = 0; kb < _bedges.size(); ++kb)
336: //{
337: //bdir.at(_bedges[kb]) = true;
338: //}
339: // 2020-01-08
340: // GH ToDo: Selection of Dirichlet edges/nodes is still wrong
341: // Problem: _bedges is used externally instead of the local correct bdi

r.
342: for (size_t kb = 0; kb < _bedges.size(); kb+=2)
343: {
344: bool const booldir = _sdedges.at(kb) <0 || _sdedges.at(kb+1) <0; // one neig

hboring subdomain is negativ
345: bdir.at(_bedges[kb]) = booldir;
346: bdir.at(_bedges[kb+1]) = booldir;
347: }
348:
349: vector<int> vert_visited; // already visisted neighboring vertices o

f k
350: vert_visited.reserve(max_neigh); // avoids multiple (re-)allocations
351: for (int k = 0; k < _nnode; ++k) // vertex k
352: {
353: vert_visited.clear();
354: auto const &elems = vertex2elems[k]; // element neighborhood
355: int kedges = static_cast<int>(_edges.size()) / 2; // #edges before vertex k

is investigated
356: //cout << elems << endl;
357: // GH: problem, shared edges appear twice.
358: int nneigh = elems.size();
359: for (int ne = 0; ne < nneigh; ++ne) // iterate through neighborhood
360: {
361: int e = elems[ne]; // neighboring element e
362: //cout << "e = " << e << endl;
363: for (int i = 3 * e + 0; i < 3 * e + _nvert_e; ++i) // vertices of elem

ent e
364: {
365: int const vert = _ia[i];
366: //cout << "vert: " << vert << " "<< k << endl;
367: if (vert > k)
368: {
369: int ke = -1;
370: auto const iv = find(vert_visited.cbegin(), vert_visited.cend(),

 vert);
371: if (iv == vert_visited.cend()) // vertex not yet visited
372: {
373: vert_visited.push_back(vert); // now, vertex vert is visite

d
374: _edges.push_back(k); // add the new edge k->vert
375: _edges.push_back(vert);
376:
377: ke = _nedge;
378: ++_nedge;
379: // Is edge ke also a boundary edge?
380: if (bdir[k] && bdir[vert])
381: {

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 7

382: size_t kb = 0;
383: while (kb < _bedges.size() && (!((_bedges[kb] == k && _

bedges[kb + 1] == vert) || (_bedges[kb] == vert && _bedges[kb + 1] == k))))
384: {
385: kb += 2;
386: }
387: if (kb < _bedges.size())
388: {
389: _ebedges[kb / 2] = ke;
390: }
391: }
392: }
393: else
394: {
395: int offset = iv - vert_visited.cbegin();
396: ke = kedges + offset;
397: }
398: // assign that edge to the edges based connectivity of element e
399: auto ip = find_if(_ea.begin() + 3 * e, _ea.begin() + 3 * (e + 1)

,
400: [] (int v) -> bool {return v < 0;});
401: //cout << ip-_ea.begin()+3*e << " " << *ip << endl;
402: assert(ip != _ea.cbegin() + 3 * (e + 1)); // data error !
403: *ip = ke;
404: }
405: }
406: }
407: }
408:
409: assert(Mesh::Check_array_dimensions());
410: return;
411: }
412: // HG
413:
414: // GH
415: // only correct for simplices
416: void Mesh::DeriveEdgeFromVertexBased_fast()
417: {
418: assert(NedgesElements() == 3);
419: assert(NverticesElements() == 3); // 3 vertices, 3 edges per element are assum

ed
420:
421: // Store indices of all elements connected to a vertex
422: vector<vector<int>> vertex2elems(_nnode, vector<int>(0));
423: for (int k = 0; k < Nelems(); ++k)
424: {
425: for (int i = 0; i < 3; ++i)
426: {
427: vertex2elems[_ia[3 * k + i]].push_back(k);
428: }
429: }
430: size_t max_neigh = 0; // maximal number of elements per vertex
431: for (auto const &v : vertex2elems)
432: {
433: max_neigh = max(max_neigh, v.size());
434: }
435: //cout << endl << vertex2elems << endl;
436:
437: // assign edges to elements
438: _ea.clear(); // old data still in _ea without clear()
439: _ea.resize(NedgesElements()*Nelems(), -1);
440: // Derive the edges
441: _edges.clear();
442: _nedge = 0;
443: vector<int> vert_visited; // already visisted neighboring vertices o

f k
444: vert_visited.reserve(max_neigh); // avoids multiple (re-)allocations
445: for (int k = 0; k < _nnode; ++k) // vertex k

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 8

446: {
447: vert_visited.clear();
448: auto const &elems = vertex2elems[k]; // element neighborhood
449: int kedges = static_cast<int>(_edges.size()) / 2; // #edges before vertex k

is investigated
450: //cout << elems << endl;
451: // GH: problem, shared edges appear twice.
452: int nneigh = elems.size();
453: for (int ne = 0; ne < nneigh; ++ne) // iterate through neighborhood
454: {
455: int e = elems[ne]; // neighboring element e
456: //cout << "e = " << e << endl;
457: for (int i = 3 * e + 0; i < 3 * e + _nvert_e; ++i) // vertices of elem

ent e
458: {
459: int const vert = _ia[i];
460: //cout << "vert: " << vert << " "<< k << endl;
461: if (vert > k)
462: {
463: int ke = -1;
464: auto const iv = find(vert_visited.cbegin(), vert_visited.cend(),

 vert);
465: if (iv == vert_visited.cend()) // vertex not yet visited
466: {
467: vert_visited.push_back(vert); // now, vertex vert is visite

d
468: _edges.push_back(k); // add the new edge k->vert
469: _edges.push_back(vert);
470:
471: ke = _nedge;
472: ++_nedge;
473: }
474: else
475: {
476: int offset = iv - vert_visited.cbegin();
477: ke = kedges + offset;
478: }
479: // assign that edge to the edges based connectivity of element e
480: auto ip = find_if(_ea.begin() + 3 * e, _ea.begin() + 3 * (e + 1)

,
481: [] (int v) -> bool {return v < 0;});
482: //cout << ip-_ea.begin()+3*e << " " << *ip << endl;
483: assert(ip != _ea.cbegin() + 3 * (e + 1)); // data error !
484: *ip = ke;
485: }
486: }
487: }
488: }
489:
490: // convert also boundary edges
491: unsigned int mbc(_bedges.size() / 2); // number of boundary edges
492: _ebedges.clear();
493: _ebedges.resize(mbc, -1);
494: for (unsigned int kb = 0; kb < mbc; ++kb)
495: {
496: int const v1 = min(_bedges[2 * kb], _bedges[2 * kb + 1]); // vertices
497: int const v2 = max(_bedges[2 * kb], _bedges[2 * kb + 1]);
498:
499: size_t e = 0;
500: // ascending vertex indices for each edge e in _edges
501: while (e < _edges.size() && (_edges[e] != v1 || _edges[e + 1] != v2))
502: {
503: e += 2; // next edge
504: }
505: assert(e < _edges.size()); // error: no edge found
506: _ebedges[kb] = e / 2; // index of edge
507: }
508:

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 9

509:
510: assert(Mesh::Check_array_dimensions());
511: return;
512: }
513: // HG
514:
515:
516: #include <utility> // pair
517:
518: void Mesh::DeriveEdgeFromVertexBased_slow()
519: {
520: assert(NedgesElements() == 3);
521: assert(NverticesElements() == 3); // 3 vertices, 3 edges per element are assum

ed
522:
523: _ea.resize(NedgesElements()*Nelems());
524: vector< pair<int, int> > edges(0);
525: int nedges = 0;
526:
527: for (int k = 0; k < Nelems(); ++k)
528: {
529: array < int, 3 + 1 > ivert{{ _ia[3 * k], _ia[3 * k + 1], _ia[3 * k + 2], _ia

[3 * k] }};
530:
531: for (int i = 0; i < 3; ++i)
532: {
533: pair<int, int> e2; // this edge
534: if (ivert[i] < ivert[i + 1]) // guarantee ascending order
535: {
536: e2 = make_pair(ivert[i], ivert[i + 1]);
537: }
538: else
539: {
540: e2 = make_pair(ivert[i + 1], ivert[i]);
541: }
542:
543: int eki(-1); // global index of this edge
544: auto ip = find(edges.cbegin(), edges.cend(), e2);
545: if (ip == edges.cend()) // edge not found ==> add that edge
546: {
547: //cout << "found edge\n";
548: edges.push_back(e2); // add the new edge
549: eki = nedges; // index of this new edge
550: ++nedges;
551:
552: }
553: else
554: {
555: eki = ip - edges.cbegin(); // index of the edge found
556: }
557: _ea[3 * k + i] = eki; // set edge index in edge based connectiv

ity
558: }
559: }
560:
561: assert(nedges == static_cast<int>(edges.size()));
562: _nedge = nedges; // set the member variable for number of edg

es
563: _edges.resize(2 * nedges); // allocate memory for edge storage
564: for (int k = 0; k < nedges; ++k)
565: {
566: _edges[2 * k] = edges[k].first;
567: _edges[2 * k + 1] = edges[k].second;
568: }
569:
570: // convert also boundary edges
571: unsigned int mbc(_bedges.size() / 2); // number of boundary edges
572: //cout << "AA " << mbc << endl;

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 10

573: _ebedges.resize(mbc);
574: for (unsigned int kb = 0; kb < mbc; ++kb)
575: {
576: const auto vv1 = make_pair(_bedges[2 * kb], _bedges[2 * kb + 1]); // both
577: const auto vv2 = make_pair(_bedges[2 * kb + 1], _bedges[2 * kb]); // dire

ctions of edge
578: auto ip1 = find(edges.cbegin(), edges.cend(), vv1);
579: if (ip1 == edges.cend())
580: {
581: ip1 = find(edges.cbegin(), edges.cend(), vv2);
582: assert(ip1 != edges.cend()); // stop because inconsistency (bou

ndary edge has to be included in edges)
583: }
584: _ebedges[kb] = ip1 - edges.cbegin(); // index of edge
585: }
586:
587: assert(Mesh::Check_array_dimensions());
588: return;
589: }
590:
591: void Mesh::DeriveVertexFromEdgeBased()
592: {
593: assert(NedgesElements() == 3);
594: assert(NverticesElements() == 3); // 3 vertices, 3 edges per element are assum

ed
595:
596: _ia.resize(NedgesElements()*Nelems()); // NN
597:
598: for (int k = 0; k < Nelems(); ++k)
599: {
600: //vector<int> ivert(6); // indices of vertices
601: array<int, 6> ivert; // indices of vertices
602: for (int j = 0; j < 3; ++j) // local edges
603: {
604: int const iedg = _ea[3 * k + j]; // index of one edge in triangle
605: ivert[2 * j] = _edges[2 * iedg]; // first vertex of edge
606: ivert[2 * j + 1] = _edges[2 * iedg + 1]; // second vertex of edge
607: }
608: sort(ivert.begin(), ivert.end()); // unique indices are needed
609: auto const ip = unique(ivert.begin(), ivert.end());
610: assert(ip - ivert.begin() == 3);
611: for (int i = 0; i < 3; ++i) // vertex based element connectivity
612: {
613: _ia[3 * k + i] = ivert[i];
614: }
615: }
616:
617: // convert also boundary edges
618: unsigned int mbc(_ebedges.size()); // number of boundary edges
619: _bedges.resize(2 * mbc);
620: for (unsigned int k = 0; k < mbc; ++k)
621: {
622: const auto ke = _ebedges[k]; // edge index
623: _bedges[2 * k] = _edges[2 * ke];
624: _bedges[2 * k + 1] = _edges[2 * ke + 1];
625: }
626:
627:
628: return;
629: }
630:
631: // Member Input: vertices of each element : _ia[_nelem*_nvert_e] stores as 1D array
632: // number of vertices per element : _nvert_e
633: // global number of elements: _nelem
634: // global number of vertices: _nnode
635: vector<vector<int>> Mesh::Node2NodeGraph_2() const
636: {
637: vector<vector<int>> v2v(_nnode, vector<int>(0)); // stores the vertex to vert

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 11

ex connections
638:
639: ////--------------
640: vector<int> cnt(_nnode,0);
641: for (size_t i = 0; i < _ia.size(); ++i) ++cnt[_ia[i]]; // determine number of e

ntries per vertex
642: for (size_t k = 0; k < v2v.size(); ++k)
643: {
644: v2v[k].resize(_nvert_e * cnt[k]); // and allocate the memory

 for that vertex
645: cnt[k] = 0;
646: }
647: ////--------------
648:
649: for (int e = 0; e < _nelem; ++e)
650: {
651: int const basis = e * _nvert_e; // start of vertex connecti

vity of element e
652: for (int k = 0; k < _nvert_e; ++k)
653: {
654: int const v = _ia[basis + k];
655: for (int l = 0; l < _nvert_e; ++l)
656: {
657: v2v[v][cnt[v]] = _ia[basis + l];
658: ++cnt[v];
659: }
660: }
661: }
662: // finally cnt[v]==v2v[v].size() has to hold for all v!
663:
664: // guarantee unique, ascending sorted entries per vertex
665: for (size_t v = 0; v < v2v.size(); ++v)
666: {
667: sort(v2v[v].begin(), v2v[v].end());
668: auto ip = unique(v2v[v].begin(), v2v[v].end());
669: v2v[v].erase(ip, v2v[v].end());
670: //v2v[v].shrink_to_fit(); // automatically done when copied at return
671: }
672:
673: return v2v;
674: }
675:
676: vector<vector<int>> Mesh::Node2NodeGraph_1() const
677: {
678: vector<vector<int>> v2v(_nnode, vector<int>(0)); // stores the vertex to vert

ex connections
679:
680: for (int e = 0; e < _nelem; ++e)
681: {
682: int const basis = e * _nvert_e; // start of vertex connecti

vity of element e
683: for (int k = 0; k < _nvert_e; ++k)
684: {
685: int const v = _ia[basis + k];
686: for (int l = 0; l < _nvert_e; ++l)
687: {
688: v2v[v].push_back(_ia[basis + l]);
689: }
690: }
691: }
692: // guarantee unique, ascending sorted entries per vertex
693: for (size_t v = 0; v < v2v.size(); ++v)
694: {
695: sort(v2v[v].begin(), v2v[v].end());
696: auto ip = unique(v2v[v].begin(), v2v[v].end());
697: v2v[v].erase(ip, v2v[v].end());
698: //v2v[v].shrink_to_fit(); // automatically done when copied at return
699: }

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 12

700:
701: return v2v;
702: }
703:
704:
705: Mesh::Mesh(std::string const &fname)
706: : Mesh(2, 3, 3, 3) // two dimensions, 3 vertices, 3 dofs, 3 edges per element
707: {
708: ReadVertexBasedMesh(fname);
709: DeriveEdgeFromVertexBased(); // Generate also the edge based information
710: //cout << " JJJJJJJJJ\n";
711: //DeriveEdgeFromVertexBased();
712: //cout << " KKKKKKKKKKK\n";
713: ////exit(-1);
714: }
715:
716: void Mesh::ReadVertexBasedMesh(std::string const &fname)
717: {
718: ifstream ifs(fname);
719: if (!(ifs.is_open() && ifs.good()))
720: {
721: cerr << "Mesh::ReadVertexBasedMesh: Error cannot open file " << fname << end

l;
722: assert(ifs.is_open());
723: }
724:
725: int const OFFSET(1); // Matlab to C indexing
726: cout << "ASCI file " << fname << " opened" << endl;
727:
728: // Read some mesh constants
729: int nnode, ndim, nelem, nvert_e;
730: ifs >> nnode >> ndim >> nelem >> nvert_e;
731: cout << nnode << " " << ndim << " " << nelem << " " << nvert_e << endl;
732: assert(ndim == 2 && nvert_e == 3);
733:
734: // Allocate memory
735: Resize_Coords(nnode, ndim); // coordinates in 2D [nnode][ndim]
736: Resize_Connectivity(nelem, nvert_e); // connectivity matrix [nelem][nvert

]
737:
738: // Read coordinates
739: auto &xc = GetCoords();
740: for (int k = 0; k < nnode * ndim; ++k)
741: {
742: ifs >> xc[k];
743: }
744:
745: // Read connectivity
746: auto &ia = GetConnectivity();
747: for (int k = 0; k < nelem * nvert_e; ++k)
748: {
749: ifs >> ia[k];
750: ia[k] -= OFFSET; // Matlab to C indexing
751: }
752:
753: // additional read of boundary information (only start/end point)
754: int nbedges;
755: ifs >> nbedges;
756:
757: _bedges.resize(nbedges * 2);
758: for (int k = 0; k < nbedges * 2; ++k)
759: {
760: ifs >> _bedges[k];
761: _bedges[k] -= OFFSET; // Matlab to C indexing
762: }
763: // 2020-01-08 Check
764: int const DUMMY{-9876};
765: _sdedges.resize(nbedges * 2,DUMMY);

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 13

766: if (!ifs.eof())
767: {
768: cout << nbedges << endl; // change to while-loop
769: for (int k = 0; k < nbedges * 2; ++k)
770: {
771: ifs >> _sdedges.at(k);
772: _sdedges[k] -= OFFSET; // Matlab to C indexing
773: }
774: //assert(ifs.eof());
775: assert(count(_sdedges.cbegin(),_sdedges.cend(),DUMMY)==0);
776: }
777: else
778: {
779: cout << "\n ####### no subdomain info of edges available! #########\n";
780: }
781: cout << "\n End of File read " << _sdedges.at(2*nbedges-2) << " " << _sdedges.at

(2*nbedges-1) << "\n" << endl;
782:
783: return;
784: }
785:
786: bool Mesh::Check_array_dimensions() const
787: {
788: bool b_ia = static_cast<int>(_ia.size() / _nvert_e) == _nelem;
789: if (!b_ia) cerr << "misfit: _nelem vs. _ia" << endl;
790:
791: bool b_xc = static_cast<int>(_xc.size() / _ndim) == _nnode;
792: if (!b_xc) cerr << "misfit: _nnode vs. _xc" << endl;
793:
794: bool b_ea = static_cast<int>(_ea.size() / _nedge_e) == _nelem;
795: if (!b_ea) cerr << "misfit: _nelem vs. _ea" << endl;
796:
797: bool b_ed = static_cast<int>(_edges.size() / 2) == _nedge;
798: if (!b_ed) cerr << "misfit: _nedge vs. _edges" << endl;
799:
800:
801: return b_ia && b_xc && b_ea && b_ed;
802: }
803:
804: void Mesh::Del_EdgeConnectivity()
805: {
806: _nedge = 0; //!< number of edges in mesh
807: _edges.resize(0); //!< edges of mesh (vertices ordered ascending)
808: _edges.shrink_to_fit();
809: _ea.resize(0); //!< edge based element connectivity
810: _ea.shrink_to_fit();
811: _ebedges.resize(0); //!< boundary edges [nbedges]
812: _ebedges.shrink_to_fit();
813: return;
814: }
815:
816:
817:
818: // ##
819:
820: RefinedMesh::RefinedMesh(Mesh const &cmesh, std::vector<bool> const &ibref)
821: //: Mesh(cmesh), _cmesh(cmesh), _ibref(ibref), _nref(0), _vfathers(0)
822: : Mesh(cmesh), _ibref(ibref), _nref(0), _vfathers(0)
823: {
824: if (_ibref.size() == 0) // refine all elements
825: {
826: //
827: RefineAllElements();
828: }
829: else
830: {
831: cout << endl << " Adaptive Refinement not implemented yet." << endl;
832: assert(_ibref.size() != 0);

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 14

833: }
834: }
835:
836: RefinedMesh::˜RefinedMesh()
837: {}
838:
839: Mesh RefinedMesh::RefineElements(std::vector<bool> const & /*ibref*/)
840: {
841: Mesh new_mesh(_ndim, _nvert_e, _ndof_e, _nedge_e);
842: cout << " NOT IMPLEMENTED: Mesh::RefineElements" << endl;
843:
844: //// initialize new coorsinates with the old one
845: //auto new_coords = new_mesh.GetCoords();
846: //new_coords = _xc; // copy coordinates from old mesh
847:
848: //// access vertex connectivite, edge connectiviy and edge information of new mesh
849: //auto new_ia = new_mesh.GetConnectivity();
850: //auto new_ea = new_mesh.GetEdgeConnectivity();
851: //auto new_edges = new_mesh.GetEdges();
852:
853: //// storing the parents of edges and vertices
854:
855:
856: //assert(new_ia.size()== new_ea.size());
857: //new_mesh.SetNnode(new_coords.size());
858: //new_mesh.SetNelem(new_ia.size()/3);
859: //new_mesh._nedge = new_edges.size()/2;
860:
861: return new_mesh;
862: }
863:
864: //JF
865: void RefinedMesh::RefineAllElements(int nref)
866: {
867: cout << "\n############ Refine Mesh " << nref << " times ";
868: double tstart = clock();
869: DeriveEdgeFromVertexBased(); // ensure that edge information is availab

le
870:
871: for (int kr = 0; kr < nref; ++kr)
872: {
873: //DeriveEdgeFromVertexBased(); // ensure that edge information is a

vailable // GH: not needed in each loop
874:
875: auto old_ea(_ea); // save old edge connectivity
876: auto old_edges(_edges); // save old edges
877: auto old_nedges(Nedges());
878: auto old_nnodes(Nnodes());
879: auto old_nelems(Nelems());
880:
881: // the new vertices will be appended to the coordinates in _xc
882:
883: vector<int> edge_sons(2 * old_nedges); // 2 sons for each edge
884:
885: // -- Derive the fine edges ---
886: int new_nedge = 2 * old_nedges + 3 * old_nelems; // #edges in new mesh
887: int new_nelem = 4 * old_nelems; // #elements in new mesh
888: int new_nnode = old_nnodes + old_nedges; // #nodes in new mesh
889:
890: _xc.reserve(2 * new_nnode);
891: // store the 2 fathers of each vertex (equal fathers denote original coarse

vertex)
892: _vfathers.resize(2 * old_nnodes);
893: for (int vc = 0; vc < old_nnodes; ++vc)
894: {
895: _vfathers[2 * vc] = vc; // equal fathers denote original coarse ver

tex
896: _vfathers[2 * vc + 1] = vc;

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 15

897: }
898:
899: _ia.clear();
900: _ea.clear();
901: _ea.resize(new_nelem * 3);
902: _edges.clear();
903: _edges.resize(2 * new_nedge); // vertices of edges [v_0, v_1;v_0, v

_1; ...]
904: vector<int> e_son(2 * old_nedges); // sons of coarse edges [s_0, s_1; s_0, s

_1; ...]
905:
906: // split all coarse edges and append the new nodes
907: int kf = 0; // index of edges in fine mesh
908: int vf = old_nnodes; // index of new vertex in fine grid
909: for (int kc = 0; kc < old_nedges; ++kc) // index of edges in coarse mesh
910: {
911: //
912: int v1 = old_edges[2 * kc]; // vertices of old edge
913: int v2 = old_edges[2 * kc + 1];
914: // append coordinates of new vertex
915: double xf = 0.5 * (_xc[2 * v1] + _xc[2 * v2]);
916: double yf = 0.5 * (_xc[2 * v1 + 1] + _xc[2 * v2 + 1]);
917: _xc.push_back(xf);
918: _xc.push_back(yf);
919: // fathers of vertex vf
920: _vfathers.push_back(v1);
921: _vfathers.push_back(v2);
922:
923: // split old edge into two edges
924: _edges[2 * kf] = v1; // coarse vertex 1
925: _edges[2 * kf + 1] = vf; // to new fine vertex
926: e_son[2 * kc] = kf; // son edge
927: ++kf;
928: _edges[2 * kf] = vf; // new fine vertex
929: _edges[2 * kf + 1] = v2; // to coarse vertex 2
930: e_son[2 * kc + 1] = kf; // son edge
931:
932: ++vf;
933: ++kf;
934: }
935: _xc.shrink_to_fit();
936: _vfathers.shrink_to_fit();
937:
938: // -- derive the fine mesh elements --
939: // creates additional fine edges
940:
941: for (int kc = 0; kc < old_nelems; ++kc) // index of elements in coarse mes

h
942: {
943: array<array<int, 3>, 3 * 2> boundary; // fine scale vertices and edges a

s boundary of old element
944: //boundary[][0], boundary[][1] ..vertices boundary[][2] edge
945:
946: for (int j = 0; j < 3; ++j) // each edge in element
947: {
948: int ce = old_ea[3 * kc + j]; // coarse edge number
949:
950: int s1 = e_son[2 * ce]; // son edges of that coarse edge
951: int s2 = e_son[2 * ce + 1];
952: boundary[2 * j][2] = s1; //add boundary edge
953: boundary[2 * j][0] = _edges[2 * s1 + 0];
954: boundary[2 * j][1] = _edges[2 * s1 + 1];
955: if (boundary[2 * j][0] > boundary[2 * j][1]) swap(boundary[2 * j][0]

, boundary[2 * j][1]); // fine vertices always in 2nd entry
956: boundary[2 * j + 1][2] = s2; //add boundary edge
957: boundary[2 * j + 1][0] = _edges[2 * s2 + 0];
958: boundary[2 * j + 1][1] = _edges[2 * s2 + 1];
959: if (boundary[2 * j + 1][0] > boundary[2 * j + 1][1]) swap(boundary[2

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 16

 * j + 1][0], boundary[2 * j + 1][1]);
960: }
961:
962: sort(boundary.begin(), boundary.end()); // sort -> edges wit

h same coarse vertex will be neighbors
963:
964: int interior_1 = 2 * old_nedges + kc * 3; // add interior edges
965: int interior_2 = 2 * old_nedges + kc * 3 + 1;
966: int interior_3 = 2 * old_nedges + kc * 3 + 2;
967:
968: _edges[interior_1 * 2] = boundary[0][1]; // add interior edges
969: _edges[interior_1 * 2 + 1] = boundary[1][1];
970:
971: _edges[interior_2 * 2] = boundary[2][1];
972: _edges[interior_2 * 2 + 1] = boundary[3][1];
973:
974: _edges[interior_3 * 2] = boundary[4][1];
975: _edges[interior_3 * 2 + 1] = boundary[5][1];
976:
977: _ea[kc * 3 * 4] = boundary[0][2]; // add 4 new elements with 3

 edges for every old element
978: _ea[kc * 3 * 4 + 1] = boundary[1][2];
979: _ea[kc * 3 * 4 + 2] = interior_1;
980:
981: _ea[kc * 3 * 4 + 3] = boundary[2][2];
982: _ea[kc * 3 * 4 + 4] = boundary[3][2];
983: _ea[kc * 3 * 4 + 5] = interior_2;
984:
985: _ea[kc * 3 * 4 + 6] = boundary[4][2];
986: _ea[kc * 3 * 4 + 7] = boundary[5][2];
987: _ea[kc * 3 * 4 + 8] = interior_3;
988:
989: _ea[kc * 3 * 4 + 9] = interior_1;
990: _ea[kc * 3 * 4 + 10] = interior_2;
991: _ea[kc * 3 * 4 + 11] = interior_3;
992: }
993:
994: // GH: ToDo: _bedges has to updated for the new mesh //!< boundary edges [nbedges]

[2] storing start/end vertex
995: // Pass the refinement information to the boundary edges (edge based)
996: auto old_ebedges(_ebedges); // save original boundary edges [nbedg

es] (edge based storage)
997: unsigned int old_nbedges(old_ebedges.size());
998:
999: _ebedges.resize(2 * old_nbedges); // each old boundary edge will be bisec

ted
1000: unsigned int kn = 0; // index of new boundary edges
1001: for (unsigned int ke = 0; ke < old_nbedges; ++ke) // index of old boundary

 edges
1002: {
1003: const auto kc = old_ebedges[ke];
1004: _ebedges[kn] = e_son[2 * kc];
1005: ++kn;
1006: _ebedges[kn] = e_son[2 * kc + 1];
1007: ++kn;
1008: }
1009: // HG
1010: // set new mesh parameters
1011: SetNelem(new_nelem);
1012: SetNnode(new_nnode);
1013: SetNedge(new_nedge);
1014:
1015: #ifdef CUTHILL_MCKEE
1016: {
1017: // Cuthill-McKee reordering
1018: // Increases mesh generation time by factor 5 - but solver is faster.
1019: auto const perm = cuthill_mckee_reordering(_edges);
1020: PermuteVertices_EdgeBased(perm);

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 17

1021: }
1022: #endif
1023:
1024: DeriveVertexFromEdgeBased();
1025: assert(RefinedMesh::Check_array_dimensions());
1026:
1027: ++_nref; // track the number of refinements
1028: }
1029:
1030: double duration = (clock() - tstart) / CLOCKS_PER_SEC;
1031: cout << "finished in " << duration << " sec. ########\n";
1032:
1033: return;
1034: }
1035:
1036:
1037: void Mesh::PermuteVertices_EdgeBased(vector<int> const &old2new)
1038: {
1039: // permute vertices _edges
1040: auto const edges_old(_edges);
1041: for (size_t k = 0; k < _edges.size(); k += 2)
1042: {
1043: _edges[k] = old2new[edges_old[k]];
1044: _edges[k + 1] = old2new[edges_old[k + 1]];
1045: if (_edges[k] > _edges[k + 1])
1046: swap(_edges[k], _edges[k + 1]);
1047: }
1048: // permute coordinates
1049: auto const coord_old(_xc);
1050: for (size_t k = 0; k < _xc.size() / 2; ++k)
1051: {
1052: _xc[2 * old2new[k]] = coord_old[2 * k];
1053: _xc[2 * old2new[k] + 1] = coord_old[2 * k + 1];
1054: }
1055: return;
1056: }
1057:
1058:
1059: void RefinedMesh::PermuteVertices_EdgeBased(vector<int> const &old2new)
1060: {
1061: Mesh::PermuteVertices_EdgeBased(old2new);
1062: // permute fathers of a vertex
1063: auto const old_fathers(_vfathers);
1064: for (size_t k = 0; k < _vfathers.size() / 2; ++k)
1065: {
1066: _vfathers[2 * old2new[k]] = old_fathers[2 * k];
1067: _vfathers[2 * old2new[k] + 1] = old_fathers[2 * k + 1];
1068: }
1069: return;
1070: }
1071:
1072:
1073: bool RefinedMesh::Check_array_dimensions() const
1074: {
1075: const bool bp = Mesh::Check_array_dimensions();
1076:
1077: const bool bvf = (static_cast<int>(_vfathers.size()) / 2 == Nnodes());
1078:
1079: return bp && bvf;
1080:
1081: }
1082: // ###
1083:
1084:
1085: gMesh_Hierarchy::gMesh_Hierarchy(Mesh const &cmesh, int const nlevel)
1086: : _gmesh(max(1, nlevel))
1087: {
1088: _gmesh[0] = make_shared<Mesh>(cmesh);

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 18

1089: for (int lev = 1; lev < nlevel; ++lev)
1090: {
1091: _gmesh.at(lev) = make_shared<RefinedMesh>(*_gmesh.at(lev - 1));
1092: //auto vv=_gmesh[lev]->GetFathersOfVertices();
1093: //cout << " :: "<< vv.size() <<endl;
1094: }
1095: for (size_t lev = 0; lev < _gmesh.size(); ++lev)
1096: {
1097: _gmesh[lev]->Del_EdgeConnectivity();
1098: }
1099: }
1100:
1101:
1102: // ###
1103: Mesh_2d_3_square::Mesh_2d_3_square(int nx, int ny, int myid, int procx, int procy)
1104: : Mesh(2, 3, 3, 3), // two dimensions, 3 vertices, 3 dofs, 3 edges per element
1105: _myid(myid), _procx(procx), _procy(procy), _neigh{{ -1, -1, -1, -1}}, _color(0

),
1106: _xl(0.0), _xr(1.0), _yb(0.0), _yt(1.0), _nx(nx), _ny(ny)
1107: {
1108: //void IniGeom(int const myid, int const procx, int const procy, int neigh[], in

t &color)
1109: int const ky = _myid / _procx;
1110: int const kx = _myid % _procy; // MOD(myid,procx)
1111: // Determine the neighbors of domain/rank myid
1112: _neigh[0] = (ky == 0) ? -1 : _myid - _procx; // South
1113: _neigh[1] = (kx == _procx - 1) ? -1 : _myid + 1; // East
1114: _neigh[2] = (ky == _procy - 1) ? -1 : _myid + _procx; // North
1115: _neigh[3] = (kx == 0) ? -1 : _myid - 1; // West
1116:
1117: _color = (kx + ky) & 1 ;
1118:
1119: // subdomain is part of unit square
1120: double const hx = 1. / _procx;
1121: double const hy = 1. / _procy;
1122: _xl = kx * hx; // left
1123: _xr = (kx + 1) * hx; // right
1124: _yb = ky * hy; // bottom
1125: _yt = (ky + 1) * hy; // top
1126:
1127: // Calculate coordinates
1128: int const nnode = (_nx + 1) * (_ny + 1); // number of nodes
1129: Resize_Coords(nnode, 2); // coordinates in 2D [nnode][ndim]
1130: GetCoordsInRectangle(_nx, _ny, _xl, _xr, _yb, _yt, GetCoords().data());
1131:
1132: // Calculate element connectivity (linear triangles)
1133: int const nelem = 2 * _nx * _ny; // number of elements
1134: Resize_Connectivity(nelem, 3); // connectivity matrix [nelem][3]
1135: GetConnectivityInRectangle(_nx, _ny, GetConnectivity().data());
1136:
1137: return;
1138: }
1139:
1140: Mesh_2d_3_square::˜Mesh_2d_3_square()
1141: {}
1142:
1143:
1144: void Mesh_2d_3_square::SetU(std::vector<double> &u) const
1145: {
1146: int dx = _nx + 1;
1147: for (int j = 0; j <= _ny; ++j)
1148: {
1149: int k = j * dx;
1150: for (int i = 0; i <= _nx; ++i, ++k)
1151: {
1152: u[k] = 0.0;
1153: }
1154: }

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 19

1155:
1156: }
1157:
1158: void Mesh_2d_3_square::SetF(std::vector<double> &f) const
1159: {
1160: int dx = _nx + 1;
1161: for (int j = 0; j <= _ny; ++j)
1162: {
1163: int k = j * dx;
1164: for (int i = 0; i <= _nx; ++i, ++k)
1165: {
1166: f[k] = 1.0;
1167: }
1168: }
1169:
1170: }
1171:
1172:
1173: std::vector<int> Mesh_2d_3_square::Index_DirichletNodes() const
1174: {
1175: int const dx = 1,
1176: dy = _nx + 1,
1177: bl = 0,
1178: br = _nx,
1179: tl = _ny * (_nx + 1),
1180: tr = (_ny + 1) * (_nx + 1) - 1;
1181: int const start[4] = { bl, br, tl, bl};
1182: int const end[4] = { br, tr, tr, tl};
1183: int const step[4] = { dx, dy, dx, dy};
1184:
1185: vector<int> idx(0);
1186: for (int j = 0; j < 4; j++)
1187: {
1188: if (_neigh[j] < 0)
1189: {
1190: for (int i = start[j]; i <= end[j]; i += step[j])
1191: {
1192: idx.push_back(i); // node i is Dirichlet node
1193: }
1194: }
1195: }
1196: // remove multiple elements
1197: sort(idx.begin(), idx.end()); // sort
1198: idx.erase(unique(idx.begin(), idx.end()), idx.end()); // remove duplicate data
1199:
1200: return idx;
1201: }
1202:
1203: vector<int> Mesh_2d_3_square::Index_BoundaryNodes() const
1204: {
1205: cerr << "Warning: Funktion not implemented. " << __FILE__ << "." << __LINE__ <<

 endl;
1206: return Index_BoundaryNodes();
1207: }
1208:
1209:
1210:
1211:
1212: void Mesh_2d_3_square::SaveVectorP(std::string const &name, vector<double> const &u)

 const
1213: {
1214: // construct the file name for subdomain myid
1215: const string tmp(std::to_string(_myid / 100) + to_string((_myid % 100) / 10) +

to_string(_myid % 10));
1216:
1217: const string namep = name + "." + tmp;
1218: ofstream ff(namep.c_str());
1219: ff.precision(6);

./ex7_4/geom.cpp Wed Jan 07 11:32:18 2026 20

1220: ff.setf(ios::fixed, ios::floatfield);
1221:
1222: // assumes tensor product grid in unit square; rowise numbered (as generated in

class constructor)
1223: // output is provided for tensor product grid visualization (similar to Matlab-

surf())
1224: auto const &xc = GetCoords();
1225: int k = 0;
1226: for (int j = 0; j <= _ny; ++j)
1227: {
1228: for (int i = 0; i <= _nx; ++i, ++k)
1229: ff << xc[2 * k + 0] << " " << xc[2 * k + 1] << " " << u[k] << endl;
1230: ff << endl;
1231: }
1232:
1233: ff.close();
1234: return;
1235: }
1236:
1237: void Mesh_2d_3_square::GetCoordsInRectangle(int const nx, int const ny,
1238: double const xl, double const xr, double const yb, double const yt,
1239: double xc[])
1240: {
1241: const double hx = (xr - xl) / nx,
1242: hy = (yt - yb) / ny;
1243:
1244: int k = 0;
1245: for (int j = 0; j <= ny; ++j)
1246: {
1247: const double y0 = yb + j * hy;
1248: for (int i = 0; i <= nx; ++i, k += 2)
1249: {
1250: xc[k] = xl + i * hx;
1251: xc[k + 1] = y0;
1252: }
1253: }
1254:
1255: return;
1256: }
1257:
1258: void Mesh_2d_3_square::GetConnectivityInRectangle(int const nx, int const ny, int ia

[])
1259: {
1260: const int dx = nx + 1;
1261: int k = 0;
1262: int l = 0;
1263: for (int j = 0; j < ny; ++j, ++k)
1264: {
1265: for (int i = 0; i < nx; ++i, ++k)
1266: {
1267: ia[l] = k;
1268: ia[l + 1] = k + 1;
1269: ia[l + 2] = k + dx + 1;
1270: l += 3;
1271: ia[l] = k;
1272: ia[l + 1] = k + dx;
1273: ia[l + 2] = k + dx + 1;
1274: l += 3;
1275: }
1276: }
1277: return;
1278: }
1279:
1280: // ##
1281:

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 1

1: #ifndef GEOM_FILE
2: #define GEOM_FILE
3: #include <array>
4: #include <functional> // function; C++11
5: #include <iostream>
6: #include <memory> // shared_ptr
7: #include <string>
8: #include <vector>
9:
10: /**
11: * Basis class for finite element meshes.
12: */
13: class Mesh
14: {
15: public:
16: /**
17: * Constructor initializing the members with default values.
18: *
19: * @param[in] ndim space dimensions (dimension for coordinates)
20: * @param[in] nvert_e number of vertices per element (dimension for connectivi

ty)
21: * @param[in] ndof_e degrees of freedom per element (= @p nvert_e for linear

elements)
22: * @param[in] nedge_e number of edges per element (= @p nvert_e for linear ele

ments in 2D)
23: */
24: explicit Mesh(int ndim, int nvert_e = 0, int ndof_e = 0, int nedge_e = 0);
25:
26: __attribute__((noinline))
27: Mesh(Mesh const &) = default;
28:
29: Mesh &operator=(Mesh const &) = delete;
30:
31:
32: /**
33: * Destructor.
34: *
35: * See clang warning on
36: * <a href="https://stackoverflow.com/questions/28786473/clang-no-out-of-line-vi

rtual-method-definitions-pure-abstract-c-class/40550578">weak-vtables.
37: */
38: virtual ˜Mesh();
39:
40: /**
41: * Reads mesh data from a binary file.
42: *
43: * File format, see ascii_write_mesh.m
44: *
45: * @param[in] fname file name
46: */
47: explicit Mesh(std::string const &fname);
48:
49: /**
50: * Reads mesh data from a binary file.
51: *
52: * File format, see ascii_write_mesh.m
53: *
54: * @param[in] fname file name
55: */
56: void ReadVertexBasedMesh(std::string const &fname);
57:
58: /**
59: * Number of finite elements in (sub)domain.
60: * @return number of elements.
61: */
62: int Nelems() const
63: {
64: return _nelem;

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 2

65: }
66:
67: /**
68: * Global number of vertices for each finite element.
69: * @return number of vertices per element.
70: */
71: int NverticesElements() const
72: {
73: return _nvert_e;
74: }
75:
76: /**
77: * Global number of degrees of freedom (dof) for each finite element.
78: * @return degrees of freedom per element.
79: */
80: int NdofsElement() const
81: {
82: return _ndof_e;
83: }
84:
85: /**
86: * Number of vertices in mesh.
87: * @return number of vertices.
88: */
89: int Nnodes() const
90: {
91: return _nnode;
92: }
93:
94: /**
95: * Space dimension.
96: * @return number of dimensions.
97: */
98: int Ndims() const
99: {
100: return _ndim;
101: }
102:
103: /**
104: * (Re-)Allocates memory for the element connectivity and redefines the appropri

ate dimensions.
105: *
106: * @param[in] nelem number of elements
107: * @param[in] nvert_e number of vertices per element
108: */
109: void Resize_Connectivity(int nelem, int nvert_e)
110: {
111: SetNelem(nelem); // number of elements
112: SetNverticesElement(nvert_e); // vertices per element
113: _ia.resize(nelem * nvert_e);
114: }
115:
116: /**
117: * Read connectivity information (g1,g2,g3)_i.
118: * @return connectivity vector [nelems*ndofs].
119: */
120: const std::vector<int> &GetConnectivity() const
121: {
122: return _ia;
123: }
124:
125: /**
126: * Access/Change connectivity information (g1,g2,g3)_i.
127: * @return connectivity vector [nelems*ndofs].
128: */
129: std::vector<int> &GetConnectivity()
130: {
131: return _ia;

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 3

132: }
133:
134: /**
135: * (Re-)Allocates memory for the element connectivity and redefines the appropri

ate dimensions.
136: *
137: * @param[in] nnodes number of nodes
138: * @param[in] ndim space dimension
139: */
140: void Resize_Coords(int nnodes, int ndim)
141: {
142: SetNnode(nnodes); // number of nodes
143: SetNdim(ndim); // space dimension
144: _xc.resize(nnodes * ndim);
145: }
146:
147: /**
148: * Read coordinates of vertices (x,y)_i.
149: * @return coordinates vector [nnodes*2].
150: */
151: const std::vector<double> &GetCoords() const
152: {
153: return _xc;
154: }
155:
156: /**
157: * Access/Change coordinates of vertices (x,y)_i.
158: * @return coordinates vector [nnodes*2].
159: */
160: std::vector<double> &GetCoords()
161: {
162: return _xc;
163: }
164:
165: /**
166: * Calculate values in vector @p v via function @p func(x,y)
167: * @param[in] v vector
168: * @param[in] func function of (x,y) returning a double value.
169: */
170: void SetValues(std::vector<double> &v, const std::function<double(double, double

)> &func) const;
171: void SetBoundaryValues(std::vector<double> &v, const std::function<double(double

, double)> &func) const;
172: void SetDirchletValues(std::vector<double> &v, const std::function<double(double

, double)> &func) const;
173:
174: /**
175: * Prints the information for a finite element mesh
176: */
177: void Debug() const;
178:
179: /**
180: * Prints the edge based information for a finite element mesh
181: */
182: void DebugEdgeBased() const;
183:
184: /**
185: * Determines the indices of those vertices with Dirichlet boundary conditions
186: * @return index vector.
187: */
188: virtual std::vector<int> Index_DirichletNodes() const;
189: virtual std::vector<int> Index_BoundaryNodes() const;
190:
191: /**
192: * Write vector @p v together with its mesh information to an ASCii file @p fnam

e.
193: *
194: * The data are written in C-style.

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 4

195: *
196: * @param[in] fname file name
197: * @param[in] v vector
198: */
199: void Write_ascii_matlab(std::string const &fname, std::vector<double> const &v)

const;
200:
201: /**
202: * Exports the mesh information to ASCii files @p basename + {_coords|_elements

}.txt.
203: *
204: * The data are written in C-style.
205: *
206: * @param[in] basename first part of file names
207: */
208: void Export_scicomp(std::string const &basename) const;
209:
210: /**
211: * Visualize @p v together with its mesh information via matlab or octave.
212: *
213: * Comment/uncomment those code lines in method Mesh:Visualize (geom.cpp)
214: * that are supported on your system.
215: *
216: * @param[in] v vector
217: *
218: * @warning matlab files ascii_read_meshvector.m visualize_results.m
219: * must be in the executing directory.
220: */
221: void Visualize(std::vector<double> const &v) const;
222:
223: /**
224: * Global number of edges.
225: * @return number of edges in mesh.
226: */
227: int Nedges() const
228: {
229: return _nedge;
230: }
231:
232: /**
233: * Global number of edges for each finite element.
234: * @return number of edges per element.
235: */
236: int NedgesElements() const
237: {
238: return _nedge_e;
239: }
240:
241: /**
242: * Read edge connectivity information (e1,e2,e3)_i.
243: * @return edge connectivity vector [nelems*_nedge_e].
244: */
245: const std::vector<int> &GetEdgeConnectivity() const
246: {
247: return _ea;
248: }
249:
250: /**
251: * Access/Change edge connectivity information (e1,e2,e3)_i.
252: * @return edge connectivity vector [nelems*_nedge_e].
253: */
254: std::vector<int> &GetEdgeConnectivity()
255: {
256: return _ea;
257: }
258:
259: /**
260: * Read edge information (v1,v2)_i.

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 5

261: * @return edge connectivity vector [_nedge*2].
262: */
263: const std::vector<int> &GetEdges() const
264: {
265: return _edges;
266: }
267:
268: /**
269: * Access/Change edge information (v1,v2)_i.
270: * @return edge connectivity vector [_nedge*2].
271: */
272: std::vector<int> &GetEdges()
273: {
274: return _edges;
275: }
276:
277: /**
278: * Determines all node to node connections from the vertex based mesh.
279: *
280: * @return vector[k][] containing all connections of vertex k, including to itse

lf.
281: */
282: std::vector<std::vector<int>> Node2NodeGraph() const
283: {
284: //// Check version 2 wrt. version 1
285: //auto v1=Node2NodeGraph_1();
286: //auto v2=Node2NodeGraph_2();
287: //if (equal(v1.cbegin(),v1.cend(),v2.begin()))
288: //{
289: //std::cout << "\nidentical Versions\n";
290: //}
291: //else
292: //{
293: //std::cout << "\nE R R O R in Versions\n";
294: //}
295:
296: //return Node2NodeGraph_1();
297: return Node2NodeGraph_2(); // 2 times faster than version 1
298: }
299:
300: /**
301: * Accesses the father-of-nodes relation.
302: *
303: * @return vector of length 0 because no relation available.
304: *
305: */
306: virtual std::vector<int> const &GetFathersOfVertices() const
307: {
308: return _dummy;
309: }
310:
311: /**
312: * Deletes all edge connectivity information (saves memory).
313: */
314: void Del_EdgeConnectivity();
315:
316: protected:
317: //public:
318: void SetNelem(int nelem)
319: {
320: _nelem = nelem;
321: }
322:
323: void SetNverticesElement(int nvert)
324: {
325: _nvert_e = nvert;
326: }
327:

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 6

328: void SetNdofsElement(int ndof)
329: {
330: _ndof_e = ndof;
331: }
332:
333: void SetNnode(int nnode)
334: {
335: _nnode = nnode;
336: }
337:
338: void SetNdim(int ndim)
339: {
340: _ndim = ndim;
341: }
342:
343: void SetNedge(int nedge)
344: {
345: _nedge = nedge;
346: }
347:
348: /**
349: * Reads vertex based mesh data from a binary file.
350: *
351: * File format, see ascii_write_mesh.m
352: *
353: * @param[in] fname file name
354: */
355: void ReadVectexBasedMesh(std::string const &fname);
356:
357: /**
358: * The vertex based mesh data are used to derive the edge based data.
359: *
360: * @warning Exactly 3 vertices, 3 edges per element are assumed (linear triangl

e in 2D)
361: */
362: void DeriveEdgeFromVertexBased()
363: {
364: //DeriveEdgeFromVertexBased_slow();
365: //DeriveEdgeFromVertexBased_fast();
366: DeriveEdgeFromVertexBased_fast_2();
367: }
368: void DeriveEdgeFromVertexBased_slow();
369: void DeriveEdgeFromVertexBased_fast();
370: void DeriveEdgeFromVertexBased_fast_2();
371:
372:
373:
374: /**
375: * The edge based mesh data are used to derive the vertex based data.
376: *
377: * @warning Exactly 3 vertices, 3 edges per element are assumed (linear triang

le in 2D)
378: */
379: void DeriveVertexFromEdgeBased();
380:
381: /**
382: * Determines the indices of those vertices with Dirichlet boundary conditions
383: * @return index vector.
384: */
385: int Nnbedges() const
386: {
387: return static_cast<int>(_bedges.size());
388: }
389:
390: /**
391: * Checks whether the array dimensions fit to their appropriate size parameters
392: * @return index vector.
393: */

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 7

394: virtual bool Check_array_dimensions() const;
395:
396: /**
397: * Permutes the vertex information in an edge based mesh.
398: *
399: * @param[in] old2new new indices of original vertices.
400: */
401: void PermuteVertices_EdgeBased(std::vector<int> const &old2new);
402:
403: private:
404: /**
405: * Determines all node to node connections from the vertex based mesh.
406: *
407: * @return vector[k][] containing all connections of vertex k, including to itse

lf.
408: */
409: std::vector<std::vector<int>> Node2NodeGraph_1() const; // is correct
410:
411: /**
412: * Determines all node to node connections from the vertex based mesh.
413: *
414: * Faster than @p Node2NodeGraph_1().
415: *
416: * @return vector[k][] containing all connections of vertex k, including to itse

lf.
417: */
418: std::vector<std::vector<int>> Node2NodeGraph_2() const; // is correct
419:
420: //private:
421: protected:
422: int _nelem; //!< number elements
423: int _nvert_e; //!< number of vertices per element
424: int _ndof_e; //!< degrees of freedom (d.o.f.) per element
425: int _nnode; //!< number nodes/vertices
426: int _ndim; //!< space dimension of the problem (1, 2, or 3)
427: std::vector<int> _ia; //!< element connectivity
428: std::vector<double> _xc; //!< coordinates
429:
430: protected:
431: // B.C.
432: std::vector<int> _bedges; //!< boundary edges [nbedges][2] storing start/end

 vertex
433: // 2020-01-08
434: std::vector<int> _sdedges; //!< boundary edges [nbedges][2] with left/right s

ubdomain number
435:
436: //private:
437: protected:
438: // edge based connectivity
439: int _nedge; //!< number of edges in mesh
440: int _nedge_e; //!< number of edges per element
441: std::vector<int> _edges; //!< edges of mesh (vertices ordered ascending)
442: std::vector<int> _ea; //!< edge based element connectivity
443: // B.C.
444: std::vector<int> _ebedges; //!< boundary edges [nbedges]
445:
446: private:
447: const std::vector<int> _dummy; //!< empty dummy vector
448:
449: };
450:
451:
452: // ***
453:
454: class RefinedMesh: public Mesh
455: {
456: public:
457: /**

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 8

458: * Constructs a refined mesh according to the marked elements in @p ibref.
459: *
460: * If the vector @p ibref has size 0 then all elements will be refined.
461: *
462: * @param[in] cmesh original mesh for coarsening.
463: * @param[in] ibref vector containing True/False regarding refinement for each

element
464: *
465: */
466: //explicit RefinedMesh(Mesh const &cmesh, std::vector<bool> const &ibref = std::

vector<bool>(0));
467: RefinedMesh(Mesh const &cmesh, std::vector<bool> const &ibref);
468: //RefinedMesh(Mesh const &cmesh, std::vector<bool> const &ibref);
469:
470: /**
471: * Constructs a refined mesh by regulare refinement of all elements.
472: *
473: * @param[in] cmesh original mesh for coarsening.
474: *
475: */
476: explicit RefinedMesh(Mesh const &cmesh)
477: : RefinedMesh(cmesh, std::vector<bool>(0))
478: {}
479:
480:
481: RefinedMesh(RefinedMesh const &) = delete;
482: //RefinedMesh(RefinedMesh const&&) = delete;
483:
484: RefinedMesh &operator=(RefinedMesh const &) = delete;
485: //RefinedMesh& operator=(RefinedMesh const&&) = delete;
486:
487: /**
488: * Destructor.
489: */
490: virtual ˜RefinedMesh() override;
491:
492: /**
493: * Refines the mesh according to the marked elements.
494: *
495: * @param[in] ibref vector containing True/False regarding refinement for each

element
496: *
497: * @return the refined mesh
498: *
499: */
500: Mesh RefineElements(std::vector<bool> const &ibref);
501:
502: /**
503: * Refines all elements in the actual mesh.
504: *
505: * @param[in] nref number of regular refinements to perform
506: *
507: */
508: void RefineAllElements(int nref = 1);
509:
510: /**
511: * Accesses the father-of-nodes relation.
512: *
513: * @return father-of-nodes relation [nnodes][2]
514: *
515: */
516: std::vector<int> const &GetFathersOfVertices() const override
517: {
518: return _vfathers;
519: }
520:
521: protected:
522: /**

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 9

523: * Checks whether the array dimensions fit to their appropriate size parameters
524: * @return index vector.
525: */
526: bool Check_array_dimensions() const override;
527:
528: /**
529: * Permutes the vertex information in an edge based mesh.
530: *
531: * @param[in] old2new new indices of original vertices.
532: */
533: void PermuteVertices_EdgeBased(std::vector<int> const &old2new);
534:
535:
536: private:
537: //Mesh const & _cmesh; //!< coarse mesh
538: std::vector<bool> const _ibref; //!< refinement info
539: int _nref; //!< number of regular refinements performed
540: std::vector<int> _vfathers; //!< stores the 2 fathers of each vertex (e

qual fathers denote original coarse vertex)
541:
542: };
543:
544: // ***
545:
546: class gMesh_Hierarchy
547: {
548: public:
549: /**
550: * Constructs mesh hierarchy of @p nlevel levels starting with coarse mesh @p cm

esh.
551: * The coarse mesh @p cmesh will be @p nlevel-1 times geometrically refined.
552: *
553: * @param[in] cmesh initial coarse mesh
554: * @param[in] nlevel number levels in mesh hierarchy
555: *
556: */
557: gMesh_Hierarchy(Mesh const &cmesh, int nlevel);
558:
559: size_t size() const
560: {
561: return _gmesh.size();
562: }
563:
564: /**
565: * Access to mesh @p lev from mesh hierarchy.
566: *
567: * @return mesh @p lev
568: * @warning An out_of_range exception might be thrown.
569: *
570: */
571: Mesh const &operator[](int lev) const
572: {
573: return *_gmesh.at(lev);
574: }
575:
576: /**
577: * Access to finest mesh in mesh hierarchy.
578: *
579: * @return finest mesh
580: *
581: */
582: Mesh const &finest() const
583: {
584: return *_gmesh.back();
585: }
586:
587: /**
588: * Access to coarest mesh in mesh hierarchy.

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 10

589: *
590: * @return coarsest mesh
591: *
592: */
593: Mesh const &coarsest() const
594: {
595: return *_gmesh.front();
596: }
597:
598: private:
599: std::vector<std::shared_ptr<Mesh>> _gmesh; //!< mesh hierarchy from coarse ([0])

 to fine.
600:
601: };
602:
603:
604:
605: // ***
606: /**
607: * 2D finite element mesh of the square consisting of linear triangular elements.
608: */
609: class Mesh_2d_3_square: public Mesh
610: {
611: public:
612: /**
613: * Generates the f.e. mesh for the unit square.
614: *
615: * @param[in] nx number of discretization intervals in x-direction
616: * @param[in] ny number of discretization intervals in y-direction
617: * @param[in] myid my MPI-rank / subdomain
618: * @param[in] procx number of ranks/subdomains in x-direction
619: * @param[in] procy number of processes in y-direction
620: */
621: Mesh_2d_3_square(int nx, int ny, int myid = 0, int procx = 1, int procy = 1);
622:
623: /**
624: * Destructor
625: */
626: ˜Mesh_2d_3_square() override;
627:
628: /**
629: * Set solution vector based on a tensor product grid in the rectangle.
630: * @param[in] u solution vector
631: */
632: void SetU(std::vector<double> &u) const;
633:
634: /**
635: * Set right hand side (rhs) vector on a tensor product grid in the rectangle.
636: * @param[in] f rhs vector
637: */
638: void SetF(std::vector<double> &f) const;
639:
640: /**
641: * Determines the indices of those vertices with Dirichlet boundary conditions
642: * @return index vector.
643: */
644: std::vector<int> Index_DirichletNodes() const override;
645: std::vector<int> Index_BoundaryNodes() const override;
646:
647: /**
648: * Stores the values of vector @p u of (sub)domain into a file @p name for furt

her processing in gnuplot.
649: * The file stores rowise the x- and y- coordinates together with the value fro

m @p u .
650: * The domain [@p xl, @p xr] x [@p yb, @p yt] is discretized into @p nx x @p ny

 intervals.
651: *
652: * @param[in] name basename of file name (file name will be extended by the ra

./ex7_4/geom.h Wed Jan 07 11:32:18 2026 11

nk number)
653: * @param[in] u local vector
654: *
655: * @warning Assumes tensor product grid in unit square; rowise numbered
656: * (as generated in class constructor).
657: * The output is provided for tensor product grid visualization
658: * (similar to Matlab-surf()).
659: *
660: * @see Mesh_2d_3_square
661: */
662: void SaveVectorP(std::string const &name, std::vector<double> const &u) const;
663:
664: // here will still need to implement in the class
665: // GetBound(), AddBound()
666: // or better a generalized way with indices and their appropriate ranks for MPI

 communication
667:
668: private:
669: /**
670: * Determines the coordinates of the discretization nodes of the domain [@p xl,

 @p xr] x [@p yb, @p yt]
671: * which is discretized into @p nx x @p ny intervals.
672: * @param[in] nx number of discretization intervals in x-direction
673: * @param[in] ny number of discretization intervals in y-direction
674: * @param[in] xl x-coordinate of left boundary
675: * @param[in] xr x-coordinate of right boundary
676: * @param[in] yb y-coordinate of lower boundary
677: * @param[in] yt y-coordinate of upper boundary
678: * @param[out] xc coordinate vector of length 2n with x(2*k,2*k+1) as coordin

ates of node k
679: */
680:
681: void GetCoordsInRectangle(int nx, int ny, double xl, double xr, double yb, doubl

e yt,
682: double xc[]);
683: /**
684: * Determines the element connectivity of linear triangular elements of a FEM d

iscretization
685: * of a rectangle using @p nx x @p ny equidistant intervals for discretization.
686: * @param[in] nx number of discretization intervals in x-direction
687: * @param[in] ny number of discretization intervals in y-direction
688: * @param[out] ia element connectivity matrix with ia(3*s,3*s+1,3*s+2) as nod

e numbers od element s
689: */
690: void GetConnectivityInRectangle(int nx, int ny, int ia[]);
691:
692: private:
693: int _myid; //!< my MPI rank
694: int _procx; //!< number of MPI ranks in x-direction
695: int _procy; //!< number of MPI ranks in y-direction
696: std::array<int, 4> _neigh; //!< MPI ranks of neighbors (negative: no neighbor bu

t b.c.)
697: int _color; //!< red/black coloring (checker board) of subdomains
698:
699: double _xl; //!< x coordinate of lower left corner of square
700: double _xr; //!< x coordinate of lower right corner of square
701: double _yb; //!< y coordinate or lower left corner of square
702: double _yt; //!< y coordinate of upper right corner of square
703: int _nx; //!< number of intervals in x-direction
704: int _ny; //!< number of intervals in y-direction
705: };
706:
707: // ***
708:
709:
710:
711:
712: #endif

./ex7_4/main.cpp Wed Jan 07 11:32:18 2026 1

1: #include "geom.h"
2: #include "par_geom.h"
3: #include "vdop.h"
4:
5: #include <cassert>
6: #include <cmath>
7: #include <iostream>
8: #include <mpi.h> // MPI
9: #include <omp.h> // OpenMP
10: using namespace std;
11:
12:
13: int main(int argc, char **argv)
14: {
15: MPI_Init(&argc, &argv);
16: MPI_Comm const icomm(MPI_COMM_WORLD);
17: omp_set_num_threads(1); // don’t use OMP parallelization for a

 start
18: //
19: {
20: int np;
21: MPI_Comm_size(icomm, &np);
22:
23: //assert(4 == np); // example is only provided for 4 MPI pro

cesses
24: }
25: // ###
26: // ---- Read the f.e. mesh and the mapping of elements to MPI processes
27: //Mesh const mesh_c("square_4.txt"); // Files square_4.txt and square_4_sd

.txt are needed
28: ParMesh const mesh("square", icomm);
29:
30: int const numprocs = mesh.NumProcs();
31: int const myrank = mesh.MyRank();
32: if (0 == myrank) {
33: cout << "\n There are " << numprocs << " processes running.\n \n";
34: }
35:
36: int const check_rank=0; // choose the MPI process you would like t

o check the mesh
37: //if (check_rank == myrank) mesh.Debug();
38: //if (check_rank == myrank) mesh.DebugEdgeBased();
39:
40:
41:
42: // -------------------- E9 --------------------
43: vector<double> xl(mesh.Nnodes(), 1.0);
44:
45: // scalar product
46: double ss = mesh.dscapr(xl,xl);
47: if (myrank == check_rank)
48: {
49: cout << "-------------------- E9 --------------------" << endl;
50: cout << myrank << " : scalar : " << ss << endl << endl;
51: }
52:
53: // check accumulation (by visualization)
54: mesh.VecAccu(xl);
55: if (check_rank==myrank) mesh.Visualize(xl);
56:
57:
58: // -------------------- E10 --------------------
59: vector<int> xl_int(mesh.Nnodes(), 1);
60:
61: // check accumulation (by console output)
62: mesh.VecAccu(xl_int);
63:
64: vector<double> coords = mesh.GetCoords();

Mobile User

./ex7_4/main.cpp Wed Jan 07 11:32:18 2026 2

65: if (check_rank == myrank)
66: {
67: cout << "-------------------- E10 --------------------" << endl;
68: for (size_t i = 0; i < coords.size(); i += 2)
69: {
70: cout << "(" << coords[i] << ", " << coords[i + 1] << "):\t" << xl_int[i/

2] << endl;
71: }
72: }
73:
74:
75: // -------------------- E11 --------------------
76: int global_nodes = mesh.GlobalNodes();
77: if (check_rank == myrank)
78: {
79: cout << "-------------------- E11 --------------------" << endl;
80: cout << "Global nodes: " << global_nodes << endl;
81: }
82:
83:
84: // -------------------- E12 --------------------
85: vector<double> xl_new(mesh.Nnodes(), 1.0);
86:
87: // check averaging at the interfaces (by visualization)
88: mesh.Average(xl_new);
89: if (check_rank==myrank) mesh.Visualize(xl_new);
90:
91:
92:
93: // -------------------- E13 --------------------
94: // In terminal: /usr/local/MATLAB/R2025b/bin/matlab < square_2.m
95: // I then had to rename square_2.txt and square_2_sd.txt manually
96:
97: // Run in terminal:
98: // /usr/bin/mpirun --oversubscribe -display-map -mca btl ^openib -np 2 ./main.G

CC_
99: // /usr/bin/mpirun --oversubscribe -display-map -mca btl ^openib -np 1 ./main.G

CC_
100:
101:
102:
103: MPI_Finalize();
104:
105: return 0;
106: }

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 1

1: // see: http://llvm.org/docs/CodingStandards.html#include-style
2: #include "vdop.h"
3: //#include "geom.h"
4: #include "par_geom.h"
5:
6: #include <algorithm>
7: #include <array>
8: #include <cassert>
9: #include <cmath>
10: #include <ctime> // contains clock()
11: #include <fstream>
12: #include <iostream>
13: #include <list>
14: #include <numeric> // accumulate()
15: #include <string>
16: #include <vector>
17:
18: using namespace std;
19:
20:
21: ParMesh::ParMesh(int ndim, int nvert_e, int ndof_e, int nedge_e, MPI_Comm const &ico

mm)
22: : Mesh(ndim, nvert_e, ndof_e, nedge_e),
23: _icomm(icomm), _numprocs(-1), _myrank(-1),
24: _v_l2g(0), _t_l2g(0), _v_g2l{{}}, _t_g2l{{}}, _valence(0),
25: _sendbuf(0), _sendcounts(0), _sdispls(0),
26: _loc_itf(0), _gloc_itf(0), _buf2loc(0)
27: {
28: MPI_Comm_size(icomm, &_numprocs);
29: MPI_Comm_rank(icomm, &_myrank);
30: }
31:
32: ParMesh::˜ParMesh()
33: {}
34:
35:
36:
37: ParMesh::ParMesh(std::string const &sname, MPI_Comm const &icomm)
38: : ParMesh(2, 3, 3, 3, icomm) // two dimensions, 3 vertices, 3 dofs, 3 edges per

element
39: {
40: //const int numprocs = _icomm.Get_size();
41: const string NS = "_" + to_string(_numprocs);
42: const string fname = sname + NS + ".txt";
43: //cout << "############ " << fname << endl;
44: ReadVertexBasedMesh(fname);
45: cout << "\n End of sequential File read \n";
46: // ---

-
47: // Until this point a l l processes possess a l l mesh info in g l o b a l

 numbering
48: //
49: // Now, we have to select the data belonging to my_rank
50: // and we have to create the mapping local to global (l2g) and vice versa (g2l)
51: // ---

-
52:
53: // save the global node mesh (maybe we need it later)
54: DeriveEdgeFromVertexBased(); // and even

more
55: Mesh global_mesh(*this); // requires a l o t of memory
56: Del_EdgeConnectivity();
57:
58: // read the subdomain info
59: const string dname = sname + NS + "_sd" + ".txt";
60: vector<int> t2d = ReadElementSubdomains(dname); // global mapping triangle to s

ubdomain for all elements
61:

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 2

62: //const int myrank = _icomm.Get_rank();
63: Transform_Local2Global_Vertex(_myrank, t2d); // Vertex based mesh: now in

l o c a l indexing
64:
65: DeriveEdgeFromVertexBased(); // Generate also the l o c a l

 edge based information
66:
67: Generate_VectorAdd();
68:
69:
70: // Now we have to organize the MPI communication of vertices on the subdomain in

terfaces
71:
72: return;
73: }
74:
75: vector<int> ParMesh::ReadElementSubdomains(string const &dname)
76: {
77: ifstream ifs(dname);
78: if (!(ifs.is_open() && ifs.good())) {
79: cerr << "ParMesh::ReadElementSubdomain: Error cannot open file " << dname <<

 endl;
80: assert(ifs.is_open());
81: }
82:
83: int const OFFSET{1}; // Matlab to C indexing
84: cout << "ASCI file " << dname << " opened" << endl;
85:
86: // Read some mesh constants
87: int nelem;
88: ifs >> nelem;
89: cout << nelem << " " << Nelems() << endl;
90: assert(Nelems() == nelem);
91:
92: // Allocate memory
93: vector<int> t2d(nelem, -1);
94: // Read element mapping
95: for (int k = 0; k < nelem; ++k) {
96: int tmp;
97: ifs >> tmp;
98: //t2d[k] = tmp - OFFSET;
99: // 2020-01-08
100: t2d[k] = min(tmp, NumProcs()) - OFFSET;
101: }
102:
103: return t2d;
104: }
105:
106: void ParMesh::Transform_Local2Global_Vertex(int const myrank, vector<int> const &t2d

)
107: {
108: // number of local elements
109: const int l_ne = count(t2d.cbegin(), t2d.cend(), myrank);
110: //cout << myrank << ":: " << lne << endl;
111: vector<int> l_ia(l_ne * NverticesElements(), -1); // local elements still with g

lobal vertex numbers
112: _t_l2g.resize(l_ne, -1);
113:
114: int lk = 0;
115: for (size_t k = 0; k < t2d.size(); ++k) {
116: if (myrank == t2d[k]) {
117: //if (0==myrank)
118: //{
119: //cout << lk << " k " << t2d[k] << endl;
120: //}
121: l_ia[3 * lk] = _ia[3 * k];
122: l_ia[3 * lk + 1] = _ia[3 * k + 1];
123: l_ia[3 * lk + 2] = _ia[3 * k + 2]; // local elements still with global v

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 3

ertex numbers
124: _t_l2g[lk] = k; // elements: local to global mappi

ng
125: _t_g2l[k] = lk; // global to local
126: ++lk;
127: }
128: }
129: // Checks:
130: assert(count(l_ia.cbegin(), l_ia.cend(), -1) == 0);
131: assert(count(_t_l2g.cbegin(), _t_l2g.cend(), -1) == 0);
132:
133: // Vertices: local to global mapping
134: auto tmp = l_ia;
135: sort(tmp.begin(), tmp.end());
136: auto ip = unique(tmp.begin(), tmp.end());
137: tmp.erase(ip, tmp.end());
138: _v_l2g = tmp; // Vertices: local to global mappi

ng
139: for (size_t lkv = 0; lkv < _v_l2g.size(); ++lkv) {
140: _v_g2l[_v_l2g[lkv]] = lkv; // global to local
141: }
142:
143: // Boundary edges
144: vector<int> l_bedges;
145: vector<int> l_sdedges;
146: for (size_t b = 0; b < _bedges.size(); b += 2) {
147: int const v1 = _bedges[b]; // global vertex numbers
148: int const v2 = _bedges[b + 1];
149: try {
150: int const lv1 = _v_g2l.at(v1); // map[] would add that element
151: int const lv2 = _v_g2l.at(v2); // but at() throws an exept

ion
152: l_bedges.push_back(lv1);
153: l_bedges.push_back(lv2); // Boundaries: already in local i

ndexing
154: // 2020-01-08
155: l_sdedges.push_back(_sdedges[b]);
156: l_sdedges.push_back(_sdedges[b+1]);
157: }
158: catch (std::out_of_range & err) {
159: //cerr << ".";
160: }
161: }
162:
163: // number of local vertices
164: const int l_nn = _v_l2g.size();
165: vector<double> l_xc(Ndims()*l_nn);
166: for (int lkk = 0; lkk < l_nn; ++lkk) {
167: int k = _v_l2g.at(lkk);
168: l_xc[2 * lkk] = _xc[2 * k];
169: l_xc[2 * lkk + 1] = _xc[2 * k + 1];
170: }
171:
172:
173: // Now, we represent the vertex mesh in l o c a l numbering
174: // elements
175:
176: for (size_t i = 0; i < l_ia.size(); ++i) {
177: l_ia[i] = _v_g2l.at(l_ia[i]); // element vertices: global to lo

cal
178: }
179: SetNelem(l_ne);
180: _ia = l_ia;
181: // boundary
182: _bedges = l_bedges;
183: _sdedges = l_sdedges;
184: // coordinates
185: SetNnode(l_nn);

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 4

186: _xc = l_xc;
187:
188: return;
189: }
190:
191:
192: void ParMesh::Generate_VectorAdd()
193: {
194: // Some checks
195: int lnn = Nnodes(); // local number of vertices
196: assert(static_cast<int>(_v_l2g.size()) == lnn);
197: int ierr{-12345};
198:
199: // ---- Determine global largest vertex index
200: int gidx_max{-1}; // global largest vertex index
201: int lmax = *max_element(_v_l2g.cbegin(), _v_l2g.cend());
202: MPI_Allreduce(&lmax, &gidx_max, 1, MPI_INT, MPI_MAX, _icomm);
203: int gidx_min{-1}; // global smallest vertex index
204: int lmin = *min_element(_v_l2g.cbegin(), _v_l2g.cend());
205: MPI_Allreduce(&lmin, &gidx_min, 1, MPI_INT, MPI_MIN, _icomm);
206: //cout << gidx_min << " " << gidx_max << endl;
207: assert(0 == gidx_min); // global indices have to start wi

th 0
208:
209:
210: // ---- Determine for all global vertices the number of subdomains it belongs to
211: vector<int> global(gidx_max+1, 0); // global scalar array for verti

ces
212: for (auto const gidx : _v_l2g) global[gidx] = 1;
213: // https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node109.htm
214: ierr = MPI_Allreduce(MPI_IN_PLACE, global.data(), global.size(), MPI_INT, MPI_SU

M, _icomm);
215: //if (0 == MyRank()) cout << global << endl;
216: //MPI_Barrier(_icomm);
217: //cout << _xc[2*_v_g2l.at(2)] << " , " << _xc[2*_v_g2l.at(2)+1] << endl;
218: //MPI_Barrier(_icomm);
219:
220: // now, global[] contains the number of subdomains a global vertex belongs to
221: if (count(global.cbegin(), global.cend(), 0) > 0)
222: cerr << "\n !!! Non-continuous global vertex indexing !!!\n";
223:
224: // ---- Determine local interface vertices (<==> global[] > 1)
225: // _loc_itf, neigh_itf
226: //vector<int> loc_itf; // local indices of interface ve

rtices on this MPI process
227: for (size_t lk = 0; lk < _v_l2g.size(); ++lk) {
228: int const gk = _v_l2g[lk]; // global index of local vertex lk
229: if (global[gk] > 1) {
230: _loc_itf.push_back(lk); // local indices of interface vert

ices on this MPI process
231: }
232: }
233:
234: //MPI_Barrier(_icomm);
235: //if (0 == MyRank()) cout << "\n..._loc_itf...\n" << _loc_itf << "\n......\n";
236: //MPI_Barrier(_icomm);
237: // ---- global indices of local interface vertices
238: //auto gloc_itf(_loc_itf);
239: _gloc_itf=_loc_itf;
240: for_each(_gloc_itf.begin(), _gloc_itf.end(), [this] (auto & v) -> void { v = _v_

l2g[v];});
241: //MPI_Barrier(_icomm);
242: //if (0 == MyRank()) cout << "\n..._gloc_itf...\n" << _gloc_itf << "\n......\n"

;
243: //DebugVector(_gloc_itf,"_gloc_itf");
244:
245: // ---- Determine the global length of interfaces
246: vector<int> vnn(NumProcs(), -1); // number of interface vertices pe

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 5

r MPI rank
247: int l_itf(_loc_itf.size()); // # local interface vertices
248: ierr = MPI_Allgather(&l_itf, 1, MPI_INT, vnn.data(), 1, MPI_INT, _icomm);
249: assert(0 == ierr);
250: //cout << vnn << endl;
251:
252: // ---- Now we consider only the inferface vertices
253: int snn = accumulate(vnn.cbegin(), vnn.cend(), 0); // required length of array f

or global interface indices
254: //cout << snn << " " << gnn << endl;
255: vector<int> dispnn(NumProcs(), 0) ; // displacement of interface verti

ces per MPI rank
256: partial_sum(vnn.cbegin(), vnn.cend() - 1, dispnn.begin() + 1);
257: //cout << dispnn << endl;
258:
259: // ---- Get the global indices for all global interfaces
260: vector<int> g_itf(snn, -1); // collects all global indices of

 the global interfaces
261: // https://www.mpich.org/static//docs/v3.0.x/www3/MPI_Gatherv.html
262: ierr = MPI_Gatherv(_gloc_itf.data(), _gloc_itf.size(), MPI_INT,
263: g_itf.data(), vnn.data(), dispnn.data(), MPI_INT, 0, _icomm)

;
264: assert(0 == ierr);
265: // https://www.mpich.org/static/docs/v3.1/www3/MPI_Bcast.html
266: ierr = MPI_Bcast(g_itf.data(), g_itf.size(), MPI_INT, 0, _icomm);
267: assert(0 == ierr); // Now, each MPI rank has the all

global indices of the global interfaces
268: //MPI_Barrier(_icomm);
269: //if (MyRank() == 0) cout << "\n...g_itf...\n" << g_itf << "\n......\n";
270: //MPI_Barrier(_icomm);
271:
272: // ----- Determine all MPI ranks a local interface vertex belongs to
273: vector<vector<int>> neigh_itf(_loc_itf.size());// subdomains a local interface v

ertex belongs to
274: for (size_t lk = 0; lk < _loc_itf.size(); ++lk) {
275: const int gvert = _gloc_itf[lk]; // global index of local interfac

e node lk
276: for (int rank = 0; rank < NumProcs(); ++rank) {
277: auto const startl = g_itf.cbegin() + dispnn[rank];
278: auto const endl = startl + vnn[rank];
279: if (find(startl, endl, gvert) != endl) {
280: neigh_itf[lk].push_back(rank);
281: }
282: }
283: }
284:
285: // ---- check the available info in _loc_itf[lk], _gloc_itf[lk], neigh_itf[lk]
286: //MPI_Barrier(_icomm);
287: ////if (MyRank()==0) cout << "\n...neigh_itf ...\n" << neigh_itf << endl;
288: //if (MyRank() == 0) {
289: //for (size_t lk = 0; lk < _loc_itf.size(); ++lk) {
290: //cout << lk << " : local idx " << _loc_itf[lk] << " , global idx " <<

_gloc_itf[lk];
291: //cout << " with MPI ranks " << neigh_itf[lk] << endl;
292: //}
293: //}
294: //MPI_Barrier(_icomm);
295:
296: // ---- store the valence (e.g., the number of subdomains it belongs to) of all

local vertices
297: _valence.resize(Nnodes(),1);
298: for (size_t lk = 0; lk < _loc_itf.size(); ++lk)
299: {
300: _valence[_loc_itf[lk]] = neigh_itf[lk].size();
301: }
302: //DebugVector(_valence,"_valence",_icomm);
303:
304: // ---- We ware going to use MPI_Alltoallv for data exchange on interfaces

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 6

305: // https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node109.htm#Node109
306: // https://www.open-mpi.org/doc/v4.0/man3/MPI_Alltoallv.3.php
307: //int MPI_Alltoallv(const void* sendbuf, const int sendcounts[], const int sdisp

ls[], MPI_Datatype sendtype, void* recvbuf, const int recvcounts[], const int rdispls[], MP
I_Datatype recvtype, MPI_Comm comm)

308: //
309: // MPI_Alltoallv needs:
310: // vector<double> sendbuf (MPI_IN_PLACE: used also as recvbuf)
311: // vector<int> sendcounts (the same as for recv)
312: // vector<int> sdispls (the same as for recv)
313: //
314: // We need to map the interface vertices onto the sendbuffer:
315: // vector<int> loc_itf local index of interface vertex lk
316: // vector<int> gloc_itf global index of interface vertex lk
317: // vector<int> buf2loc local indices of sendbuffer position

s (the same as for recv)
318:
319: // ---- Determine sendcounts[] and sdipls[] from neigh_itf[]
320: //vector<int> _sendcounts(NumProcs(), 0);
321: _sendcounts.resize(NumProcs(), 0);
322: for (size_t lk = 0; lk < _loc_itf.size(); ++lk) {
323: auto const &kneigh = neigh_itf[lk];
324: for (size_t ns = 0; ns < kneigh.size(); ++ns) {
325: ++_sendcounts[kneigh[ns]];
326: }
327: }
328: //if (MyRank() == 0) cout << "\n..._sendcounts ...\n" << _sendcounts << endl;
329:
330: //vector<int> _sdispls(NumProcs(), 0);
331: _sdispls.resize(NumProcs(), 0);
332: partial_sum(_sendcounts.cbegin(), _sendcounts.cend() - 1, _sdispls.begin() + 1);
333: //vector<int> _sdispls(NumProcs()+1, 0);
334: //partial_sum(_sendcounts.cbegin(), _sendcounts.cend(), _sdispls.begin() + 1);
335: //if (MyRank() == 0) cout << "\n..._sdispls ...\n" << _sdispls << endl;
336:
337: // ---- Determine size of buffer ’nbuffer’ and mapping ’buf2loc’
338: int const nbuffer = accumulate(_sendcounts.cbegin(), _sendcounts.cend(), 0);
339: //vector<int> _buf2loc(nbuffer, -1);
340: _buf2loc.resize(nbuffer, -1);
341: int buf_idx = 0; // position in buffer
342: for (int rank = 0; rank < NumProcs(); ++rank) {
343: assert(buf_idx == _sdispls[rank]);
344: for (size_t lk = 0; lk < _loc_itf.size(); ++lk) {
345: auto const &kneigh = neigh_itf[lk];
346: if (find(kneigh.cbegin(),kneigh.cend(),rank)!=kneigh.cend())
347: {
348: _buf2loc[buf_idx] = _loc_itf[lk];
349: ++buf_idx;
350: }
351: }
352: }
353: //if (MyRank() == 0) cout << "\n...buf2loc ...\n" << buf2loc << endl;
354: //DebugVector(buf2loc,"buf2loc",_icomm);
355:
356: // ---- Allocate send/recv buffer
357: //vector<double> _sendbuf(nbuffer,-1.0);
358: _sendbuf.resize(nbuffer,-1.0);
359:
360: assert(CheckInterfaceExchange_InPlace());
361: cout << " Check of data exchange (InPlace) successful!\n";
362: assert(CheckInterfaceExchange());
363: cout << " Check of data exchange successful!\n";
364: assert(CheckInterfaceAdd_InPlace());
365: cout << " Check of data add successful!\n";
366: assert(CheckInterfaceAdd());
367: cout << " Check of data add (InPlace) successful!\n";
368:
369: vector<double> x(Nnodes(),-1.0);

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 7

370: VecAccu(x);
371: cout << " VecAccu (InPlace) successful!\n";
372:
373:
374: return;
375: }
376:
377: bool ParMesh::CheckInterfaceExchange_InPlace() const
378: {
379: vector<double> x(Nnodes(),-1.0);
380: copy(_v_l2g.cbegin(),_v_l2g.cend(),x.begin()); // init x with global verte

x indices
381:
382: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
383: {
384: _sendbuf[ls] = x[_buf2loc.at(ls)];
385: }
386: int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE,
387: _sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE, _icomm);
388: assert(ierr==0);
389: //DebugVector(_sendbuf,"_sendbuf",_icomm);
390:
391: vector<double> y(x);
392: for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = -1.0; // onl

y for interface nodes
393: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
394: {
395: y[_buf2loc.at(ls)] = _sendbuf[ls];
396: }
397:
398: double const eps=1e-10;
399: bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
400: [eps](double a, double b) -> bool
401: { return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs

(b))); }
402:);
403: return bv;
404: }
405:
406: bool ParMesh::CheckInterfaceExchange() const
407: {
408: vector<double> x(Nnodes(),-1.0);
409: copy(_v_l2g.cbegin(),_v_l2g.cend(),x.begin()); // init x with global verte

x indices
410:
411: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
412: {
413: _sendbuf[ls] = x[_buf2loc.at(ls)];
414: }
415: vector<double> recvbuf(_sendbuf.size());
416: int ierr = MPI_Alltoallv(_sendbuf.data(), _sendcounts.data(), _sdispls.data(), M

PI_DOUBLE,
417: recvbuf.data(), _sendcounts.data(), _sdispls.data(), M

PI_DOUBLE, _icomm);
418: //DebugVector(_sendbuf,"_sendbuf",_icomm);
419: //DebugVector(recvbuf,"recvbuf",_icomm);
420: assert(ierr==0);
421:
422: vector<double> y(x);
423: for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = -1.0; // onl

y for interface nodes
424: for(size_t ls = 0; ls<recvbuf.size(); ++ls)
425: {
426: y[_buf2loc.at(ls)] = recvbuf[ls];
427: }
428: //cout << "WRONG : " << count(y.cbegin(),y.cend(), -1.0) << endl;

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 8

429:
430: double const eps=1e-10;
431: bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
432: [eps](double a, double b) -> bool
433: { return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs

(b))); }
434:);
435: return bv;
436: }
437:
438: bool ParMesh::CheckInterfaceAdd_InPlace() const
439: {
440: vector<double> x(Nnodes(),-1.0);
441: for (size_t i=0; i<x.size(); ++i)
442: {
443: x[i] = _xc[2*i]+_xc[2*i+1]; // init x with coordinate v

alues
444: }
445:
446: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
447: {
448: _sendbuf[ls] = x[_buf2loc.at(ls)];
449: }
450: int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE,
451: _sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE, _icomm);
452: assert(ierr==0);
453: //DebugVector(_sendbuf,"_sendbuf",_icomm);
454:
455: vector<double> y(x);
456: for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = 0.0; // only

 for interface nodes
457: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
458: {
459: y[_buf2loc.at(ls)] += _sendbuf[ls];
460: }
461: MPI_Barrier(_icomm);
462: //DebugVector(x,"x",_icomm);
463: //DebugVector(y,"y",_icomm);
464: for (size_t i= 0; i<y.size(); ++i) y[i]/=_valence[i]; // divide by valence
465:
466: double const eps=1e-10;
467: bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
468: [eps](double a, double b) -> bool
469: { return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs

(b))); }
470:);
471: return bv;
472: }
473:
474: bool ParMesh::CheckInterfaceAdd() const
475: {
476: vector<double> x(Nnodes(),-1.0);
477: for (size_t i=0; i<x.size(); ++i)
478: {
479: //x[i] = _xc[2*i]+_xc[2*i+1]; // init x with coordinate

 values
480: x[i] = _v_l2g[i];
481: }
482:
483: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
484: {
485: _sendbuf[ls] = x[_buf2loc.at(ls)];
486: }
487: vector<double> recvbuf(_sendbuf.size());
488: int ierr = MPI_Alltoallv(_sendbuf.data(), _sendcounts.data(), _sdispls.data(), M

PI_DOUBLE,

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 9

489: recvbuf.data(), _sendcounts.data(), _sdispls.data(), M
PI_DOUBLE, _icomm);

490: //DebugVector(_sendbuf,"_sendbuf",_icomm);
491: //DebugVector(recvbuf,"recvbuf",_icomm);
492: assert(ierr==0);
493:
494: vector<double> y(x);
495: for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = 0.0; // only

 for interface nodes
496: for(size_t ls = 0; ls<recvbuf.size(); ++ls)
497: {
498: //if (0==MyRank()) cout << ls << ": " << _buf2loc.at(ls) << " " << y[_buf2l

oc.at(ls)] << "("<< x[_buf2loc.at(ls)] << ")" << " " << recvbuf[ls] << " (" << _sendbuf[
ls] << ")" << endl;

499: y[_buf2loc.at(ls)] += recvbuf[ls];
500: }
501: MPI_Barrier(_icomm);
502: //DebugVector(x,"x",_icomm);
503: //DebugVector(y,"y",_icomm);
504: for (size_t i= 0; i<y.size(); ++i) y[i]/=_valence[i]; // divide by valence
505:
506: double const eps=1e-10;
507: bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
508: [eps](double a, double b) -> bool
509: { return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs

(b))); }
510:);
511: return bv;
512: }
513:
514:
515: // ----------
516:
517: void ParMesh::VecAccu(std::vector<double> &w) const
518: {
519: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
520: {
521: _sendbuf[ls] = w[_buf2loc.at(ls)];
522: }
523: int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE,
524: _sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE, _icomm);
525: assert(ierr==0);
526: //DebugVector(_sendbuf,"_sendbuf",_icomm);
527:
528: for(size_t lk = 0; lk<_loc_itf.size(); ++lk) w[_loc_itf.at(lk)] = 0.0; // only

 for interface nodes
529: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
530: {
531: w[_buf2loc.at(ls)] += _sendbuf[ls];
532: }
533:
534: return;
535: }
536:
537:
538: void ParMesh::VecAccu(std::vector<int> &w) const
539: {
540: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
541: {
542: _sendbuf[ls] = w[_buf2loc.at(ls)];
543: }
544: int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

INT,
545: _sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_

INT, _icomm);
546: assert(ierr==0);

Mobile User

./ex7_4/par_geom.cpp Wed Jan 07 11:32:18 2026 10

547: //DebugVector(_sendbuf,"_sendbuf",_icomm);
548:
549: for(size_t lk = 0; lk<_loc_itf.size(); ++lk) w[_loc_itf.at(lk)] = 0.0; // only

 for interface nodes
550: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
551: {
552: w[_buf2loc.at(ls)] += _sendbuf[ls];
553: }
554:
555: return;
556: }
557:
558: int ParMesh::GlobalNodes() const
559: {
560: int local_nodes = _nnode;
561: int global_nodes = 0;
562:
563: MPI_Allreduce(&local_nodes, &global_nodes, 1, MPI_INT, MPI_SUM, _icomm);
564:
565: return global_nodes;
566: }
567:
568: void ParMesh::Average(std::vector<double> &w) const
569: {
570: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
571: {
572: _sendbuf[ls] = w[_buf2loc.at(ls)];
573: }
574: int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE,
575: _sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_

DOUBLE, _icomm);
576: assert(ierr==0);
577: //DebugVector(_sendbuf,"_sendbuf",_icomm);
578:
579: for(size_t lk = 0; lk<_loc_itf.size(); ++lk)
580: {
581: w[_loc_itf.at(lk)] = 0.0; // only for interface nodes
582: }
583:
584: for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
585: {
586: w[_buf2loc.at(ls)] += _sendbuf[ls];
587: }
588:
589:
590:
591: // for nodes at interface: additionally divide by number of subdomains they belo

ng to (valence)
592: for(size_t lk = 0; lk<_loc_itf.size(); ++lk)
593: {
594: w[_loc_itf.at(lk)] /= _valence[_loc_itf.at(lk)];
595: }
596:
597: return;
598: }

Mobile User

./ex7_4/par_geom.h Wed Jan 07 11:32:18 2026 1

1: #ifndef PAR_GEOM_FILE
2: #define PAR_GEOM_FILE
3: #include "geom.h"
4: #include "vdop.h"
5: #include <array>
6: #include <functional> // function; C++11
7: #include <iostream>
8: #include <map>
9: #include <memory> // shared_ptr
10: #include <mpi.h> // MPI
11: #include <string>
12: #include <vector>
13:
14: class ParMesh: public Mesh
15: {
16: public:
17: /**
18: * Constructor initializing the members with default values.
19: *
20: * @param[in] ndim space dimensions (dimension for coordinates)
21: * @param[in] nvert_e number of vertices per element (dimension for connectivi

ty)
22: * @param[in] ndof_e degrees of freedom per element (= @p nvert_e for linear

elements)
23: * @param[in] nedge_e number of edges per element (= @p nvert_e for linear ele

ments in 2D)
24: * @param[in] icomm MPI communicator
25: */
26: explicit ParMesh(int ndim, int nvert_e = 0, int ndof_e = 0, int nedge_e = 0, MPI

_Comm const &icomm = MPI_COMM_WORLD);
27:
28: ParMesh(ParMesh const &) = default;
29:
30: ParMesh &operator=(ParMesh const &) = delete;
31:
32:
33: /**
34: * Destructor.
35: *
36: * See clang warning on
37: * <a href="https://stackoverflow.com/questions/28786473/clang-no-out-of-line-vi

rtual-method-definitions-pure-abstract-c-class/40550578">weak-vtables.
38: */
39: virtual ˜ParMesh();
40:
41: /**
42: * Reads mesh data from a binary file.
43: *
44: * @param[in] sname suffix of file name
45: * @param[in] icomm MPI communicator
46: * @see ascii_write_mesh.m for the file format.
47: */
48: explicit ParMesh(std::string const &sname, MPI_Comm const &icomm = MPI_COMM_WORL

D);
49:
50: void VecAccu(std::vector<double> &w) const;
51:
52: void VecAccu(std::vector<int> &w) const;
53:
54: /** Inner product
55: * @param[in] x vector
56: * @param[in] y vector
57: * @return resulting Euclidian inner product <x,y>
58: */
59: double dscapr(std::vector<double> const &x, std::vector<double> const &y) const
60: {
61: return par_scalar(x, y, _icomm);
62: }

./ex7_4/par_geom.h Wed Jan 07 11:32:18 2026 2

63:
64: int GlobalNodes() const;
65:
66: void Average(std::vector<double> &w) const;
67:
68: private:
69: /**
70: * Reads the global triangle to subdomain mapping.
71: *
72: * @param[in] dname file name
73: *
74: * @see ascii_write_subdomains.m for the file format
75: */
76: std::vector<int> ReadElementSubdomains(std::string const &dname);
77:
78:
79: /**
80: * Transform
81: *
82: * @param[in] myrank MPI rank of this process
83: * @param[in] t2d global mapping triangle to subdomain for all elements (

vertex based)
84: */
85: void Transform_Local2Global_Vertex(int myrank, std::vector<int> const &t2d);
86:
87:
88: /**
89: * Transform
90: */
91: void Generate_VectorAdd();
92:
93: bool CheckInterfaceExchange_InPlace() const;
94: bool CheckInterfaceExchange() const;
95: bool CheckInterfaceAdd_InPlace() const;
96: bool CheckInterfaceAdd() const;
97:
98:
99: public:
100: /** MPI rank of the calling process in communication group.
101: *
102: * @return MPI rank of the calling process
103: */
104: int MyRank() const
105: {
106: return _myrank;
107: }
108:
109: /** Number of MPI processes in communication group.
110: *
111: * @return Number of MPI processes
112: */
113: int NumProcs() const
114: {
115: return _numprocs;
116: }
117:
118: /** Returns recent
119: * @return MPI communicator
120: */
121: MPI_Comm GetCommunicator() const
122: {
123: return _icomm;
124: }
125:
126: private:
127: // Don’t use &_icomm ==> Error
128: MPI_Comm const _icomm; //!< MPI communicator for the group o

f processes

./ex7_4/par_geom.h Wed Jan 07 11:32:18 2026 3

129: int _numprocs; //!< number of MPI processes
130: int _myrank; //!< my MPI rank
131: std::vector<int> _v_l2g; //!< vertices: local to global mappi

ng
132: std::vector<int> _t_l2g; //!< triangles: local to global mappi

ng
133: std::map<int, int> _v_g2l; //!< vertices: global to local mappi

ng
134: std::map<int, int> _t_g2l; //!< triangles: global to local mappi

ng
135:
136: //std::vector<int> e_l2g; //!< edges: local to global map

ping
137:
138: std::vector<int> _valence; //!< valence of local vertices, i.e.

number of subdomains they belong to
139: // MPI_Alltoallv needs:
140: mutable std::vector<double> _sendbuf; //!< send buffer a n d receiving bu

ffer (MPI_IN_PLACE)
141: std::vector<int> _sendcounts; //!< number of data to send to each M

PI rank (the same as for recv)
142: std::vector<int> _sdispls; //!< offset of data to send to each M

PI rank wrt. _senbuffer (the same as for recv)
143: //
144: // We need to map the interface vertices onto the sendbuffer:
145: std::vector<int> _loc_itf; //!< local index of interface vertex

 lk
146: std::vector<int> _gloc_itf; //!< global index of interface vertex

 lk
147: std::vector<int> _buf2loc; //!< local indices of sendbuffer posi

tions (the same as for recv)
148:
149:
150: };
151:
152:
153: #endif

Mobile User

./ex7_4/vdop.cpp Wed Jan 07 11:32:18 2026 1

1: #include "vdop.h"
2: #include <cassert> // assert()
3: #include <cmath>
4: #include <iostream>
5: #include <vector>
6: using namespace std;
7:
8:
9: void vddiv(vector<double> & x, vector<double> const& y,
10: vector<double> const& z)
11: {
12: assert(x.size()==y.size() && y.size()==z.size());
13: size_t n = x.size();
14:
15: #pragma omp parallel for
16: for (size_t k = 0; k < n; ++k)
17: {
18: x[k] = y[k] / z[k];
19: }
20: return;
21: }
22:
23: //**
24:
25: void vdaxpy(std::vector<double> & x, std::vector<double> const& y,
26: double alpha, std::vector<double> const& z)
27: {
28: assert(x.size()==y.size() && y.size()==z.size());
29: size_t n = x.size();
30:
31: #pragma omp parallel for
32: for (size_t k = 0; k < n; ++k)
33: {
34: x[k] = y[k] + alpha * z[k];
35: }
36: return;
37: }
38: //**
39:
40: double dscapr(std::vector<double> const& x, std::vector<double> const& y)
41: {
42: assert(x.size()==y.size());
43: size_t n = x.size();
44:
45: double s = 0.0;
46: //#pragma omp parallel for reduction(+:s)
47: for (size_t k = 0; k < n; ++k)
48: {
49: s += x[k] * y[k];
50: }
51:
52: return s;
53: }
54:
55: //**
56: //void DebugVector(vector<double> const &v)
57: //{
58: //cout << "\nVector (nnode = " << v.size() << ")\n";
59: //for (size_t j = 0; j < v.size(); ++j)
60: //{
61: //cout.setf(ios::right, ios::adjustfield);
62: //cout << v[j] << " ";
63: //}
64: //cout << endl;
65:
66: //return;
67: //}
68: //**

./ex7_4/vdop.cpp Wed Jan 07 11:32:18 2026 2

69: bool CompareVectors(std::vector<double> const& x, int const n, double const y[], dou
ble const eps)

70: {
71: bool bn = (static_cast<int>(x.size())==n);
72: if (!bn)
73: {
74: cout << "######### Error: " << "number of elements" << endl;
75: }
76: //bool bv = equal(x.cbegin(),x.cend(),y);
77: bool bv = equal(x.cbegin(),x.cend(),y,
78: [eps](double a, double b) -> bool
79: { return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs

(b))); }
80:);
81: if (!bv)
82: {
83: assert(static_cast<int>(x.size())==n);
84: cout << "######### Error: " << "values" << endl;
85: }
86: return bn && bv;
87: }
88:
89: //**
90: double par_scalar(vector<double> const &x, vector<double> const &y, MPI_Comm const&

icomm)
91: {
92: const double s = dscapr(x,y);
93: double sg;
94: MPI_Allreduce(&s,&sg,1,MPI_DOUBLE,MPI_SUM,icomm);
95:
96: return(sg);
97: }
98:
99: //**
100: void ExchangeAll(vector<double> const &xin, vector<double> &yout, MPI_Comm const &ic

omm)
101: {
102: int myrank, numprocs,ierr(-1);
103: MPI_Comm_rank(icomm, &myrank); // my MPI-rank
104: MPI_Comm_size(icomm, &numprocs);
105: int const N=xin.size();
106: int const sendcount = N/numprocs; // equal sized junks
107: assert(sendcount*numprocs==N); // really all junk sized

?
108: assert(xin.size()==yout.size());
109:
110: auto sendbuf = xin.data();
111: auto recvbuf = yout.data();
112: ierr = MPI_Alltoall(sendbuf, sendcount, MPI_DOUBLE,
113: recvbuf, sendcount, MPI_DOUBLE, icomm);
114: assert(0==ierr);
115:
116: return;
117: }
118:
119: //**
120: void ExchangeAllInPlace(vector<double> &xin, MPI_Comm const &icomm)
121: {
122: int myrank, numprocs,ierr(-1);
123: MPI_Comm_rank(icomm, &myrank); // my MPI-rank
124: MPI_Comm_size(icomm, &numprocs);
125: int const N=xin.size();
126: int const sendcount = N/numprocs; // equal sized junks
127: assert(sendcount*numprocs==N); // really all junk sized

?
128:
129: auto sendbuf = xin.data();
130: ierr = MPI_Alltoall(MPI_IN_PLACE, sendcount, MPI_DOUBLE,

./ex7_4/vdop.cpp Wed Jan 07 11:32:18 2026 3

131: sendbuf, sendcount, MPI_DOUBLE, icomm);
132: assert(0==ierr);
133:
134: return;
135: }

./ex7_4/vdop.h Wed Jan 07 11:32:18 2026 1

1: #ifndef VDOP_FILE
2: #define VDOP_FILE
3: #include <iostream>
4: #include <mpi.h> // MPI
5: #include <string>
6: #include <vector>
7:
8: /** @brief Element-wise vector divison x_k = y_k/z_k.
9: *
10: * @param[out] x target vector
11: * @param[in] y source vector
12: * @param[in] z source vector
13: *
14: */
15: void vddiv(std::vector<double> &x, std::vector<double> const &y,
16: std::vector<double> const &z);
17:
18: /** @brief Element-wise daxpy operation x(k) = y(k) + alpha*z(k).
19: *
20: * @param[out] x target vector
21: * @param[in] y source vector
22: * @param[in] alpha scalar
23: * @param[in] z source vector
24: *
25: */
26: void vdaxpy(std::vector<double> &x, std::vector<double> const &y,
27: double alpha, std::vector<double> const &z);
28:
29:
30: /** @brief Calculates the Euclidean inner product of two vectors.
31: *
32: * @param[in] x vector
33: * @param[in] y vector
34: * @return Euclidean inner product @f$\langle x,y \rangle@f$
35: *
36: */
37: double dscapr(std::vector<double> const &x, std::vector<double> const &y);
38:
39:
40: inline

41: double L2_scapr(std::vector<double> const &x, std::vector<double> const &y)
42: {
43: return dscapr(x, y) / x.size();
44: }
45:
46:
47: /** Parallel inner product
48: @param[in] x vector
49: @param[in] y vector
50: @param[in] icomm MPI communicator
51: @return resulting Euclidian inner product <x,y>
52: */
53: double par_scalar(std::vector<double> const &x, std::vector<double> const &y,
54: MPI_Comm const& icomm=MPI_COMM_WORLD);
55:
56:
57:
58: /* ReadId : Input and broadcast of an integer */
59: inline

60: int ReadIn(std::string const &ss = std::string(), MPI_Comm const &icomm = MPI_COMM_W
ORLD)

61: {
62: MPI_Barrier(icomm);
63: int myrank; /* my rank number */
64: MPI_Comm_rank(icomm, &myrank);
65: int id;
66:
67: if (myrank == 0) {

./ex7_4/vdop.h Wed Jan 07 11:32:18 2026 2

68: std::cout << "\n\n " << ss << " : Which process do you want to debug ? \n"
;

69: std::cin >> id;
70: }
71: MPI_Bcast(&id, 1, MPI_INT, 0, icomm);
72:
73: return id;
74: }
75:
76: /**
77: * Print entries of a vector to standard output.
78: *
79: * @param[in] v vector values
80: * @param[in] ss string containing the vector name
81: * @param[in] icomm communicator group for MPI
82: *
83: */
84: //void DebugVector(std::vector<double> const &v);
85: template <class T>
86: void DebugVector(std::vector<T> const &v, std::string const &ss = std::string(), MPI

_Comm const &icomm = MPI_COMM_WORLD)
87: {
88: MPI_Barrier(icomm);
89: int numprocs; /* # processes */
90: MPI_Comm_size(icomm, &numprocs);
91: int myrank; /* my rank number */
92: MPI_Comm_rank(icomm, &myrank);
93:
94: int readid = ReadIn(ss); /* Read readid */
95:
96: while ((0 <= readid) && (readid < numprocs)) {
97: if (myrank == readid) {
98: std::cout << "\n\n process " << readid;
99: std::cout << "\n " << ss << " (nnode = " << v.size() << ")\n";
100: for (size_t j = 0; j < v.size(); ++j) {
101: std::cout.setf(std::ios::right, std::ios::adjustfield);
102: std::cout << v[j] << " ";
103: }
104: std::cout << std::endl;
105: fflush(stdout);
106: }
107:
108: readid = ReadIn(ss, icomm); /* Read readid */
109: }
110: MPI_Barrier(icomm);
111: return;
112: }
113:
114: /** @brief Compares an STL vector with POD vector.
115: *
116: * The accuracy criteria @f$ |x_k-y_k| < \varepsilon \left({1+0.5(|x_k|+|y_k|)}\righ

t) @f$
117: * follows the book by
118: * Stoyan/Baran, p.8.
119: *
120: * @param[in] x STL vector
121: * @param[in] n length of POD vector
122: * @param[in] y POD vector
123: * @param[in] eps relative accuracy criteria (default := 0.0).
124: * @return true iff pairwise vector elements are relatively close to each other.
125: *
126: */
127: bool CompareVectors(std::vector<double> const &x, int n, double const y[], double co

nst eps = 0.0);
128:
129:
130: /** Output operator for vector
131: * @param[in,out] s output stream, e.g. @p cout

./ex7_4/vdop.h Wed Jan 07 11:32:18 2026 3

132: * @param[in] v vector
133: *
134: * @return output stream
135: */
136: template <class T>
137: std::ostream &operator<<(std::ostream &s, std::vector<T> const &v)
138: {
139: for (auto vp : v) {
140: s << vp << " ";
141: }
142: return s;
143: }
144:
145: /** Exchanges equal size partions of vector @p xin with all MPI processes.
146: * The received data are return in vector @p yout .
147: *
148: * @param[in] xin input vector
149: * @param[out] yout output vector
150: * @param[in] icomm MPI communicator
151: *
152: */
153: void ExchangeAll(std::vector<double> const &xin, std::vector<double> &yout, MPI_Comm

 const &icomm = MPI_COMM_WORLD);
154:
155: /** Exchanges equal size partions of vector @p xin with all MPI processes.
156: * The received data are return in vector @p xin .
157: *
158: * @param[in,out] xin input/output vector
159: * @param[in] icomm MPI communicator
160: *
161: */
162: void ExchangeAllInPlace(std::vector<double> &xin, MPI_Comm const &icomm = MPI_COMM_W

ORLD);
163:
164:
165:
166: #endif

