
./ex7_3/main.cpp Wed Jan 07 11:32:18 2026 1

1: #include <iostream>

2: #include <mpi.h>

3: #include <vector>

4:

5: #include "vector_operations.h"

6:

7: using namespace std;

8:

9:

10: int main(int argc , char **argv)

11: {

12: MPI_Init(&argc, &argv); // Initializes the MPI execution environment

13: MPI_Comm const icomm(MPI_COMM_WORLD);

14: int myrank;

15: MPI_Comm_rank(icomm, &myrank);

16:

17: int n = 20;

18: vector<double> x(n);

19: vector<double> y = x;

20: for (int i = 0; i < n; ++i)

21: {

22: x[i] = myrank*100 + (i % 5)*10 + i;

23: y[i] = 1.0/(x[i]);

24: }

25:

26: if(myrank == 0) // so scalar product is well defined (avoid division by 0)

27: y[0] = 0;

28:

29:

30: // -------------------- E5 --------------------

31: if (myrank == 0) cout << "-------------------- E5 --------------------" << endl;

32: DebugVector(x, icomm);

33:

34:

35: cout.flush();

36: MPI_Barrier(icomm);

37: // -------------------- E6 --------------------

38: if (myrank == 0) cout << "-------------------- E6 --------------------" << endl;

39: double scalar_product = par_scalar(x, y, icomm);

40:

41: if (myrank == 0)

42: {

43: cout << "<x,y> = " << scalar_product << endl << endl;

44: }

45:

46:

47: cout.flush();

48: MPI_Barrier(icomm);

49: // -------------------- E7 --------------------

50: if (myrank == 0) cout << "-------------------- E7 --------------------" << endl;

51: double xmin, xmax;

52: par_minmax(x, xmin, xmax, icomm);

53:

54: if (myrank == 0)

55: {

56: cout << "Global min: " << xmin << endl;

57: cout << "Global max: " << xmax << endl << endl;

58: }

59:

60: cout.flush();

61: MPI_Barrier(icomm);

62: // -------------------- E8 --------------------

63: if (myrank == 0) cout << "-------------------- E8 --------------------" << endl;

64: vector<double> x_new(n);

65:

66:

67: cout.flush();

68: MPI_Barrier(icomm);

./ex7_3/main.cpp Wed Jan 07 11:32:18 2026 2

69: // All to all

70: if (myrank == 0) cout << "----- All to all -----" << endl;

71: auto sendbuf = x.data();

72: int sendcount = 5;

73: auto recvbuf = x_new.data();

74: int recvcount = 5;

75: MPI_Alltoall(sendbuf, sendcount, MPI_DOUBLE, recvbuf, recvcount, MPI_DOUBLE, ico

mm);

76:

77: DebugVector(x_new, icomm);

78:

79:

80: cout.flush();

81: MPI_Barrier(icomm);

82: // All to all v

83: if (myrank == 0) cout << "----- All to all v -----" << endl;

84: int sendcounts[4] = {5, 5, 5, 5};

85: int senddispls[4] = {0, 5, 10, 15};

86: int rcvcounts[4] = {5, 5, 5, 5};

87: int rcvdispls[4] = {0, 5, 10, 15};

88: MPI_Alltoallv(x.data(), sendcounts, senddispls, MPI_DOUBLE, x_new.data(), rcvcou

nts, rcvdispls, MPI_DOUBLE, icomm);

89:

90: DebugVector(x_new, icomm);

91:

92:

93: cout.flush();

94: MPI_Barrier(icomm);

95: // All to all (in place), sendcount and sendtype are ignored

96: if (myrank == 0) cout << "----- All to all (in place) -----" << endl;

97: MPI_Alltoall(MPI_IN_PLACE, sendcount, MPI_DOUBLE, x.data(), recvcount, MPI_DOUBL

E, icomm);

98:

99: DebugVector(x, icomm);

100:

101:

102:

103:

104: MPI_Finalize(); // Terminates MPI execution environment

105:

106: return 0;

107: }

Mobile User

./ex7_3/vector_operations.cpp Wed Jan 07 11:32:18 2026 1

1: #include "vector_operations.h"

2: #include <cassert>

3: #include <cfloat>

4:

5: void DebugVector(const vector<double> &xin, const MPI_Comm &icomm)

6: {

7: int myrank, numprocs;

8: MPI_Comm_rank(icomm, &myrank); // my MPI-rank

9: MPI_Comm_size(icomm, &numprocs); // #MPI processes

10: int ierr;

11:

12:

13: int n = xin.size();

14:

15:

16: int chosen_process;

17: for (int k = 0; k < numprocs; ++k)

18: {

19: MPI_Barrier(icomm);

20:

21: if (myrank == 0)

22: {

23: cout << "Choose next process: ";

24: cin >> chosen_process;

25:

26: }

27: ierr = MPI_Bcast(&chosen_process, 1, MPI_INT, 0, icomm); // broadcast value

of "chosen_process" to all processes

28: assert(ierr == 0);

29:

30: MPI_Barrier(icomm);

31:

32: if (chosen_process == myrank)

33: {

34: for (int i = 0; i < n; ++i)

35: {

36: cout << "x_" << i << " = " << xin[i] << "\t(Process " << myrank << "

)" << endl;

37: }

38: cout.flush();

39: }

40: }

41: return;

42: }

43:

44:

45:

46: double par_scalar(const vector<double> &x, const vector<double> &y, const MPI_Comm &

icomm)

47: {

48: int n = x.size();

49: assert(n == (int)y.size());

50:

51: double sum = 0.0;

52: double local_sum = 0.0;

53:

54:

55: for (int i = 0; i < n; ++i)

56: {

57: local_sum += x[i]*y[i];

58: }

59:

60: int ierr = MPI_Allreduce(&local_sum, &sum, 1, MPI_DOUBLE, MPI_SUM, icomm); // r

educe local sums to global sum

61: assert(ierr == 0);

62:

63:

64: return sum;

Mobile User

./ex7_3/vector_operations.cpp Wed Jan 07 11:32:18 2026 2

65: }

66:

67:

68: void par_minmax(const vector<double> &x, double &global_min, double &global_max, con

st MPI_Comm &icomm)

69: {

70: int myrank, numprocs;

71: MPI_Comm_rank(icomm, &myrank); // my MPI-rank

72: MPI_Comm_size(icomm, &numprocs); // #MPI processes

73:

74: int n = x.size();

75:

76: double local_min = DBL_MAX;

77: double local_max = -DBL_MAX;

78:

79: for (int i = 0; i < n; ++i)

80: {

81: if (x[i] < local_min)

82: local_min = x[i];

83: if (x[i] > local_max)

84: local_max = x[i];

85: }

86:

87: vector<double> local_mins(numprocs);

88: vector<double> local_maxs(numprocs);

89: MPI_Gather(&local_min, 1, MPI_DOUBLE, local_mins.data(), 1, MPI_DOUBLE, 0, icomm

);

90: MPI_Gather(&local_max, 1, MPI_DOUBLE, local_maxs.data(), 1, MPI_DOUBLE, 0, icomm

);

91:

92: if (myrank == 0)

93: {

94: global_min = DBL_MAX;

95: global_max = -DBL_MAX;

96:

97: for (int i = 0; i < numprocs; ++i)

98: {

99: if (local_mins[i] < global_min)

100: global_min = local_mins[i];

101: if (local_maxs[i] > global_max)

102: global_max = local_maxs[i];

103: }

104: }

105:

106: MPI_Bcast(&global_min, 1, MPI_DOUBLE, 0, icomm); // make sure every process is u

p to date

107: MPI_Bcast(&global_max, 1, MPI_DOUBLE, 0, icomm);

108:

109: return;

110: }

Mobile User

./ex7_3/vector_operations.h Wed Jan 07 11:32:18 2026 1

1: #include <mpi.h>

2: #include <vector>

3:

4: using namespace std;

5:

6: void DebugVector(const vector<double> &xin, const MPI_Comm &icomm);

7:

8: double par_scalar(const vector<double> &x, const vector<double> &y, const MPI_Comm &

icomm);

9:

10: void par_minmax(const vector<double> &x, double &global_min, double &global_max, con

st MPI_Comm &icomm);

