./ex7_3/main.cpp Wed Jan 07 11:32:18 2026 1

1l: #include <iostream>

2: #include <mpi.h>
3: #include <vector>
4
5: #include "vector_operations.h"
6:
7: using namespace std;
8:
9:
10: int main(int argc , char **argv)
11: {
12: MPI_TInit (&argc, &argv); // Initializes the MPI execution environment
13: MPI_Comm const icomm (MPI_COMM_WORLD) ;
14: int myrank;
15: MPI_Comm_rank (icomm, &myrank);
16:
17: int n = 20;
18: vector<double> x(n);
19: vector<double> y = x;
20: for (int i = 0; i < n; ++i)
21: {
22 x[1i] = myrank*100 + (i % 5)*10 + 1i;
23: y[i] = 1.0/(x[1]);
24: }
25:
26: if (myrank == 0) // so scalar product is well defined (avoid division by 0)
27: y[0] = 0;
28:
29:
30: /) mmmm e E5 —————————m
31: if (myrank == 0) cout << " E5 " << endl;
32: DebugVector (x, icomm);
33:
34:
35: cout.flush();
36: MPI_Barrier (icomm) ;
37: S/ E6 ——m————————————————
38: if (myrank == 0) cout << " E6 " << endl;
39: double scalar_product = par_scalar(x, y, icomm);
40:
41 : if (myrank == 0)
42 {
43: cout << "<x,y> = " << scalar_product << endl << endl;
44 . }
45:
46:
47: cout.flush();
48: MPI_Barrier (icomm) ;
49: S/ E7 ——————————————————
50: if (myrank == 0) cout << " E7 " << endl;
51: double xmin, xmax;
52: par_minmax(x, xmin, xmax, icomm);
53:
54: if (myrank == 0)
55: {
56: cout << "Global min: " << xmin << endl;
57: cout << "Global max: " << xmax << endl << endl;
58: }
59:
60: cout.flush();
61: MPI_Barrier (icomm) ;
62: /) ——————— E§ ——————————————————
63: if (myrank == 0) cout << " ES " << endl;
64: vector<double> x_new(n);
65:
66:
67: cout.flush{();

68: MPI_Barrier (icomm) ;

./ex7_3/main.cpp Wed Jan 07 11:32:18 2026 2

69: // All to all
70: if (myrank == 0) cout << << endl;
71: auto sendbuf = x.data();
72 int sendcount = 5;
73: auto recvbuf = x_new.data(); v
74 : int recvcount = 5;
75: MPI_Alltoall (sendbuf, sendcount, MPI_DOUBLE, recvbuf, recvcount, MPI_DOUBLE, ico
mm) ;
76:
77 DebugVector (x_new, icomm);
78:
79:
80: cout.flush{();
81: MPI_Barrier (icomm) ;
82: // All to all v
83: if (myrank == 0) cout << << endl;
84: int sendcounts[4] = {5, 5, 5, 5};
85: int senddispls([4] = {0, 5, 10, 15};
86: int rcvcounts[4] = {5, 5, 5, 5};
87: int rcvdispls[4] = {0, 5, 10, 15}; V//
88: MPI_Alltoallv(x.data(), sendcounts, senddispls, MPI_DOUBLE, x_new.data(), rcvcou
nts, rcvdispls, MPI_DOUBLE, icomm);
89:
90: DebugVector (x_new, icomm) ;
91:
92:
93: cout.flush();
94 : MPI_Barrier (icomm) ;
95: // All to all (in place), sendcount and sendtype are ignored
96: if (myrank == 0) cout << << endl;
97: MPI_Alltoall (MPI_IN_PLACE, sendcount, MPI_DOUBLE, x.data(), recvcount, MPI_DOUBL
E, icomm);
98:
99: DebugVector (x, icomm) ;
100:
101:
102:
103:
104: MPI_Finalize(); // Terminates MPI execution environment
105:
106: return O;

107: }

Mobile User

./exT_.

27:
"chosen_process" to all processes
28:
29:
30:
31:
32:
33:
34:
35:
36:

of

)H <<

37:
38:
39:
40:
41:
42
43:
44 ;.
45:
46:

icomm)

47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

educe

61l:
62:
63:
64:

3/vector_operations.cpp

#include "vector_operations.h"
#include <cassert>
#include <cfloat>

void DebugVector (const vector<double> &xin,

{
int myrank, numprocs;
MPI_Comm_rank (icomm,
MPI_Comm_size (icomm,
int ierr;

&myrank) ;
&numprocs) ;

int n = xin.size();

int
for

chosen_process;
(int k = 0; k < numprocs; ++k)
MPI_Barrier (icomm) ;

if
{

(myrank == 0)

cout << "Choose next process:
cin >> chosen_process;

}

ierr = MPI_Bcast (&chosen_process,

assert (ierr

== 0);

MPI_Barrier (icomm) ;

Wed Jan 07 11:32:18 2026 1

const MPI_Comm &icomm)

// my MPI-rank
// #MPI processes

/ IS/'Z@‘ i[i«ap[,'omj

"

1, MPI_INT, 0, icomm);

v

if
{

(chosen_process == myrank)

for (int i = 0; i < n; ++1i)

{
cout << "x " << i << " ="
endl;
}

cout.flush{();

return;

double par_scalar (const vector<double> &x,

{
int n = x.size();
assert (n == (int)y.size());

double sum = 0.0;
double local_sum = 0.0;

for (int i = 0; i < n; ++1i)

{
local_sum += x[i]l*y[i];

}

int ierr = MPI_Allreduce(&local_sum, &
local sums to global sum V4
assert (ierr == 0);

return sum;

<< xin[i] <<

const vector<double> &y,

sum, 1,

"\t (Process "

MPI_DOUBLE, MPI_SUM,

icomm) ;

// broadcast value

<< myrank << "

const MPI_Comm &

// r

Mobile User

./ex7_3/vector_operations.cpp
65: }
66:
67:

Wed Jan 07 11:32:18 2026 2

68: void par_minmax (const vector<double> &x, double &global_min, double &global_max, con
st MPI_Comm &icomm)
69: {
70: int myrank, numprocs;
71: MPI_Comm_rank (icomm, &myrank); // my MPI-rank
72 MPI_Comm_size (icomm, &numprocs); // #MPI processes
73:
74 : int n = x.size();
75:
76: double local_min = DBL_MAX;
77 double local_max = -DBL_MAX;
78:
79: for (int i = 0; i < n; ++1i)
80: {
81: if (x[1i] < local_min)
82: local min = x[i];
83: if (x[1i] > local_max)
84: local_max = x[1i];
85: }
86:
87: vector<double> local_mins (numprocs) ;
88: vector<double> local_maxs (numprocs) ;
89: MPI_Gather (&local_min, 1, MPI_DOUBLE, local_mins.data(), 1, MPI_DOUBLE, 0, icomm
)i
90: MPI_Gather (&local_max, 1, MPI_DOUBLE, local_maxs.data(), 1, MPI_DOUBLE, 0, icomm
)i
91:
92: if (myrank == 0)
93: {
94 : global_min = DBL_MAX;
95: global_max = -DBL_MAX;
96:
97: for (int i = 0; i < numprocs; ++1i)
98: {
99: if (local_mins[i] < global_min)
100: global_min = local_mins[i];
101: if (local_maxs[i] > global_max)
102: global_max = local_maxs[i];
103: }
104: }
105:
106: MPI_Bcast (&global_min, 1, MPI_DOUBLE, 0, icomm); // make sure every process 1S u
p to date
107: MPI_Bcast (&global_max, 1, MPI DOUBLE 0, icomm) ;
108:
109: return;
e Exé@@waﬁ

Mobile User

./ex7_3/vector_operations.h Wed Jan 07 11:32:18 2026 1

1: #include <mpi.h>

2: #include <vector>

3:

4: using namespace std;

5:

6: void DebugVector (const vector<double> &xin, const MPI_Comm &icomm) ;

7:

8: double par_scalar (const vector<double> &x, const vector<double> &y, const MPI_Comm &
icomm) ;

9:

10: void par_minmax (const vector<double> &x, double &global_min, double &global_max, con
st MPI_Comm &icomm) ;

