
./ex7_2/greetings.cpp Wed Jan 07 11:32:18 2026 1

1: #include "greetings.h"

2: #include <cassert>

3: #include <cstring>

4: #include <iostream>

5: #include <mpi.h> // MPI

6: #include <string>

7: using namespace std;

8:

9: // see http://www.open-mpi.org/doc/current

10: // for details on MPI functions

11:

12: void greetings(MPI_Comm const &icomm)

13: {

14: int myrank, numprocs;

15: MPI_Comm_rank(icomm, &myrank); // my MPI-rank

16: MPI_Comm_size(icomm, &numprocs); // #MPI processes

17: char *name = new char [MPI_MAX_PROCESSOR_NAME],

18: *chbuf = new char [MPI_MAX_PROCESSOR_NAME];

19:

20: int reslen, ierr;

21: MPI_Get_processor_name(name, &reslen);

22:

23: if (0==myrank) {

24: cout << " " << myrank << " runs on " << name << endl;

25: for (int i = 1; i < numprocs; ++i) {

26: MPI_Status stat;

27: stat.MPI_ERROR = 0; // M U S T be initialized!!

28:

29:

30: //ierr = MPI_Recv(chbuf, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, MPI_ANY_SOURC

E, MPI_ANY_TAG, icomm, &stat);

31: ierr = MPI_Recv(chbuf, MPI_MAX_PROCESSOR_NAME, MPI_CHAR, i, i, icomm, &s

tat);

32: assert(0==ierr);

33:

34: cout << " " << stat.MPI_SOURCE << " runs on " << chbuf;

35: int count;

36: MPI_Get_count(&stat, MPI_CHAR, &count); // size of received data

37: cout << " (length: " << count << ")" << endl;

38: // stat.Get_error() // Error code

39: }

40: }

41: else {

42: int dest = 0;

43: ierr = MPI_Send(name, strlen(name) + 1, MPI_CHAR, dest, myrank, icomm);

44: assert(0==ierr);

45: }

46: delete [] chbuf;

47: delete [] name;

48: return;

49: }

50:

51:

52: void greetings_cpp(MPI_Comm const &icomm)

53: {

54: int myrank, numprocs;

55: MPI_Comm_rank(icomm, &myrank); // my MPI-rank

56: MPI_Comm_size(icomm, &numprocs); // #MPI processes

57: string name(MPI_MAX_PROCESSOR_NAME,’#’), // C++

58: recvbuf(MPI_MAX_PROCESSOR_NAME,’#’); // C++: receive buffer, don’t chan

ge size

59:

60: int reslen, ierr;

61: MPI_Get_processor_name(name.data(), &reslen);

62: name.resize(reslen); // C++

63:

64:

65: if (0==myrank) {

Mobile User

./ex7_2/greetings.cpp Wed Jan 07 11:32:18 2026 2

66: cout << " " << myrank << " runs on " << name << endl;

67: for (int i = 1; i < numprocs; ++i) {

68: MPI_Status stat;

69: stat.MPI_ERROR = 0; // M U S T be initialized!!

70:

71: //ierr = MPI_Recv(recvbuf.data(), MPI_MAX_PROCESSOR_NAME, MPI_CHAR, MPI_

ANY_SOURCE, MPI_ANY_TAG, icomm, &stat);

72: ierr = MPI_Recv(recvbuf.data(), MPI_MAX_PROCESSOR_NAME, MPI_CHAR, i, i,

icomm, &stat);

73: assert(0==ierr);

74:

75: int count;

76: MPI_Get_count(&stat, MPI_CHAR, &count); // size of received data

77: string const chbuf(recvbuf,0,count); // C++

78: cout << " " << stat.MPI_SOURCE << " runs on " << chbuf;

79: cout << " (length: " << count << ")" << endl;

80: // stat.Get_error() // Error code

81: }

82: }

83: else {

84: int dest = 0;

85: ierr = MPI_Send(name.data(), name.size(), MPI_CHAR, dest, myrank, icomm);

86: assert(0==ierr);

87: }

88: return;

89: }

Mobile User

./ex7_2/greetings.h Wed Jan 07 11:32:18 2026 1

1: // general header for all functions in directory

2:

3: #ifndef GREETINGS_FILE

4: #define GREETINGS_FILE

5:

6: #include <mpi.h>

7:

8: void greetings(MPI_Comm const &icomm);

9: void greetings_cpp(MPI_Comm const &icomm);

10:

11: #endif

./ex7_2/main.cpp Wed Jan 07 11:32:18 2026 1

1: #include <iostream>

2: #include <mpi.h>

3:

4: #include "greetings.h"

5:

6: using namespace std;

7:

8:

9: int main(int argc , char **argv)

10: {

11: // -------------------- E2 --------------------

12: MPI_Init(&argc, &argv); // Initializes the MPI execution environment

13:

14: // -------------------- E1 --------------------

15: MPI_Comm const icomm(MPI_COMM_WORLD); // MPI_COMM_WORLD ... all processes

16:

17: // -------------------- E3 --------------------

18: int rank;

19: MPI_Comm_rank(icomm, &rank); // Determines the rank of the calling process in

the communicator.

20:

21: if (rank == 0)

22: {

23: int size;

24: MPI_Comm_size(icomm, &size); // Returns the size of the group associated wit

h a communicator.

25: cout << "Process " << rank << " says: " << size << " proesses are running."

<< endl;

26: }

27: // To vary number of processes: changed number in GCC_default.mk file

28: // alternatively, call in terminal:

29: // /usr/bin/mpirun --oversubscribe -display-map -mca btl ^openib -np 4 ./main.G

CC_

30: // or

31: // /usr/bin/mpirun --oversubscribe -display-map -mca btl ^openib -np 8 ./main.G

CC_

32:

33:

34: // -------------------- E4 --------------------

35: greetings_cpp(MPI_COMM_WORLD); // greetings with sorted output

36:

37:

38: MPI_Finalize(); // Terminates MPI execution environment

39: return 0;

40: }

