
adaptivity_schemes.py Wed Jan 07 11:32:18 2026 1

1: import numpy as np

2:

3: def flux_jumps(mesh, u):

4: N = len(mesh) - 1 # number of elements

5: jumps = np.zeros(N + 1) # N-1 edges

6:

7: for i in range(1, N):

8: upper = (u[i + 1] - u[i])/(mesh[i + 1] - mesh[i])

9: lower = (u[i] - u[i - 1])/(mesh[i] - mesh[i - 1])

10: jumps[i] = upper - lower

11:

12: return jumps

13:

14:

15: def residual_errors(mesh, u):

16: N = len(mesh) - 1 # number of elements

17: errors = np.zeros(N)

18:

19: jumps = flux_jumps(mesh, u)

20:

21: for i in range(N):

22: errors[i] = np.sqrt((jumps[i]**2 + jumps[i + 1]**2)/2) # Braess (8.10)

23:

24: #print("errors:\n", errors)

25:

26: return errors

27:

28:

29:

30: def adapt_h(mesh, u, alpha):

31: N = len(mesh) - 1 # number of elements

32:

33: errors = residual_errors(mesh, u)

34: threshhold = alpha * abs(max(errors))

35:

36: # refine mesh

37: refined_mesh = [mesh[0]]

38: for i in range(N):

39: if abs(errors[i]) <= threshhold:

40: refined_mesh.append(mesh[i + 1])

41: else:

42: refined_mesh.append(mesh[i] + (mesh[i + 1] - mesh[i])/2)

43: refined_mesh.append(mesh[i + 1])

44:

45:

46: #print("refined mesh:\n", refined_mesh)

47:

48: return refined_mesh

49:

50:

51: def adapt_r(mesh, u):

52: N = len(mesh) - 1 # number of elements

53:

54: rho = np.abs(flux_jumps(mesh, u)) # rho ... mesh density function

55:

56: p = np.zeros(N) # piecewise constant function on the mesh elements

57: for i in range(N):

58: p[i] = (rho[i] + rho[i + 1])/2

59:

60: P = np.zeros(N + 1) # \int_0^{x_j} p(x) dx for j = 1,...,N

61: for j in range(1, N + 1):

62: h_j = mesh[j] - mesh[j - 1]

63: P[j] = P[j - 1] + h_j*p[j - 1] # add integral over j-th interval

64:

65: moved_mesh = np.zeros(N + 1)

66: moved_mesh[0] = mesh[0]

67: moved_mesh[-1] = mesh[-1]

68:

Mobile User

adaptivity_schemes.py Wed Jan 07 11:32:18 2026 2

69: for j in range(1, N): # calculate the new nodes with De Boor’s algorithm

70: xi_j = j/N

71: k = np.searchsorted(P, xi_j*P[-1], side="left") # searches for index k, suc

h that xi_j*P[-1] > P[k]

72: assert(P[k - 1] < xi_j*P[-1])

73: assert(xi_j*P[-1] <= P[k])

74:

75: moved_mesh[j] = mesh[k - 1] + (xi_j*P[-1] - P[k - 1])/p[k - 1]

76: print("orign_mesh[j] =", mesh[j])

77: print("moved_mesh[j] =", moved_mesh[j])

78: print("done\n")

79:

80:

81: #print("moved mesh:\n", moved_mesh)

82:

83: return moved_mesh

Mobile User

ex_6A.py Wed Jan 07 11:32:18 2026 1

1: import numpy as np

2: import scipy.integrate as integrate

3: import matplotlib.pyplot as plt

4: import adaptivity_schemes

5:

6: np.set_printoptions(precision=2)

7:

8:

9: def Solve_6A(mesh, p):

10: N = len(mesh) - 1 # number of elements

11:

12: f = lambda x : 2*p**3*x/((p**2*x**2 + 1)**2)

13: g_b = p/(p**2 + 1)

14:

15:

16:

17: A = np.zeros((N + 1, N + 1))

18: f_vec = np.zeros(N + 1)

19:

20: for i in range(1, N + 1):

21: h = mesh[i] - mesh[i - 1]

22:

23: a_11 = 1./h

24: a_12 = -1./h

25: a_21 = -1./h

26: a_22 = 1./h

27:

28: A[i - 1, i - 1] += a_11

29: A[i - 1, i] += a_12

30: A[i, i - 1] += a_21

31: A[i, i] += a_22

32:

33:

34: phi_lower = lambda x : (mesh[i] - x)/h

35: f_vec[i-1] += integrate.quad(lambda x : f(x)*phi_lower(x), mesh[i - 1], mesh

[i])[0]

36:

37: phi_upper = lambda x : (x - mesh[i - 1])/h

38: f_vec[i] += integrate.quad(lambda x : f(x)*phi_upper(x), mesh[i - 1], mesh[i

])[0]

39:

40:

41:

42: # take Neumann data into account

43: A[N, N] += 0

44: f_vec[N] += g_b

45:

46:

47: # take Dirichlet data into account

48: u_g = np.zeros(N + 1)

49: u_g[0] = -np.arctan(p)

50: #print("u_g =\n", u_g)

51:

52: # remove first row of A

53: A_g = A[1:N+1, :]

54: #print("A_g =\n", A_g)

55:

56: # remove first row of f_vec

57: f_g = f_vec[1:N+1]

58:

59: # assemble RHS with dirichlet data

60: f_g -= A_g.dot(u_g)

61: #print("f_g =\n", f_g)

62:

63: # matrix for the inner nodes (excluding nodes with dirichlet bcs)

64: A_0 = A[1:N+1, 1:N+1]

65: #print(A_0)

66:

ex_6A.py Wed Jan 07 11:32:18 2026 2

67: # solve for u_0 (free dofs)

68: u_0 = np.linalg.solve(A_0, f_g)

69:

70: # assemble "u = u_0 + u_g"

71: u = np.concatenate([[u_g[0]], u_0])

72:

73: return u

74:

75:

76:

77: p = 100

78: ########## h-adaptivity ##########

79: N = 5 # number of elements

80: mesh = np.linspace(-1, 1, N + 1)

81: u = Solve_6A(mesh, p)

82:

83: plt.plot(mesh, u, ’-o’)

84: plt.grid()

85: plt.xlabel(’x’)

86: plt.ylabel(’u_h(x)’)

87: plt.title("h-adaptivity")

88:

89:

90: N_vec = ["0 refinements, " + str(N) + " elements"]

91: refinements = 4 # number of refinements

92: for i in range(refinements):

93: mesh = adaptivity_schemes.adapt_h(mesh, u, 0.7)

94: u = Solve_6A(mesh, p)

95: plt.plot(mesh, u, ’-o’)

96:

97: N_vec.append(str(i + 1) + " refinements, " + str(len(mesh) - 1) + " elements")

98:

99:

100: # plot exact solution

101: x = np.linspace(-1, 1, 50)

102: plt.plot(x, np.arctan(p*x))

103: N_vec.append("exact")

104:

105: plt.legend(N_vec)

106: plt.show()

107:

108:

109:

110: # ########## r-adaptivity ##########

111: N = 5

112: mesh = np.linspace(-1, 1, N + 1)

113: u = Solve_6A(mesh, p)

114: plt.plot(mesh, u, ’-o’)

115: title = "r-adaptivity with " + str(N) + " elements"

116: plt.title(title)

117:

118: adaptations_vec = ["0 adaptations"]

119: adaptations = 5 # number of iterations

120: for i in range(adaptations):

121: mesh = adaptivity_schemes.adapt_r(mesh, u)

122:

123: u = Solve_6A(mesh, p)

124: plt.plot(mesh, u, ’-o’)

125:

126: adaptations_vec.append(str(i + 1) + " adaptations")

127:

128:

129: # plot exact solution

130: x = np.linspace(-1, 1, 50)

131: plt.plot(x, np.arctan(p*x))

132: adaptations_vec.append("exact")

133:

134:

ex_6A.py Wed Jan 07 11:32:18 2026 3

135: plt.legend(adaptations_vec)

136: plt.xlabel(’x’)

137: plt.ylabel(’u_h(x)’)

138: plt.grid()

139: plt.show()

ex_6B.py Wed Jan 07 11:32:18 2026 1

1: import numpy as np

2: import matplotlib.pyplot as plt

3: import adaptivity_schemes

4:

5: np.set_printoptions(precision=2)

6:

7:

8: def lam_func(x):

9: n = len(x)

10: lam_vec = np.zeros(n)

11: for i in range(n):

12: if (x[i] > 1/np.sqrt(2)):

13: lam_vec[i] = 10

14: else:

15: lam_vec[i] = 1

16: return lam_vec

17:

18:

19:

20: def Solve_6B(mesh):

21: N = len(mesh) - 1 # number of elements

22:

23: A = np.zeros((N + 1, N + 1))

24:

25: lam_vec = lam_func(mesh)

26:

27: for i in range(1, N + 1):

28: h = mesh[i] - mesh[i - 1]

29:

30: a_11 = lam_vec[i]/h

31: a_12 = -lam_vec[i]/h

32: a_21 = -lam_vec[i]/h

33: a_22 = lam_vec[i]/h

34:

35: A[i - 1, i - 1] += a_11

36: A[i - 1, i] += a_12

37: A[i, i - 1] += a_21

38: A[i, i] += a_22

39:

40: #print("A =\n", A)

41:

42: # take dirichlet data into account

43: u_g = np.zeros(N + 1)

44: u_g[0] = 0

45: u_g[N] = 1

46: #print("u_g =\n", u_g)

47:

48: # remove first and last row of A

49: A_g = A[1:N, :]

50: #print("A_g =\n", A_g)

51:

52: # assemble RHS with dirichlet data

53: f = -A_g.dot(u_g)

54: #print(f)

55:

56: # matrix for the inner nodes (excluding nodes with dirichlet bcs)

57: A_0 = A[1:N, 1:N]

58: #print(A_0)

59:

60: # solve for u_0 (free dofs)

61: u_0 = np.linalg.solve(A_0, f)

62:

63: # assemble "u = u_0 + u_g"

64: u = np.concatenate([[0], u_0, [1]])

65: #print("u =\n", u)

66:

67: return u

68:

ex_6B.py Wed Jan 07 11:32:18 2026 2

69:

70: ########## h-adaptivity ##########

71: N = 2 # number of elements

72: mesh = np.linspace(0, 1, N + 1)

73: u = Solve_6B(mesh)

74:

75: plt.plot(mesh, u, ’-o’)

76: plt.grid()

77: plt.xlabel(’x’)

78: plt.ylabel(’u_h(x)’)

79: plt.title("h-adaptivity")

80:

81:

82: N_vec = ["0 refinements, " + str(N) + " elements"]

83: refinements = 5 # number of refinements

84: for i in range(refinements):

85: mesh = adaptivity_schemes.adapt_h(mesh, lam_func(mesh)*u, 0.9)

86: u = Solve_6B(mesh)

87: plt.plot(mesh, u, ’-o’)

88:

89: N_vec.append(str(i + 1) + " refinements, " + str(len(mesh) - 1) + " elements")

90:

91: plt.legend(N_vec)

92: plt.show()

93:

94:

95:

96: ########## r-adaptivity ##########

97: N = 5

98: mesh = np.linspace(0, 1, N + 1)

99: u = Solve_6B(mesh)

100: plt.plot(mesh, u, ’-o’)

101: title = "r-adaptivity with " + str(N) + " elements"

102: plt.title(title)

103:

104: adaptations_vec = ["0 adaptations"]

105: adaptations = 4 # number of iterations

106: for i in range(adaptations):

107: mesh = adaptivity_schemes.adapt_r(mesh, lam_func(mesh)*u)

108: u = Solve_6B(mesh)

109: plt.plot(mesh, u, ’-o’)

110:

111: adaptations_vec.append(str(i + 1) + " adaptations")

112:

113:

114: plt.legend(adaptations_vec)

115: plt.xlabel(’x’)

116: plt.ylabel(’u_h(x)’)

117: plt.grid()

118: plt.show()

119:

120:

ex_6C.py Wed Jan 07 11:32:18 2026 1

1: import numpy as np

2: import matplotlib.pyplot as plt

3: import adaptivity_schemes

4:

5: np.set_printoptions(precision=2)

6:

7:

8: def Solve_6C(mesh, p):

9: N = len(mesh) - 1 # number of elements

10:

11: A = np.zeros((N + 1, N + 1))

12:

13: for i in range(1, N + 1):

14: h = mesh[i] - mesh[i - 1]

15:

16: a_11 = 1./h - p/2.

17: a_12 = -1./h + p/2.

18: a_21 = -1./h - p/2.

19: a_22 = 1./h + p/2.

20:

21: A[i - 1, i - 1] += a_11

22: A[i - 1, i] += a_12

23: A[i, i - 1] += a_21

24: A[i, i] += a_22

25:

26: #print("A =\n", A)

27:

28:

29: # take dirichlet data into account

30: u_g = np.zeros(N + 1)

31: u_g[0] = 0

32: u_g[N] = 1

33: #print("u_g =\n", u_g)

34:

35: # remove first and last row of A

36: A_g = A[1:N, :]

37: #print("A_g =\n", A_g)

38:

39: # assemble RHS with dirichlet data

40: f = -A_g.dot(u_g)

41: #print(f)

42:

43: # matrix for the inner nodes (excluding nodes with dirichlet bcs)

44: A_0 = A[1:N, 1:N]

45: #print(A_0)

46:

47: # solve for u_0 (free dofs)

48: u_0 = np.linalg.solve(A_0, f)

49:

50: # assemble "u = u_0 + u_g"

51: u = np.concatenate([[0], u_0, [1]])

52:

53: return u

54:

55:

56:

57:

58:

59:

60: p = 70

61: ######### h-adaptivity ##########

62: N = 5 # number of elements

63: mesh = np.linspace(0, 1, N + 1)

64: u = Solve_6C(mesh, p)

65:

66: plt.plot(mesh, u, ’-o’)

67: plt.grid()

68: plt.xlabel(’x’)

ex_6C.py Wed Jan 07 11:32:18 2026 2

69: plt.ylabel(’u_h(x)’)

70: plt.title("h-adaptivity")

71:

72:

73: N_vec = ["0 refinements, " + str(N) + " elements"]

74: refinements = 4 # number of refinements

75: for i in range(refinements):

76: mesh = adaptivity_schemes.adapt_h(mesh, u, 0.7)

77: u = Solve_6C(mesh, p)

78: plt.plot(mesh, u, ’-o’)

79:

80: N_vec.append(str(i + 1) + " refinements, " + str(len(mesh) - 1) + " elements")

81:

82:

83: # plot exact solution

84: x = np.linspace(0, 1, 50)

85: plt.plot(x, (np.exp(p*x) - 1.)/(np.exp(p) - 1.))

86: N_vec.append("exact")

87:

88: plt.legend(N_vec)

89: plt.show()

90:

91:

92:

93: ########## r-adaptivity ##########

94: N = 10

95: mesh = np.linspace(0, 1, N + 1)

96: u = Solve_6C(mesh, p)

97: plt.plot(mesh, u, ’-o’)

98: title = "r-adaptivity with " + str(N) + " elements"

99: plt.title(title)

100:

101: adaptations_vec = ["0 adaptations"]

102: adaptations = 4 # number of iterations

103: for i in range(adaptations):

104: mesh = adaptivity_schemes.adapt_r(mesh, u)

105: u = Solve_6C(mesh, p)

106: plt.plot(mesh, u, ’-o’)

107:

108: adaptations_vec.append(str(i + 1) + " adaptations")

109:

110:

111: # plot exact solution

112: x = np.linspace(0, 1, 50)

113: plt.plot(x, (np.exp(p*x) - 1.)/(np.exp(p) - 1.))

114: adaptations_vec.append("exact")

115:

116:

117: plt.legend(adaptations_vec)

118: plt.xlabel(’x’)

119: plt.ylabel(’u_h(x)’)

120: plt.grid()

121: plt.show()

122:

123:

124:

125:

126:

127:

