adaptivity_schemes.py Wed Jan 07 11:32:18 2026 1

import numpy as np

def

def

flux_jumps (mesh, u):
N = len(mesh) - 1 # number of elements
jumps = np.zeros(N + 1) # N-1 edges

for i in range(l, N):

upper = (uf[i + 1] - uli])/(mesh[i + 1] — mesh[i]) V/
lower = (u[i] - ul[i - 1]1)/(mesh[i] - mesh[i - 1])
jumps[i] = upper - lower

return jumps

residual_errors (mesh, u): &/

N = len(mesh) - 1 # number of elements

errors = np.zeros (N)

Jjumps = flux_jumps (mesh, u)

for i in range(N):

errors[i] = np.sgrt((Jumps[i]**2 + jumps[i + 1]**2)/2) # Braess (8.10)

#print ("errors:\n", errors)

return errors

adapt_h (mesh, u, alpha):
N = len(mesh) - 1 # number of elements

errors = residual_errors (mesh, u)
threshhold = alpha * abs(max(errors))

refine mesh
refined_mesh = [mesh[0]]
for i in range (N) :
if abs(errors[i]) <= threshhold:
refined_mesh.append(mesh[i + 11])
else:
refined_mesh.append (mesh[i] + (mesh[i + 1] - mesh[i])/2)
refined_mesh.append(mesh[i + 1])

#print ("refined mesh:\n", refined_mesh)

return refined_mesh

adapt_r (mesh, u):
N = len(mesh) - 1 # number of elements
rho = np.abs (flux_jumps (mesh, u)) # rho ... mesh density function
p = np.zeros (N) # plecewise constant function on the mesh elements
for i in range(N):
pli] = (rho[i] + rhol[i + 1])/2
P = np.zeros(N + 1) # \int_0"{x_3j} p(x) dx for j = 1,...,N

for j in range(l, N + 1):
h_j = mesh[j] - mesh[j - 1]

P[j] = P[J - 11 + h_j*p[j - 11 # add integral over j—th interval

moved_mesh = np.zeros (N + 1)
moved_mesh[0] = mesh[0]
moved_mesh[-1] = mesh[-1]

Mobile User

adaptivity_schemes.py Wed Jan 07 11:32:18 2026 2

69: for j in range(l, N): # calculate the new nodes with De Boor’s algorithm

70: xi_j = j/N

71: k = np.searchsorted(P, xi_j*P[-1], side="left") # searches for index k, suc
h that xi_j*P[-1] > P[k]

72 assert (P[k - 1] < xi_j*P[-11)

73: assert (xi_j*P[-1] <= P[k])

74 :

75: moved_mesh[j] = mesh([k - 1] + (xi_j*P[-1] - P[k - 1])/plk - 1]

76: print ("orign_mesh[j] =", mesh[]j]) V/

77z print ("moved_mesh[j] =", moved_mesh[j])

78: print ("done\n")

79:

80:

81: #print ("moved mesh:\n", moved_mesh)

82:

83: return moved_mesh

Mobile User

ex_6A.py Wed Jan 07 11:32:18 2026 1

1l: import numpy as np

2: import scipy.integrate as integrate
3: import matplotlib.pyplot as plt
4: import adaptivity_schemes
5:
6: np.set_printoptions (precision=2)
7:
8:
9: def Solve_6A (mesh, p):
10: N = len(mesh) - 1 # number of elements
11:
12: f = lambda X : 2*p**3*x/ ((p**2*x**2 4+ 1) **2)
13: g b =p/(p**2 + 1)
14:
15:
16:
17: A = np.zeros((N + 1, N + 1))
18: f_vec = np.zeros(N + 1)
19:
20: for i in range(l, N + 1):
21: h = mesh[i] — mesh[i - 1]
22
23: a_1ll = 1./h
24: a_12 = -1./h
25: a_21 = -1./n
26: a_22 = 1./h
27:
28: Ali -1, 1 - 1] += a_11
29: Ali - 1, 1] += a_12
30: Ali, 1 - 1] += a_21
31: Ali, 1] += a_22
32:
33:
34: phi_lower = lambda x : (mesh[i] - x)/h
35: f_vec[i-1] += integrate.quad(lambda x : f (x)*phi_lower(x), mesh[i - 1], mesh
[i]) [O]
36:
37: phi_upper = lambda x : (x — mesh[i - 1])/h
38: f_vec[i] += integrate.quad(lambda x : f (x)*phi_upper(x), mesh[i - 1], mesh[i
1) [0]
39:
40:
41:
42 # take Neumann data into account
43: A[N, N] += 0
44 ;. f _vec[N] += g_b
45:
46:
47 : # take Dirichlet data into account
48: u_g = np.zeros(N + 1)
49: u_g[0] = -np.arctan(p)
50: #print ("u_g =\n", u_g)
51:
52: # remove first row of A
53: A_g = A[l:N+1, :]
54: #print ("A_g =\n", A_g)
55:
56: # remove first row of f_vec
57: f g = f_vec[l:N+1]
58:
59: # assemble RHS with dirichlet data
60: f g —= A_g.dot (u_g)
61: #print ("f_g =\n", f_g)
62:
63: # matrix for the inner nodes (excluding nodes with dirichlet bcs)
64 : A0 = A[1:N+1, 1:N+1]
65: #print (A_0)

66:

ex_6A.py Wed Jan 07 11:32:18 2026 2

67:
68:
69:
70:
71:
72
73:
74 :
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:

solve for u_0 (free dofs)
u_0 = np.linalg.solve(A_0, f_g)

assemble "u = u_0 + u_g"
u = np.concatenate([[u_g[0]], u_01)

return u

p = 100
#HA#FH##### h—adaptivity ##########
N =5 # number of elements

mesh = np.linspace(-1, 1, N + 1)
u = Solve_6A (mesh, p)

plt.plot (mesh, u,)
plt.grid()

plt.xlabel ()
plt.ylabel ()
plt.title()

N_vec = [+ str(N) +
refinements = 4 # number of refinements
for i in range (refinements) :
mesh = adaptivity_schemes.adapt_h (mesh, u,
u = Solve_6A (mesh, p)
plt.plot (mesh, u,)

N_vec.append(str(i + 1) +

plot exact solution
x = np.linspace(-1, 1, 50)
plt.plot (x, np.arctan(p*x))
N_vec.append ()

plt.legend(N_vec)
plt.show ()

#H###FFFAS r—adaptivity #########F#

N =5

mesh = np.linspace(-1, 1, N + 1)

u = Solve_6A (mesh, p)

plt.plot (mesh, u,)

title = + str(N) +
plt.title(title)

adaptations_vec = []
adaptations = 5 # number of iterations
for i in range (adaptations):

mesh = adaptivity_schemes.adapt_r (mesh, u)

u = Solve_6A (mesh, p)
plt.plot (mesh, u,)

adaptations_vec.append(str(i + 1) +

plot exact solution

x = np.linspace(-1, 1, 50)
plt.plot (x, np.arctan(p*x))
adaptations_vec.append ()

0.7)

+ str(len (mesh)

ex_6A.py
135: plt.
136: plt
137: plt
138: plt
139: plt.

Wed Jan 07 11:32:18 2026

legend (adaptations_vec)

.xlabel ()
.ylabel ()
.grid()

show ()

ex_6B.py Wed Jan 07 11:32:18 2026 1

1l: import numpy as np
import matplotlib.pyplot as plt
import adaptivity_schemes

2
3
4:
5: np.set_printoptions (precision=2)
6.
7
8

: def lam_func (x) :
9: n = len (x)

10: lam_vec = np.zeros(n)

11: for i in range(n):

12: if (x[1] > 1/np.sqrt(2)):
13: lam_vec[i] = 10

14: else:

15: lam_vec[i] =1

16: return lam_ vec

17:

18:

19:

20: def Solve_6B (mesh) :

21: N = len(mesh) - 1 # number of elements
22

23: A = np.zeros((N + 1, N + 1))

24

25: lam_vec = lam_func (mesh)

26:

27: for i in range(l, N + 1):

28: h = mesh[i] - mesh[i - 1]
29:

30: a_1ll = lam vec[i]/h

31: a_12 = —-lam vec[i]/h

32: a_21 = -lam _vec[i]/h

33: a_22 = lam_vec[i]/h

34

35: Ali -1, 1 - 11 += a_11

36: Ali - 1, 1] += a_12

37: Ali, 1 - 1] 4= a_21

38: A[i, 1] += a_22

39:

40: #print ("A =\n", A)

41

42 # take dirichlet data into account
43: u_g = np.zeros(N + 1)

44 . u_gl[0] =0

45: u_g[N] =1

46: #print ("u_g =\n", u_g)

47 :

48: # remove first and last row of A
49: A_g = A[l:N, :]

50: #print ("A_g =\n", A_g)

51

52: # assemble RHS with dirichlet data
53: f = -A_g.dot (u_g)

54: #print (f)

55:

56: # matrix for the inner nodes (excluding nodes with dirichlet bcs)
57: A_0 = A[1:N, 1:N]

58: #print (A_0)

59

60: # solve for u_0 (free dofs)

6l: u_0 = np.linalg.solve(A_0, £f)

62:

63: # assemble "u = u_0 + u_g"

64: u = np.concatenate([[0], u_0, [111)
65: #print ("u =\n", u)

66:

67: return u

ex_6B.py Wed Jan 07 11:32:18 2026 2

69:
70:
71:
72
73:
74 :
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:

########## h—adaptivity ##########

N = 2 # number of elements
mesh = np.linspace(0, 1, N + 1)
u = Solve_6B (mesh)

plt.plot (mesh, u,)
plt.grid()

plt.xlabel ()
plt.ylabel ()
plt.title()

N_vec = [+ str(N) +
refinements = 5 # number of refinements
for i1 in range (refinements) :

mesh = adaptivity_schemes.adapt_h (mesh,

u = Solve_6B (mesh)

plt.plot (mesh, u,)

N_vec.append(str(i + 1) +

plt.legend(N_vec)
plt.show ()

#HE#AAAAAF r—adaptivity #H#H#FHFHFHFH
N =5
mesh = np.linspace(0, 1, N + 1)

u = Solve_6B (mesh)
plt.plot (mesh, u,)
title = + str(N) +

plt.title(title)

adaptations_vec = []
adaptations = 4 # number of iterations
for i in range (adaptations):

mesh = adaptivity_schemes.adapt_r (mesh,

u = Solve_6B (mesh)

plt.plot (mesh, u,)

adaptations_vec.append(str(i + 1) +

plt.legend(adaptations_vec)
plt.xlabel ()

plt.ylabel ()
plt.grid()

plt.show ()

lam_func (mesh) *u,

+ str(len (mesh)

lam_func (mesh) *u)

0.

9)

1)

+

ex_6C.py Wed Jan 07 11:32:18 2026 1

1l: import numpy as np
import matplotlib.pyplot as plt
import adaptivity_schemes

2
3
4:
5: np.set_printoptions (precision=2)
6.
7
8

: def Solve_6C (mesh, p):
9: N = len(mesh) - 1 # number of elements

10:

11: A = np.zeros((N + 1, N + 1))
12:

13: for i in range(l, N + 1):

14: h = mesh[i] - mesh[i - 1]
15:

16: a_ll = 1./h - p/2.

17: a_l2 = -1./h + p/2.

18: a_2l = -1./h - p/2.

19: a_22 = 1./h + p/2.

20:

21: A1 -1, 1 - 1] += a_11
22: Ali - 1, 1] += a_12

23: Ali, 1 - 1] += a_21

24: Ali, 1] += a_22

25:

26: #print ("A =\n", A)

27:

28:

29: # take dirichlet data into account
30: u_g = np.zeros (N + 1)

31: u_gl[0] =0

32: u_g[N] =1

33: #print ("u_g =\n", u_g)

34

35: # remove first and last row of A
36: A_g = A[l:N, :]

37: #print ("A_g =\n", A_g)

38

39: # assemble RHS with dirichlet data
40: f = -A_g.dot (u_g)

41 : #print (f)

42

43: # matrix for the inner nodes (excluding nodes with dirichlet bcs)
44 . A_0 = A[1:N, 1:N]

45: #print (A_0)

46

47 : # solve for u_0 (free dofs)
48: u_0 = np.linalg.solve(A_0, f)
49:

50: # assemble "u = u_0 + u_g"
51: u = np.concatenate([[0], u_0, [1]1])
52:

53: return u

54:

55:

56:

57:

58:

59:

60: p = 70

6l: ######### h—adaptivity ##########
62: N =5 # number of elements

63: mesh = np.linspace(0, 1, N + 1)
64: u = Solve_6C (mesh, p)

66: plt.plot (mesh, u, "-o’)
67: plt.grid()
68: plt.xlabel ('x")

ex_6C.py Wed Jan 07 11:32:18 2026 2

69:
70:
71:
72
73:
74 :
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 .
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:

plt.ylabel ()

plt.title()

N_vec = [+ str(N) +
refinements = 4 # number of refinements

for i in range (refinements) :

mesh = adaptivity_schemes.adapt_h (mesh, u, 0.

u = Solve_6C (mesh, p)
plt.plot (mesh, u,)

N_vec.append(str(i + 1) +

plot exact solution

x = np.linspace (0, 1, 50)

plt.plot(x, (np.exp(p*x) - 1.)/(np.exp(p) - 1.))
N_vec.append ()

plt.legend(N_vec)
plt.show ()

#HE####FHFF r—adaptivity ########4#+#

N = 10

mesh = np.linspace(0, 1, N + 1)

u = Solve_6C(mesh, p)

plt.plot (mesh, u,)

title = + str(N) +
plt.title(title)

adaptations_vec = []
adaptations = 4 # number of iterations
for i1 in range (adaptations):
mesh = adaptivity_schemes.adapt_r (mesh, u)
u = Solve_6C (mesh, p)
plt.plot (mesh, u,)

adaptations_vec.append(str(i + 1) +

plot exact solution

x = np.linspace (0, 1, 50)

plt.plot (x, (np.exp(p*x) - 1.)/(np.exp(p) - 1.))
adaptations_vec.append ()

plt.legend(adaptations_vec)
plt.xlabel ()

plt.ylabel ()
plt.grid()

plt.show ()

+ str(len (mesh)

1)

+

