#import "@local/exam:0.3.0": exam, exercise, exercise-items, horiz-only, mtext // General configuration #show: exam.with( title: "Exam", course-title: [Abstract Binary Computation & Elegant Finite Graphs], // Top left header institution: [Super University], // Top right header course-short-title: "ABC & EFG", date: "1. January 1970", // Exam details, appears below the title course-code: "π", duration-minutes: "90", // Configure personal information fields ask-trainer-name: false, ask-group: true, ask-student-number: false, // Configure language, either "de" or "en" language: "en", // custom instructions // instructions: none, // change font-size // font-size: 12pt, // custom paper size // paper-size: "a4", // custom numbering of exercises // exercise-numbering: "1", // custom filling lightness for headings // fill-luma: 150, ) // First exercise #exercise("Relations and their properties", 2) Consider the relation $R subset NN^2$, defined as follows: $ (x, y) in R #h(0.5cm) <==> #h(0.5cm) x + y #mtext[is odd]. $ Is $R$ reflexive? transitive? symmetric? antisymmetric? // Second exercise #exercise("Properties of functions", 3) Let $f : (0, +infinity) → (0, +infinity)$ with $f (x) = e^(-x)$. // Several sub-questions #exercise-items(( (1, [Is $f$ injective?]), // The first argument is the number // of points the item is worth (1, [Is $f$ surjective?]), (2, [Is $f$ bijective?]), )) // Third exercise #exercise("Logical operators", 3.14) Consider the following truthtable: #align(center, table( stroke: horiz-only(0.5pt), columns: (auto, auto, auto), align: center, [$A$], [$B$], [$A or B$], [1], [1], [1], [1], [0], [1], [0], [1], [1], [0], [0], [1], )) // More sub-questions // override-points to false, so that the exercise total points are not recomputed. #exercise-items(override-points: false, numbering: "i)", ( (1, [Is the truthtable correct?]), (1, [If not, fix it.]), ))