import GLMakie as M import GaussNewton as GN import Metaheuristics as MH import DelimitedFiles: readdlm import LinearAlgebra: norm include("PLUV.jl") include("Utils.jl") # filtered_idx = d[:, 2] .> 0.0 # @views q, I, err = d[filtered_idx, 1], d[filtered_idx, 2], d[filtered_idx, 3] meta, params_init, lower_bounds, upper_bounds, qie_data = Utils.load_config("Data/PAR_POPC-test.toml") param_names = keys(params_init) best_5k_full = begin f_χ2 = open("POPC-test-5k/Results_collection-X2.dat", "r") d_χ2 = readdlm(f_χ2) close(f_χ2) idx_min_χ2 = argmin(d_χ2)[1] f_params = open("POPC-test-5k/Results_collection.dat", "r") for i in 1:(idx_min_χ2-1) readline(f_params) end best_params = map(x -> parse(Float64, x), split(readline(f_params), ' ')) end mean_5k_full = begin f_params = open("POPC-test-5k/Results_collection.dat", "r") params_pop = readdlm(f_params) N_trials, _ = size(params_pop) mean_params = vec(sum(params_pop; dims=1) / N_trials) end # best_5k = Utils.reduce_to_free_parameters(meta, [100000.0000000, 7.5004085, 23.5074449, 9.8664991, 0.0000000, 1.0000000, 0.2900000, 0.2203793, # 0.2990402, 0.4122816, 0.3266636, 0.2276763, 0.2481895, 0.6642123, 0.1203572, 0.2629861, 0.9000000, 0.3050000, # 0.2945315, 0.2762371, 0.4777401, 0.8100000, 2.0149998, 37.0000000, 0.0299139, 0.0002171]) # # best_5k = Utils.reduce_to_free_parameters(meta, [100000.0000000, 7.6975592, 23.4041912, 9.7275630, 0.0000000, 1.0000000, 0.2900000, 0.2219937, 0.3000114, # 0.4158804, 0.3278631, 0.2296156, 0.2475607, 0.6664143, 0.1191859, 0.2618609, 0.9000000, 0.3050000, 0.2963982, 0.2770345, 0.4762528, # 0.8100000, 1.9706651, 37.0000000, 0.0299179, 0.0002167]) best_5k_params = Utils.reduce_to_free_parameters(meta, best_params) q, I_data, err = Utils.select_columns(qie_data, meta["q_min"], meta["q_max"], meta["binning"], meta["binning"]) q_all, I_all, err_all = Utils.select_columns(qie_data, meta["q_min"], meta["q_max"], 1, meta["binning"]) I_data_lp = Utils.lowpass_filter(I_data; σ=2) I_all_lp = Utils.lowpass_filter(I_all; σ=2) w = Utils.compute_logscale_weights(q) w_all = Utils.compute_logscale_weights(q_all) # I_init = PLUV.intensity(params_init, q) intensity_reduced, P_reduced, lb_reduced, ub_reduced = Utils.reduce_to_free_parameters(meta, PLUV.intensity, params_init, lower_bounds, upper_bounds, q) projector = Utils.box_projector(lb_reduced, ub_reduced) simple_bounds = collect(zip(lb_reduced, ub_reduced)) simple_init = 0.5 * (lb_reduced .+ ub_reduced) padding_factors = fill(1e-1, length(simple_init)) scaling_factors = fill(0.0, length(simple_init)) #padding_factors[4] = 1e0 #padding_factors[7] = 1e0 #padding_factors[17] = 1e0 #padding_factors[18] = 1e0 # scaling_factors[4] = 1e1 # scaling_factors[6] = 1e1 #scaling_factors[7] = 1e3 # scaling_factors[18] = 1e4 bounds = MH.boxconstraints(lb=lb_reduced, ub=ub_reduced) function obj_χ2(P) I_model, neg_H20 = intensity_reduced(P) χ2 = Utils.chi2(I_data, I_model, err) factor = (neg_H20 == 0 ? 1.0 : 5.0 * (neg_H20 + 1)) return factor * χ2 end function obj_residuals(P) print(".") I_model, neg_H20 = intensity_reduced(P) residuals = Utils.residuals(I_data, I_model, err) factor = (neg_H20 == 0 ? 1.0 : 5.0 * (neg_H20 + 1)) res = factor * residuals return res end barriered_obj = Utils.add_log_barriers(obj_residuals, simple_bounds; padding_factors=padding_factors, mode=:inner) information = MH.Information(f_optimum=0.0) information = MH.Information() options = MH.Options(f_calls_limit=10_000, f_tol=1e-5); algorithm = MH.ECA(information=information, options=options) #algorithm = MH.PSO() I_best_5k, _ = PLUV.intensity(best_5k_full, q) I_best_5k_reduced, _ = intensity_reduced(best_5k_params) I_mean_5k, _ = PLUV.intensity(mean_5k_full, q_all) # Gauss-Newton if true data_file_init = Utils.reduce_to_free_parameters(meta, collect(Float64, values(params_init))) #initial_guess = simple_init initial_guess = best_5k_params _, result = GN.optimize(obj_residuals, initial_guess; projector=projector, autodiff=:central) # _, result = GN.optimize(barriered_obj, initial_guess; show_trace=true, iscale=2, D0=scaling_factors, ZCP=1e-2, ZCPMIN=1e-2) # _, result = GN.optimize(barriered_obj, initial_guess; show_trace=true, iscale=1, ZCP=1e-2, ZCPMIN=1e-2) # _, result = GN.optimize(barriered_obj, initial_guess) if GN.has_converged(result) @info "Gauss-Newton converged" @show result P_best = result.minimizer I_best, _ = intensity_reduced(P_best) @info "Simulated Annealing 5k" Utils.print_check_bounds(param_names, best_5k_params, lb_reduced, ub_reduced) @info "Our result" Utils.print_check_bounds(param_names, P_best, lb_reduced, ub_reduced) else @error "Gauss-Newton did not converge" end @info "Best result GN: Σr² = $(sum(x -> x^2, obj_residuals(P_best)))" @info "Best result SA: Σr² = $(sum(x -> x^2, obj_residuals(best_5k_params)))" @info "Result box middle: Σr² = $(sum(x -> x^2, obj_residuals(simple_init)))" @info "Result data file: Σr² = $(sum(x -> x^2, obj_residuals(data_file_init)))" end # Metaheuristics if false result = MH.optimize(obj, bounds, algorithm) @show MH.minimum(result) P_best = MH.minimizer(result) I_best, _ = intensity_reduced(P_best) end if true fig = M.Figure() ax = M.Axis(fig[1, 1]; xscale=log10, yscale=log10) #ax = M.Axis(fig[1, 1]) I_initial, _ = intensity_reduced(initial_guess) M.lines!(ax, q, I_initial, label="initial", linestyle=:dash, linewidth=2) M.lines!(ax, q, I_best, label="GN best (julia)") M.scatter!(ax, q, I_data, label="data") M.lines!(ax, q, I_best_5k, label="TSA best (5k)") M.lines!(ax, q_all, I_mean_5k, label="TSA mean (5k)") M.axislegend() display(fig) end if false fig = M.Figure() ax = M.Axis(fig[1, 1]; xscale=log10, yscale=log10) M.scatter!(ax, q, I) M.lines!(ax, q_all, I_all) M.lines!(ax, q_all, I_all_lp) #M.lines!(ax, q, I_init) display(fig) end if false fig = M.Figure() ax = M.Axis(fig[1, 1]; xscale=log10) #M.scatter!(ax, q, w) M.scatter!(ax, q_all, w_all) display(fig) end