---
layout: default
subtitle: Teaching
math: false
lang: en
fr_url: /enseignement/
---
{::options parse_block_html="true" /}
# Constance (in German)
# Winter semester 2022
- Differential geometry III
- PDE II
# Past semesters
Summer semester 2022
# Summer semester 2022
- Geometric analysis seminar
- Differential geometry II
- Functional analysis II
Winter semester 2021
# Winter semester 2021
- ODEs with geometric applications
- Theory of PDEs
# Paris-Dauphine (MIDO) (in French)
## 2013-2014
### Numerical optimization
[Webpage](https://www.ceremade.dauphine.fr/~amic/enseignement/OptiNum2014/) for the practical, managed by Amic Frouvelle.
## 2012-2013
### Linear algebra
* [Best of partiel 2012](/files/al3/bop-2012.pdf)
### Numerical optimization
* [Exercise sheet No.1](/files/opt/2013/TD1-2013.pdf): Finite differences, optimization in 1D.
* Solution: [right FD](/files/opt/2013/diff_fin_droite.m) and [centered FD](/files/opt/2013/diff_fin_centre.m)
* Exercise sheet No.2: [sheet](/files/opt/2013/TD2-2013.pdf),
* Practical No.2: [archive](/files/opt/2013/tp2.tar.gz), [sheet](/files/opt/2013/TP2-2013.pdf),
* Practical No.2 bis: [archive](/files/opt/2013/tp2bis.tar.gz), [sheet](/files/opt/2013/TP2bis-2013.pdf): Signal separation
* Exercise sheet No.3: [sheet](/files/opt/2013/TD3-2013.pdf): _Inpainting_
* Practical No.3: [sheet](/files/opt/2013/TP3-2013.pdf), [archive](/files/opt/2013/tp3.tar.gz)
* Practicalolution](/files/opt/2013/CC1_correction.pdf) to the exam from 6th march 2013
## 2011-2012
### Linear algebra
* [Sheet No.2 ex. 20](/files/al3/exo20.pdf) Projection on the spaces of scalar and diagonal matrices.
### Numerical optimization
* [Solution](/files/opt/2012/corrige_cc.pdf) to the exam from 15th march 2012
* [Exercise sheet No.1](/files/opt/2012/td1.pdf): Differential calculus: reminder
* [Exercise sheet No.2](/files/opt/2012/tp22012.pdf): Portfolio optimization
* [Exercise sheet No.3](/files/opt/2012/tp32012.pdf): Denoising
## 2010-2011
### Linear algebra
* [Extra exercise sheet](/files/al3/al3_supp.pdf) EV products, interpolation, equivalence of norms,
induced norm, matrix-norm, orthogonal polynomials, Fredholm alternative, projectors, least-squares.