--- layout: default subtitle: Teaching math: false lang: en fr_url: /enseignement/ --- {::options parse_block_html="true" /} # Constance (in German) # Winter semester 2022 - Differential geometry III - PDE II # Past semesters
Summer semester 2022 # Summer semester 2022 - Geometric analysis seminar - Differential geometry II - Functional analysis II
Winter semester 2021 # Winter semester 2021 - ODEs with geometric applications - Theory of PDEs
# Paris-Dauphine (MIDO) (in French) ## 2013-2014 ### Numerical optimization [Webpage](https://www.ceremade.dauphine.fr/~amic/enseignement/OptiNum2014/) for the practical, managed by Amic Frouvelle. ## 2012-2013 ### Linear algebra * [Best of partiel 2012](/files/al3/bop-2012.pdf) ### Numerical optimization * [Exercise sheet No.1](/files/opt/2013/TD1-2013.pdf): Finite differences, optimization in 1D. * Solution: [right FD](/files/opt/2013/diff_fin_droite.m) and [centered FD](/files/opt/2013/diff_fin_centre.m) * Exercise sheet No.2: [sheet](/files/opt/2013/TD2-2013.pdf), * Practical No.2: [archive](/files/opt/2013/tp2.tar.gz), [sheet](/files/opt/2013/TP2-2013.pdf), * Practical No.2 bis: [archive](/files/opt/2013/tp2bis.tar.gz), [sheet](/files/opt/2013/TP2bis-2013.pdf): Signal separation * Exercise sheet No.3: [sheet](/files/opt/2013/TD3-2013.pdf): _Inpainting_ * Practical No.3: [sheet](/files/opt/2013/TP3-2013.pdf), [archive](/files/opt/2013/tp3.tar.gz) * Practicalolution](/files/opt/2013/CC1_correction.pdf) to the exam from 6th march 2013 ## 2011-2012 ### Linear algebra * [Sheet No.2 ex. 20](/files/al3/exo20.pdf) Projection on the spaces of scalar and diagonal matrices. ### Numerical optimization * [Solution](/files/opt/2012/corrige_cc.pdf) to the exam from 15th march 2012 * [Exercise sheet No.1](/files/opt/2012/td1.pdf): Differential calculus: reminder * [Exercise sheet No.2](/files/opt/2012/tp22012.pdf): Portfolio optimization * [Exercise sheet No.3](/files/opt/2012/tp32012.pdf): Denoising ## 2010-2011 ### Linear algebra * [Extra exercise sheet](/files/al3/al3_supp.pdf) EV products, interpolation, equivalence of norms, induced norm, matrix-norm, orthogonal polynomials, Fredholm alternative, projectors, least-squares.