$\mathbf{D_0}$

On cherche les conditions sur $B \in \mathcal{M}_n(\mathbb{R})$ tel que pour tout $A \in D_0$ on ait

$$\langle A; B \rangle = 0.$$

Soit $\lambda \in \mathbb{R}$ et

$$A_{\lambda} \in D_0 := \begin{bmatrix} \lambda & & \\ & \ddots & \\ & & \lambda \end{bmatrix},$$

$$\langle A_{\lambda}; B \rangle = 0$$

$$\Leftrightarrow \sum_{i} \sum_{j} a_{i,j} b_{i,j} = 0$$

$$\Leftrightarrow \sum_{i} \lambda b_{i,i} = 0$$

 $\lambda \sum_{i} b_{i,i} = 0.$

puisque A_{λ} est scalaire

Cette dernière égalité doit être satisfaite pour tout λ , en particulier pour $\lambda \neq 0$, on doit donc avoir

$$\sum_{i} b_{i,i} = 0. \tag{1}$$

On a une seule equation liant n^2 variables, donc le s.e.v. (noyau d'une application linéaire) de tels B est de dimension $n^2 - 1$. Comme D_0 est de dimension 1, on a bien

$$D_0^{\perp} = \{ B \in \mathcal{M}_n(\mathbb{R}) : \operatorname{Tr}(B) = 0 \}.$$

Une base de D_0 est

$$A_1 := \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix},$$

une base $orthonorm\acute{e}e$ de D_0 est donc

$$A_{1/\sqrt{n}} := \begin{bmatrix} 1/\sqrt{n} & & \\ & \ddots & \\ & & 1/\sqrt{n} \end{bmatrix} = \frac{1}{\sqrt{n}} I_n.$$

On a donc la projection sur D_0 (expression de la projection sur un s.e.v. dont on connait une b.o.n.):

$$\forall M \in \mathcal{M}_n(\mathbb{R})$$

$$p_{D_0}(M) = \langle A_{1/\sqrt{n}}; M \rangle A_{1/\sqrt{r}}$$

$$= \frac{1}{n} \sum_i m_{i,i} I_n$$

$$= \frac{1}{n} \operatorname{Tr}(M) I_n.$$

Et donc comme $\forall M \, x = p_{D_0}(M) + p_{D_0^{\perp}}(M)$, on a :

$$\forall M \in \mathcal{M}_n(\mathbb{R}) \ p_{D_0^{\perp}}(M) = M - \frac{1}{n} \operatorname{Tr}(M) I_n.$$

En français, pour projeter M sur D_0 , on prend l'identité multipliée par la moyenne des termes diagonaux.

 D_1

Pour (1) on obtient

$$\sum_{i} \lambda_i, b_{i,i} = 0,$$

avec

$$A_{(\lambda_i)} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Ceci doit être vrai pour tout choix des λ_i , en particulier pour un seul non nul. On doit donc avoir

$$\forall i \in [1; n] \ b_{i,i} = 0,$$

et donc

$$D_1^{\perp} = \{ B \in \mathcal{M}_n(\mathbb{R}) : \forall i \in [1; n] \ b_{i,i} = 0 \},$$

ce qui correspond aux matrices de diagonale nulle. C'est un s.e.v. de dimension $n^2 - n$ (n équations pour n^2 variables), ce qui est cohérent avec $\dim(D_1) = n$.

Pour les projections on utilise la base canonique de $\mathcal{M}_n(\mathbb{R})$ (vérifier qu'elle est normée pour notre produit scalaire) :

$$(E_{i,i})_{i\in[1,n]}$$
 base de D_1 ,

et

$$(E_{i,j})_{i\neq j}$$
 base de D_1^{\perp} ,

On obtient:

- p_{D_1} : suppression des termes diagonaux.
- p_{D_1} : suppression des termes non-diagonaux.