---
layout: default
lang: en
subtitle: FJMT.2024 / 23 April 2024
math: true
---
# Lancichinetti-Fortunato-Radicchi (N_mfl = 301)
{% assign sigma_array = "0.001, 0.002, 0.004, 0.012" | split: ", " %}
{% assign mu_array = "0.001, 0.005, 0.01, 0.05, 0.20833333333333334, 0.36666666666666664, 0.525, 0.6833333333333333, 0.8416666666666667, 1.0" | split: ", " %}
{% assign prefix = "/s/numerics/FJMT.2024/plots_23_04_2024/results/LFR_separated/N_micro=1000,N_mfl=301" %}
{% assign prefix = "https://gaspard.janko.fr/s/numerics/FJMT.2024/plots_23_04_2024/results/LFR_separated/N_micro=1000,N_mfl=301" %}
{% for sigma in sigma_array %}
This page shows the differences in the dynamics between the microscopic and the kinetic (meanfield) model for Lancichinetti-Fortunato-Radicchi (LFR) type graphs,
depending on two parameters:
- $\sigma^2$, which is the variance of the $\beta$ distributions making up the initial distribution $f$,
- $\mu$, the so-called mixing parameter for the construction of the LFR graphs.
![f vs sigma](https://gaspard.janko.fr/s/numerics/FJMT.2024/plots_23_04_2024/f_init_vs_sigma.png){:width="750"}
$β$ distribution with $σ² = {{sigma}}$
Movies (ensemble averages)
|----------|
| R1 {% for mu in mu_array -%}
| [μ={{ mu | round: 4 }}]({{ prefix }}/σ²={{ sigma }}/μ={{ mu }}/movie_without_g.mp4){% if forloop.last -%} | {% endif -%}
{% endfor %}
Graphs
|----------|
{% for run in (1..5) -%}
| R{{ run }} {% for mu in mu_array -%}
| [μ={{ mu | round: 4 }}]({{ prefix }}/σ²={{ sigma }}/μ={{ mu }}/micro-{{ run }}/graph_LFR.png){% if forloop.last -%} | {% endif -%}
{% endfor %}
{% endfor %}
Dynamics
Convergence rates are computed over the time span marked in blue in the first plot.
**Parameters:**
- $\mu$: LFR mixing parameter
- $T^*$: time to consensus = $-1/\log(\vert\lambda_2\vert) \cdot \delta t$, where $\lambda_2$ is the second largest eigenvalue of the transition matrix for the associated time discrete model. See [here](https://doi.org/10.1016/j.ins.2019.02.028).
- [assortativity](https://en.wikipedia.org/wiki/Assortativity)
- [clustering coeff.](https://en.wikipedia.org/wiki/Clustering_coefficient)
![convergence]({{ prefix }}/σ²={{ sigma }}/comparison.svg){:.manual_center_1500}